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Abstra
t Two-dimensional rogue wave o

urren
e in shallow water on a verti
ally7

sheared 
urrent of 
onstant vorti
ity is 
onsidered. Using Euler equations and Rie-8

mann invariants in the shallow water approximation, hyperboli
 equations for the9

surfa
e elevation and the horizontal velo
ity are derived and 
losed-form nonlin-10

ear evolution equation for the surfa
e elevation is obtained. Following Whitham11

(1974), a dispersive term is added to this equation using the fully linear disper-12

sion relation. With this new single �rst-order partial di�erential equation, vorti
ity13

e�e
ts on rogue wave properties are studied numeri
ally. Besides, the Boundary14

Integral Element Method (BIEM) and the KdV equation both with vorti
ity are15

used for this numeri
al investigation, too. It is shown that results from the gen-16

eralised Whitham equation agree quite well with those from BIEM whereas those17

from the KdV model are quite di�erent. The numeri
al simulations 
arried out18

with the generalised Whitham equation and BIEM show that the presen
e of an19

underlying verti
ally sheared 
urrent modi�es rogue wave properties signi�
antly.20

For negative vorti
ity the ampli�
ation fa
tor and duration of extreme wave events21

are in
reased whereas it is the opposite for positive vorti
ity. Furthermore, the wave22

ampli�
ation is larger when the 
urrent is opposing.23
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1 Introdu
tion24

Generally, in 
oastal and o
ean waters, 
urrent velo
ity pro�les are established by25

bottom fri
tion and wind stress at the sea surfa
e, and 
onsequently are verti
ally26

varying. Ebb and �ood 
urrents due to the tide may have an important e�e
t on27

water wave properties. In any region where the wind blows, the generated 
urrent28

a�e
ts the behavior of the waves. The present work fo
uses on the nonlinear evo-29

lution of two-dimensional gravity waves propagating in shallow water on a shear30


urrent whi
h varies linearly with depth. We assume that the dire
tional spread of31

the wave �eld is su�
iently narrow to 
onsider unidire
tional propagation of the32

waves.33

There are a number of physi
al me
hanisms that fo
us the wave energy into a small34

area and produ
e the o

urren
e of extreme waves 
alled freak or rogue waves.35

These events may be due to refra
tion (presen
e of variable 
urrents or bottom to-36

pography), dispersion (frequen
y modulation), wave instability (the modulational37

instability), soliton intera
tions, 
rossing seas, et
. For more details on these di�er-38

ent me
hanisms see the reviews on freak waves by Kharif and Pelinovsky (2003),39

Dysthe et al (2008), Kharif et al (2009) and Onorato et al (2013). Few studies have40

been devoted to the o

urren
e of extreme wave events in shallow water. Among41

the authors who have investigated rogue wave properties in shallow water, one 
an42


ite Pelinovsky et al (2000) , Kharif et al (2000), Peterson et al (2003), Soomere43

and Engelbre
ht (2005), Talipova et al (2008) and Chambarel et al (2010). Peli-44

novsky and Sergeeva (2006) and To�oli et al (2006) investigated the statisti
al45

properties of rogue waves in shallow water.46

To the best of our knowledge, there is no paper on the e�e
t of a verti
ally sheared47


urrent on rogue wave properties apart from that of Touboul and Kharif (2016) in48

deep water. We propose to extend this work to the 
ase of shallow water.49

Within the framework of the shallow water wave theory Whitham (1974) proposed50

a generalised equation governing the evolution of fully nonlinear waves satisfying51

the full linear dispersion. The Whitham equation may be derived from the previ-52

ous generalised Whitham equation assuming that the waves are weakly nonlinear.53

The Whitham equation and the KdV equation whi
h have the same nonlinear term54

di�er from ea
h other by the dispersive term. Very re
ently, Hur & Johnson (2015)55

have 
onsidered a modi�ed Whitham equation taking a

ount of 
onstant vorti
ity.56

Very re
ently, Kharif and Abid (2017) have proposed a new model derived from57

the Euler equations for water waves propagating on a verti
ally sheared 
urrent of58


onstant vorti
ity in shallow water. The heuristi
 introdu
tion of dispersion allows59

the study of strongly nonlinear two-dimensional long gravity waves in the presen
e60

of vorti
ity. Consequently, this new equation extends to waves propagating in the61

presen
e of vorti
ity the generalised Whitham equation.62

Two di�erent approa
hes are used to investigate rogue waves propagating in shal-63

low water on a shear 
urrent of 
onstant vorti
ity: the generalised Whitham equa-64

tion with vorti
ity and the Boundary Integral Element Method (BIEM) whi
h65

allows the study of fully nonlinear dispersive water waves on arbitrary depth in66

the presen
e of vorti
ity (see Touboul and Kharif (2016) ). Besides, a numeri
al67

investigation is 
arried out by using the KdV equation with 
onstant vorti
ity68

whose derivation 
an be found in the papers by Freeman and Johnson (1970) and69

Choi (2003). Note that the latter equation 
an be derived from the generalised70
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Whitham equation with vorti
ity assuming that the waves are weakly nonlinear71

and weakly dispersive.72

2 Two mathemati
al formulations73

2.1 The generalised Whitham equation with vorti
ity74

We 
onsider two-dimensional gravity water waves propagating at the free surfa
e75

of a verti
ally sheared 
urrent of uniform intensity Ω whi
h is the opposite of the76

vorti
ity. The wave train moves along the x − axis and the z − axis is oriented77

upward opposite to the gravity. The origin z = 0 is the undisturbed free surfa
e78

and z = −h is the rigid horizontal bottom.79

The 
ontinuity equation is80

ux + wz = 0 (1)

where u and w are the longitudinal and verti
al 
omponents of the wave indu
ed81

velo
ity, respe
tively. The underlying 
urrent is U = U0 + Ωz where U0 is the82


onstant surfa
e velo
ity.83

Integrating equation (1) from the bottom to free surfa
e gives84

w(z = η)− w(z = −h) = u(z = η)ηx − ∂

∂x

∫ η(x,t)

−h
udz (2)

The verti
al 
omponent of the velo
ity at the free surfa
e, w(z = η), and at the85

bottom, w(z = −h), are obtained from the kinemati
 boundary 
ondition and86

bottom 
ondition87

w(z = η) = ηt + [u(z = η) + U0 +Ωη]ηx
88

w(z = −h) = 0

Consequently equation (2) be
omes89

∂

∂x

∫ η(x,t)

−h
udz + (U0 +Ωη)ηx = 0

Assuming u to be independent of z, we obtain the following equation90

ηt +
∂

∂x
[u(η + h) +

Ω

2
η2 + U0η] = 0 (3)

91

Equation (3) 
orresponds to mass 
onservation in shallow water in the presen
e of92


onstant vorti
ity.93

The Euler equation in the x-dire
tion is94

ut + (u+ U0 + Ωz)ux +Ωw = −1

ρ
Px

with u independent of z and ρ the water density.95

Using the hydrostati
 assumption for the pressure96

P = ρg(η − z)
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where g is the gravity.97

The Euler equation in the x-dire
tion is rewritten as follows98

ut + (u+ U0 +Ωz)ux +Ωw + gηx = 0 (4)

99

Using the 
ontinuity equation and boundary 
onditions that w satis�es on the100

bottom and at the free surfa
e, we obtain101

w = −(z + h)ux (5)

Finally, the Euler equation be
omes102

ut + (u+ U0 −Ωh)ux + gηx = 0 (6)

The dynami
s of non dispersive shallow water waves on a verti
ally sheared 
ur-103

rent of 
onstant vorti
ity is governed by equations (3) and (6) that admit a pair of104

Riemann invariants. These Riemann invariants whi
h are derived analyti
ally al-105

lows us to express the longitudinal 
omponent of the wave indu
ed velo
ity u(x, t)106

as a fun
tion of the elevation η. Finally, equations (3) and (6) 
an be redu
ed to107

the following single nonlinear partial di�erential equation for η108

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx = 0

(7)

More details on the derivation of this equation is given in the appendix. Equation109

(7) is fully nonlinear and des
ribes the spatio-temporal evolution of hyperboli
110

water waves propagating rightwards in shallow water in the presen
e of 
onstant111

vorti
ity.112

Following Whitham (1974), full linear dispersion is introdu
ed heuristi
ally113

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4 +

g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) + Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx +K ∗ ηx = 0

(8)

where K ∗ηx is a 
onvolution produ
t. The kernel K is given as the inverse Fourier114

transform of the fully linear dispersion relation of gravity waves in �nite depth in115

the presen
e of 
onstant vorti
ity Ω: K = F−1(c) with116

c = U0 +
√

gh

(
√

tanh(kh)

kh

(

Ω2 tanh(kh)

4gk
+ 1

)

− Ω tanh(kh)

2k
√
gh

)

(9)

The expression of the phase velo
ity given by equation (9) 
an be found in the117

paper by Choi (2003).118
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Equation (8) governs the propagation of nonlinear long gravity waves in a fully119

linear dispersive medium. For Ω = 0 and U0 = 0, (7) redu
es to generalised120

equation (13.97) of Whitham (1974).121

For weakly nonlinear (η/h ≪ 1) and weakly dispersive (kh ≪ 1) waves, equation122

(8) redu
es to the KdV equation with vorti
ity derived by Freeman and Johnson123

(1970) and Choi (2003) who used multiple s
ale methods, di�erent to the approa
h124

used herein. To set the KdV equation in dimensionless form, h and

√

h/g are125


hosen as referen
e length and referen
e time whi
h 
orresponds to h = 1 and126

g = 1. The equation reads127

ηt + c0(Ω)ηx + c1(Ω)ηηx + c2(Ω)ηxxx = 0 (10)

with128

c0 = U0 −
Ω

2
+
√

1 + Ω2/4 , c1 =
3 +Ω2

√
4 +Ω2

, c2 =
2 +Ω2 − Ω

√
4 +Ω2

6
√
4 +Ω2

129

The equations (7), (8) and (10) are solved numeri
ally in a periodi
 domain of130

length 2L. The length L is 
hosen O(400δ) where δ is a 
hara
teristi
 length s
ale131

of the initial 
ondition. The number of grid points is Nx = 212. Spatial derivatives132

are 
omputed in the Fourier spa
e and nonlinear terms in the physi
al spa
e. The133

link between the two spa
es is made by the Fast Fourier Transform. For the time134

integration, a splitting te
hnique is used. The equations (7), (8) and (10) 
ould be135

written as136

ηt + L+N = 0, (11)

where L and N are linear and nonlinear di�erential operators in η, respe
tively.137

Note that in general the operators L andN do not 
ommute. If the initial 
ondition138

is η0, the exa
t solution of the previous equation is139

η(t) = e−(L+N)tη0. (12)

This equation is dis
retized as follows. Let tn = n∆t. We have140

η(tn) = e−(L+N)n∆tη0 = (e−L∆t/2e−N∆te−L∆t/2)nη0 +O(∆t2), (13)

and the s
heme is globally se
ond order in time. The operator e−L∆t/2
is 
omputed141

exa
tly in the Fourier spa
e. However, the operator e−N∆t
is approximated using142

a Runge-Kutta s
heme of order 4. The time step is 
hosen as ∆t = 0.005. Fur-143

thermore, the e�
ien
y and a

ura
y of the numeri
al method has been 
he
ked144

against the nonlinear analyti
al solution of the St-Venant equations for the dam-145

break problem in the absen
e of 
urrent and vorti
ity (Ω = 0 and U0 = 0). For146

U0 = 0 and Ω = 0 equation (7) redu
es to147

Ht + (3
√

gH − 2
√

gh)Hx = 0, with H = η + h. (14)

For t > 0, the nonlinear analyti
al solution of equation (14) is148

H(x, t) = h, u(x, t) = 0;
x

t
≥
√

gh

H(x, t) =
h

9

(

2 +
x√
gh t

)2

, u(x, t) = −2
3

(√
gh− x

t

)

; −2
√

gh ≤ x

t
≤
√

gh

H(x, t) = 0, u(x, t) = 0;
x

t
≤ −2

√

gh (15)
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Fig. 1 Dam-break: 
omparison between analyti
al (solid line) and numeri
al solutions (◦)

after the dam has broken. The dashed line represents the initial 
ondition at t = 0

At time t = 0 the initial 
ondition is H(x, 0) = h(1 + tanh(2x))/2 and u(x, 0) = 0149

everywhere. A numeri
al simulation of equation (14) has been 
arried out with150

g = 1 and h = 1. The numeri
al and analyti
al surfa
e pro�les at t = 0 and after151

the dam has broken are plotted in �gure 1.152

Within the framework of the KdV equation in the presen
e of vorti
ity, we have153

also 
he
ked that solitary waves are propagated with the right velo
ity that de-154

pends on Ω.155

2.2 The boundary Integral Element Method156

The problem 
onsidered here is identi
al to the one des
ribed in the previous se
-157

tion. It is two dimensional, and the 
urrent �eld is assumed to be steady, 
onstant158

in the horizontal dire
tion, and to vary linearly with depth,159

U(z) = U0 +Ωz. (16)

The three dimensional intera
tion of water waves propagating obliquely in the160

assumed 
urrent are not 
onsidered here. The vorti
ity within the �ow is thus161


onstant, as previously mentioned. It is straightforward that su
h 
urrent, asso
i-162

ated with hydrostati
 pressure P (z) = p0 − gz is solution of the Euler equations163

when 
onsidering a problem of 
onstant depth. This will allow to seek for wavy164

perturbations (u(x, z, t), v(x, z, t)) asso
iated with the pressure �eld p(x, z, t). The165

total �ow �elds are then given by166

ũ(x, z, t) = u(x, z, t) + U(z),

ṽ(x, z, t) = v(x, z, t) and (17)

p̃(x, z, t) = p(x, z, t) + P (z).
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Using this de
omposition, the Euler equations might redu
e to167

ut + (U + u)ux + vUz + vuz = −px
ρ

and (18)

vt + (U + u) vx + vvz + g = −pz
ρ
, (19)

whi
h has to be ful�lled together with the 
ontinuity equation168

ux + vz = 0. (20)

As it is demonstrated in Simmen (1984), and more re
ently in Nwogu (2009),169

the wavy perturbations propagating in su
h 
urrent 
onditions are irrotational.170

Indeed, sin
e the se
ond derivative of the ba
kground 
urrent Uzz is nil, the vor-171

ti
ity 
onservation equation involves no sour
e term, and the vorti
ity �eld does172

not ex
hange any vorti
ity with the wavy perturbations. Thus, we might introdu
e173

a velo
ity potential φ(x, z, t) from whi
h derive the perturbation indu
ed velo
i-174

ties (∇φ = (u, v)). It has to be emphasized that the 
ontinuity equation (20) is175

automati
ally satis�ed if the velo
ity potential is solution of Lapla
e's equation176

∆φ = 0. (21)

The kinemati
 free surfa
e 
ondition might also be expressed, and if (X,Z) denotes177

the lo
ation of a parti
le at the free surfa
e, this 
ondition might be expressed178

dX

dt
= u and

dZ

dt
= v − U(η)

∂η

∂x
, (22)

where d/dt refers to the material derivative d/dt = ∂/∂t+ u∂/∂x + v∂/∂z, and179

Z = η(x, t).180

Now, a stream fun
tion ψ 
an also be introdu
ed, so that (∂ψ/∂z,−∂ψ/∂x) =181

(u, v). The Euler equations (18) and (19) 
an now be integrated in spa
e, and it182


omes183

∂φ

∂t
+ U(z)

∂φ

∂x
+

∇φ2

2
−Ωψ + gz = −p

ρ
(23)

When applied to the free surfa
e, where the pressure is 
onstant, this equation pro-184

vides the 
lassi
al dynami
 boundary 
ondition. Introdu
ing the material deriva-185

tive used in the kinemati
 
ondition , this 
ondition redu
es to186

dφ

dt
+ U(η)

∂φ

∂x
− ∇φ2

2
−Ωψ + gη = 0, (24)

At this point, the knowledge of the stream fun
tion ψ at the free surfa
e is still187

needed. Hopefully, one 
an noti
e the relationship188

∂ψ

∂τ
= −∂φ

∂n
, (25)

where (τ ,n) refer respe
tively to the tangential and normal ve
tors at the free189

surfa
e. Thus, the stream fun
tion ψ 
an be evaluated at the free surfa
e as soon190

as the normal derivative of the velo
ity potential is known.191

Furthermore, if equations (22), (24) and (25) refer to the boundary 
ondition at192

the free surfa
e, the �uid domain still has to be 
losed. This is done by using193

impermeability 
onditions on the bottom boundary 
ondition, lo
ated at z = −h,194
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h being used as the referen
e length (i.e. h = 1) and on the verti
al boundary195


onditions, lo
ated respe
tively at x = 0 and x = 200.196

The numeri
al approa
h used here has already been implemented and used197

su

essfully in the framework of fo
using wave groups in the presen
e of uniform198


urrent (Touboul et al (2007); Merkoune et al (2013)). The extension allowing to199

take 
onstant vorti
ity into a

ount was presented in Touboul and Kharif (2016)200

together with a validation of the approa
h. It is based on a Boundary Integral201

Element Method (BIEM) 
oupled with a Mixed Euler Lagrange (MEL) pro
edure.202

At ea
h time step, the Green's se
ond identity is dis
retized to solve numeri
ally203

the Lapla
e equation (21). Thus, the potential and its normal derivative are known204

numeri
ally, and the stream fun
tion ψ 
an be dedu
ed by integration of equation205

(25) along the free surfa
e. This numeri
al integration is performed in the up-wave206

dire
tion, starting from the down-wave end of the basin, and using zero as initial207

value. Then, the time stepping is performed by numeri
al integration of equations208

(22) and (24) using a fourth order Runge & Kutta s
heme. Full details of the209

implementation 
an be found in Touboul and Kharif (2010). In every simulations,210

the total number of points 
onsidered at the free surfa
e was Nfs = 1000, while211

the total number of points used on the solid boundaries was Nbo = 600. The time212

step used for the simulations was dt = 0.01.213

2.3 Initial 
ondition214

Both numeri
al approa
hes des
ribed in previous subse
tions were initialised with215

the same intial 
ondition. Following the approa
h des
ribed in Kharif et al (2000);216

Pelinovsky et al (2000), the initial 
ondition is obtained numeri
ally. A Gaussian217

initial wave, with no initial velo
ity, is allowed to 
ollapse under gravity. This218

simulation is run in the absen
e of 
urrent and vorti
ity, using the BIEM. Two219

radiated wave trains, propagating in opposite dire
tions, are generated. The wave220

group propagating in the (−x) dire
tion is isolated, and spa
e-time 
oordinates221

are reverted. This allows the generation of a fo
using wave group in shallow water222


onditions. For the numeri
al simulations 
onsidered here, the initial gaussian ele-223

vation has a maximum amplitude a = h/2 where h still being the referen
e length,224

and a width σ = h/2
√
2.225

The wave train 
onsidered is used as initial 
ondition for both numeri
al ap-226

proa
hes. The surfa
e elevation of this fo
using wave group is used as initial227


ondition for the generalised-Whitham equation with vorti
ity, and for the KdV228

equation with vorti
ity as well. Both elevations and velo
ity potential are required229

to initialise the BIEM.230

The dimensionless value of the maximum surfa
e elevation of the wave group ob-231

tained, ηmax(t = 0), is 0.0715. The dynami
s of this wave pa
ket is illustrated in232

�gure 2, in the framework of BIEM simulations. The initial wave pa
ket is propa-233

gated, and the e�e
ts of both nonlinearity and dispersion lead to the formation of234

a high wave. Figure 2 shows surfa
e pro�les of the wave group during the fo
using235

and defo
using stages at several times. The rogue wave o

urs at t/T = 75.236

We have 
hosen an initial 
ondition provided by the BIEM be
ause the generalised237

Whitham and KdV equations 
annot supply the velo
ity pro�le beneath the wave.238

The 
onsequen
e to have imposed the same initial 
ondition for the three di�erent239
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Fig. 2 Surfa
e elevation of the fo
using and defo
using wave group evolving. From top to

bottom: (t/T = 0), (t/T = 50), (t/T = 75), (t/T = 100) and (t/T = 150).

models is that this initial 
ondition is not optimal for the KdV and generalised240

Whitham equations.241

3 Results and dis
ussion242

As KdV equation (10) and equations derived in subse
tion 2.2, equation (8) is set243

in dimensionless form by taking h and

√

h/g as unit of length and time, respe
-244

tively. In other words, we have imposed h = 1 and g = 1. The surfa
e 
urrent, U0,245

is ignored to only fo
us on vorti
ity e�e
t. Consequently the underlying is U = Ωz.246

Among the rogue wave properties, a parti
ular attention is paid to the ampli�
a-247

tion fa
tor of the maximum surfa
e elevation, de�ned as ηmax(t)/ηmax(t = 0). The248

time evolution of this ampli�
ation fa
tor is plotted in �gures 3-7 for several values249

of the shear Ω. One 
an see that the evolutions 
omputed with the generalised250

Whitham equation and BIEM are similar even though the ampli�
ation is overes-251

timated with the generalised Whitham equation with vorti
ity. The ampli�
ation252

fa
tor at the fo
using time tf plotted in �gure 8 in
reases as the shear Ω in
reases.253

One 
an observe that the di�eren
e between the two 
urves de
reases as the shear254

Ω in
reases. In other words, the agreement is better for positive values of the255

shear Ω (negative vorti
ity) than for negative values of Ω (positive vorti
ity). Like256

Grimshaw and Liu (2017) who 
onsidered a similar problem, we found that the257

wave growth is larger when the 
urrent is opposing. The KdV equation exhibits258
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Fig. 3 (
olor online) Time evolution of the ampli�
ation fa
tor without vorti
ity e�e
t (Ω =

0). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(bla
k solid line)

the same tenden
y that is an in
rease of the maximum of ampli�
ation with Ω.259

The fo
using time tf obtained with both models are very 
lose. On the opposite,260

the KdV equation underestimates the maximum value of the ampli�
ation fa
tor261

and the fo
using time tf as well. In �gures 6 and 7, the BIEM shows for negative262

values of the shear Ω �rst a redu
tion of the maximum surfa
e elevation and then263

an ampli�
ation. This attenuation of the maximum of the surfa
e elevation does264

not o

ur for the generalised Whitham and KdV equations. We de�ne as extreme265

wave events or rogue waves those in the group whose surfa
e elevation satis�es266

ηmax(t = 0)/ηmax(t) ≥ 2. In that way, we 
an introdu
e the rogue wave lifetime267

whi
h is the duration of the extreme wave event. In �gure 9 is shown this duration268

as a fun
tion of Ω. For positive values of the shear Ω the rogue wave duration is269

in
reased whereas it is the opposite for negative values.270

271

4 Con
lusion272

The e�e
t of an underlying vorti
al 
urrent on two-dimensional rogue wave prop-273

erties has been investigated by using two di�erent approa
hes in shallow water.274

One is based on a new approximate equation, the generalised Whitham equation275

with 
onstant vorti
ity whi
h is fully nonlinear and fully linear dispersive whereas276

the other, the BIEM with 
onstant vorti
ity, is fully nonlinear and fully nonlinear277

dispersive. Besides the study on vorti
ity e�e
t on rogue waves, it is shown that278

the results of the generalised Whitham equation with vorti
ity are in agreement279

with those of the BIEM demonstrating that this new single nonlinear equation280

is an e�
ient model for the investigation of nonlinear long waves on verti
ally281

sheared 
urrent of 
onstant vorti
ity.282
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Fig. 4 (
olor online) Time evolution of the ampli�
ation fa
tor with vorti
ity e�e
t (Ω = 0.5).
Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation (bla
k

solid line)
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Fig. 5 (
olor online) Time evolution of the ampli�
ation fa
tor with vorti
ity e�e
t (Ω =

0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(bla
k solid line)

The numeri
al simulations 
arried out with all the approa
hes have shown that the283

presen
e of vorti
ity modi�es the rogue wave properties signi�
antly. The maxi-284

mum of ampli�
ation fa
tor of the surfa
e elevation in
reases as the shear intensity285

of the 
urrent in
reases. The lifetime of extreme wave event follows the same ten-286

den
y.287

Appendix288
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Fig. 6 (
olor online) Time evolution of the ampli�
ation fa
tor with vorti
ity e�e
t (Ω =

−0.5). Generalised Whitham equation (blue solid line), BIEM (red solid line) and KdV equa-

tion (bla
k solid line)
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Fig. 7 (
olor online) Time evolution of the ampli�
ation fa
tor with vorti
ity e�e
t (Ω =

−0.25). Generalised Whitam equation (blue solid line), BIEM (red solid line) and KdV equation

(bla
k solid line)

The pair of equations (3) and (6) admits the following Riemann invariants289

u+
ΩH

2
±
{

√

gH +Ω2H2/4+
g

Ω
ln

[

1 +
Ω

2g
(ΩH + 2

√

gH +Ω2H2/4)

]}

= constant
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Fig. 8 (
olor online) Maximum ampli�
ation fa
tor at the fo
using time as a fun
tion of the

shear intensity of the 
urrent. Generalised Whitam equation (blue solid line), BIEM (red solid

line)
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Fig. 9 (
olor online) Rogue wave duration as a fun
tion of the shear intensity of the 
urrent.

Generalised Whitam equation (blue solid line), BIEM (red solid line)

on 
hara
teristi
 lines290

dx

dt
= u+ U0 +

1

2
Ω(η − h)±

√

gH +
Ω2H2

4

where H = η + h.291

The 
onstant is determined for u = 0 and η = 0 or H = h.292
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Finally293

u+
Ωη

2
+
√

gH +Ω2H2/4−
√

gh+Ω2h2/4

+
g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

= 0

294

u+
Ωη

2
−
√

gH +Ω2H2/4 +
√

gh+Ω2h2/4

− g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

= 0

Let us 
onsider a wave moving rightwards295

u = −Ωη
2

+
√

gH +Ω2H2/4−
√

gh+ Ω2h2/4

+
g

Ω
ln

[

1 + Ω
2g (ΩH + 2

√

gH +Ω2H2/4)

1 + Ω
2g (Ωh+ 2

√

gh+Ω2h2/4)

]

Substituting this expression into equation (3) gives296

ηt +

{

U0 −
Ωh

2
+ 2

√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4

297

+
g

Ω
ln

[

1 +
Ω

2g

Ωη + 2(
√

g(η + h) +Ω2(η + h)2/4−
√

gh+Ω2h2/4)

1 + Ω
g (

Ωh
2 +

√

gh+Ω2h2/4)

]

}

ηx = 0

This equation is equation (7).298
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