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Abstrat Two-dimensional rogue wave ourrene in shallow water on a vertially7

sheared urrent of onstant vortiity is onsidered. Using Euler equations and Rie-8

mann invariants in the shallow water approximation, hyperboli equations for the9

surfae elevation and the horizontal veloity are derived and losed-form nonlin-10

ear evolution equation for the surfae elevation is obtained. Following Whitham11

(1974), a dispersive term is added to this equation using the fully linear disper-12

sion relation. With this new single �rst-order partial di�erential equation, vortiity13

e�ets on rogue wave properties are studied numerially. Besides, the Boundary14

Integral Element Method (BIEM) and the KdV equation both with vortiity are15

used for this numerial investigation, too. It is shown that results from the gen-16

eralised Whitham equation agree quite well with those from BIEM whereas those17

from the KdV model are quite di�erent. The numerial simulations arried out18

with the generalised Whitham equation and BIEM show that the presene of an19

underlying vertially sheared urrent modi�es rogue wave properties signi�antly.20

For negative vortiity the ampli�ation fator and duration of extreme wave events21

are inreased whereas it is the opposite for positive vortiity. Furthermore, the wave22

ampli�ation is larger when the urrent is opposing.23
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1 Introdution24

Generally, in oastal and oean waters, urrent veloity pro�les are established by25

bottom frition and wind stress at the sea surfae, and onsequently are vertially26

varying. Ebb and �ood urrents due to the tide may have an important e�et on27

water wave properties. In any region where the wind blows, the generated urrent28

a�ets the behavior of the waves. The present work fouses on the nonlinear evo-29

lution of two-dimensional gravity waves propagating in shallow water on a shear30

urrent whih varies linearly with depth. We assume that the diretional spread of31

the wave �eld is su�iently narrow to onsider unidiretional propagation of the32

waves.33

There are a number of physial mehanisms that fous the wave energy into a small34

area and produe the ourrene of extreme waves alled freak or rogue waves.35

These events may be due to refration (presene of variable urrents or bottom to-36

pography), dispersion (frequeny modulation), wave instability (the modulational37

instability), soliton interations, rossing seas, et. For more details on these di�er-38

ent mehanisms see the reviews on freak waves by Kharif and Pelinovsky (2003),39

Dysthe et al (2008), Kharif et al (2009) and Onorato et al (2013). Few studies have40

been devoted to the ourrene of extreme wave events in shallow water. Among41

the authors who have investigated rogue wave properties in shallow water, one an42

ite Pelinovsky et al (2000) , Kharif et al (2000), Peterson et al (2003), Soomere43

and Engelbreht (2005), Talipova et al (2008) and Chambarel et al (2010). Peli-44

novsky and Sergeeva (2006) and To�oli et al (2006) investigated the statistial45

properties of rogue waves in shallow water.46

To the best of our knowledge, there is no paper on the e�et of a vertially sheared47

urrent on rogue wave properties apart from that of Touboul and Kharif (2016) in48

deep water. We propose to extend this work to the ase of shallow water.49

Within the framework of the shallow water wave theory Whitham (1974) proposed50

a generalised equation governing the evolution of fully nonlinear waves satisfying51

the full linear dispersion. The Whitham equation may be derived from the previ-52

ous generalised Whitham equation assuming that the waves are weakly nonlinear.53

The Whitham equation and the KdV equation whih have the same nonlinear term54

di�er from eah other by the dispersive term. Very reently, Hur & Johnson (2015)55

have onsidered a modi�ed Whitham equation taking aount of onstant vortiity.56

Very reently, Kharif and Abid (2017) have proposed a new model derived from57

the Euler equations for water waves propagating on a vertially sheared urrent of58

onstant vortiity in shallow water. The heuristi introdution of dispersion allows59

the study of strongly nonlinear two-dimensional long gravity waves in the presene60

of vortiity. Consequently, this new equation extends to waves propagating in the61

presene of vortiity the generalised Whitham equation.62

Two di�erent approahes are used to investigate rogue waves propagating in shal-63

low water on a shear urrent of onstant vortiity: the generalised Whitham equa-64

tion with vortiity and the Boundary Integral Element Method (BIEM) whih65

allows the study of fully nonlinear dispersive water waves on arbitrary depth in66

the presene of vortiity (see Touboul and Kharif (2016) ). Besides, a numerial67

investigation is arried out by using the KdV equation with onstant vortiity68

whose derivation an be found in the papers by Freeman and Johnson (1970) and69

Choi (2003). Note that the latter equation an be derived from the generalised70
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Whitham equation with vortiity assuming that the waves are weakly nonlinear71

and weakly dispersive.72

2 Two mathematial formulations73

2.1 The generalised Whitham equation with vortiity74

We onsider two-dimensional gravity water waves propagating at the free surfae75

of a vertially sheared urrent of uniform intensity Ω whih is the opposite of the76

vortiity. The wave train moves along the x − axis and the z − axis is oriented77

upward opposite to the gravity. The origin z = 0 is the undisturbed free surfae78

and z = −h is the rigid horizontal bottom.79

The ontinuity equation is80

ux + wz = 0 (1)

where u and w are the longitudinal and vertial omponents of the wave indued81

veloity, respetively. The underlying urrent is U = U0 + Ωz where U0 is the82

onstant surfae veloity.83

Integrating equation (1) from the bottom to free surfae gives84

w(z = η)− w(z = −h) = u(z = η)ηx − ∂

∂x

∫ η(x,t)

−h
udz (2)

The vertial omponent of the veloity at the free surfae, w(z = η), and at the85

bottom, w(z = −h), are obtained from the kinemati boundary ondition and86

bottom ondition87

w(z = η) = ηt + [u(z = η) + U0 +Ωη]ηx
88

w(z = −h) = 0

Consequently equation (2) beomes89

∂

∂x

∫ η(x,t)

−h
udz + (U0 +Ωη)ηx = 0

Assuming u to be independent of z, we obtain the following equation90

ηt +
∂

∂x
[u(η + h) +

Ω

2
η2 + U0η] = 0 (3)

91

Equation (3) orresponds to mass onservation in shallow water in the presene of92

onstant vortiity.93

The Euler equation in the x-diretion is94

ut + (u+ U0 + Ωz)ux +Ωw = −1

ρ
Px

with u independent of z and ρ the water density.95

Using the hydrostati assumption for the pressure96

P = ρg(η − z)
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where g is the gravity.97

The Euler equation in the x-diretion is rewritten as follows98

ut + (u+ U0 +Ωz)ux +Ωw + gηx = 0 (4)

99

Using the ontinuity equation and boundary onditions that w satis�es on the100

bottom and at the free surfae, we obtain101

w = −(z + h)ux (5)

Finally, the Euler equation beomes102

ut + (u+ U0 −Ωh)ux + gηx = 0 (6)

The dynamis of non dispersive shallow water waves on a vertially sheared ur-103

rent of onstant vortiity is governed by equations (3) and (6) that admit a pair of104

Riemann invariants. These Riemann invariants whih are derived analytially al-105

lows us to express the longitudinal omponent of the wave indued veloity u(x, t)106

as a funtion of the elevation η. Finally, equations (3) and (6) an be redued to107

the following single nonlinear partial di�erential equation for η108

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx = 0

(7)

More details on the derivation of this equation is given in the appendix. Equation109

(7) is fully nonlinear and desribes the spatio-temporal evolution of hyperboli110

water waves propagating rightwards in shallow water in the presene of onstant111

vortiity.112

Following Whitham (1974), full linear dispersion is introdued heuristially113

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) + Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx +K ∗ ηx = 0

(8)

where K ∗ηx is a onvolution produt. The kernel K is given as the inverse Fourier114

transform of the fully linear dispersion relation of gravity waves in �nite depth in115

the presene of onstant vortiity Ω: K = F−1(c) with116

c = U0 +
√

gh

(
√

tanh(kh)

kh

(

Ω2 tanh(kh)

4gk
+ 1

)

− Ω tanh(kh)

2k
√
gh

)

(9)

The expression of the phase veloity given by equation (9) an be found in the117

paper by Choi (2003).118
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Equation (8) governs the propagation of nonlinear long gravity waves in a fully119

linear dispersive medium. For Ω = 0 and U0 = 0, (7) redues to generalised120

equation (13.97) of Whitham (1974).121

For weakly nonlinear (η/h ≪ 1) and weakly dispersive (kh ≪ 1) waves, equation122

(8) redues to the KdV equation with vortiity derived by Freeman and Johnson123

(1970) and Choi (2003) who used multiple sale methods, di�erent to the approah124

used herein. To set the KdV equation in dimensionless form, h and

√

h/g are125

hosen as referene length and referene time whih orresponds to h = 1 and126

g = 1. The equation reads127

ηt + c0(Ω)ηx + c1(Ω)ηηx + c2(Ω)ηxxx = 0 (10)

with128

c0 = U0 −
Ω

2
+
√

1 + Ω2/4 , c1 =
3 +Ω2

√
4 +Ω2

, c2 =
2 +Ω2 − Ω

√
4 +Ω2

6
√
4 +Ω2

129

The equations (7), (8) and (10) are solved numerially in a periodi domain of130

length 2L. The length L is hosen O(400δ) where δ is a harateristi length sale131

of the initial ondition. The number of grid points is Nx = 212. Spatial derivatives132

are omputed in the Fourier spae and nonlinear terms in the physial spae. The133

link between the two spaes is made by the Fast Fourier Transform. For the time134

integration, a splitting tehnique is used. The equations (7), (8) and (10) ould be135

written as136

ηt + L+N = 0, (11)

where L and N are linear and nonlinear di�erential operators in η, respetively.137

Note that in general the operators L andN do not ommute. If the initial ondition138

is η0, the exat solution of the previous equation is139

η(t) = e−(L+N)tη0. (12)

This equation is disretized as follows. Let tn = n∆t. We have140

η(tn) = e−(L+N)n∆tη0 = (e−L∆t/2e−N∆te−L∆t/2)nη0 +O(∆t2), (13)

and the sheme is globally seond order in time. The operator e−L∆t/2
is omputed141

exatly in the Fourier spae. However, the operator e−N∆t
is approximated using142

a Runge-Kutta sheme of order 4. The time step is hosen as ∆t = 0.005. Fur-143

thermore, the e�ieny and auray of the numerial method has been heked144

against the nonlinear analytial solution of the St-Venant equations for the dam-145

break problem in the absene of urrent and vortiity (Ω = 0 and U0 = 0). For146

U0 = 0 and Ω = 0 equation (7) redues to147

Ht + (3
√

gH − 2
√

gh)Hx = 0, with H = η + h. (14)

For t > 0, the nonlinear analytial solution of equation (14) is148

H(x, t) = h, u(x, t) = 0;
x

t
≥
√

gh

H(x, t) =
h

9

(

2 +
x√
gh t

)2

, u(x, t) = −2
3

(√
gh− x

t

)

; −2
√

gh ≤ x

t
≤
√

gh

H(x, t) = 0, u(x, t) = 0;
x

t
≤ −2

√

gh (15)
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Fig. 1 Dam-break: omparison between analytial (solid line) and numerial solutions (◦)

after the dam has broken. The dashed line represents the initial ondition at t = 0

At time t = 0 the initial ondition is H(x, 0) = h(1 + tanh(2x))/2 and u(x, 0) = 0149

everywhere. A numerial simulation of equation (14) has been arried out with150

g = 1 and h = 1. The numerial and analytial surfae pro�les at t = 0 and after151

the dam has broken are plotted in �gure 1.152

Within the framework of the KdV equation in the presene of vortiity, we have153

also heked that solitary waves are propagated with the right veloity that de-154

pends on Ω.155

2.2 The boundary Integral Element Method156

The problem onsidered here is idential to the one desribed in the previous se-157

tion. It is two dimensional, and the urrent �eld is assumed to be steady, onstant158

in the horizontal diretion, and to vary linearly with depth,159

U(z) = U0 +Ωz. (16)

The three dimensional interation of water waves propagating obliquely in the160

assumed urrent are not onsidered here. The vortiity within the �ow is thus161

onstant, as previously mentioned. It is straightforward that suh urrent, assoi-162

ated with hydrostati pressure P (z) = p0 − gz is solution of the Euler equations163

when onsidering a problem of onstant depth. This will allow to seek for wavy164

perturbations (u(x, z, t), v(x, z, t)) assoiated with the pressure �eld p(x, z, t). The165

total �ow �elds are then given by166

ũ(x, z, t) = u(x, z, t) + U(z),

ṽ(x, z, t) = v(x, z, t) and (17)

p̃(x, z, t) = p(x, z, t) + P (z).
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Using this deomposition, the Euler equations might redue to167

ut + (U + u)ux + vUz + vuz = −px
ρ

and (18)

vt + (U + u) vx + vvz + g = −pz
ρ
, (19)

whih has to be ful�lled together with the ontinuity equation168

ux + vz = 0. (20)

As it is demonstrated in Simmen (1984), and more reently in Nwogu (2009),169

the wavy perturbations propagating in suh urrent onditions are irrotational.170

Indeed, sine the seond derivative of the bakground urrent Uzz is nil, the vor-171

tiity onservation equation involves no soure term, and the vortiity �eld does172

not exhange any vortiity with the wavy perturbations. Thus, we might introdue173

a veloity potential φ(x, z, t) from whih derive the perturbation indued veloi-174

ties (∇φ = (u, v)). It has to be emphasized that the ontinuity equation (20) is175

automatially satis�ed if the veloity potential is solution of Laplae's equation176

∆φ = 0. (21)

The kinemati free surfae ondition might also be expressed, and if (X,Z) denotes177

the loation of a partile at the free surfae, this ondition might be expressed178

dX

dt
= u and

dZ

dt
= v − U(η)

∂η

∂x
, (22)

where d/dt refers to the material derivative d/dt = ∂/∂t+ u∂/∂x + v∂/∂z, and179

Z = η(x, t).180

Now, a stream funtion ψ an also be introdued, so that (∂ψ/∂z,−∂ψ/∂x) =181

(u, v). The Euler equations (18) and (19) an now be integrated in spae, and it182

omes183

∂φ

∂t
+ U(z)

∂φ

∂x
+

∇φ2

2
−Ωψ + gz = −p

ρ
(23)

When applied to the free surfae, where the pressure is onstant, this equation pro-184

vides the lassial dynami boundary ondition. Introduing the material deriva-185

tive used in the kinemati ondition , this ondition redues to186

dφ

dt
+ U(η)

∂φ

∂x
− ∇φ2

2
−Ωψ + gη = 0, (24)

At this point, the knowledge of the stream funtion ψ at the free surfae is still187

needed. Hopefully, one an notie the relationship188

∂ψ

∂τ
= −∂φ

∂n
, (25)

where (τ ,n) refer respetively to the tangential and normal vetors at the free189

surfae. Thus, the stream funtion ψ an be evaluated at the free surfae as soon190

as the normal derivative of the veloity potential is known.191

Furthermore, if equations (22), (24) and (25) refer to the boundary ondition at192

the free surfae, the �uid domain still has to be losed. This is done by using193

impermeability onditions on the bottom boundary ondition, loated at z = −h,194
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h being used as the referene length (i.e. h = 1) and on the vertial boundary195

onditions, loated respetively at x = 0 and x = 200.196

The numerial approah used here has already been implemented and used197

suessfully in the framework of fousing wave groups in the presene of uniform198

urrent (Touboul et al (2007); Merkoune et al (2013)). The extension allowing to199

take onstant vortiity into aount was presented in Touboul and Kharif (2016)200

together with a validation of the approah. It is based on a Boundary Integral201

Element Method (BIEM) oupled with a Mixed Euler Lagrange (MEL) proedure.202

At eah time step, the Green's seond identity is disretized to solve numerially203

the Laplae equation (21). Thus, the potential and its normal derivative are known204

numerially, and the stream funtion ψ an be dedued by integration of equation205

(25) along the free surfae. This numerial integration is performed in the up-wave206

diretion, starting from the down-wave end of the basin, and using zero as initial207

value. Then, the time stepping is performed by numerial integration of equations208

(22) and (24) using a fourth order Runge & Kutta sheme. Full details of the209

implementation an be found in Touboul and Kharif (2010). In every simulations,210

the total number of points onsidered at the free surfae was Nfs = 1000, while211

the total number of points used on the solid boundaries was Nbo = 600. The time212

step used for the simulations was dt = 0.01.213

2.3 Initial ondition214

Both numerial approahes desribed in previous subsetions were initialised with215

the same intial ondition. Following the approah desribed in Kharif et al (2000);216

Pelinovsky et al (2000), the initial ondition is obtained numerially. A Gaussian217

initial wave, with no initial veloity, is allowed to ollapse under gravity. This218

simulation is run in the absene of urrent and vortiity, using the BIEM. Two219

radiated wave trains, propagating in opposite diretions, are generated. The wave220

group propagating in the (−x) diretion is isolated, and spae-time oordinates221

are reverted. This allows the generation of a fousing wave group in shallow water222

onditions. For the numerial simulations onsidered here, the initial gaussian ele-223

vation has a maximum amplitude a = h/2 where h still being the referene length,224

and a width σ = h/2
√
2.225

The wave train onsidered is used as initial ondition for both numerial ap-226

proahes. The surfae elevation of this fousing wave group is used as initial227

ondition for the generalised-Whitham equation with vortiity, and for the KdV228

equation with vortiity as well. Both elevations and veloity potential are required229

to initialise the BIEM.230

The dimensionless value of the maximum surfae elevation of the wave group ob-231

tained, ηmax(t = 0), is 0.0715. The dynamis of this wave paket is illustrated in232

�gure 2, in the framework of BIEM simulations. The initial wave paket is propa-233

gated, and the e�ets of both nonlinearity and dispersion lead to the formation of234

a high wave. Figure 2 shows surfae pro�les of the wave group during the fousing235

and defousing stages at several times. The rogue wave ours at t/T = 75.236

We have hosen an initial ondition provided by the BIEM beause the generalised237

Whitham and KdV equations annot supply the veloity pro�le beneath the wave.238

The onsequene to have imposed the same initial ondition for the three di�erent239
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Fig. 2 Surfae elevation of the fousing and defousing wave group evolving. From top to

bottom: (t/T = 0), (t/T = 50), (t/T = 75), (t/T = 100) and (t/T = 150).

models is that this initial ondition is not optimal for the KdV and generalised240

Whitham equations.241

3 Results and disussion242

As KdV equation (10) and equations derived in subsetion 2.2, equation (8) is set243

in dimensionless form by taking h and

√

h/g as unit of length and time, respe-244

tively. In other words, we have imposed h = 1 and g = 1. The surfae urrent, U0,245

is ignored to only fous on vortiity e�et. Consequently the underlying is U = Ωz.246

Among the rogue wave properties, a partiular attention is paid to the ampli�a-247

tion fator of the maximum surfae elevation, de�ned as ηmax(t)/ηmax(t = 0). The248

time evolution of this ampli�ation fator is plotted in �gures 3-7 for several values249

of the shear Ω. One an see that the evolutions omputed with the generalised250

Whitham equation and BIEM are similar even though the ampli�ation is overes-251

timated with the generalised Whitham equation with vortiity. The ampli�ation252

fator at the fousing time tf plotted in �gure 8 inreases as the shear Ω inreases.253

One an observe that the di�erene between the two urves dereases as the shear254

Ω inreases. In other words, the agreement is better for positive values of the255

shear Ω (negative vortiity) than for negative values of Ω (positive vortiity). Like256

Grimshaw and Liu (2017) who onsidered a similar problem, we found that the257

wave growth is larger when the urrent is opposing. The KdV equation exhibits258
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Fig. 3 (olor online) Time evolution of the ampli�ation fator without vortiity e�et (Ω =

0). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(blak solid line)

the same tendeny that is an inrease of the maximum of ampli�ation with Ω.259

The fousing time tf obtained with both models are very lose. On the opposite,260

the KdV equation underestimates the maximum value of the ampli�ation fator261

and the fousing time tf as well. In �gures 6 and 7, the BIEM shows for negative262

values of the shear Ω �rst a redution of the maximum surfae elevation and then263

an ampli�ation. This attenuation of the maximum of the surfae elevation does264

not our for the generalised Whitham and KdV equations. We de�ne as extreme265

wave events or rogue waves those in the group whose surfae elevation satis�es266

ηmax(t = 0)/ηmax(t) ≥ 2. In that way, we an introdue the rogue wave lifetime267

whih is the duration of the extreme wave event. In �gure 9 is shown this duration268

as a funtion of Ω. For positive values of the shear Ω the rogue wave duration is269

inreased whereas it is the opposite for negative values.270

271

4 Conlusion272

The e�et of an underlying vortial urrent on two-dimensional rogue wave prop-273

erties has been investigated by using two di�erent approahes in shallow water.274

One is based on a new approximate equation, the generalised Whitham equation275

with onstant vortiity whih is fully nonlinear and fully linear dispersive whereas276

the other, the BIEM with onstant vortiity, is fully nonlinear and fully nonlinear277

dispersive. Besides the study on vortiity e�et on rogue waves, it is shown that278

the results of the generalised Whitham equation with vortiity are in agreement279

with those of the BIEM demonstrating that this new single nonlinear equation280

is an e�ient model for the investigation of nonlinear long waves on vertially281

sheared urrent of onstant vortiity.282
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Fig. 4 (olor online) Time evolution of the ampli�ation fator with vortiity e�et (Ω = 0.5).
Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation (blak

solid line)
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Fig. 5 (olor online) Time evolution of the ampli�ation fator with vortiity e�et (Ω =

0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(blak solid line)

The numerial simulations arried out with all the approahes have shown that the283

presene of vortiity modi�es the rogue wave properties signi�antly. The maxi-284

mum of ampli�ation fator of the surfae elevation inreases as the shear intensity285

of the urrent inreases. The lifetime of extreme wave event follows the same ten-286

deny.287

Appendix288
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Fig. 6 (olor online) Time evolution of the ampli�ation fator with vortiity e�et (Ω =

−0.5). Generalised Whitham equation (blue solid line), BIEM (red solid line) and KdV equa-

tion (blak solid line)
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Fig. 7 (olor online) Time evolution of the ampli�ation fator with vortiity e�et (Ω =

−0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(blak solid line)

The pair of equations (3) and (6) admits the following Riemann invariants289

u+
ΩH

2
±
{

√

gH +Ω2H2/4+
g

Ω
ln

[

1 +
Ω

2g
(ΩH + 2

√

gH +Ω2H2/4)

]}

= constant
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Fig. 8 (olor online) Maximum ampli�ation fator at the fousing time as a funtion of the

shear intensity of the urrent. Generalised Whitam equation (blue solid line), BIEM (red solid

line)
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Fig. 9 (olor online) Rogue wave duration as a funtion of the shear intensity of the urrent.

Generalised Whitam equation (blue solid line), BIEM (red solid line)

on harateristi lines290

dx

dt
= u+ U0 +

1

2
Ω(η − h)±

√

gH +
Ω2H2

4

where H = η + h.291

The onstant is determined for u = 0 and η = 0 or H = h.292
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Finally293

u+
Ωη

2
+
√

gH +Ω2H2/4−
√

gh+Ω2h2/4

+
g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

= 0

294

u+
Ωη

2
−
√

gH +Ω2H2/4 +
√

gh+Ω2h2/4

− g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

= 0

Let us onsider a wave moving rightwards295

u = −Ωη
2

+
√

gH +Ω2H2/4−
√

gh+ Ω2h2/4

+
g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

Substituting this expression into equation (3) gives296

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4

297

+
g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx = 0

This equation is equation (7).298
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