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B. Emek Abali - Wolfgang H. Miiller - Francesco dell’Isola

Theory and computation of higher gradient elasticity
theories based on action principles

Abstract In continuum mechanics, there exists a unique theory for elasticity, which includes the first gradient
of displacement. The corresponding generalization of elasticity is referred to as strain gradient elasticity or
higher gradient theories, where the second and higher gradients of displacement are involved. Unfortunately,
there is a lack of consensus among scientists how to achieve the generalization. Various suggestions were
made, in order to compare or even verify these, we need a generic computational tool. In this paper, we follow
an unusual but quite convenient way of formulation based on action principles. First, in order to present its
benefits, we start with the action principle leading to the well-known form of elasticity theory and present
a variational formulation in order to obtain a weak form. Second, we generalize elasticity and point out, in
which term the suggested formalism differs. By using the same approach, we obtain a weak form for strain
gradient elasticity. The weak forms for elasticity and for strain gradient elasticity are solved numerically by
using open-source packages—by using the finite element method in space and finite difference method in time.
We present some applications from elasticity as well as strain gradient elasticity and simulate the so-called
size effect.

1 Introduction

Starting with works Joseph-Louis de Lagrange, Pierre Louis Moreau de Maupertius, Leonhard Euler—for a
short history see Romano et al. [38]—the theory of mechanics is formulated by an energy expression called
LAGRANGEan that depends on primitive variables and their first derivatives in coordinates. Such a theory
is of first order since the first derivative in coordinates describes the immediate neighborhood. This is an
infinitesimally small region given by a sphere of radius ¢. In continuum mechanics, we declare the size of ¢
as approaching zero. Therefore, from a conceptual point of view, no problems arise and continuum mechanics
is sufficient to characterize the immediate neighborhood with the first derivative. This approach is also called
the locality argumentation and is valid for analytical mechanics, where we can set ¢ infinitesimally small.
However, if we want to exploit numerical mechanics, then we have to set a finite value for . It has to be
smaller than the length-scale of the underlying structure.
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In order to explain the length-scale, consider a measurement where the machine precision is limited to
1 um. Therefore, we simply miss any deformation occurring on a smaller scale than a micrometer length-scale.
We have to choose ¢ smaller than 1 um, and then we can accurately model the measurement. Moreover, we
set ¢ large enough such that sufficiently many atoms are included, so we may ignore any fluctuation effects.
Suppose we can estimate 1 nm as the minimum size of ¢, i.e., for a monatomic lattice we assume that first
neighbor is in a distance less than 1 nm. In a smaller length-scale, the atomistic structure and interactions
between lattice points become important. Between 1 nm and 1 pum, the size of ¢ can be chosen arbitrarily, and
the solution of the problem remains the same; for the idea of self-similarity and intermediate distances, see
Barenblatt [10, Chap. 2]. The first-order theory holds accurately for a material point in the given length-scale,
i.e., € is smaller than the upper limit of 1 um and greater than the lower limit of 1 nm. We can measure with a
measurement device capturing 1 pm and model the measurement with the first-order theory.

Now consider a material with 1 um grain size. In other words, the underlying material has a substructure
within the length-scale. Now we have two different options to resolve this issue. Either we redeclare the length-
scale by decreasing the upper limit, simply stated, we buy a new measurement device with a higher precision;
or we generalize the first-order theory in order to capture the effects of the substructure. This generalization
introduces new coefficients responsible for the response effected by the substructure. In this work, we explain
the method of least action and exploit it for generalizing the continuum theory from the first order to the second
order.

Although the idea of an extended or generalized mechanics is older than a century, see dell’Isola et al.
[14], the modern theory started to be developed by the early 1960s with Mindlin and Tiersten [29], Mindlin
[27], Toupin [41], Eringen [18]. Today there are various theories describing an extension of the first-order
theory for elasticity. Interestingly, these different theories are mathematically quite similar and can be viewed
as specialized versions of a unified theory, see Neff et al. [31]. By starting with experimental evidence as
in Morrison [30] and then later on in Yang and Lakes [43], Brezny and Green [12], Chen and Fleck [13],
Kesler and Gibson [24], we know that a second-order theory—called the strain gradient theory—is necessary
for an accurate prediction of experiments. For example, the prominent experiment of beam bending can be
investigated. Consider a beam of 1 pum length and another beam of 1 mm, both out of the same material. The
first-order theory is accurate for the beam in the meter length-scale; however, it is inaccurate for the beam in
the micrometer length-scale. Apparently, for the micrometer beam, the substructure of the material becomes
dominant. An internal substructure can be a crystallographic structure of aluminum or polymer chains of
epoxy. If one wants to acquire accurate results with the first-order theory, then a precise and detailed model of
this substructure needs to be involved. However, this method is not efficient at all. In other words, although we
might try to model everything by molecular dynamics, we never do that for a structure bigger than a couple of
micrometers due to the computational time required for such a detailed model. We will present a second-order
theory, capable of modeling the deformation of beam bending even on smaller length-scales, with an adequate
amount of computational cost.

Computational issues of generalized mechanics are heavily discussed in the literature. There are various
propositions and numerical strategies. For example, Bilotta et al. [11] use a promising method by constructing
special elements. The newly introduced material parameters can be motivated with a rigorous micro-macro
identification procedure, see Pideri and Seppecher [33]. Based on this idea, Giorgio [19] provides a persuasive
series of numerical results, starting from the first-order theory. In various applications, effects of substructure
are unavoidable, for simulations of interesting examples, see Scerrato et al. [39], Turco et al. [42], and Placidi et
al. [34]. Finite element implementation and comparable results to the underlying work have appeared recently
in Reiher et al. [37]. We present our formulation and its implementation in a quite general setting; hence, an
extension to many other branches than elasticity is possible. For example, the numerical solution procedure
presented herein seems to be potentially very useful also for studying the equilibrium problems of second
gradient fluids as discussed in Eremeyev [16], Eremeyev and Altenbach [17].

First, we discuss the variational formulation in the first-order theory by means of an action principle.
Instead of the least action principle, another similar theory known as principle of virtual work (or power) can
be used, too. We start by postulating an action and omit to give its detailed form. If a principle of virtual work
needs to be used, then we immediately have to describe the form. There are no big discrepancies between these
methods. Second, we generalize the variational formulation for the second-order theory by following Abali
and Miiller [3]. The outcome is a weak form necessary for the computation. Third, we present a numerical tool
solving the weak form. For the case of elasticity and strain gradient elasticity, we perform several simulations
in order to justify the benefits of the approach. We use open-source packages and make our codes publicly
available in order to encourage further studies.



2 Variational formulation for the first-order theory

The general formulation relies on a mathematical construct called action. The first postulate in this methodology
is an existing LAGRANGEan density, £, describing the underlying system

d
L=L(xu, da.dap) . dau= a:i , &)
i

which depends on Cartesian coordinates, x,, € Q, u = 1,2, ...m, in m-th-dimensional space, 2 C R™; on
primitive variables, ¢4 = ¢4 (x,); as well as on their derivatives, ¢4 , = @4, (x,). Only the first derivatives
are included in the list of arguments. The LAGRANGEan density describes the state of the underlying system.
Thus, we call {¢4, ¢4 .} the state space. Consider a continuum body defined in the space x, = (¢, x, y, z) is
being deformed under a given mechanical loading. Then the state is the deformation of the body defined by
the displacement field, ¢4 = u; = u;(t, x, v, z), and its first gradient in coordinates. The space spanned by
the displacement field and its first gradient in coordinates creates the state space. This concept is often used in
terms of rigid bodies, where the displacement and velocity (derivative in t) create the state space.
The second postulate is the so-called action functional:

A:/LdE—i—/ Wedl', dX = dxydxp...dx,, dIl=dxjdxy...dx,—1, 2)
Q Q2

where we have used the Cartesian coordinates such that the metric determinant of the space €2 is equal to 1.
If we call d$2 an infinitesimal volume element, then one-dimension less d€2 would be a surface element. We
have a first-order theory such that only one-dimension lower space is included. Technically, we know Wy on
the surface and want to determine the appropriate £ within the space. Thus, Wy is given and we restrict it
be depending on ¢ 4. The action is a scalar, i.e., it is invariant with respect to the transformation of primitive
variables. First, we introduce variations of the primitive variables,

Oy = da +dga , 3)

and of its rates,
08¢
0xy '

¢:4,# = ¢A,u + 55¢A,u s &PA,;/_ = (6¢A),M = “4)
The test functions, 8¢ 4, are arbitrary; however, they are chosen to vanish on the DIRICHLET boundaries, d<2p,
where the primitive variables are known. The constant factor € is such a small number (with respect to the
upper limit in the length-scale) that the above transformation is accurate in the first order in ¢. Now, with the
same accuracy, the variation of the action reads

6A=/ L’dE—/ LA+ | WAl — | Wedl, L =L(xu, ¢4, d4,) . Wi=W(xu, d)) .
Q Q a0 Ele!
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By using a TAYLOR expansion linear in &, we obtain
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and analogously,

W, = W,

(N

where and henceforth over repeated indices we apply the EINSTEIN summation convention. The variation of

action becomes
L oW,
SA = /<—85 + ——¢b )dE—I—/ : . 8
0 ¢4 0dA,u Pan a0 04 ®




According to the principle of least action, the action functional is a scalar such that its variation vanishes
SA =0, ©)]

for non-dissipative (reversible) systems. Since ¢ is a constant nonzero number, we can divide by it such that

we obtain
f(aLé‘f’ oL % 5s >d2+/' oWq
~, A A
dpa dpa, " 20 9PA

This integral form is general for a system having a LAGRANGEan density depending on the primitive variables
and their first derivatives. Often, an integration by parts is established on the second term within ¥ such that
the integrand contains only 8¢ 4. This step introduces a surface integral derived from L set in with d W /d¢ 4.
Within X the so-called EULER-LAGRANGE equations are obtained; over the surface, a boundary condition is
defined. For enabling this relation, we have restricted W depending only on ¢4 and not on ¢4 ;. Although
we omit a direct use of this relation for generating the weak form, it serves an understanding of a boundary
term and its specifications in an experimental setting.

=0. (10)

2.1 Generating the weak form

Consider a material system composed of a three-dimensional continuum body in a reference frame, By C R?,
with its closure, 3By, such that B = By U 3 B¢. Material particles of the continuum body are denoted by their
positions, X, in the reference frame. The reference frame is an inertial frame, and we choose it as fixed. In the
beginning of the simulation, where the continuum body is undeformed, we set the initial frame as the reference
frame and indicate this choice with the use of an index “0.” Material particles’ positions are expressed in a
Cartesian coordinate system, X; € B with i = 1,2, 3, in the initial frame, and they form an infinitesimal
volume element dV = dX| dX, dX3 as well as an infinitesimal surface element dA. For this configuration,
the space is four-dimensional, x,, = (¢, X;), with time t € T = [f9, #1] and physical space X; such that the
integral form in Eq. (10) reads

oL oL oW
—d — 09 ——0¢pa; |dtdV
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where ()" denotes a partial time derivative since the reference frame is fixed. The integral form is continuous.
In a computational environment, we will solve it for discrete time steps in discrete elements (subsets of the
physical space). First, we discretize in time. For the sake of a simplified notation (and programming), we
choose constant time steps such that the time becomes the following list:

-0, (11)

t ={0, At,2At,3At, ..., tend} (12)
As a consequence, the discrete (in time) representation of ¢4 is a list,
da ={Ppa(Xi, 1 =0), pa(Xi, 1 = A1), pa(Xi, 1 =2A1), ..., pa(Xi, I = lend)} - (13)

The time rate of the primitive variables read

.04 da— oY 14
i TRV 9

where ¢4 denotes the unknown value to be computed and ¢4 indicates the already computed value from the
last time step. This formulation converges to the analytic time rate for Az — 0. Since the test functions §¢ 4
are arbitrary, we may set them as constants in the beginning of a simulation. For doing so, we have to eliminate
d¢', from the integral form by integrating by parts

// <_ é _(‘%)54) % 5 )dth—i—/ O spaav
By \0PA A Gl At 004, A By 0P A T
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By given values of ¢4 at two subsequent time instants like #y and #;, we set the test functions zero on T = [#g, #1]
and obtain for every other time instant

oL oL\’ oL oW
—0ps — | — )0 ——0¢a,; | AV 0ppdA =0. 16
/930(3¢A DA <3¢'A> ¢A+3¢A,i ¢A,> +/39303¢A oy (16)

Second, we discretize the physical space. The primitive variables as well as the test functions are defined on a
HILBERT space with continuity k in a discrete element, E, with the DIRICHLET boundary condition on d Ep,

V= {pa, ¢4 € [F(E)] : ¢4 = given, 54 =0 on JEp} . (17)

It is technically a SOBOLEV space where also the differentiability within the domain is ensured. The continuity
k shall be as high as necessary. It depends on the chosen LAGRANGEan density, which has a derivation in ¢4 ;.
In the EULER-LAGRANGE equations, one more integration by parts is used to “switch” the derivative in the test
function to that term. Hence, the regularity condition is stronger than the latter form. Therefore, the latter is
called a weak form to be fulfilled in each element, E, finite in size. The totality of all finite elements reads the
following weak form:

nr of ele.

L AL\ L W
Form = ; / (MMA - <@) Spa + m&pm) dv +/mo 5 SpadA.  (18)
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The external work done on the surface is given, Wy = Wi (t, X;, ¢4), and the surface element dA denotes an
integration over the surface belonging to boundary dBg excluding DIRICHLET boundaries. On the DIRICHLET
boundaries, the numerical value of ¢, is given, since we know them 8¢ 4 on the DIRICHLET boundaries
vanishes, called GALERKIN approach. The weak form is a general integral form applicable to all reversible
systems defined by a LAGRANGEan depending on primitive variables and their derivatives.

2.2 Elasticity theory
In elasticity the primitive variable is the displacement:
ba=ui, ui=xi—X;, (19)

where the displacement is the deviation from the reference (initial) position, X;, to the current position, x;.
The LAGRANGEan density for the elasticity reads

1

L= 5 PouiU; = w o+ po fiui (20)
where the first term denotes the kinetic energy, the second term indicates the sfored or deformation energy,
and the third term is called the potential energy. In the case of elasticity, the stored energy density (energy per
volume) w depends on displacement and its first derivative in space. Its exact form relies on the underlying
material. The conservative force f; is simply the gravitational specific force (force per mass). We present two
different material models in the following sections, and they only differ in the definition of the stored energy
density, w. On NEUMANN boundaries, the energy expression

Ws = fiu; 21

implements a traction vector {; in the unit of stress, modeling a mechanical loading on a part of the surface.
By inserting the latter in Eq. (18), we obtain the weak form discrete in time and space,

nr of ele. u; — 214? + u(_)O

ow o
Form = du; — pg———————du; — ——0du; ; |dV t;0u; dA . 22
; /En (fl i = po At At i du; j u”) +/330 ot (22



This weak form can be solved by using k = 1 since we have only first-order derivative in ;. In other words,
linear continuous standard elements will be used. Indeed, the latter weak form can be solved for various
definitions of the stored energy density. It is of importance to note that the term:

ow 23
8ui,j ’ ( )
is called PIOLA stress:
py— 2% 24
JU — aE] ) ( )
since the deformation gradient, Fj;, leads to
E)xj 5.0+ ow ow JdFy P Uk, PSS p 25
7] — —— = 53 u 57 5 = = = H ;] = i1 .
Jji X, Jji Jsi aui,j 3 Fy aui,j Ik aui,j 1kOkiOlj Ji (25)

The polynomial degree of Eq.(23) states the degree of the material model. The stored energy density is one
degree higher, for example, for a linear material model w is quadratic. By defining the LAGRANGEan density in
Eq. (20), we have introduced several assumptions. First, we have assumed that it be independent of time. In other
words, f; is a conservative force and does not depend on time explicitly. Second, we assume that the kinetic
energy depends on u; and the stored energy depends on u; and u; ;. In other words, we exclude viscoelasticity
by neglecting a dependence on uj ;- Third, we use the deformation gradient or the GREEN—LAGRANGE strain
measure

1
Eij = 5 k. itk, j +ud,j (26)
instead of displacement dependence in the stored energy. So the stored energy is
w=wX;, Fij) =w(X;, E;j) . 27)

As aspecial case, for homogeneous materials the dependency on X; vanishes. Due to the principle of objectivity,
the scalar function depends on the invariants of the deformation gradient or strain.

3 Variational formulation for the second-order theory

In order to generalize the proposed method, we redefine the LAGRANGEan density as including the second
derivatives of the primitive variables

L= L0 G @i $agn) s bap = % . P = aii‘g’; : (28)
In this configuration, the state space reads
{a, A s P4, v} (29)
with the following variations:
Oy = A+ edhpa, Pu, =bapu+EPA L, Dh =P+ EOPA v - (30)
The same action definition and the variation of it lead to
L=L+ %e&m + %s&mw + %Eédm,w , 31)

and provide the following integral form:

oL oL oL Wy oWy
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after using the principle of least action and dividing by ¢. By using the same justification as in the last section,
we allow W on surface dI" and W, on edge dIT depending only on ¢4 and ¢4, but not on ¢ .



3.1 Generating the weak form

As in the last section, again for x,, = (¢, X;) witht € t = [fo, t1] and X; € By, we obtain

L L L L L
/fg (— a+ 5286y + 5o —Bbai + -5, + 8¢y ; + 5¢A U) dv dr

96 3%, 6n 20, A g, 36n
3WS oW,
1, 5 [L, G ) dras
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Y0y 5 i )drde =0. 33
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In the time discrete fashion, we eliminate terms with rates of test functions by integrating by parts. Then we
use the fact that the values ¢g and qﬁgo are known in the beginning such that ¢4 vanishes. After discretization
in space, we obtain the following weak form

nr of ele.
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The extension to the second-order theory introduced many different boundary conditions. All of them have
to be given, and they are discussed by many researchers. Mainly we have boundary terms acting on surface
and additionally terms acting on edges. Since now not only ¢4 but also its derivative is involved, we need to
approximate the discrete representation of ¢4 from a SOBOLEV space,

V= {¢>A, dpa € [HE)]P ¢4 = given, d¢p4 = 0 on 8ED} , (35)
with k > 2.

3.2 Strain gradient elasticity theory

In strain gradient elasticity, the primitive variable is the displacement:
ba=u; . (36)

For being able to compare the elasticity and strain gradient elasticity, we implement exactly the same surface
energy and neglect the edge energy,
WS - flul ) We - 0 ) (37)

where the traction vector #; denotes again the mechanical load on the NEUMANN boundary. These boundary
conditions are heavily discussed in the literature, and their application to experimental mechanics is very
challenging. For some useful interpretations of these surface and edge energies and how they affect the solution,
among others, we refer to Auffray et al. [8], Javili et al. [22], Steigmann and dell’Isola [40]. Although we
obtained these additional terms on boundaries, they are challenging to justify. For the specific case of a quadratic
energy, by using variational formulation in Mindlin [28], by using principle of virtual power in Polizzotto [35],
it is shown that W and W, may include relations leading to a dependency in u; and u; ;. Moreover, the
aforementioned relations can be rewritten, see [35, Sect.5], in order to relate them to measurable quantities
like surface tension (energy). Such an analysis results in Wy depending on u; and surface normal component
of gradient of displacement. Herein, we have even proposed to involve dependencies on u;. Unfortunately, we
lack a clear justification of experimental feasibility for such dependencies. For simplicity, we choose Eq.(37)
to implement such that a comparison with the well-known linear elasticity is possible.



For nonpolar materials, we propose the following LAGRANGEan density:

1
L= Spouiu; —w+ po(fiui +Lijuji) - (38)

The first term is an inertial term. Herein, we simplify the formulation by assuming that only the velocity and
ordinary momentum (mass times velocity) take part in this term, see Polizzotto [35], Polizzotto [36] for an
elaborate discussion. So the inertial term consists of the kinetic energy due to the macroscopic velocity for
nonpolar materials. For a polar material, this term would have a term with spin, too. The second term is again
the stored energy; however, the list of argumentation is amended such that the stored energy depends not only
on the first but also on the second gradient of the primitive variable, i.e., displacement,

w=wX;, E;j, Eij i) . (39

We will restrict the formulation to homogeneous materials such that the dependency on material particles’
positions, X;, vanishes. The third term denotes the energy due to the volumetric effects. The first part, f;u;,is the
specific energy because of the gravitational forces creating a translational displacement (implied by the linear
momentum). The second part, /;;u; ;, is the specific volumetric energy leading to a rotational displacement
(implied by the angular momentum). For a nonpolar medium, this term vanishes. By inserting the LAGRANGEan
density, we obtain the weak form for a nonpolar material with traction-type boundaries:

nr of ele. 0 00
u;j — 2u; + u; ow
Form = Z / <P0ﬁ5ui — po— AtlAt —du; — ™" -dui,j + poljidui,j
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where the following notation is introduced

0 0 0 00 00 100
w = w(E,'js Eij,]() , W= w(Eij s Eij,k) s
1 00 00

1
0 0 0 0 00 00
El-j = Euk,i“k,j +u(i’j) , El-j = Euk,iuk,j +u<i’j) , 41)

with the GREEN-LAGRANGE strain tensor, E;;, and its values in the last and second last time steps, £ ?j, EIQ]-O,
respectively. The latter form can be solved by using k = 2 since we have second-order derivative in u;. In

other words, we will use quadratic continuous standard elements.

4 Applications

The weak forms in Eq. (22) for elasticity and in Eq. (40) for strain gradient elasticity are general forms applicable
to linear as well as nonlinear materials. Moreover, since we use a nonlinear strain measure, namely the GREEN—
LAGRANGE strain tensor, the formulation captures geometric nonlinearities as well. Other than elastic response,
we have not made any assumptions so far. In this section, we will present a computational tool for solving the
presented nonlinear weak forms numerically. By using the Python programming language, see Oliphant [32],
we develop a code for obtaining solution of weak forms by exploiting the collection of open-source packages
developed under the FEniCS project, see Hoffman et al. [21], Logg et al. [26], Jones et al. [23]. We use finite
element method in space and finite difference method in time. For the visualization of results, we use ParaView,
see Ahrens et al. [5], Ayachit [9].

Three examples are shown for linear elastic, hyperelastic, and linear strain gradient elastic materials.
All examples have nonlinear weak forms such that the weak form needs to be linearized before solving. This
linearization is gained by a symbolic derivation of the weak form, before assembly. Therefore, the linearization
is at the level of the partial differential equations. The derivation is fully automatized by using symbolic
derivative functionality, see Alnes and Mardal [6], Alnas and Mardal [7]. Moreover, we have implemented
the code by defining the stored energy function. Its derivation, precisely the solution of Eq.(23), is computed
by using the aforementioned symbolic derivative functionality. This abstraction is of paramount importance,
and the following three examples differ only in the definition of the stored energy function.

For learning the basics of programming in Python for FEniCS ecosystem, see Langanten and Logg [25].
For several engineering applications by using FEniCS, see Abali [1]. In order to encourage further research,
we publish all used codes in Abali [2] under the GNU Public license as stated in Gnu Public [20].



4.1 Example for linear elasticity

A structure made of an engineering steel can be modeled with a linear elastic material if the mechanical
loading generates stresses less than the yield stress such that no plastic deformation occurs. Consider a thin
plate modeled as a three-dimensional structure under a mechanical loading. Under a concentrated loading,
plate underlies a large deformation (with respect to the geometric dimensions). For the linear model of a
homogeneous steel, the generic form of the quadratic scalar function reads

w=E;jCijuEx , 42)
where C;ji; is called the stiffness or elasticity tensor with 21 independent coefficients since
Cijst = Cjitt , Cijrt =Cijic » Cijui = Cuiij » (43)

effected by the symmetric strain, E;; = E ;. This case is applicable for any material class. Existing crystal
symmetries decrease the number of independent coefficients. For example, in the case of an isotropic material,
the representation of this rank four tensor simplifies to

Cijki = A3ij0k1 + 1881 + 28116 jik. (44)

see, for example, Abali et al. [4, Appendix] for a derivation. By inserting the stiffness tensor into the energy
density, we obtain the so-called ST. VENANT-KIRCHHOFF model for the stored energy:

1
w=AZEiLjj+ 1EijEji , (45)

where © = 1 = 2 since strain is symmetric and the so-called LAME parameters, A, [, are given by YOUNG’s
modulus, E, and POISSON’s ratio, v as follows

Ev E

FE O na—wy P aasn (30)

The strain measure is nonlinear; thus, the geometric nonlinearities are computed accurately. The stored energy
density is quadratic in strain; therefore, the material model in Eq. (23) is linear. We simulate a plate of an AISI
steel with the following parameters:

0o =28.1x10""Mg/mm®, E =200x10°MPa, v=023. (47)

The plate is of 1000 x 600 x 20 mm, and its surface lies in X1 X»-plane. The concentrated force is modeled
by a GAUSSian distribution, increasing linearly in time

f=atexp(b(X) — X1)* +b(X2 — X2)?) (48)

such that ; = —7N; applies on a small area on top of the plate against the plane normal, N;. The force
increases linearly in time. The gravitational forces are implemented, f; = (0, 0, —9850) N/Mg, although the
deformation due to them is negligible (small with respect to the deformation caused by the loading). The
transient solution of the weak form in Eq. (22) provides the displacement field, u (¢, X;), as expected, for the
convergence see Appendix A. The response is immediate, and the deformation goes back to the initial value
after unloading. For example, the deformation is shown in Fig. 1 at the time instant of maximum force applied
on the top of the plate.
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Fig. 1 Deformation of the three-dimensional elastic plate, shown without scaling; colors denote the magnitude of the displacement
field, |u;|

4.2 Example for nonlinear elasticity

A soft material, for example a silicon gel, has a more localized strain distribution leading to sharp strain
alterations in the structure. A nonlinear material model is necessary to capture this effect. For a silicon gel, we
implement the neo-HOOKEan energy density:

_ 1. 2 FjiFji _8jj _
w = Az In(det(F) + “(T — ln(det(F))) , (49)

where the deformation gradient occurs in a highly nonlinear fashion such that its derivative, the stress tensor,
is nonlinear, too. The material parameters for the silicon gel TSE3062 are as follows

po=11x10""Mg/mm®, v=04, E=89MPa. (50)

Since taking derivative of the energy is handled automatically, the implementation is the same as in the previous
example, only the stored energy definition changes. We solve the silicon gel filled in a cup under a line loading
by using the following GAUSSian distribution:

f = atexp (b(Xz — )_(2)2) . (51)

Since the deformation in a soft matter is much greater than the gravitational-based deflection, we assume
fi = 0. The computation is as expected, for the convergence see Appendix B. The deformation at the time
when the force reaches its maximum value is shown in Fig. 2.

4.3 Example for linear strain gradient elasticity

In order to generalize the stored energy formulation, we start with a generic representation for linear homoge-
neous materials:

w = w(Ejj, Eijx) = EijCijkiExt + Eij ik Dijkimn Eiman + EijGijkim Exi,m - (52)

For isotropic materials, the mixed term, G;jtm, vanishes, see dell’Isola et al. [15]. For an isotropic linear
material, we obtain

Cijx = €018;j0r1 + co2dikd j1 + c038i1d jk
D;jkimn = €018ij0ki8mn + 020 j8kmSin + €036ij0kndmi + c040ik8 j1dmn
+€058ik0 jmSin + c060ik8 jndim + c078i18 jkSmn + €086i18 jmSkn
+¢096i18 jndmk + €108im8jkbin + c118imd jidkn + €128imd jndik
+¢138in8 jk8im + €148in8 j18km + €156in8 jmdiit , (53)
see Abali et al. [4, Appendix] for a derivation of these forms. From the quadratic energy, we realize the

following conditions:
Cijkt = Cuij »  Dijkimn = Dimnijk - (54)
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Fig. 2 Deformation of the silicon gel filled in a box of 80 x 80 x 40mm, presented without any scaling; colors denote the
magnitude of the displacement field, |u;|

Moreover, the symmetry in strains, E;; = E;, implies further conditions:
Cijkt = Cjikt »  Ciji = Cijik »  Dijkimn = Djikimn »  Dijkimn = Dijkmin - (55)
By applying all of these conditions, we obtain

Cijki = 18i 61 + c2(8ikdj1 + 8i1d jk) ,
Dijjkimn = €3(8ij8ki8mn + 8ind jk8im + 8ij8kmSin + 8ik8jndim) + c48ijkndmi
+¢5(8ik0j18mn + 8im8 jkOin + 8ik jmOin + 8i18 jkOmn) + €6(8i18 jmbkn + 8im8 j10kn)
+¢7(8i18 jndmk + 8im8 jndik + 8indj10km + 8indjmSki) - (56)

Hence, for an isotropic linear homogeneous material including strain gradients (of order one), the generic
energy formulation consists of seven material parameters.

The five newly introduced parameters, viz., c3, c4, ¢5, c6, and c7, change the deformation of the structure.
We have been able to detect one parameter, cg, imposing the so-called size effect in a beam bending. In order
to demonstrate how the proposed material model simulates the size effect in a beam bending, we construct a
beam of length £. It is a slender beam, £ x £/30 x £/30, out of aluminum with the following properties:

po=2.7x10""Mg/mm’, v=033, E=72x10*MPa,
N Ev E (57)
T e—— CcH = e e—
A+rni-2v 27F=201ry

By clamping one end at x = 0 and shearing the other end at x = £, we simulate transiently the displacement
in three-dimensional beam structure for various parameters. The solution is as expected, for the convergence
see Appendix C. The shear force is applied on the whole cross section at x = £, and it increases linearly in
Is up to 10N for a beam of length £ = 100mm. We set c3 = ¢4 = ¢5 = ¢7 = 0 and vary cg parameter. In
Table 1, the role of cg is studied. We recall that for a 100-mm-long beam such displacements are considered
as large deformations. We refrain ourselves from verifying the results to any analytic solution applicable to
geometrically linear cases. The parameter cg causes a stiffness in the shear bending. By setting c¢ = 0, we
obtain the results for elasticity. Interestingly, according to the introduction of the length-scale /cg/E, see for
a discussion of the length-scale in Giorgio [19], this particular effect depends on the size of the beam. In order
to present this feature, we simulate the same beam of £ x £/30 x £/30 in three different lengths: £ = 10m,
£ = 10mm, and £ = 10 um. All material parameters are identical for these simulations with c¢ = 1000 N.
Since the lengths are different, the deformation is different quantitatively. In order to obtain the same amount
of deformation per length, we can match the shearing force by applying the same force per beam length square.
This ratio should be held constant. As a reasoning consider the limiting case, where the force is so small that
there occurs a geometrically linear deformation. The maximum deflection per beam length is proportional to

cl1 =

Fe3 A Umax F

FE o 8t  F (58)
3E] 2308 ¢ 7

Umax =



Table 1 Maximum deflection

cein N u™ in mm
0 4.21286
1 4.21285
10 4.21274
100 4.21164
1000 4.20077
10000 4.10762
|u; | in mm |w;| in mm u,| inmm
188403 y 83 40,0072
14394 142 f0.0036
| 0 I 0 I 0

s oo P
I3 ¢ v

Fig. 3 Deformation of the three-dimensional cantilever beam bending with c¢g = 1000 N, without any scaling; colors denote the
magnitude of the displacement field, |u;|. Left 10-m beam. Middle 10-mm beam. Right 10 pm beam

By choosing a large F' value and holding its ratio per beam length square fixed, we observe in Fig. 3 that the
qualitative deformation changes depending on the beam length, and shorter beams present more stiffening.
This stiffening effect is observed in experiments exactly as simulated herein. Often, this phenomenon is called
size effect indicating that the deformation behavior changes depending on the size of the structure. Exactly this
phenomenon is a possible procedure of determining the newly introduced c¢ parameter. A measurement of the
tip deflection of beams in different length-scales is compared to computations with a particular ¢ parameter.
This determined cg parameter can be used for structures larger than \/c¢/E. For example, suppose that we
have a material with c¢ = 10N and E = 72 000MPa, in this case /c¢/E = 11.79 um can be interpreted as
the upper limit of the characteristic length, and in the beam bending this length is the beam length. A beam
shorter than the upper limit, the substructure becomes relevant such that we have to model it in a detailed
matter. In the numerical examples above, we have ignored this fact and devoted ourselves to interpreting the
effect of the newly introduced parameter.

In order to present the reason why this stiffening effect emerges, we perform different simulations for a
beam of £ = 10 um with ¢ = 0 and ¢ = 1000 N. All deformations are plotted on top of each other in Fig. 4.
Although the shearing force is acting on the whole cross section, there is a skew bending introduced with
c6 # 0. In order to preserve the positive definiteness of the stored energy, we choose c¢ positive, see dell’Isola
et al. [15, Sect.4]. We interpret the results as if an additional rotation such as a twist is implied. Instead of a
pure shear bending, there is a shear bending and a torsion on x1-axis (positively) due to cg parameter bringing
in the effect of the internal substructure.

5 Conclusion

We have presented a general theory of generalized elasticity by means of LAGRANGEan mechanics by using
a variational formulation. This method leads naturally to a weak form, which is an important benefit of using
this strategy. By obtaining the weak form, we can implement a numerical computation of any physical system.
In this work, we demonstrated the variational formulation in elasticity as well as in strain gradient elasticity
theory. For the sake of presenting a general approach, we have left the stored energy density undefined. In
order to simulate concrete examples, we defined a stored energy density for linear and nonlinear elasticity,
as well as for linear strain gradient elasticity. By using finite element method in space and finite difference
method in time, we implemented and solved concrete applications.

Although formulations for generating the weak form for elasticity exist in the literature, they start by
postulating the balance of the linear momentum and then defining the stress tensor. In our formulation, we
postulate the LAGRANGEan density and define the stored energy density. For the linear and nonlinear elasticity,
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Fig. 4 Deformation of the three-dimensional cantilever beam bending with ¢ = 0 and c6 = 1000 N, without using any scaling.
Left front view. Right side view. Colors denote the magnitude of the displacement field, |u;|, on a 10 um length beam. The
stiffening effect is due to an additional twist on the beam neutral axis such that ¢ 7% 0 results in a skew bending

the same weak form is acquired in two methods. This is not the case for strain gradient elasticity, and there
are various approaches leading to different formulations. We believe that showing the approach over a varia-
tional formulation enriches the existing knowledge about computational mechanics and defines another path
of implementing through energy, which is the direct observable in measurements. Especially in rubber-like
materials, modeling the stored energy is more convenient than the stress. Moreover, by exploiting the FEniCS
ecosystem, we have coded and solved the applications in the same approach as in the methodology—just
defining the stored energy density. Since the presented strain gradient theory seems to be a general approach,
the only difference between various second-order theories relies on the definition of the stored energy density.
All codes are publicly available in Abali [2] licensed under Gnu Public [20], and we invite researches to test
their theories with our code in order to gain an insight for strength and deficiencies, as well as applicability to
the experimental outcomes.

Acknowledgements This work was completed while B. E. Abali was supported by a Grant from the Max Kade Foundation to
the University of California, Berkeley.

Appendix A: Convergence for linear elasticity

Standard h-convergence has been conducted by decreasing the mesh size in every tetrahedron. We use the
same geometry and boundary conditions and compute Ly norm of the solution (displacement vector) over the
whole mesh. We restrict the analysis to the first five time steps, 1, 12, 13, t4, and 5, and expect a linear relation
for every time step between (log of) degrees of freedom (dofs) and (log of) Ly norm. The results are compiled
in Table 2 and shown in Fig. 5.

Table 2 Convergence analysis for linear elastic transient FEM computation

dofs h t 13 |71 ts

L> norm
9486 35977 60346 77717 91282 102519
55449 21739 16907 47856 56441 63564
164892 13755 24574 32871 39524 45089

364815 9135 17040 23577 28023 33666
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Fig. 5 For the linear elastic transient FEM, plot of degrees of freedom versus L2 norm over the whole mesh in a log-log scale.
Colors denote different time steps

Appendix B. Convergence for nonlinear elasticity

Standard h-convergence has been conducted with the same geometry and boundary conditions for the first five
time steps, #1, 12, 13, t4, and t5. The results are compiled in Table 3 and shown in Fig. 6.

Table 3 Convergence analysis for nonlinear elastic transient FEM computation

dofs h 15 13 71 Is
L, norm
14553 38.564 76.962 115.198 153.275 191.195
105903 40.346 80.586 120.727 160.774 200.733
346053 40.755 81.440 122.066 162.641 203.177
807003 40.920 81.791 122.628 163.446 204.259
108
§ -—
2 102
o *
3
10!
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Fig. 6 For the nonlinear elastic transient FEM, plot of degrees of freedom versus L, norm over the whole mesh in a log-log scale.
Colors denote different time steps

Appendix C: Convergence for linear strain gradient elasticity

Standard h-convergence has been conducted with the same geometry and boundary conditions for the first five
time steps, 11, 12, 13, 14, and 5. The results are compiled in Table 4 and shown in Fig. 7.



Table 4 Convergence analysis for linear strain gradient elastic transient FEM computation

dofs n 1) 3 171 Is
L, norm
9075 0.005499 0.021587 0.058142 0.134536 0.288832
26607 0.005520 0.021714 0.058642 0.136126 0.293113
58563 0.005536 0.021813 0.059021 0.137123 0.295191
109263 0.005549 0.021895 0.059326 0.138029 0.297284
10°
10!
E
g
3
10-2
1073
10° 10t 10° 10°
degrees of freedom
Fig. 7 For the linear strain gradient elastic transient FEM, plot of degrees of freedom versus L, norm over the whole mesh in a

log-log scale. Colors denote different time steps
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