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An Approximate Roe-type Riemann Solver for a Class of Realizable Second Order Closures

A realizable, objective second-moment turbulence closure, allowing for an entropy caracterisation, is analyzed with respect to its convective subset. The distinct characteristic wave system of these equations in non-conservation form is exposed. An approximate solution to the associated one-dimensional Riemann problem is constructed making use of approximate jump conditions obtained by assuming a linear path across shock waves. A numerical integration method based on a new approximate Riemann solver ( ux-di erence-splitting) is proposed for use in conjunction with either unstructured or structured grids. Test calculations of quasi one-dimensional ow cases demonstrate the feasibility of the current technique even where Euler-based approaches fail.

Introduction

Second order modelling of the Reynolds stress tensor has received growing attention over the past two decades. This particular closure technique has considerably matured so that today, Reynolds stress transport models are in use over a broad range of turbulent ow types in engineering applications 1, 2, 3].

In the compressible ow regime, one has to deal with wavelike phenomena including discontinuities (e.g. shock waves) due to the hyperbolic character of the convective subset of the governing equations. These speci c ow features constitute a major challenge to any type of numerical simulation. In the past, characteristics based methods have proven very useful notably for solving the equations of gas dynamics [START_REF] Lumley | Some comments on turbulence[END_REF][START_REF] Godunov | A di erence method for numerical calculation of discontinuous equations of hydrodynamics[END_REF]. The underlying idea of this class of numerical techniques is to incorporate as much as possible of the physics of the analytical problem into the discrete treatment. An important building block in this respect has been the one-dimensional Riemann problem which exhibits the essential features of characteristic wave propagation in the presence of discontinuities. In the case of the well-known Euler equations, an analytical solution to the Riemann problem can be found making use of the conservation form of the system (Rankine-Hugoniot relations). When dealing with Reynolds averaged transport equations in conjunction with a second order closure, the hyperbolic subset is not in conservation form due mainly to production terms (a similar situation arises in two-phase ows 6]). The fact that no classical analytical solution can be found for this system in the presence of discontinuities hinders the construction of a numerical method.

In past applications of second-moment closures to compressible ow problems this di culty has sometimes been circumvented resorting to the gas dynamics case as a model for physical propagation properties thus e ectively neglecting the in uence of turbulence on the characteristic wave system 7, 8]. However, recent work suggests that this simpli ed approach violates thermodynamic realizability properties 9] and can lead to non-physical or even unstable numerical solutions [START_REF] Forestier | Exact or approximate Riemann solvers to compute a two-equation turbulent compressible model[END_REF][START_REF] Page | Traitement de la partie hyperbolique du syst eme des equations Navier-Stokes moyenn ees et des equations de transport issues d'une fermeture au premier ordre pour un uide compressible[END_REF]].

An analysis of the complete hyperbolic subset in the framework of two-equation turbulence models (k-" type closures) has been carried out by Louis 12] and Forestier et al. 13]. These authors made use of the assumption of a linear path of a particular set of dependent variables across shock waves in order to derive an approximate analytical solution of the Riemann problem, eventually leading to an appropriate numerical method. The aim of the present article is to extend that technique upon systems issuing from second-moment closures. However, the tensorial character of the Reynolds stress further complicates the task through supplementary constraints of realizability which are strongly tied to the hyperbolicity of the underlying system. Before even directing ones attention on the hyperbolic subset, it is thus important to assure that the closed set of (modelled) equations meets the entire criteria that can be set forth from the exact equations of motion.

The outline of the present article is as follows. In section one we present a class of secondmoment closures that exhibit the desired realizability properties and allows for a clear entropy caracterisation. We then focus on the analysis of the associated hyperbolic subset which is described in section two. Approximate jump conditions are proposed for the non-conservative system. We then go on to construct the solution to the one-dimensional Riemann problem, applying the entropy inequality and restricting to weak shocks. The presented solution ful lls realizability requirements. These results enable us to propose in section 4 a simple but e cient way to compute time-dependent solutions including rarefaction waves, shocks and contact discontinuities, either using structured or unstructured meshes. The fourth section is devoted to the presentation of sample computational results of turbulent shock tube experiments, which con rm the capabilities of the scheme, even for high values of the turbulent Mach number.

2 The second moment closure

Governing equations

In this paper, we resort to Favre averaging of the instanteneous Navier-Stokes equations 14] while neglecting uctuations of \molecular" quantities (viscosity and heat conductivity). Two supplementary hypotheses are applied: the turbulent mass ux and temperature-density correlations are neglected when appearing in conjunction with viscosity; the turbulent heat ux is expressed by a gradient transport type model for simplicity. The resulting set of equations can then be written as follows (for more details on the derivation we refer to [START_REF] Favre | Equations des gaz turbulents, parties I et II[END_REF][START_REF] Vandromme | Turbulence modelling for compressible ows and implementation in Navier{ Stokes solvers[END_REF][START_REF] Page | Traitement de la partie hyperbolique du syst eme des equations Navier-Stokes moyenn ees et des equations de transport issues d'une fermeture au premier ordre pour un uide compressible[END_REF]):
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(1) Tilde, overbar and primes have been dropped in (1) except where needed for clarity. stands for the mean density, U is the density weighted mean velocity vector, R the Reynolds stress tensor R ij = g u 00 i u 00 j , E the mean speci c total energy and p the mean pressure which can be expressed via the ideal gas law (with being the ratio of speci c heats), viz.:

p = ( 1)( E 1 2 U k U k 1 2 R kk ).
(2)

The mean viscous stress is de ned as: ij = (U i;j + U j;i 2

3 ij U k ;k ), (3) 
where is the dynamic molecular viscosity. E is the (positive) coe cient of total heat ux (including a turbulent and a mean contribution); T ijk regroups all turbulent transport terms of the Reynolds stress; u 00 i represents the turbulent mass ux, corresponding to the di erence between density weighted and Reynolds averaged mean velocity. stands for the sum of the pressure-strain correlation and the non-isotropic part of the dissipation tensor 17]; " is the turbulent mechanical dissipation rate which can be obtained by a standard model equation (e.g. 18]).

Realizability properties

We now recall the basic conditions to be ful lled a priori by our second moment closure. Admissible states for the Reynolds stress tensor are such that the following inequality holds for any unit vector n in R 3 : n t R(x; t) n 0, (4) which expresses that uctuating velocities must be real. As a direct consequence of (4) one obtains a set of constraints: f 0 (f = f i 1 ; i 2 ; 3 g i = 1; 3), [START_REF] Godunov | A di erence method for numerical calculation of discontinuous equations of hydrodynamics[END_REF] where f designates any one amongst the fundamental minors of the Reynolds stress:

1 = R ; 2 = R R R 2 ; 3 = det(R). ( 6 
)
As a further criterion, mean density and pressure need to be positive, viz:

(x; t) 0 (7) p(x; t) 0. ( 8 
)
We thus de ne:

A closed set of equations that assures solutions complying with inequalities (5), [START_REF] Combe | Un sch ema volumes nis pour la simulation d'un mod ele biuide d' ecoulements diphasiques compressibles gaz-solide[END_REF] and ( 8) is called weakly realizable.

Considering the exact limiting behaviour of the Reynolds stress tensor, one can go further and formulate the following requirement of strong realizability [START_REF] Sarkar | Application of a Reynolds stress turbulence model to the compressible shear layer[END_REF][START_REF] Launder | The numerical computation of turbulent ows[END_REF][START_REF] Pope | PDF methods for turbulent reactive ows[END_REF][START_REF] Shih | Modelling of pressure correlation terms in Reynolds stress and scalar ux equations[END_REF][START_REF] Fu | Accommodating the e ects of high strain rates in modelling the pressure-strain correlation[END_REF][START_REF] Erard | Basic analysis of some second moment closures. Part I: incompressible isothermal turbulent ows[END_REF][START_REF] Erard | Suitable algorithms to preserve the realisability of Reynolds stress closures[END_REF][START_REF] Erard | Mod eles au second ordre r ealisables non d eg en er es pour les ecoulements turbulents incompressibles[END_REF]:

f 0 f = 0 ) (d t (f) = 0 d tt (f) 0), (9) 
with f = f i 1 ; i 2 ; 3 g and d t = @ t () + U k () ;k the material derivative and d tt f = d t (d t f).

For the sake of completeness, we call Reynolds stress closures that do not allow the solution to approach the limiting state, i.e. such systems that verify f 0 f = 0 ) d t (f) 0, [START_REF] Forestier | Exact or approximate Riemann solvers to compute a two-equation turbulent compressible model[END_REF] over-realizable.

Finally, it has been shown by Speziale 26] that the exact individual terms of the Reynolds stress transport equation (with the exception of production) are invariant under arbitrary accelerations of the frame of reference. Respective models should thus be formultated in a manner corresponding to this so-called objectivity requirement.

In the absence of a full proof of realizability for non-gaussian closures 22] we restrict our scope in the following to gaussian closures (T ijk = 0). Lumley 17] proposed a model for the slow part of the pressure-strain correlation which is in agreement with previous constraints (weak realizability, strong realizability, objectivity) and allows for a return-to-isotropy mechanism 24]. It must be pointed out that more recently strongly realizable models for the rapid part of pressure-strain have been put forth 20, 21] which however do not ful l the objectivity requirement. We thus focus herein on Lumley's proposal which reads = (I; II; III; Re l ) " ( R ij R kk

1 3 ij ), (11) 
where (I; II; III; Re l ) is a dimensionless function of the three invariants I, II, III of the Reynolds stress tensor and a turbulent Reynolds number Re l .

Moreover, we refrain from the practice of including an explicit model for the trace of pressurestrain, the so-called pressure-dilatation correlation, since algebraic expressions that have been used in the past [START_REF] Speziale | Invariance of turbulent closure models[END_REF][START_REF] Vandromme | Contribution a la mod elisation et a la pr ediction d' ecoulements turbulents a masse volumique variable[END_REF][START_REF] Rubesin | Extra compressibility terms for Favre averaged two-equation models of inhomogeneous turbulent ows[END_REF][START_REF] Zeman | On the decay of compressible isotropic turbulence[END_REF][START_REF] Sarkar | Compressible homogeneous shear: Simulation and modelling[END_REF] are in con ict with the constraints of strong realizability (cf. 11]).

The turbulent mass ux u 00 i is assumed to be modelled by a generalized gradient transport expression as proposed by Zeman 32] and Ristorcelli 33]: u 00 i = R il ;l , (12) where designates a characteristic time scale of the energetic eddies.

Entropy inequality

The system of equations (1) in conjunction with our modelling assumptions of the preceding paragraph enables us to derive an entropy inequality analogous to the case of the instantaneous Navier-Stokes equations (cf. e.g. 34]). Introducing a vector W 3D of \pseudo-conservative" variables W 3D = ( ; U; V; W; E; R 11 ; R 22 ; R 33 ; R 12 ; R 13 ; R 23 ) t , [START_REF] Louis | Mod elisation num erique de la turbulence compressible[END_REF] and the entropy function (W 3D ) = log(p= ), ( 14) we obtain: Proposition 1: Regular solutions of the set (1) are such that ;t + r:f nv (W 3D ) + r:f v (W 3D ; rW 3D ) = S (W 3D ; rW 3D ) 0, [START_REF] Favre | Equations des gaz turbulents, parties I et II[END_REF] where the uxes are de ned as (T = p= ): f nv = U ; [START_REF] Vandromme | Turbulence modelling for compressible ows and implementation in Navier{ Stokes solvers[END_REF] f v = ( R kl ;l ( 1)) ;k + ( 1) E T ;k T ;k ; [START_REF] Sarkar | Application of a Reynolds stress turbulence model to the compressible shear layer[END_REF] and the source term may be written as: S = 1 T E T T 2 ;i + " + ij U i;j ( 1) R ij ;i ;j . [START_REF] Lumley | Computational modelling of turbulent ows[END_REF] This clear inequality of the full set of model equations becomes useful in the inviscid limit where the following property holds across a discontinuity of speed :

] + f nv ] 0.

(19) With the help of inequality [START_REF] Launder | The numerical computation of turbulent ows[END_REF] the physically correct jump condition in the case of a shock wave can be selected amongst mathematically possible candidates. This is a prerequisite for the unique solution of the Riemann problem in section 3.3.

3 The convective subset

Introduction

The convective subset of our second-moment closure is obtained by setting all viscosity and conductivity related terms to zero in equations (1) and retaining only rst order di erential expressions. Alternatively, one can start o with the inviscid instantaneous equations (Euler) and carry out the statistical treatment. After introducing the above mentioned modelling assumptions the result is the following system:

( ) ;t + ( U j ) ;j = 0

( U i ) ;t + ( U i U j + ij p + R ij ) ;j = 0 ( E) ;t + ( EU j + U i (p ij + R ij )) ;j = 0 ( R ij ) ;t + ( R ij U k ) ;k = R ik U j ;k R jk U i ;k (20) 
Equations ( 20) cannot be put into conservation form due to the presence of the turbulence production term on the right hand side. From this fact stems the main di culty in analyzing and solving the equations issuing from second-moment closure: classic results from the theory of hyperbolic systems of conservation laws (cf. e.g. [START_REF] Smoller | Shock waves and reaction di usion equations[END_REF][START_REF] Ristorcelli | A representation for the turbulent mass ux contribution to Reynolds stress and two{equation closures for compressible turbulence[END_REF]) cannot be simply \applied" to this non-conservative system.

In the following we restrict our investigation to statistically two-dimensional turbulent ow (not to be confused with the extreme state of two-dimensional turbulence) in order to keep algebraic manipulations tractable. An extension to three dimensions should be straightforward but cumbersome. We thus assume that R 13 = R 23 = W = 0 , [START_REF] Shih | Modelling of pressure correlation terms in Reynolds stress and scalar ux equations[END_REF] and ;3 = 0 (22) whatever stands for. With the new vector of state variables W = ( ; U; V; E; R 11 ; R 22 ; R 33 ; R 12 ) t , [START_REF] Erard | Basic analysis of some second moment closures. Part I: incompressible isothermal turbulent ows[END_REF] the convection-production subset (20) now reads W ;t + (F i (W)) ;i = H(W; rW) i = 1; 2 , [START_REF] Erard | Suitable algorithms to preserve the realisability of Reynolds stress closures[END_REF] where F i (W) are the convective uxes and H(W; rW) the production term. We can assemble a system matrix A i (W)

A i (W) = @F i (W) @W + C nc i (W) i = 1; 2 , [START_REF] Erard | Mod eles au second ordre r ealisables non d eg en er es pour les ecoulements turbulents incompressibles[END_REF] where C nc i (W) W ;i = H(W; rW), [START_REF] Shih | Realizability in second{moment turbulence closures revisited[END_REF]) so that equation [START_REF] Erard | Suitable algorithms to preserve the realisability of Reynolds stress closures[END_REF] takes on the following familiar form:

W ;t + A i W ;i = 0. (27)

Hyperbolicity

Once more resorting to a unit vector n we de ne U n = U t (x; t) n ; R nn = n t R(x; t) n.

(28)

Since the system of equations is invariant under rotation, it su ces to investigate its characteristics in a single arbitrary direction n. We obtain with respect to the eigenvalues:

Proposition 2: The convective subset ( 27) is a non strictly hyperbolic system of equations if conditions ( 5), ( 7) and ( 8) of weak realizability hold. Eigenvalues are (in ascending order):

1 = U n c 1 2 = U n c 2 3 = 4 = 5 = 6 = U n (29) 7 
= U n + c 2 8 = U n + c 1 , with c 1 = p p= + 3R nn (30) c 2 = p R nn . (31) 
It is important to note that the hyperbolicity of the system of equations is strongly tied to the requirement of weak realizability, a fact that has already been noticed with respect to incompressible uids [START_REF] Fu | Accommodating the e ects of high strain rates in modelling the pressure-strain correlation[END_REF][START_REF] Erard | Suitable algorithms to preserve the realisability of Reynolds stress closures[END_REF]. As to what concerns the convective subset (27) alone, weak realizability is automatically satis ed for regular (C 1 ) solutions. Moreover, the Reynolds stress stays over-realizable if the initial state is over-realizable (see appendix A) so that eigenvalues 2 and 7 do not coincide with 3 6 (this property ensures the existence of a diagonal form of matrix A(W)).

The set of eigenvalues di ers visibly from the familiar case of gas dynamics. Waves associated with 1 and 8 are of acoustic nature, where c 1 signi es the celerity of isentropic density or pressure waves. This speed, however, depends on the (directional) turbulence intensity R nn in the present case.

The distinct speed of the 2-and 7-wave is a particular feature of the second-moment closure, c 2 playing a purely cinematic role. We are confronted with a system that permits the de nition of two Mach numbers:

M 1 = U n c 1 = M Euler p 3M t + 1 ; (32) 
M 2 = U n c 2 = M Euler M t ; ( 33 
)
where M Euler = U n = p p= is the classical speed of sound and M t = p R nn = p p= is a (di- rectional) turbulent Mach number. The ow is supersonic (i.e. all waves have same sign) when jM 1 j > 1. 

Z L Z R b)
Figure 1: a) Quasi one-dimensional ow in the two dimensional plane (n; ) at an instant t > 0. b) Wave propagation in space and time (n; t).

The Riemann problem

In the following we wish to analyze the one-dimensional Riemann problem which describes the ow developping from two semi-in nite states that have been separated initially by a discontinuity. Since we allow all components of the two-dimensional state vector to be non-zero a priori (but uniform in the tangential direction), the ow should really be termed \quasi one-dimensional". It is useful to work in local coordinates (n; ) perpendicular and tangential respectively to the discontinuity (see gure 1) so that we deal with the set of transformed variables Z = ( ; U n ; U t ; E; R nn ; R tt ; R ss ; R nt ) t , [START_REF] Ristorcelli | A representation for the turbulent mass ux contribution to Reynolds stress and two{equation closures for compressible turbulence[END_REF] where

U n = U t n ; R nn = n t R n ; R nt = n t R U t = U t ; R tt = t R ; R ss = R 33 ; (35)
The set of equations ( 27) can now be rewritten as follows: Z ;t + A n Z ;n = 0 ; A n = @F n @Z + C nc n (Z) , [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF] with initial data Z(n < 0; t = 0) = Z L ; Z(n > 0; t = 0) = Z R .

(37)

Genuinely non-linear and linearly degenerate waves

In order to test for linearity of the di erent characteristic elds, the di erential of the respective wave speed i needs to be projected upon the corresponding right eigenvector r i 34]: @ i @Z r i = 0 ) linearly degenerate eld i 6 = 0 ) genuinely non-linear eld i. [START_REF] Floch | Existence theory for nonlinear hyperbolic systems in nonconservative form[END_REF] Eigenvectors r i of our present system of equations are given in appendix B. It is straightforward to verify that the 1-and 8-wave are genuinely non-linear (GNL), others are linearly degenerate (LD).

Riemann invariants

Riemann invariants I i R associated with the ith eld (satisfying (@I i R =@Z) r i = 0) are the following:

I 1 R = p ; R nn 2 ; U n + Z c 1 d ; (R nn R tt R 2 nt )= 2 ; U t + Z 2c 1 R nt c 2 1 R nn d ; R ss ; R ss ; R nt exp 1 3 Z c 2 1 + R nn c 2 1 R nn d I 2 R = ; U n ; p; R nn ; U t + R nt p R nn ; R nn R tt R 2 nt ; R ss (39) 
I 3 6 R = U n ; p + R nn ; U t ; R nt I 7 R = ; U n ; p; R nn ; U t R nt p R nn ; R nn R tt R 2 nt ; R ss I 8 R = p ; R nn 2 ; U n Z c 1 d ; (R nn R tt R 2 nt )= 2 ; U t Z 2c 1 R nt c 2 1 R nn d ; R ss ; R nt exp 1 3 Z c 2 1 + R nn c 2 1 R nn d .

Approximate jump conditions

While deriving the exact jump conditions across discontinuities of familiar hyperbolic systems of conservation laws, e.g. in gas dynamics (Rankine-Hugoniot relations), extensive use of the conservation principle is made. It is not possible to proceed in an analogous way in the present case of a non-conservative set of equations. Instead, we resort to results from the theory of distributions. Le Floch 36] and Le Floch and Liu 37] have constructed a generalized Rankine-Hugoniot relation that depends on the path in state-space taken by the variables of the problem as a discontinuity is crossed. This approach is strictly valid only in the limit of weak shocks. Herein we suppose a linear path for variables V = ( 1 ; U n ; U t ; p; R nn ; R tt ; R ss ; R nt ) t (see also references 36, 13]), which leads to the following set of approximated jump conditions (appendix C for details):

]

+ U n ] = 0 U n ] + U 2 n + R nn + p] = 0 U t ] + U n U t + R nt ] = 0 E] + U n ( E + R nn + p) + U t R nt ] = 0 R nn ] + U n R nn ] = 2 ( R nn ) U n ] R tt ] + U n R tt ] = 2 ( R nt ) U t ] R ss ] + U n R ss ] = 0 R nt ] + U n R nt ] = ( R nn ) U t ] ( R nt ) U n ] : (40) 
We use standard notation for jumps ] = r l and arithmetic means = ( r + l )=2 of a variable where r and l are states to the right and to the left of the respective discontinuity.

When dealing with LD elds the solution of the above jump conditions is equivalent to the corresponding Riemann invariants, i.e. I LD R ] = 0, as is the case for conservation laws (cf. [START_REF] Ristorcelli | A representation for the turbulent mass ux contribution to Reynolds stress and two{equation closures for compressible turbulence[END_REF][START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF]). Furthermore, our approximate jump conditions are consistent with the classical Rankine-Hugoniot relations in the non-turbulent limit, which can easily be veri ed by setting all components of R to zero in [START_REF] Bu | Approximate Riemann solvers to compute turbulent compressible one and two-equation models[END_REF]. As to what concerns the GNL elds, shocks are described by the following parametrization ( = ( + 1)=( 1)): r l = z ; [START_REF] Van Leer | Towards the ultimate conservative di erence scheme. V. A second-order sequel to Godunov's method[END_REF] p r p l = z 1 z ;

(

) (R nn ) r (R nn ) l = 2z 1 z(2 z) ; 42 
U n ] = (z 1)

p z s 2 p l l ( 1)( z) + 3(R nn ) l 2 z , (44) and 
= z(U n ) r (U n ) l z 1 . ( 45 
)
The sign of the velocity jump in equation ( 44) can be selected using the inviscid entropy inequality of section 2.3. By introducing (45) and ( 42) into relation [START_REF] Launder | The numerical computation of turbulent ows[END_REF] it is a simple matter to show that

U n ] 0. Thus, in equation ( 44) the negative sign corresponds to a 1-shock (z > 1) and the positive sign to a 8-shock (z < 1). The remaining solutions for jumps of variables R tt , R ss , R nt and U t are given in appendix D.

Approximate analytical solution

Using the above results, the quasi one-dimensional Riemann problem may be solved by connecting left and right states Z L and Z R across the ve distinct characteristic waves (cf. 34] for the basic method). We obtain the following solution:

Proposition 3: The one-dimensional Riemann problem associated with the nonconservative system [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF], approximate jump conditions [START_REF] Bu | Approximate Riemann solvers to compute turbulent compressible one and two-equation models[END_REF] and initial data (37) has a unique, realizable solution provided that the following condition holds

(U n ) R (U n ) L < X L + X R , (46) 
where

X i = p i i 1=2 i Z 0 a i 1 2 1 + 3 i (R nn ) i p i a i 3 ! 1=2 da a , (47) 
and provided that initial states Z L and Z R comply with weak realizability constraints (5), [START_REF] Combe | Un sch ema volumes nis pour la simulation d'un mod ele biuide d' ecoulements diphasiques compressibles gaz-solide[END_REF] and [START_REF] Morrison | A compressible Navier{Stokes solver with two{equation and Reynolds stress turbulence closure models[END_REF].

A proof for proposition 3 has been established in reference 38]. We remark that the upper limit for the initial velocity di erence (46) is quite similar to the one encountered in the case of a rst order closure (k-" model, cf. 13]) and that this limit reduces to the expression known from gas dynamics (cf. 34]) if turbulence is set to zero. The integration in (47) can be carried out for the particular case of = 3 where X i ( = 3) = 2=( 1)(c 1 ) i . As can be seen from the solution of the jump conditions, the strength of a shock wave is limited when using the hypothesis of a linear path. The admissible maximum, beyond which normal stresses become negative (equation ( 43)), is max ( l ; r ) min ( l ; r ) = min ( ; 2) .

(48)

We emphasize once again that even for subcritical shock strengths, the analytical solution is an approximation owing to the jump conditions. For regular solutions, however, the above results (Riemann invariants) are exact; moreover, the given relations across LD elds are valid in any case.

Finally, we point out that the positivity of density and pressure is preserved throughout the solution and that the Reynolds stress tensor remains realizable at all times (cf. 38]). [START_REF] Lumley | Some comments on turbulence[END_REF] An approximate numerical Riemann solver

Introduction

Most numerical solution strategies for ow problems of mixed hyperbolic-elliptic type are centered around the treatment of the hyperbolic part of the governing equations. It is our purpose in this section to present one such method for dealing with second-moment closures of the type de ned in section 2.1. With the above presented analytical solution of the Riemann problem, it would in principle be possible and straightforward to construct a Godunov-type scheme as has been done successfully in the case of the k-" model 12]. However, the computational overhead produced by the solution of the non-linear problem [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF] does in general not pay o in terms of physical realism. We will thus content ourselves with an approximate Riemann solver that is built upon the analytic solution to a linearized form of equation ( 36) similar to Roe's method 5]. Before presenting the ux formulation and integration method for the non-conservative system we quickly recall the basic method that has been created for conservation laws.

Roe's scheme for systems of conservation laws

Let us consider a hyperbolic system of conservation laws, viz Z ;t + A cons n (Z) Z ;n = 0 ; A cons = @F @Z .

(49) An approximate Riemann solver is such that the exact solution to the linearized problem Z ;t + A(Z L ; Z R ) Z ;n = 0 , (50) is calculated which consists of ve simple waves since all elds are LD. The corresponding numerical ux function is thus expressed by the well-known formula

F Roe = 1 2 (F L + F R ) 1 2 jA(Z L ; Z R )j (Z R Z L ) . ( 51 
)
The problem of nding a sensible linearization A(Z L ; Z R ) has been translated into three conditions of consistency by Roe 5]:

(i) A(Z L ; Z R ) is hyperbolic and a diagonal form exists, (ii) A(Z; Z) = A cons (Z) ; (iii) A(Z L ; Z R ) Z] = F] :

In the case of the Euler equations of gas dynamics, it turns out that the linearized system matrix is equal to the original system matrix under a transformation of variables that has been termed Roe's average:

A Euler = A Euler (Z Roe (Z L ; Z R )) .

(52) In the past, some authors have forced the hyperbolic part of the second-moment closure equations to take a conservative form by eliminating from equation [START_REF] Pope | PDF methods for turbulent reactive ows[END_REF] the production term and the action of the Reynolds stress in the conservative ux of momentum and total energy 7, 11]. In the resulting truncated system turbulence is only felt via the pressure that is de ned by equation (2). This simpli ed approach enables to simply use Roe's ux formulation (51) in conjunction with Roe's average for all variables (cf. 11] for details). For future reference, we term this procedure the `decoupled approach'.

Roe-type scheme for non-conservative systems

We focus once again on a non-conservative system of transport equations Z ;t + A n (Z) Z ;n = 0 ; A n = @F n @Z + C nc n (Z) .

(53)

As will be explained in the following (see section 4.4) we discretize the source term C nc n (Z) Z ;n in a simple, centered manner. As a consequence, applying Roe's ux-di erence-splitting gives formally the same numerical ux formula as in the above case of conservation laws 11]:

F RNC = 1 2 (F L + F R ) 1 2 jA(Z L ; Z R )j (Z R Z L ) . (54) 
Similarly, we require the linearization A to ful l the following two fundamental constraints:

(i) A(Z L ; Z R ) is hyperbolic and a diagonal form exists, (ii) A(Z; Z) = A n (Z) :

In a straightforward extension of Roe's above idea (iii), i.e. that the numerical ux be exact in the case of a shock wave being located between two nodes, one would write as the third condition

(iii) a A(Z L ; Z R ) Z] = F] + C nc (Z L ; Z R ) Z] :
The jump conditions of the non-conservative source term C nc Z] are the approximate ones based on the assumption of a linear path (i.e. equation ( 40) for the present system).

In the case of k-" type closures 9, 39] and in the context of two-phase ows 6], conditions (i),

(ii) and (iii) a again lead to a linearized matrix resembling the original system matrix

A(Z L ; Z R ) = A( Z(Z L ; Z R )) , ( 55 
)
where Z is a particular average that di ers from Roe's averaging.

In the present case, however, the linearized matrix A obtained from the above relations (i), (ii) and (iii) a cannot be recast into the form of the system matrix A( Ẑ(Z L ; Z R )) since a corresponding average Ẑ does not exist 11]:

9 / Ẑ(Z L ; Z R ) = A( Ẑ) Z] = F] + C nc (Z L ; Z R ) Z] . (56) 
The matrix A that issues from condition (iii) a is thus in a form not suitable for numerical purposes, in particular its diagonalization is very complicated. Consequently, we have relaxed this condition and replaced it by the following simple expression based on an arithmetic average:

(iii) b A(Z L ; Z R ) = A(Z(Y)) ;
where Y = ( ; U n ; U t ; H t ; R nn ; R tt ; R ss ; R nt ) t and total enthalpy being de ned as H t = E + p= .

Our numerical ux function can nally be written as (\RNC" designating \Roe Non Conservative"):

F RNC = 1 2 (F L + F R ) 1 2 jA(Z(Y))j (Z R Z L ) .
(57) The \absolute value" of the system matrix is calculated through the following relation

jA(Z(Y))j = R(Z(Y)) j (Z(Y))j R 1 (Z(Y)) , ( 58 
)
where diagonalization matrices R and R 1 are given in appendix B and is the diagonal eigenvalue matrix.

Integration method

Since in most nite volume methods multidimensional ows are treated as a succession of quasi one-dimensional problems for each cell face, it su ces in the following to present a one-dimensional discretization, keeping the notation of section 3.3.

Integrating equation (53) over a nite volume i (V i being the cell volume, i designating the cell surface, t the time step, superscript n indexing time steps) we obtain:

V i (Z n+1 i Z n i ) + t 8 < : I i F RNC (Z n )d i + S i (Z n ) 9 = ; = 0 . ( 59 
)
The source terms S i are expressed by a centered di erence, so that

S i = Z i C nc (Z) Z ;n d = C nc (Z n i ) Z i Z ;n d = C nc (Z n i ) I i Z (Z n )d i , (60) 
where

Z LR (Z n ) = Z n i + Z n j 2 (61)
with Z j being the local neighbouring node at the respective partial cell face ij 2 i .

5 Some numerical experiments

Generalities

In the following we present some numerical results of quasi one-dimensional ow problems that demonstrate important properties of the proposed method. We consider two Riemann problems with di erent initial states as detailled in table I . These give rise to a turbulent shock-tube ow and a symmetrical double shock con guration respectively. At this point, two features of the chosen initial values should be noted. Firstly, turbulence intensity is high enough for the particularities of the system of equations to be felt (with respect to the Euler equations). Secondly, the Reynolds stresses R L and R R are in an anisotropic state since otherwise the \new" pair of waves 2 and 7 would be \invisible" as a consequence of the form of the respective invariants (cf. ( 39)).

The length of the domain L, the position of the diaphragm x 0 and total integration time t fin are given in table II . A number of 500 grid nodes are equally spaced over the distance L in all examples shown below. This spatial resolution su ces for the present investigation of numerical wave propagation (in an engineering application a higher order extension of the scheme, e.g. references [START_REF] Bu | Approximate Riemann solvers to compute turbulent compressible one and two-equation models[END_REF][START_REF] Van Leer | Towards the ultimate conservative di erence scheme. V. A second-order sequel to Godunov's method[END_REF], should be used). The time step used for the computations obeys the condition of non-interaction of waves originating from neighboring cell faces 4], thus t x max (j i j) 0:5 :

(62) All calculations are performed with the ratio of speci c heats taking a value of 7=5.

Turbulent shock-tube ow

This case is identical to Sod's problem 42] as far as initial values of mean quantities are concerned. The ow does develop in a way that is similar to the laminar or gas dynamics counterpart with a rarefaction wave moving to the left and a shock wave propagating to the right followed by three distinct LD waves of which the wave in the center corresponds to the contact discontinuity. In L m] 30 30

h kg m 3 i U n m s U t m s p h kg ms 2 i R nn h m 2 s 2 i R tt h m 2 s 2 i R nt h m 2 s 2 i R ss h m 2
x 0 m] 14 14 t fin 10 2 s] 2:1 2:3

Table 2: Some physical details concerning the simulation: length of the domain of integration L, position of the diaphragm x 0 and nal integration time t fin .

gure 2 all ve waves are visible through the variation of tangential momentum U t . Density and normal velocity U n (see gures 3 and 4) behave qualitatively in the same manner as in Sod's original shock-tube ow with variations only across the 1-, 3-4-5-6-and 8-elds (1-and 8-elds respectively).

Figure 5 shows that the mean pressure changes considerably in the present case as the contact discontinuity is crossed due to non-negligible turbulence intensity. In accordance with theory (equations ( 39)) the sum of the normal stresses p + R nn remains constant across all LD elds. As a consequence of the coupling between Reynolds steresses and mean quantities, the tangential velocity U t takes on considerable values in the ow eld ( gure 6). On the same graph, we can clearly identify the location of the particular 2-and 7-waves (however smeared they might be) by comparing the behaviour of U t with the one of its corresponding invariants U t R nt = p R nn that are also included.

All four Reynolds stress components are shown in gure 7. The direct e ect of production on R nn and R nt can be observed as well as the purely passive role of the spanwise normal stress R ss (justifying the designation as `contact discontinuity' for the 3-4-5-6-wave). Finally, gure 8 allows us to verify the correct numerical representation of other invariant expressions. We note the positivity of the determinant 3 2 throughout the domain as well as the monotonous results for the two entropy-like ratios p= and R nn = 2 .

Symmetrical double shock con guration

In the second case, two shock waves, one left-running and one right-running, form due to initially impacting velocities (U n ) L and (U n ) R as can be seen from the distribution of normal velocity in gure 9. This con guration is of particular relevance to engineering problems in as far as it is an idealization of the transient state near a wall during the initial phase of a numerical simulation. The 3-4-5-6 contact discontinuity remains stationary in this case of symmetrical ow. Its position is marked by a localized loss of monotony of most variables in gures 11 to 14, e.g. density, pressure, Reynolds stress components. This feature of the numerical solution is not due to the current ux formulation (RNC) since it is also observed in similar symmetrical ow cases when using Godunov's method to solve the equations of gas dynamics or in conjunction with a k-" type closure 12]. The small `glitch' is due to the fact that an initially created perturbation at the point x 0 is not smoothed out since the eigenvalues 3 6 vanish there.

Once again invariants U t R nt = p R nn ( gure 14) indicate the position of the 2-and 7-waves which propagate in opposite directions. Figures 15 to 18 show results obtained using the simple `decoupled approach' (section 4.2) based on arti cially rendering the hyperbolic subsystem conservative. Using this numerical solution method, dramatic oscillations occur for those variables that are subject to variation across waves 2 and 7, i.e. U t , R tt and R nt . Corresponding invariants are not preserved, as can be seen from gure [START_REF] Vandromme | Turbulence modelling for compressible ows and implementation in Navier{ Stokes solvers[END_REF]. This non-physical bahaviour is a direct consequence of ignoring the particular form of the characteristics of the second-moment closure equations. The decoupled scheme is e ectively \blind" with respect to the 2-and 7-wave. Hence, whenever these waves occur in the solution, no upwind contribution is introduced into the numerical ux by the scheme leading to instability (see appendix E for an explanation of this behaviour via von Neumann analysis).

Conclusion

We have investigated a class of simple second-moment closures for the turbulent stress tensor ensuring a realizable, objective system of modelled equations and allowing for a clear entropy inequality. The associated rst order di erential subset (containing convection and production mechanisms) cannot be cast into conservation form. Its hyperbolicity is assured for over-realizable initial elds. The system of characteristic waves is found to be quite distinct from the case of pure gas dynamics with a pair of additional LD waves appearing and a modi cation of the speed of sound due to turbulence.

Our analysis of the Riemann problem leads to a majority of exact partial solutions, i.e. across all LD waves and across regular GNL elds (Riemann invariants). These theoretical ingredients enable subsequent scrutinization of numerical results. In order to solve for variations across shock waves, we have resorted to approximate jump conditions based on a linear path in state-space. The resulting analytical solution of the complete Riemann problem is thus an approximation whose validity is limited to weak shocks.

We have proposed an approximate numerical Riemann solver of the ux-di erence-splitting type to be used in nite volume simulation codes. For practical reasons it was not possible to enforce Roe's condition of consistency for stationary shock waves in our numerical ux function for the non-conservative system (RNC). Our results of quasi one-dimensional test calculations document the potential of the present method: solutions behave in the expected monotonous manner even in the presence of strong shocks, high turbulence intensity and anisotropy; theoretically deduced invariant expressions are numerically respected.

On the other hand, our calculations using an essentially Euler-based `decoupled approach' lead to spurious oscillations at high turbulent Mach numbers. Simplifying the numerical task by neglecting to a large extent the in uence of turbulence on the propagation properties of the second-order system should thus not be considered as an alternative. Use of the full, coupled, non-conservative subset is advised for accurate and stable time-dependent numerical simulations of the second-moment equations. 

We remark that the above theory based on a linear path ful ls two important conditions of consistency. Firstly, it reduces to the exact Rankine-Hugoniot relations in the limit of zero turbulence, as is obvious from equation (80) and the de nition (81). Secondly, it is easily veri ed that for LD elds the above approximate jump conditions (80) are equivalent to the Riemann invariants of section 3.3.2 which are exact.

D Solution to remaining jump conditions

For the remaining variables of the set, not treated in section 3.3.3, the approximate jump relations across shock waves are the following:

U t ] = (R nt ) l l U n ] 2 1 (z ) l (R nn ) l 2 1 (z ) + p l (z 3) ;

(82)

R tt ] = 4( 1)(z )(R nt ) 2 l l z ( l (R nn ) l 2( 1)(z ) + p l (z 3)) 2 p l (1 z 2 ) + 4z( 1) + l (R nn ) l 2( 1)(z )(z 1) 1 + 3(z 1) z(2 z) ; E Instability of the `decoupled approach' in the case of a symmetrical problem

Focussing on case 2 of section 5.3, we note that due to the symmetry of the problem all variables have a zero jump across the centered discontinuity (3-4-5-6-wave) and that the normal velocity U n is zero in the center. Furthermore, the set of variables f ; p; R nn ; U n g is invariant with respect to the 2-and 7-wave, such that I = II ; p I = p II ; U nI = U nII = 0; R nnI = R nnII :

(86) Consequently, between the 1-shock and the 8-shock (zone \C" in gure 20) the convective system of equations [START_REF] Lax | Hyperbolic systems of conservation laws and the mathematical theory of shock waves[END_REF] then reduces to the following simple form: (U t ) ;t + (R nt ) ;n = 0 (R nt ) ;t + R nn (U t ) ;n = 0 (R tt ) ;t + 2R nt (U t ) ;n = 0 :

(87)

It can be seen that R tt plays a passive role in this zone such that the subsystem consisting of the respective equations for U t and R nt { being linear { will be considered separately in the following.

Since the simple `decoupled approach' (cf. section 4.2) is based on a characteristic wave system that is essentially equivalent to the Euler waves { not containing waves 2 and 7 of the present system { the numerical ux within zone \C" does not contain an upwind contribution. Applying this explicit central scheme to (87) leads to the following discrete system: U t n+1 i U t n i + t 2 x R nt n i+1 R nt n i 1 = 0 R nt n+1 i R nt n i + t 2 x R nn U t n i+1 U t n i 1 = 0 :

(88)

The von Neumann analysis (e.g. 43, I,p.296]) of the above system, i.e. inserting a single harmonic (90)

The eigenvalues 1;2 of the ampli cation matrix G( ), 1;2 = 1 I sin( ) t x p R nn , (91) lead to the following expression for the spectral radius :

(G( )) = max i=1;2 j i j = s 1 + sin 2 ( ) t x 2 R nn 1 :

(92)

The `decoupled approach' is thus susceptible to temporal oscillations and eventual instability for all nite time steps t and spatial resolutions x.
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 4 Figure 4: Case 1; distribution of normal velocity U n obtained with the present scheme (RNC).
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 5 Figure 5: Case 1; distribution of pressure p and total normal stress p + R nn , the latter being invariant with respect to the contact discontinuity in the center (3-4-5-6-wave).
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 6789 Figure 6: Case 1; distribution of tangential velocity U t and invariants U t R nt = p R nn allowing to
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 10 Figure 10: Case 2; distribution of tangential velocity U t obtained with the present scheme (RNC).
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 11 Figure 11: Case 2; distribution of density obtained with the present scheme (RNC).
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 12 Figure 12: Case 2; distribution of pressure p and total normal stress p + R nn obtained with the present scheme (RNC).
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 13 Figure 13: Case 2; distribution of stress components R tt and R nt obtained with the present scheme (RNC).
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 14 Figure 14: Case 2; distribution of invariants U t R nt = p R nn obtained with the present scheme
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 15 Figure15: Case 2; distribution of tangential velocity U t obtained with the `decoupled approach'.
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 16 Figure 16: Case 2; distribution of invariants U t R nt = p R nn obtained with the `decoupled ap- proach'.
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 17 Figure 17: Case 2; distribution of stress component R tt obtained with the `decoupled approach'.
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 18 Figure 18: Case 2; distribution of stress component R nt obtained with the `decoupled approach'.
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 19 Figure 19: a) Discontinuity of the variable V in the plane (x; V). b) Connection of left and right states by a linear path in the plane ( ; V).
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 20 Figure 20: Con guration of the characteristic wave system in the case of a symmetrical double shock. Zone \C" indicates the region where f ; p; R nn ; U n g are constant and the convective system of equations simpli es considerably.
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 1 Initial conditions for quasi one-dimensional test problems. Tangential anisotropy is indicated by b nt = R nt =R ii .
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A Over-realizability of the Reynolds stress in the hyperbolic subset

We wish to verify that the 2-and 7-wave do not coincide with the 3-4-5-6-wave ensuring the existence of a diagonal form of the system of equations [START_REF] Speziale | Invariance of turbulent closure models[END_REF]. For this purpose we examine the Reynolds stress normal component R nn , rewriting it as a function of Reynolds stress eigenvalues ( ) and a new unitary vector n 0 , R nn = n 0 t : (1) 0 0

(2) n 0 = (1) n 0 x 2 + (2) n 0 y 2 .

(

Since components n 0 x and n 0 y cannot be zero simultaneously, at least one of the eigenvalues ( ) must vanish in order for R nn to vanish, implying in turn a zero value for the determinant 3 2 = (1) (2) . Using the conservation law of mass [START_REF] Pope | PDF methods for turbulent reactive ows[END_REF], Reynolds stress transport can be expressed as

so that we obtain the following evolution equation for the determinant 3 2 ;t + U k 3 2 ;k = 2 

where the transformation matrices are

and 

allowing for a diagonalization à = L L 1 with

and = diag( 1 ; : : : ; 8 ). Right eigenvectors are simply columns of matrix L, i.e. r i k = L ki .

Finally, the diagonalization matrices of the original system (36) are obtained through the following relations:

C Derivation of the approximate jump conditions

Let us consider a system of equations under non-conservative form:

A generalized Rankine-Hugoniot relation has been established by Le Floch 36] in the context of the theory of distributions. This relation is developped in the limit of in nitesimally weak shocks and represents an approximation for non-zero shock strengths. It can be written as:

where = ( ; V l ; V r ) represents the path connecting states to the left and to the right of the discontinuity in state-space (see gure [START_REF] Launder | The numerical computation of turbulent ows[END_REF]. Choosing a linear path, i.e. = V] + V l , we obtain

We need to choose a set of variables V upon which this linear path is imposed. 

The matrix D appearing in equation ( 77) is calculated via the transformation D = B 1 ÃB, where B = @Z=@V. Since components D ij are linear functions of components of the vector V, the integration in (77) results in arithmetic means, viz:

V] + V] D(V) = 0 .

(79)

Retransformation into our original variables Z nally yields Z] + F] + C nc (Z l ; Z r ) Z] = 0 , (80)