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1. THE BASIC SYSTEM OF NON-CONSERVATIVE EQUATIONS

The hyperbolic convective subset of a second-moment turbulence closure for the Favre­
averaged compressible Navier-Stokes equations can be written as [1] 

(p),1 + (pUj)J = 0 

(pU;),t + (pU;Uj + 8;jp + pR;j),j = 0

(pE),1 + (pEUj + U;(p8;j + pR;j)),j = 0

(pR;j),1 + (pR;jUk).k = -pRikuj,k - pRjkui,k, 

(1) 

where p stands for the mean density, U is the de�ty weighted mean velocity vector, R the 
Reynolds stress tensor with components R;j = u?u'J, E the mean specific total energy, and 
p the mean pressure which can be expressed via the ideal gas law (with y being the ratio 
of specific heats ), viz., 

(2) 

For simplicity we will restrict the following presentation to flows with statistically two 
space dimensions, i.e., a variable vector W = (p, pU, p V, pE, pRu , pR22 , pR33 , pR12)', 
such that we can write the system in matrix-vector notation 

W,1 + (Fï(W)),; = H(W, VW), i = l, 2, (3) 
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and furthermore define the following projections with respect to coordinates (n, T, s), 

Un= U1n,

Ur= V1r, 

Rnn = n1Rn, 

Rrr = T1RT, 

Rnr = n1RT 

Rss = R33, 

where n = (nx , n
y

, 0), T = (-n
y

, nx , 0), and s = (0, 0, 1). 

(4) 

Equations ( 1) cannot be cast into conservation form due to the presence of turbulence 

production. The characteristics wave system has the following eigenvalues with respect to 

an arbitrary direction n: 

Àg = Un + CJ,

À7 = Un + C2,

C2 = ,JI[;;. 
(5) 

An approximate analytical solution to the Riemann problem of the above system has been 

obtained in [2] resorting to a linear path across genuinely non-linear waves. With these 

ingredients it is possible to construct a full Godunov scheme as bas been successfully done 

in the related case of a k-E type closure [3]. In this note, we will alternatively present an 

approximate numerical Riemann solver. The basic flux-difference-splitting technique will 

be recalled first before moving on to the case of a non-conservative system. 

2. ROE'S SCHEME FOR SYSTEMS OF CONSERVATION LAWS

Let us consider a hyperbolic system of one-dimensional conservation laws in two­

dimensional space ( without summation over subscript n ), 

where we define 

A':ons 
= 

aF; 
1 

aw' 

An approximate Riemann solver provides the exact solution to the linearized problem 

W,t +A(WL, WR, n) · W,n = 0, 

(6) 

(8) 

which consists of five simple waves since all fields are linearly degenerate (note that the 

subscripts ( )L and ( )R indicate states to the left and right, respectively, of the the initial 

discontinuity traveling along the direction n). The corresponding numerical flux function 

is thus expressed by the well-known formula 

(9) 

The problem of finding a sensible linearization A(W L, W R, n) has been translated into 

three conditions of consistency by Roe [ 4]: 

gourgoui
Barrer 
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(i) A(W L, W R, n) is hyperbolic and a diagonal form exists,

(ii) A(W, W, n) =A�ons(W, n),
(iii) A(W L, W R, n)[W] = [Fn (W, n)] (defining the jump [</J] = <PR - <PL)-

In the case of the Euler equations of gas dynamics, it turns out that the linearized system 
matrix is equal to the original system matrix under a transformation of variables that has 
been termed Roe's average: 

(10) 

In the past, some authors have forced the hyperbolic part of the second-moment closure 
equations to take a conservative form by eliminating from Eq. (1) the production term and 
the action of the Reynolds stress in the conservative flux of momentum and total energy 
[5, 1]. In the resulting truncated system turbulence is only felt via the pressure that is defined 
by Eq. (2). This simplified approach enables us to simply use Roe's flux formulation (9) in 
conjunction with Roe's average for all variables (cf. [l] for details). We will demonstrate 
below that this approach can give rise to unphysical solutions. 

3. ROE-TYPE SCHEME FOR NON-CONSERVATIVE SYSTEMS

We return to our non-conservative system of transport equations 

W,1 + An (W, n) · W,n = 0, 

where A;=:�+ c7c(W), q1c (W) · W,i = -H(W, VW).
(11) 

As seen below, we discretize the source term c�c(W, n)W,n in a simple, centered man­
ner. As a consequence, applying Roe's flux-difference-splitting gives formally the same 
numerical flux formula as in the above case of conservation law [1]: 

Similarly, we require the linearization A to fulfill the following two fondamental constraints: 

(i) A(W L, W R, n) is hyperbolic and a diagonal form exists,
(ii) A(W, W, n) =An (W, n).

In a straightforward extension ofRoe's above idea (iii), i.e., that the numerical flux be exact 
in the case of a shock wave being located between two nodes, one would write as the third 
condition 

The jump conditions of the non-conservative source term c�c(W L, W R, n)[W] are the
approximate ones based on the assumption of a linear path in terms of the variable Z =
(1 / p, U, V, p, p Rnn , p Rr:r , p Rss , p Rn, )1 . The proposition of a linear path is due to Le 
Floch [ 6] and has been put forth in the context of a generalized Rankine-Hugoniot condition 
for non-conservative hyperbolic systems ( cf. also [7]). Our particular choice of the variable 
Z has been inspired by previous work on k-s type closures (cf. [8, 9, 3]). It leads to the
desirable feature that the jump conditions (a) reduce to the exact Rankine-Hugoniot relations 
in the limit of zero turbulence, and that (b) are equivalent to the Riemann invariants in the 



RIEMANN SOLVER FOR SECOND-MOMENT CLOS URES 

case of linearly degenerate fields (cf. [1, 10, 2]). However, we would like to emphasize that 
the condition (iii)a is strictly valid only in the limit of zero shock strength and cannot be 
regarded as a rigorous consistency condition as in the case of conservative systems. 

In the case of k-ë type closures [11, 12] and in the context of two-phase flows [13], 
conditions (i), (ii), and (iii)a again lead to a linearized matrix resembling the original system 
matrix 

(13) 

where W is a particular average that differs from Roe's averaging. 
In the present case, however, the linearized matrix A obtained from the above relations 

(i), (ii), and (iii)a cannot be recast into the form of the system matrix An CW(W L, W R), n) 
since a corresponding average W does not exist [ 1]: 

The matrix A that issues from condition (iii)a is thus in a form not suitable for numerical pur­
poses, in particular its diagonalization could not be obtained. Alternatively, an approximate 
Godunov scheme can be constructed [10, 2] which does not rely on Roe's condition (iii). 
In the same spirit, we have relaxed this condition and replaced it by the following simple 
expression based on an arithmetic average: 

- -

(iii)b A(W L, W R, n) = An(W(Y), n) (defining Y= (Y L + Y R)/2),

where Y= (p, Un , Ur: , H1 , Rnn, Rn , Rss, Rnr )1 in local coordinates (n, T perpendicular 
and tangential respectively to the discontinuity) and total enthaply being defined as H1 = 
E + p/ p. Our numerical flux fonction can finally be written as (RNC designating Roe 

non-conservative) 

RNC l 1 -
F = 

2
(Fn(W L, n) + Fn(W R, n)) -

2
1A(W(Y), n)I · (W R - W L). (15) 

The "absolute value" of the system matrix is calculated through the relation 

IA(W(Y), n)I = R(W(Y), n) · IA(W(Y), n)I · n-
1 (W(Y), n), (16) 

where A is the diagonal eigenvalue matrix and R and n-
1 the diagonalization matrices 

containing the right and left eigenvectors, respectively. 

4. INTEGRATION METHOD

Since in most finite volume methods multidimensional flows are treated as a succession 
of quasi one-dimensional problems for each cell face, it suffices in the following to present 
a one-dimensional discretization. 

Integrating Eq. (11) over a finite volume r2; (Vn; being the cell volume, f; designating 
the cell surface, �t the time step, superscript n indexing time steps, n being the outward 
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normal vector) we obtain 

The somce terms S; aœ expressed by a centered difference, so that 

where 

(19) 

at the respective cell face LR.

5. QUASI ONE-DIMENSIONAL RIEMANN PROBLEMS

The first case is a Sod [ 14] shock tube with high turbulence Mach numbers ( Y L = ( 1, 0, 0, 
4. 5 · 1 ÜS , i 1 ÜS , i 1 ÜS , i 1 ÜS , ¾ 1 ÜS ), Y R = ( ½ , Ü, Ü, 2. 8 8 · 1 ÜS , 1

3

6 103 , 1
3

6 103 , 1
3

6 } 03 , 2 · } 03).

The results (Figs. 1 and 2) demonstrate the monotonie behaviour of the method as well
as its capability of œspecting analytically obtained Riemann invariants (p + p R,111 being
invariant with respect to the three contact discontinuities associated with À2, À3-6, À7 ).

The second case of a symmetrical double shock (YL = (l, 100, 0, 3. 7 • 1 os , i 104, i 104 ,

i 104 , ¾ 104), Y R = (l , -100, 0, 3. 7 • 1 os , i l 04, i 104, i 104 , ¾ 104) underlines the fact that 
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FIG. 1. Turbulent shock tube; distribution of density p obtained with the present scheme (RNC). 
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FIG. 2. Turbulent shock tube; distribution of pressure p and total normal stress p + p R1111 obtained with the 

scheme RNC, the latter quantity being invariant with respect to the contact discontinuity in the center 3-4-5-6-

wave). 

essentially Euler-based methods-decoupling the turbulent wave system from the aerother­

modynamic one-can lead to spectacular oscillations (Fig. 4). The proposed RNC method, 

on the other hand, captures adequately the wave propagation, even of very sensitive quan­

tities like the Riemann invariants of the 2- and 7-wave, U1 ±Rn,/� (Fig. 3). 

Detailed information on the analytical solution of the Riemann problem as well as 

ail specific ingredients of the numerical method can be obtained from the authors upon 

request. 
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FIG. 3. Symmetrical double shock; distribution of invariants U, ± Rnr / ,JR,;;, obtained with the present

scheme (RNC). 
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FIG. 4. Symmetrical double shock; distribution of invariants U, ± R,,r /-/R:: obtained with the "decoupled 

approach." 

REFERENCES 

1. M. Uhlmann, Etude de modèles de fermeture au second ordre et contribution à la résolution numérique des

écoulements turbulents compressibles, Ph.D. thesis, Ecole Centrale de Lyon, I 997.

2. C. Berthon, F. Coque!, J .-M. Hérard, and M. Uhlmann, An Approximate Solution of the Riemann Problem for

a Realisable Second-Moment C/osure, Technical Report HE-41/98/054/A, Electricité de France.

3. A. Forestier, J .-M. Hérard, and X. Louis, Solveur de type Godunov pour simuler les écoulements compressibles,

C. R. Acad. Sei. Paris Sér. I 324, 919 ( 1997).

4. P. L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput. Phys. 43

(1981 ).

5. J. H. Morrison, A Compressible Navier-Stokes Sa/ver with Two-Equation and Reynolds Stress Turbulence

Closure Models, Technical Report CR 4440, NASA, 1992.

6. P. Le Floch, Entropy weak solutions to nonlinear hyperbolic systems under nonconservative form, Comm.

Partial Differential Equations 13(6), 669 (1988).

7. P. Le Floch and T.-P. Liu, Existence Theory for Nonlinear Hyperbolic Systems in Nonconservative Form,

Technical Report 254, Ecole Polytechnique, Centre de Math. App., 1992.

8. J.-M. Hérard, A. Forestier, and X. Louis, A Non Strict/y Hyperbolic System to Describe Compressible

Turbulence, Technical Report HE-41/94/11 / A, Electricité de France, 1994.

9. A. Forestier, J.-M. Hérard, and X. Louis, An investigation of the k-ë and k-r turbulent compressible models, in

ASME FED 224, ASME Fluids Engineering Division Summer Meeting, Hilton Head, SC, August 1995, p. 155.

10. C. Berthon, F. Coque!, J.-M. Hérard, and M. Uhlmann, An Approximate Riemann Solver to Compute

Compressible Flows Using Second-Moment Closures, AIAA Paper 97-2069, 13th AIAA CFD Conference,

Snowmass, CO, 1997.

11. A. Forestier, J.-M. Hérard, and X. Louis, Exact or approximate Riemann solvers to compute a two-equation tur­

bulent compressible mode!, in Finite Elements in Fluids (New Trends and Applications, Venezia, ltaly, 1995).

12. T. Buffard and J.-M. Hérard, Approximate Riemann solvers to compute turbulent compressible one and

two-equation models, in ASME FED 238, ASME Fluids Engineering Division Summer Meeting, San Diego,

CA, Ju/y 1996, p. 189.

13. L. Combe and J.-M. Hérard, Un schéma volumes finis pour la simulation d'un modèle hi-fluide d'écoulements

diphasiques compressibles gaz-solide, Rev. Euro p. Eléments Finis 5(2), 197 ( 1997).

14. G. A. Sod, A survey of several finite difference methods for systems of nonlinear hyperbolic conservation

Iaws,J Comput. Phys. 27, 1 (1978).






