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Chirp rate and instantaneous frequency estimation:
application to recursive vertical synchrosqueezing

Dominique Fourer, François Auger, Krzysztof Czarnecki, Sylvain Meignen, and Patrick Flandrin

Abstract—This letter introduces new chirp rate and instan-
taneous frequency estimators designed for frequency modulated
signals. These estimators are first investigated from a determin-
istic point of view, then compared together in terms of statistical
efficiency. They are also used to design new recursive versions
of the vertically synchrosqueezed short-time Fourier transform,
using a previously published method [1]. This study paves the way
to the real-time computation of a time-frequency representation
which is both invertible and sharply localized in frequency.

Index Terms—time-frequency analysis, synchrosqueezing, re-
assignment, chirp rate and instantaneous frequency estimation.

I. INTRODUCTION

NON-stationary signal analysis is a challenging task and
usually requires sophisticated tools. To this end, the

well-known Short-Time Fourier Transform (STFT) [2] is an
interesting solution, but is however limited by its poor en-
ergy localization in the time-frequency (TF) plane [3]–[5].
One approach, reassignment [6]–[8], provides an improved
time-frequency representation (TFR), but is unfortunately not
invertible. This is a reason why synchrosqueezing was intro-
duced, to improve the TF localization of a TFR by reassigning
its value rather than its squared modulus [9], [10]. While
maintaining invertibility, synchrosqueezing allows TF analysis,
denoising or mode extraction [11]–[13]. To improve the local-
ization of strongly modulated signals, a so-called second-order
synchrosqueezed STFT was recently proposed in [14], [15],
based on an enhanced instantaneous frequency estimator. All
these TFRs use operators derived from additional STFTs using
particular windows. Such operators can also be defined to
estimate local characteristic parameters of a signal. This letter
investigates the local estimation of the chirp rate (CR) and of
the instantaneous frequency (IF) of multicomponent signals. It
also proposes an unbiased second-order synchrosqueezed STFT
that can be implemented using causal recursive filters [1]. Our
contributions are threefold.
• We show properties of a non-stationary signal model STFT

(Section II) which are related to existing local Chirp Rate
Estimators (CREs) and we introduce several new ones,
based on a less restrictive signal model, whatever the
analysis window.

• We present instantaneous frequency estimators (IFEs)
(Section IV) and use them to derive new versions of the
synchrosqueezed STFT. For this, we use an analysis win-
dow allowing a causal recursive implementation designed
for a real-time computation.

This research was supported by the French ANR ASTRES project (ANR-
13-BS03-0002-01).

• The accuracy of both new CREs and IFEs is comparatively
assessed by numerical simulations (Section VI).

II. SIGNAL MODEL AND ITS STFT
A. Signal model and properties

At every moment, the analyzed signal is supposed to be
locally approximated by a Gaussian-modulated linear chirp
x(t) = Ax(t) ejφx(t), with Ax(t) = Ax e−(t−tx)2/(2T 2

x ),
φx(t) = ϕx + ωxt + αxt

2/2 and j2 = −1. By definition,
x(t) is differentiable and its derivative can be expressed as

dx

dt
(t) =

(
d

dt
(ln(Ax(t))) + j

dφx
dt

(t)

)
x(t) (1)

= (qxt+ px) x(t), (2)

with qx = −1/T 2
x + jαx and px = tx/T

2
x + jωx. The term

qxt+px = −(t− tx)/T 2
x + j(αxt+ωx) is sometimes referred

to as the instantaneous complex frequency [16], [17], and its
imaginary part is the signal instantaneous frequency.

B. Signal STFT and properties
Let Fhx (t, ω) denote the STFT of x(t) using a differentiable

analysis window h(t), defined as

Fhx (t, ω) =

∫
R
x(u)h(t− u)∗ e−jωu du (3)

= e−jωt
∫
R
x(t− u)h(u)∗ ejωudu (4)

where z∗ is the complex conjugate of z. Its partial derivative
with respect to time can be written as

∂Fhx
∂t

(t, ω) =

∫
R
x(u)

dh

dt
(t− u)∗ e−jωu du (5)

= −jωFhx (t, ω) + e−jωt
∫
R

dx

dt
(t− u)h(u)∗ ejωudu (6)

Replacing dx
dt (t−u) by (qx (t− u) + px) x(t−u) then leads to

FDhx (t, ω) = −qxF T hx (t, ω) + (qxt+ px − jω)Fhx (t, ω), (7)

where FDhx (t, ω) and F T hx (t, ω) are two STFTs using Dh(t) =
dh
dt (t) and T h(t) = t h(t) as analysis windows. Differentiating
again with respect to t leads to

FD
2h

x (t,ω) = −qxF T Dhx (t,ω) + (qxt+ px − jω)FDhx (t,ω), (8)

and more generally, for n ≥ 1,

∂nFhx
∂tn

(t, ω) = FD
nh

x (t, ω) =

−qx F T D
n−1h

x (t, ω) + (qxt+ px − jω)FD
n−1h

x (t, ω), (9)

with Dnh(t) = dnh
dtn (t) and T Dnh(t) = t d

nh
dtn (t).
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III. CHIRP RATE ESTIMATION

A. Estimator using one partial derivative
Based on Eq. (7), CREs can first be derived, thus continuing

a research theme pioneered by Nelson [18]. If we assume that
the amplitude is constant (i.e. if Tx goes to infinity), then
px = jωx and qx = jαx, and Eq. (7) leads to

FDhx (t,ω) = −jαxF T hx (t,ω) + j(αxt+ ωx − ω)Fhx (t,ω). (10)

Multiplying then by Fhx (t, ω)∗ and taking the real part leads
to a chirp rate estimator based on a first-order derivative of
the STFT (provided that the denominator is nonzero),

α̂K1
x (t, ω) =

Re
(
FDhx (t, ω)Fhx (t, ω)∗

)
Im (F T hx (t, ω)Fhx (t, ω)∗)

. (11)

This equation, which was first derived in [19], [20] from
analytical results obtained in the particular case of a Gaussian
window, provides a CRE for any analysis window h (unbiased
if T 2

x →∞). Based on Eq. (9), a whole class of CREs can also
be derived on the same principle:

α̂Knx (t, ω) =
Re
(
FD

nh
x (t, ω)FD

n−1h
x (t, ω)∗

)
Im
(
F T Dn−1h
x (t, ω)FDn−1h

x (t, ω)∗
) . (12)

B. Estimators using two partial derivatives
1) Estimators using derivatives with respect to time: If the

amplitude is no longer assumed to be constant, Eqs. (7) and
(8) can be considered as a system of two linear equations with
two variables qxt+px−jω and qx. The solution of this system
leads to an estimator of qx (provided that the denominator is
nonzero), and its imaginary part to a new CRE

q̂(t2)
x (t,ω) =

FD
2h

x (t,ω)Fhx (t,ω)− FDhx (t,ω)
2

FDhx (t,ω)F T hx (t,ω)− F T Dhx (t,ω)Fhx (t,ω)
,

α̂(t2)
x (t, ω) = Im(q̂(t2)

x (t, ω)). (13)

More generally, a whole class of CREs can be derived if the
same process is applied to Eqs. (7) and (9):

q̂(tn)
x (t,ω) =

FD
nh

x (t,ω)Fhx (t,ω)− FDn−1h
x (t,ω)FDhx (t,ω)

FDn−1h
x (t,ω)F T hx (t,ω)− F T Dn−1h

x (t,ω)Fhx (t,ω)
,

α̂(tn)
x (t,ω) = Im(q̂(tn)

x (t,ω)). (14)

2) Estimators using derivatives with respect to frequency:
Since ∂Fhx

∂ω = j(F T hx (t, ω) − t Fhx (t, ω)), differentiating Eq.
(7) once with respect to ω leads to

F T Dhx (t, ω) + Fhx (t, ω) =

−qxF T
2h

x (t, ω) + (qxt+ px − jω)F T hx (t, ω). (15)

More generally, differentiating Eq. (7) n−1 times (for n ≥ 2)
with respect to ω leads to (with T nh(t) = tn h(t))

F T
n−1Dh

x (t, ω) + (n− 1)F T
n−2h

x (t, ω) =

−qx F T
nh

x (t, ω) + (qxt+ px − jω)F T
n−1h

x (t, ω). (16)

Considering Eqs. (7) and (15) as a set of two linear equations
leads to another estimator of qx and to another CRE

q̂(ω2)
x =

F T Dhx (t,ω)Fhx (t,ω) + Fhx (t,ω)
2 − F T hx (t,ω)FDhx (t,ω)

F T hx (t,ω)2 − F T 2h
x (t,ω)Fhx (t,ω)

,

α̂(ω2)
x = Im(q̂(ω2)

x (t, ω)). (17)

More generally, a whole class of CREs can be derived from
Eqs. (7) and (16):

q̂(ωn)
x =

(F T
n−1Dh

x + (n−1)F T
n−2h

x )Fhx − F T
n−1h

x FDhx
F T n−1h
x F T hx − F T nhx Fhx

,

α̂(ωn)
x = Im(q̂(ωn)

x (t, ω)). (18)

Of course, the dependency of these estimators and STFTs to
the TF point (t, ω) has been removed by lack of space, and
these expressions hold when their denominators are non zero.

IV. INSTANTANEOUS FREQUENCY ESTIMATION

A. Bias of the frequency reassignment operator

Classical spectrogram reassignment and synchrosqueezing
use time and frequency reassignment operators defined as [1],
[6]–[8], [21]

t̂(t,ω) = Re
(
t̃(t,ω)

)
,with t̃(t,ω) =t− F T hx (t,ω)

Fhx (t,ω)
, (19)

ω̂(t,ω) = Im (ω̃(t,ω)) ,with ω̃(t,ω)=jω +
FDhx (t,ω)

Fhx (t,ω)
. (20)

Eq. (7) shows that when the signal amplitude is not constant,
i.e. when T 2

x <+∞, ω̂(t, ω) provides a biased IF estimation
at time t̂(t, ω), since Eqs. (7), (19) and (20) lead to

ω̂(t, ω) = αx t̂(t, ω) + ωx +
1

T 2
x

Im
(
F T hx (t, ω)

Fhx (t, ω)

)
. (21)

B. Unbiased instantaneous frequency estimators

Unbiased estimators of the instantaneous frequency at time
t, φ̇x(t) = αxt+ωx, can be derived from the results presented
in Section III. When the signal amplitude is constant, Eq. (21)
shows that ˆ̇

φx(t,ω) = ω̂+ α̂K1
x (t− t̂) is an unbiased IFE. When

the signal amplitude is a Gaussian, Eqs. (7), (19) and (20) lead
to the simple relationship ω̃(t,ω) = qx t̃(t,ω) + px, from which
IFEs can be deduced by [22] ˆ̇

φx(t,ω) = Im
(
ω̃ + q̂x(t− t̃)

)
. If

q̂x is given by Eqs. (13), (14), (17) or (18), these IFEs are
unbiased, whatever the analysis window h.

Furthermore, unbiased IFEs can also be derived directly, for
a lower computational cost and a lower memory requirement.
When the signal amplitude is constant, multiplying Eq. (10)
by F T hx (t, ω)∗ and taking the real part leads to

ˆ̇
φK1
x (t, ω) = ω − Re

(
FDhx (t, ω)F T hx (t, ω)∗

)
Im (Fhx (t, ω)F T hx (t, ω)∗)

. (22)

Compared to Eq. (20), ˆ̇
φK1
x (t, ω) is an estimator of the IF at

time t, whereas ω̂(t, ω) is an estimator of the IF at time t̂(t, ω),
φ̇x(t̂(t, ω), ω). On the same principle, a whole class of IFEs can
be derived from Eq. (9),

ˆ̇
φKnx (t, ω) = ω −

Re
(
FD

nh
x (t, ω)F T D

n−1h
x (t, ω)∗

)
Im
(
FDn−1h
x (t, ω)F T Dn−1h

x (t, ω)∗
) . (23)

For a linearly frequency modulated signal with an amplitude
locally approximated by a Gaussian, unbiased IFEs can also
be derived. Combining Eqs. (7) and (8) leads to an estimator
of qxt + px − jω, whose imaginary part yields an IFE and
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which can be generalized to any order from Eqs. (7) and (16)
(provided that the denominators are nonzero)

ˆ̇
φ(t2)
x (t,ω) =ω + Im

(
FD

2h
x F T hx − F T Dhx FDhx
FDhx F T hx − F T Dhx Fhx

)
, (24)

ˆ̇
φ(tn)
x (t,ω) =ω + Im

(
FD

nh
x F T hx − F T Dn−1h

x FDhx
FDn−1h
x F T hx − F T Dn−1h

x Fhx

)
. (25)

Combining Eqs. (7) and (16) can also lead to another class of
instantaneous frequency estimators, defined as ˆ̇

φ
(ωn)
x (t,ω) =

ω +Im

(
(F T

n−1Dh
x +(n−1)F T

n−2h
x )F T hx −F T

nh
x FDhx

F T n−1h
x F T hx − F T nhx Fhx

)
. (26)

C. Vertical synchrosqueezing

The results presented in Section IV-B can be used to
estimate the IF of a signal component located in the vicinity
of a TF point (t, ω). It can also be used to derive an improved
synchrosqueezing process called vertical synchrosqueezing:
based on the general signal reconstruction formula [1]

x(t− t0) =
1

h(t0)∗

∫
R
Fhx (t, ω) ejω(t−t0) dω

2π
, (27)

for any t0 such that h(t0) 6= 0, a vertically synchrosqueezed
STFT can be defined as [15], [22]

VSFhx (t,ω) =

∫
R
Fhx (t, ω′) ejω

′(t−t0)δ(ω − ˆ̇
φx(t,ω′)) dω′, (28)

where ˆ̇
φx(t,ω) is one of the proposed IFEs. This expression

mainly differs from the classical synchrosqueezed STFT by the
use of an IFE

ˆ̇
φx(t,ω′) instead of ω̂(t,ω′). Its squared modulus

provides a sharpened TFR, and it can be inverted by

x̂(t− t0) =
1

h(t0)∗

∫
R
VSFhx (t, ω)

dω

2π
, (29)

where the integration interval can profitably be restricted to
the vicinity of a signal ridge for mode extraction [13].

V. ROBUSTNESS ANALYSIS AND ROBUST CR AND IF
ESTIMATORS

All the previously proposed estimators are deduced from
STFT properties induced by the chosen signal model. To assess
their sensitivity to a model inadequacy, let’s suppose that the
log-amplitude and the phase are third-order polynomials:

ln(Ax(t)) = ln(Ax)− (t− tx)2

2T 2
x

−∆A
(t− tx)3

6T 2
x

, (30)

φx(t) = ϕx + ωxt+ αxt
2/2 + ∆φt

3/6. (31)

Eqs. (2) and (7) then become dx
dt (t) =

(
rxt

2 + qxt+ px
)
x(t),

with rx = −∆A

2T 2
x

+ j
∆φ

2 , qx = − 1−∆Atx
T 2
x

+ jαx and px =
2tx−∆At

2
x

2T 2
x

+ jωx, and FDhx (t, ω) = rxF
T 2h
x (t, ω)−

(2rxt+qx)F T hx (t, ω)+(rxt
2 +qxt+px−jω)Fhx (t, ω). (32)

This expression mainly differs from Eq (7) by an additional
term proportional to rx, and shows that Eqs. (11) and (22) are
biased estimators of the instantaneous chirp rate ∆φt+ αx =

Im (2rxt+ qx) and of the instantaneous frequency ∆φt
2/2 +

αxt+ωx = Im
(
rxt

2 + qxt+ px
)
, and the bias is proportional

to ∆φ. Differentiating Eq. (32) once with respect to t and with
respect to ω leads to

FD
2h

x = rxF
T 2Dh
x − (2rxt+ qx)F T Dhx

+ (rxt
2 + qxt+ px − jω)FDhx , (33)

F T Dhx + Fhx = rxF
T 3h
x − (2rxt+ qx)F T

2h
x

+ (rxt
2 + qxt+ px − jω)F T hx . (34)

These expressions show that Eqs. (13), (17), (24) and (26) (for
n = 2) are biased estimators of the instantaneous chirp rate
and of the instantaneous frequency, with a bias proportional to
∆φ and independent of ∆A. However, Eqs. (32), (33) and (34)
can be considered as a set of three linear equations with three
variables rx, 2rxt+ qx and rxt2 + qxt+ px − jω. When the
determinant is nonzero, the imaginary parts of the solutions of
this system can lead to robust estimators of the angular jerk
∆φ, of the instantaneous chirp rate and of the instantaneous
frequency.

VI. NUMERICAL RESULTS

The results presented in the previous sections hold for any
analysis window h. We implemented them for causal (one-
sided) analysis windows hk (with k ≥ 1) defined by [1],
[24] hk(t)= tk−1

Tk(k−1)!
e−t/T U(t), where U(t) is the Heaviside

step function and T a time spread parameter. This allows an
efficient recursive discrete-time implementation of the STFT
and of the CR and IF estimators, since T nh and Dnh can be
expressed as linear combinations of functions of this kind [1].
A MATLAB implementation of the proposed estimators and
a complementary report can be found on-line at [25].

A. Statistical efficiency assessment

We considered a complex linear chirp x[n] = Ax[n] ejα
n2

2

(with Ax[n] = e−(n−n0)2/(2L2
x), n ∈ [0, N − 1], n0 = N/2,

α= 2π 0.36
N , N = 500 and Lx = 200 or Lx = +∞), merged

in a circular white Gaussian noise with a Signal-to-Noise
Ratio (SNR) varying from −10 to +80 dB. The CR and IF
are estimated at n0 = N/2 and the error is measured from the
ground-truth values αref = 4.5·10−3 and λref = αref

2π n0 = 0.18.
Figs. 1(a) and 1(c) show the Mean Squared Error (MSE) of the
CR and IF estimators computed at n0 with 50 noise realizations,
as a function of the analysis frequency λ = ω

2πTs
(Ts being the

sampling period). These results show that most estimators best
perform in the vicinity of the maximum of the spectrogram,
except for the K1 estimators, where a division by zero then
happens (as previously reported in [19], [20]). The latter
estimators also become biased when the signal amplitude is
not constant. This is confirmed by Figs. 1(b) and 1(d), which
compare the MSE of the estimators as a function of the SNR.
In these figures, the MSE also consider 36 distinct uniformly
sampled values for λ ∈ [0.13, 0.20] around the maximum of
the spectrogram (i.e. 1800 measures per point). The results
show that K1 estimators are less efficient for low SNR. At
high SNR, the MSE of the proposed estimators seems to be
inversely proportional to the SNR, except for the K1 estimators
when the signal amplitude is Gaussian (Lx = 200).
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Fig. 1. Accuracy assessment of the proposed CREs (a)-(b) and IFEs (c)-(d), in comparison with a state-of-the-art method [23], applied to a constant amplitude
linear chirp. Recursive TFRs of a multicomponent signal (e)-(g). For all figures, the order is k = 7 and the time spread is Lh = T/Ts = 6 (see [1]).

B. Time-frequency localization assessment

Figs. 1 (e)-(g) compare the recursive TFRs obtained for a real
signal made of one sinusoid, one chirp and one sinusoidally
modulated sinusoid. As shown in [1], synchrosqueezing (Fig.
1(f)) improves the localization of the signal components with
some noise robustness. However, a significant TFR improve-
ment (clearly visible on the two frequency modulated com-
ponents) is provided using Eq. (24) (Fig. 1(g)) instead of Eq.
(20) (Fig. 1(f)). All these TFRs remain invertible, as shown by
the Reconstruction Quality Factor (RQF) [1] displayed above
each figure. Hence, the better TF localization provided by the
proposed recursive vertical synchrosqueezing could improve
mode retrieval as in [13], with a more efficient computation.

VII. CONCLUSION

This paper illustrates the possibility to measure at any
TF point not only energy, but also signal parameters, even
when using one-sided windows that allow a real-time recur-
sive implementation. Based on a local signal model, general
expressions for any analysis window, allow us to derive and
investigate an infinity of new unbiased CR and IF estimators,
valid whatever the analysis window. Similarly, estimators of
the signal parameters tx and Tx could also be designed.
Future research includes the use of other signal models (such
as hyperbolic chirps), a study of the poles of the proposed
estimators, a statistical assessment of the high-order (n > 2)
CR and IF estimators, and applications to real-world signals.
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