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TOWARD GUARANTEED PGD-REDUCED MODELS

Pierre Ladevèze, Ludovic Chamoin

LMT-Cachan (ENS Cachan/CNRS/UPMC),

61 Avenue du Président Wilson, 94235 Cachan Cedex, France

Abstract. In this paper, a verification approach is introduced to build guaranteed 

PGD-reduced models for linear elliptic or parabolic problems depending on paramet-

ers. It is based on the concept of constitutive relation error and provides for strict 

bounds on both global error and error on outputs of interest defined with respect to 

the reference multi-parameter model. It also enables to assess contributions of various 

error sources, which helps driving adaptive strategies. Consequently, virtual charts 

associated with quantities of interest and computed from PGD models can satisfy a 

prescribed accuracy. Numerical experiments on transient thermal conduction illus-

trate the proposed verification approach and its performances.

Key words: Model Reduction, Verification, Error Estimation, Proper Generalized 

Decomposition, Separated Representation, Constitutive Relation Error.

1 INTRODUCTION

Nowadays, numerical simulation constitutes a common tool in science and engineer-

ing activities. It is especially used for prediction and decision making, or simply for 

a better understanding of physical phenomena. However, in order to give an accurate 

representation of the real world, a large set of parameters may need to be introduced 

in the mathematical models involved in the simulation, which leads to important (and 

often overwhelming) computational efforts. This is for example the case when dealing 

with models that aim at taking uncertainties into account, or in optimization problems. 

A drawback of such complex multi-parameter models is the fact that they usually lead 

to a huge number of degrees of freedom (due to the so-called curse of dimensionality)
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so that they can not be tackled with classical brute force methods. Therefore, alternat-

ives numerical approaches are necessary. For that purpose, model reduction methods

exploit the fact that the response of complex models can often be approximated with

a reasonable precision by the response of a surrogate model, seen as the projection

of the initial model on a low-dimensional functional basis [1–4]. Model reduction

methods distinguish themselves by the way of defining and constructing the reduced

basis.

One of the promising model order reduction methods is the PGD which was in-

troduced as radial loading approximation in [5]. It is nowadays named Proper Gen-

eralized Decomposition (PGD) [6] as it can be seen as a POD extension. The PGD

approximation does not require any knowledge on the solution (it is thus referred as a

priori) and does not use any orthogonality property. It operates in an iterative strategy

in which a set of simple problems, that can be seen as pseudo eigenvalue problems,

need to be solved. PGD has been developed during years for solving time-dependent

nonlinear problems in Structural Mechanics [5, 7, 8] as a key-point of the so-called

LATIN method. Extension to stochastic problems, initially under the name General-

ized Spectral Decomposition, has been done in [9]. The PGD approach has also lead

to major breakthroughs for real-time simulation [10], decision making tools [11], as

well as multidimensional [12] or multiphysics [13] problems.

Even though PGD is usually very effective, a major question is to derive veri-

fication tools for controlling the calculation process. Basic results on a priori error

estimation for representation using separation of variables can be found in [7], and a

first work providing for strict bounds on global error in the PGD context is [14], in

which specific error indicators are also given.

In this paper, after recalling the verification tools introduced in [14], we present

a new approach for deriving guaranteed PGD-reduced models for linear elliptic or

parabolic problems depending on parameters. The goal here is not to construct new

numerical techniques to get the PGD approximation; the simplest greedy algorithm,

i.e. the so-called progressive Galerkin technique, is used in the applications. We

rather aim at controlling the PGD approximation by setting up robust global and goal-

oriented error estimators, enabling to assess the quality of the global PGD solution

as well as that of outputs of interest. Numerical experiments on transient thermal

conduction illustrate the proposed verification approach and its performances.

2 REFERENCE PROBLEM AND NOTATIONS

We consider a transient diffusion problem defined on an open bounded domain � ⊂

Rd (d = 1, 2, 3), with boundary ∂�, over a time interval I = [0, T ]. We assume that

a prescribed zero temperature is applied on part ∂u� �= Ø of ∂� and that the domain

is subjected to a time-dependent thermal loading that consists of: (i) a given thermal

flux rd(x, t) on ∂q� ⊂ ∂�, with ∂u� ∩ ∂q� = Ø and ∂u� ∪ ∂q� = ∂�; (ii) a source

term fd (x, t) in �.
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Figure 1. Representation of the reference problem.

The material that composes � is assumed to be isotropic. Furthermore, for the sake

of simplicity, we consider that initial conditions are zero. The problem thus consists of

finding the temperature-flux pair (u(x, t), q(x, t)), with (x, t) ∈ � × I, that verifies:

• the thermal constraints:

u = 0 in ∂u� × I (1)

• the equilibrium equations:

∂u

∂t
= −∇ · q + fd in � × I ; q · n = rd in ∂q� × I (2)

• the constitutive relation:

q = −k∇u in � × I (3)

• the initial conditions:

u(x, 0+) = 0 ∀x ∈ � (4)

where n denotes the outgoing normal to �, and k is a positive material parameter.

In the following, in order to be consistent with other linear problems encountered in

Mechanics (linear elasticity for instance), we carry out the change of variable q → −q

which leads, in particular, to the new constitutive relation q = k∇u.

Defining V = H 1
0 (�) = {v ∈ H 1(�), v|∂u� = 0}, the weak formulation in space

of the diffusion problem consists of finding u(x, t), with u(·, t) ∈ V for all t ∈ I, such

that:
b(u, v) = l(v) ∀v ∈ V, ∀t ∈ I

u|t=0+ = 0
(5)

where bilinear form b(•, •) and linear form l(•) are defined as:

b(u, v) =

∫

�

{

∂u

∂t
v + k∇u · ∇v

}

d� ; l(v) =

∫

�

fdvd� −

∫

∂q�

rdvdS (6)
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As regards the space-time weak formulation, we introduce functional spaces T =

L2(I) and L2(I;V) = V ⊗ T . We therefore search the solution u ∈ L2(I;V) such

that u̇ ∈ L2(I; L2(�)) and

B(u, v) = L(v) ∀v ∈ L2(I;V) (7)

with

B(u, v) =

∫ T

0
b(u, v)dt +

∫

�

u(x, 0+)v(x, 0+)d� ; L(v) =

∫ T

0
l(v)dt (8)

Problem (7) is classically solved using the FEM in space associated with a time in-

tegration scheme, or a (discontinuous) Galerkin approximation in time. The exact

solution of (7), which is usually out of reach, is denoted (uex , qex).

Eventually, we also assume that the material may be heterogeneous and partially

unknown, so that k depends on a set of parameters θ ∈ �. We thus define:

B̃(•, •) =

∫

�

B(•, •)dθ ; L̃(•) =

∫

�

L(•)dθ (9)

and the solution of the problem reads u(x, t, θ).

3 CONSTRUCTION OF THE PGD APPROXIMATION

We now introduce the recently called Proper Generalized Decomposition (PGD) tech-

nique [6, 12, 15, 16] which constitutes an a priori construction of a separated repres-

entation of the solution u, under the form:

u(x, t, θ) ≈ um(x, t, θ) ≡

m
∑

i=1

ψi(x)λi(t)μi(θ) (10)

An attractive feature of this technique is that it does not require any knowledge on

u; neither functions ψi(x) nor functions λi(t) and μi(θ) are initially given; these are

computed on the fly. In this section, we give a classical version of the PGD technique,

called progressive Galerkin-based PGD.

We assume that a PGD approximation of order m − 1 has been computed. The

PGD approximation of order m is then defined as

um(x, t, θ) = um−1(x, t, θ) + ψ(x)λ(t)μ(θ ) (11)

where ψ , λ, and μ are a priori unknown functions belonging respectively to the dis-

cretized subsets Vh, Th, and Ph; Vh and Th respect kinematic constraints and initial

conditions, respectively. Starting from an initialization ψλμ, one builds a new triplet

ψ̄λ̄μ̄ thanks to the following sub-iteration:
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• determine λ̄ ∈ Th such that:

B̃(um−1 + λ̄ψμ, λ∗ψμ) = L̃(λ∗ψμ) ∀λ∗ ∈ Th (12)

• determine μ̄ ∈ �h such that:

B̃(um−1 + λ̄ψμ̄, λ̄ψμ∗) = L̃(λ̄ψμ∗) ∀μ∗ ∈ Ph (13)

• determine ψ̄ ∈ Vh such that:

B̃(um−1 + λ̄ψ̄μ̄, λ̄ψ∗μ̄) = L̃(λ̄ψ∗μ̄) ∀ψ∗ ∈ Vh (14)

Few sub-iterations are performed in practice; in the following examples, the process

has been stopped after 4 sub-iterations. It is shown in [16] that the best PGD ap-

proximation could be interpreted in terms of eigenfunctions of a pseudo eigenvalue

problem. This interpretation is fruitful in the sense that it allows to propose dedicated

algorithms inspired from classical algorithms for eigenvalue problems.

4 GLOBAL ERROR ESTIMATION IN THE PGD FRAMEWORK

4.1 The Constitutive Relation Error method – Principle

Let (û, q̂) be an admissible solution of the problem, i.e. verifying (1), (2), and (4).

The Constitutive Relation Error (CRE) reads:

E2
CRE(û, q̂) =

1

2

∫ T

0

∫

�

1

k
[q̂ − k∇û] · [q̂ − k∇û]d�dt ≡

1

2
|||q̂ − k∇û|||2q (15)

and one has the equivalent of the Prager–Synge theorem:

|||qex − q∗|||2q +
1

2

∫

�

(uex − û)2
|T d� =

1

2
E2

CRE(û, q̂) (16)

with q∗ = 1
2 [q̂ + k∇û]. All these quantities depend on θ ∈ �.

4.2 Construction of an admissible solution

For the construction of the kinematically admissible field û(x, t, θ), one takes as usual:

û = um =

m
∑

i=1

ψiλiμi (17)

Getting q̂(x, t, θ) is more difficult and technical. First, one constructs qm(x, t, θ)

which should satisfy the following FE equilibrium for all (t, θ) ∈ [0, T ] × �:
∫

�

qm · ∇u∗d� =

∫

�

(fd −
∂û

∂t
)u∗d� −

∫

∂q�

rdu∗dS ∀u∗ ∈ Vh (18)
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For the sake of simplicity, let us suppose that the loading can be written:

(fd , rd ) =

J
∑

j=1

αj (t)
(

f
j
d (x), r

j
d (x)

)

(19)

and that we compute a FE approximation of:

−div k∇vj = f
j
d

−k∇vj · n = r
j

d on ∂q�

vj = 0 on ∂u�

(20)

It follows that qd =
∑J

j=1 αj (t)k∇vj can be introduced in the calculation of qm,

which should then verify for all (t, θ) ∈ [0, T ] × �:

∫

�

(qm − qd) ·∇u∗d� = −

∫

�

∂û

∂t
u∗d� = −

m
∑

i=1

λ̇iμi

∫

�

ψiu
∗d� ∀u∗ ∈ Vh (21)

Noticing that at the end of sub-iterations to compute each PGD mode m0 ∈ [1,m],

condition (14) yields:

B̃(um0 , λm0μm0ψ
∗) = L̃(λm0μm0ψ

∗) ∀ψ∗ ∈ Vh (22)

we thus get:

∫

�

[∫

�

∫ T

0
λm0μm0(k∇um0 − qd )dtdθ ∇ψ∗d� =

−

∫

�

[∫

�

∫ T

0
λm0μm0

∂um0

∂t
dtdθ ψ∗d� ∀ψ∗ ∈ Vh =

−

∫

�

m0
∑

k=1

[∫

�

∫ T

0
λm0μm0 λ̇kμkdtdθ ψkψ

∗d� ∀ψ∗ ∈ Vh

(23)

It follows that for m0 ∈ [1,m], term:

Qm0 ≡

∫

�

∫ T

0
λm0μm0(qd − k∇um0)dtdθ (24)

equilibrates
∑m0

k=1

[

∫

�

∫ T

0 λm0μm0 λ̇kμkdtdθ ψk in a FE sense. By a simple inversion

of the system, one obtains that a term of the form m
j=1 Rij Qj equilibrates ψi in the

FE sense (i = 1, . . . ,m). Consequently,

qm = qd −

m
∑

i=1

m
∑

j=1

λ̇iμiRij Qj (25)
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satisfies the FE equilibration (18) (or (21)). Moreover, it admits a PGD description:

qm = qd +

q
∑

i=1

qi(x)zi(t)si(θ) (26)

Then, usual techniques to build an equilibrated flux q̂ (verifying (2)) from qm can be

used. Full details on these techniques can be found in [17–20]; here, we specifically

use the new technique introduced in [19, 20] which defines local problems on patches

of elements, and represents a nice compromise between robustness, computational

cost, and implementation facilities. We also refer to [21] for other approaches enabling

to construct a statically admissible field. In the non material parameter case, the used

technique is completely detailed in [14].

4.3 Specific error indicators

To control the computation process, specific error indicators are suitable. The indic-

ator on the PGD error (i.e. the error due to truncation of the sum in the PGD repres-

entation (10)) is derived from the Constitutive Relation Error method considering as

the reference problem the discretized (in space and time) one. This idea, not restricted

to the PGD framework, has been applied in other works (see [17] for instance). The

reference problem is then here of the form:

U1
h = 0 ; M

U
p+1
h − U

p

h

	t
+ KU

p

h = F
p

h ∀p ∈ [1, P − 1] (27)

where P is the number of time steps. A pair which is admissible for this problem is

(um, qm) and the corresponding constitutive relation error reads:

E2
PGD =

1

2
|||qm − k∇um|||2q (28)

One then defines the error indicator on time and space discretizations by:

E2
h ≡ E2

CRE − E2
PGD (29)

4.4 Illustration

We consider the 2D structure of Figure 2 which presents two rectangular holes in

which a fluid circulates. Using symmetries, we keep a quarter of the 2D domain

(upper right quarter) that we denote �. It is subjected to a given flux rd(t) = −1 on

the hole boundary, a zero flux on symmetry planes, and a given temperature ud = 0

on other boundaries. A source term of the form fd (x, y) = 200xy is also applied in

�.
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Figure 2. The 2D reference problem.

Figure 3. Error estimator and indicators with respect to the number m of PGD modes.

Figure 3 gives, for the case where k = 1 (no parameter θ ), the constitutive relation

error and specific error indicators with respect to the number of PGD modes taken in

the approximation; we observe that after 3 modes, the only possibility to decrease the

global error is to refine mesh and time discretizations.

5 UPPER ERROR BOUND ON AN OUTPUT OF INTEREST

Let I be an output of interest defined by extractor q
:

I (θ ) =

∫ T

0

∫

�

q
 · ∇u(x, t, θ)d�dt (30)
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q
(x, t) could be a Dirac distribution. Introducing the associated adjoint problem, the

fundamental result for linear elliptic and parabolic problems is [22]:

|Iex − Ih − Ihh| ≤ ECREẼCRE (31)

where Iex (resp. Ih) is the exact (resp. approximated by PGD) value of the output

of interest, Ihh is a correction term computed from approximate solutions of both

reference and adjoint problems, and ECRE (resp. ẼCRE) is the constitutive relation

error of the reference (resp. adjoint) problem. To solve the adjoint problem, one uses

a PGD approximation following the progressive Galerkin technique used to solve the

reference problem.

Two illustrations are given below, considering again the reference problem of Fig-

ure 2 and assuming now that k is probabilistic in ω ⊂ � (black zone in Figure 2),

i.e.:

k(x, θ) = 1 + 0.1Iω(x)θ (32)

where Iω is the indicatrix function of ω, and θ ∈ [−2, 2] has a (truncated) normal

distribution.

We first consider as an output of interest the mathematical expectation (in the prob-

abilistic sense) of the mean value of u inside ω at time T :

I1 = E

[

1

|ω|

∫

ω

u|T d�

]

(33)

where E(•) =
∫

� •dP , dP being the probability measure. The normalized upper

bound
∫

� ECREẼCREdP/|I1h| of the error, as well as specific error indicators, are

given in Figure 4 (left) with respect to the number M of computed PGD modes for the

adjoint solution.

We now consider as an output of interest the maximal value (over � = [−2, 2]) of

the mean value of u inside ω at time T :

I2 = sup
θ∈�

1

|ω|

∫

ω

u|T d� (34)

The normalized upper bound supθ∈�(ECREẼCRE)/|I2h| of the error, as well as spe-

cific error indicators, are given in Figure 4 (right) with respect to the number M of

computed PGD modes for the adjoint solution.

Let us finally notice that the proposed verification approach, when related to a

quantity of interest I , yields for all θ ∈ �:

ǫ(θ) = |Iex − Ih − Ihh| ≤ ECREẼCRE (35)

A convenient manner to control the error ǫ(θ) is thus to control the error on the ad-

joint problem alone. This is easy to perform if the output of interest is local in space

variable. However, a refined discretization should be used in the zone of interest, and

that should be done in a black box manner.
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Figure 4. Normalized upper error bound and error indicators with respect to the num-

ber M of PGD modes used for the adjoint solution: I1 (left), I2 (right).

6 CONCLUSIONS

PGD-reduced models are a promising tool for solving complex engineering problems.

However, a central and main question is to guarantee their accuracy. The verifica-

tion method described here is a first attempt to address this challenge for elliptic and

parabolic problems.
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