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type theory
Simon Boulier1 and Nicolas Tabareau2
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Abstract
There is an on-going connection between type theory and homotopy theory, based on the simil-
arity between types and the notion of homotopy types for topological spaces. This idea has been
made precise by exhibiting the category cSet of cubical sets as a model of homotopy type theory.
It is natural to wonder, conversely, to what extend this model can be reflected in a type theory.
The homotopy structure of cSet is given by a model structure; that is, a definition of three classes
of maps—fibrations, cofibrations and weak equivalences—satisfying various properties. In this
article, we internalize the notion of model structure in Martin-Löf type theory with a strict equal-
ity and formalize a model structure on the category of fibrant types in a type theory with two
equalities (à la Voevodsky’s Homotopy Type System). This formalization is conducted in Coq,
taking advantage of type class inference to emulate fibrancy. We then propose a refinement of
the notion of fibrancy—justified in the cubical model—by distinguishing between degenerate
and regular fibrant families. In this system, a fibrant replacement is admissible (which is an
open issue in the community) and gives rise to a model structure on the universe of all types.

1998 ACM Subject Classification F.4.1 Mathematical logic

Keywords and phrases HoTT; Homotopy Type System; model category; simplicial set; Coq

1 Introduction

There is an on-going connection between type theory and homotopy theory, based on the
similarity between types and the notion of homotopy types for topological spaces. This
connection has been made precise by the advent of a univalent Homotopy Type Theory
(HoTT) whose theory is justified by a model in the presheaf category sSet of simplicial
sets [15], which has later been rephrased more computationally in the presheaf category
of cubical sets cSet [7, 9]. Conversely, one of the goals of HoTT is synthetic homotopy
theory, which consists in formalizing internally proofs of homotopy theory, and ideally to
compute complex objects such as homotopy groups of spheres. It is thus natural to wonder
to what extend the simplicial or cubical model can be reflected in HoTT or any extension
thereof. Indeed, HoTT is already an extension of Martin-Löf type theory to account for the
existence of very powerful homotopical principles: the fact that equivalences of types can
be reflected as equalities in the theory. To go beyond and account for the fact that there
also exists a notion of strict equality in the model, Voevodsky has proposed an extension of
HoTT called Homotopy Type System (HTS) [19]. In HTS, there are two notions of equality, a
strict one and a univalent one. To avoid a direct collapse between the two equalities, a new
class of types, called fibrant types has been introduced to reflect the fact that the homotopical
equality in homotopical models can only be eliminated over fibrations. Thus, HTS makes
more explicit the connection between HoTT and the homotopy structure of cSet (or in the
same way, of sSet). This homotopy structure is given by a model structure: a definition of
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2 Model structure on the universe in a two level type theory

three classes of maps—fibrations, cofibrations and weak equivalences—satisfying various
properties. The goal of this article is to study the following question:

“To what extend the model structure of cubical sets can be reflected in HoTT, HTS or
another extension of Martin-Löf type theory?"

To answer this question, we first formalize in Section 2 the notion of model structure in a
Martin-Löf type theory with a strict equality.
Gambino and Garner [10] and Lumsdaine [16], have shown that the category of contexts of
a dependent type theory with identity types and Higher Inductive Types (HIT), enjoys two
weak factorization systems. In Section 3, we synthesize their work internally in a two-level
type theory, which is a variation of HTS as proposed by Altenkirch et at. [4, 8]. We show
that they give rise to a model structure, but only on the category of fibrant types, not on
bare types. In this model structure, weak equivalences are given by type equivalences as
defined in the HoTT book [18], fibrations are captured by fibrant predicates, and cofibra-
tions are captured by a specific HIT called a (mapping) cylinder. We formalize our result
in Coq by using type class inference to encode fibrancy (Section 3.2). To understand the
interplay between the model structure of fibrant types and the one of cSet, we then give an
interpretation of HTS in in the Bezem-Coquand-Huber model [7] (Section 3.3).
In Section 4, we turn to the problem of defining a model structure on the category of all
types. This requires to consider the fibrant replacement type former, which is known to be
inconsistent in HTS (see [1] and [8, Thm. 4.3.1.] for two independent explanations). In this
paper, we solve this issue by distinguishing between degenerate and regular fibrant fam-
ilies, both having a clear interpretation in the cubical model. This refinement allows us to
consider a fibrant replacement operator with enough properties to lift the model structure
on the category of all types, which is know to be a difficult issue in traditional homotop-
ical models and was open in the context of HoTT. The definition of a model structure on
all types opens a way to study formally the definition of homotopy limits and colimits in
HoTT, justifying the current proposition on graphs (without composition) and extending it
to more complex limits and colimits on Reedy categories.
Both model structures have been formalized in the Coq proof assistant and are available
online at https://github.com/CoqHott/model-structures-Coq.

2 Model Structures in MLTT

2.1 MLTT with a Strict Equality
The first system we consider is Martin-Löf type theory with a strict equality ≡ (i.e., satis-
fying functional extensionality and Uniqueness of Identity Proofs (UIP), as in [12] and [4]).
We present it with a syntax à la Calculus of Constructions (terms and types belong to the
same syntactic class) and with a cumulative hierarchy of universes indexed by natural
numbers. As this type theory is now well-known, we don’t detail it and only give the
typing rules to fix the notations (Fig. 1). We write 'βη for the conversion, which encom-
passes: α-equivalence, β- and η-equivalences for Π types and Σ types , β-equivalence for
equality types (J≡(A, y.e.P, t, t, 1t, u) 'βη u).
Throughout this paper, we write MLTT for “Martin-Löf type theory with a strict equality”.

2.2 Categories
Defining the right notion of category in HoTT with a relevant equality is quite intricate as
several choices can be made to tame higher coherences [2]. There is no such shilly-shallying

https://github.com/CoqHott/model-structures-Coq
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· `
Γ ` A : Ui

` Γ, x : A

Γ ` (x : A) ∈ Γ

Γ ` x : A

Γ ` i < j

Γ ` Ui : Uj

Γ ` A : Ui i < j

Γ ` A : Uj

Γ ` A : Ui Γ ` t : A A 'βη B

Γ ` t : B

Γ ` A : Ui Γ, x : A ` B : Uj

Γ ` Π x : A. B : Umax(i,j)

Γ, x : A ` t : B

Γ ` λ x : A. t : Π x : A. B

Γ ` t : Π x : A. B Γ ` t′ : A

Γ ` t t′ : B
{

x := t′
}

Γ ` A : Ui Γ, x : A ` B : Uj

Γ ` Σ x : A. B : Umax(i,j)

Γ ` t : A Γ ` t′ : B {x := t}
Γ ` (t, t′) : Σ x : A. B

Γ ` t : Σ x : A. B

Γ ` π1 t : A

Γ ` t : Σ x : A. B

Γ ` π2 t : B {x := π1 t}
Γ ` A : Ui Γ ` t, t′ : A

Γ ` t ≡A t′ : Ui

Γ ` t : A

Γ ` 1t : t ≡A t

Γ ` t, t′ : A Γ ` e : t ≡A t′

Γ, y : A, q : t ≡A y ` P : Ui Γ ` u : P {y := t, q := 1t}
Γ ` J≡(A, y.q.P, t, t′, e, u) : P

{
y := t′, q := e

}
Γ ` f , g : Π x : A. B Γ ` e : Π x : A. f x ≡B g x

Γ ` funext≡(e) : f ≡Π x:A. B g

Γ ` e1, e2 : t ≡A t′

Γ ` UIP(e1, e2) : e1 ≡t≡t′ e2

Figure 1 Typing rules for Martin-Löf type theory with a strict equality

in a type theory where the equality is irrelevant, as already noticed in [3, 4]:

I Definition 1. A category consists of:
a type A of objects,
for all a, b : A , a type Hom(a, b) of arrows
for all a : A , an identity arrow ida : Hom(a, a)
for all a, b, c : A , a composition function _ ◦ _ : Hom(b, c)→ Hom(a, b)→ Hom(a, c)
for all f : Hom(a, b), a proof of f ◦ ida ≡ f and idb ◦ f ≡ f
for all f : Hom(a, b), g : Hom(b, c), h : Hom(c, d), a proof of h ◦ (g ◦ f ) ≡ (h ◦ g) ◦ f .

The definition of a category is universe-polymorphic: it depends on a universe Uj in which
all types involved live. In the rest of the paper, all definitions are implicitly universe-
polymorphic.

The main interest of defining categories with a strict equality is that each universe Ui is a
category, where the Hom(A, B) is given by A → B, identity and composition are those of
functions, and the laws are given by βη-conversion.

2.3 Model Structures
Model categories are used in mathematics to describe higher homotopies on a category
(standard references are [11, 13]). A model category is a particular case of category with weak
equivalences. Those categories are models of homotopy theory in the following sense: each
category with weak equivalences presents an (∞, 1)-category by localization. Compared to
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simple weak equivalence categories, model categories are easier to work with (for instance
to compute the localization). Besides, model categories play a great role in comparing
the models of homotopy theory as they permit to compare different definitions of higher
categories via Quillen equivalences. The prototypical examples of model categories are
Top (the category of topological spaces), sSet and cSet. Here, we present directly the type
theoretic version of model categories.
Let C be a category (in the sense of definition 1).

I Definition 2. Let f : Hom(X, Y) and g : Hom(X′, Y′) be arrows of C. We say that f is a
retract of g if there exist 1 arrows s, r, s′ and r′ such that the following diagram commutes:

X X′ X

Y Y′ Y

s

f

id

r

g f

s′

id

r′

By a class of arrows of C, we simply mean a predicate P : Π X, Y : A. Hom(X, Y)→ Ui (for
an arbitrarily high universe Ui). We write f ∈ P for all function such that P f is inhabited.
If Q is another class, we write P'Q if we have Π X, Y. Π f : Hom(X, Y). P f ↔ Q f ; and
P ∩Q for the conjunction of the two classes.

I Definition 3. A class P of arrows of C satisfies the 2-out-of-3 property if, for all arrows

X Y Z
f g

such that two of f , g and g ◦ f belong to P, so does the third. More
precisely, it means that we have three functions:

Π f , g. P f → P g→ P (g ◦ f )
Π f , g. P (g ◦ f )→ P f → P g
Π f , g. P g→ P (g ◦ f )→ P f

I Definition 4. Let f : Hom(X, Y) and g : Hom(X′, Y′) be arrows of C. It is said that
f has the left lifting property (LLP) with respect to g (and that g has the right lifting prop-
erty (RLP) with respect to f ) if, for all arrows F : Hom(X, X′) and G : Hom(Y, Y′) such
that the square below commutes, there exists an arrow γ : Hom(Y, X′) filling the diagonal:

X X′

Y Y′

F

f g

G

γ

We then say that an arrow f has the LLP (resp. the RLP) with respect to a class of arrows
P if it has it with respect to all arrows of P. We write LLP(P) (resp. RLP(P) ) the class of
such arrows.

I Definition 5. A weak factorization system (wfs) on C consists of two classes of arrows L and
R such that:
1. every arrow f of C can be factorized as f ≡ r ◦ l with l ∈ L and r ∈ R
2. L is exactly the class of arrows of C which have the LLP with respect to R : L' LLP(R)
3. R is exactly the class of arrows of C which have the RLP with respect to L : R'RLP(L)

1 In this paper “exists” is always understood in the constructive sense, i.e. as a sigma type and not as the
squashed sigma type.
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The classes L and R of a weak factorization system enjoy several good properties: they
contain all isomorphisms, they are closed under retract, L is closed under pushouts, R is
closed under pullbacks, . . . We can now state what a model structure is:

I Definition 6. A model structure on C consists of three classes of arrows F, C and W (the
fibrations, the cofibrations and the weak equivalences) such that:
1. W satisfies the 2-out-of-3 property
2. (AC, F) and (C, AF) are two weak factorization systems,

where AC := C ∩W and AF := F ∩W.
The arrows of AC (resp. AF) are called the acyclic cofibrations (resp. acyclic fibrations).

If C has a terminal object 1, we say that an object X is fibrant if the map X → 1 is a fibration.

I Definition 7. A model category is a category equipped with a model structure which is
complete (it has all small limits) and cocomplete (it has all small colimits).

3 Model Structure on Fibrant Types

In the cubical model, the universe U is roughly interpreted by cSet, the category of cubical
sets. We look for an extension of MLTT reflecting enough homotopy structure of the model
so that we can equip U with a model structure mimicking the model structure of cSet. We
start our investigations with a variant of Voevodsky’s Homotopy Type System (HTS) [19]
which allows us to define a model structure on the category of fibrant types. We call this
variant MLTT2 as it constitutes a 2-level type theory in the sense of [4].

3.1 MLTT2

Homotopy Type System consists in MLTT enriched with a univalent equality (written =).
As univalence and UIP are contradictory [18, ex 3.1.19], HTS requires a mechanism to pre-
vent the strict equality and the univalent equality from collapsing. This is achieved by
introducing the notion of fibrant types (the terminology comes from their interpretations in
homotopical models, see Section 3.3). In this paper, we call identity types the types t = t′, in
opposition to strict equality types t ≡ t′.
In the end, there is a new judgment Γ ` A Fib which expresses that a type is fibrant. All
usual types are fibrant, except strict equality types. The rules to derive fibrancy are given
in Figure 3. Then, the elimination of univalent equality is restricted to fibrant types (Fig. 2).
As a result we have t ≡ t′ → t = t′ but t = t′ 6→ t ≡ t′. A new hierarchy UF i of universes
of fibrant types is also introduced.

Γ ` A : Ui Γ ` t, t′ : A

Γ ` t =A t′ : Ui

Γ ` t : A

Γ ` reflt : t =A t

Γ ` A : Ui Γ ` A Fib

Γ ` A : UF i

Γ ` A Fib Γ ` t, t′ : A Γ ` p : t =A t′

Γ, y : A, q : t =A y ` P Fib Γ ` u : P {y := t, q := reflt}
Γ ` J=(A, y.q.P, t, t′, p, u) : P

{
y := t′, q := p

} Γ ` A : UF i

Γ ` A : Ui

Figure 2 Typing rules of the fibrant equality and the fibrant universes
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Γ ` Ui Fib Γ ` UF i Fib

Γ ` A : UF i

Γ ` A Fib

Γ ` A Fib Γ, x : A ` B Fib

Γ ` Π x : A. B Fib

Γ ` A Fib Γ, x : A ` B Fib

Γ ` Σ x : A. B Fib

Γ ` A Fib Γ ` t, t′ : A

Γ ` t =A t′ Fib

Figure 3 Rules for fibrancy

The main variation in our presentation of MLTT2 with respect to HTS is that, exactly as
in [4], we don’t consider the reflection rule which says that x ≡ y implies x 'βη y. This
allows to retain a decidable type checking and to implement MLTT2 in Coq (Section 3.2).
We also allow forming identity types and reflexivity on non necessarily fibrant types. This
is justified by the cubical sets model in Section 3.3.

IRemark. We don’t add the univalence axiom (for the univalent equality) because we don’t
need it in our formalization. To get univalence in the model, we would instead have to con-
sider cubical sets with connections, which would unnecessarily complicate our presenta-
tion.

3.2 Implementation in Coq
We found a way to emulate MLTT2 in the Coq proof assistant using type class inference.
First we define a type class Fibrant to keep track of fibrant types. The same technique has
already been used in the HoTT library [6] to keep track of the use of functional extension-
ality and univalence axioms.

Axiom Fibrant : Type→ Type.
Existing Class Fibrant.

As Fibrant is declared as an axiom, the only way to inhabit this class is to use postulated
fibrancy rules. For instance, the rule for the dependent product is:

Axiom fibrant_forall: ∀ (A:Type) (B: A→ Type),
Fibrant A→ (∀ x, Fibrant (B x))→ Fibrant (∀ x, B x).

Note that each time we declare a new inductive type, we need to add an axiom correspond-
ing to its fibrancy rule. Then we define the identity types as a private inductive type2 to
forbid the use of its elimination principle when the predicate and the type are not fibrant:

Private Inductive paths {A : Type} (x : A) : A→ Type := idpath : paths x x.

Definition paths_ind (A : Type) (FibA: Fibrant A) (x : A) (P : ∀ y : A, paths x y→ Type)
(FibP : ∀ y p, Fibrant (P y p)) (u : P x idpath) (y : A) (p : paths x y) : P y p

:= match p with idpath⇒ u end.

The fibrancy conditions are checked automatically by type class inference. The universe of
fibrant types is defined using a coercion:

2 Private inductive types have been introduced in Coq to allow a similar trick for higher inductive types.
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Record TypeF := { TypeF_T : Type ; TypeF_F : Fibrant TypeF_T}.
Coercion TypeF_T : TypeF� Sortclass.

The only drawback with this presentation is that the use of a private inductive type breaks
some Coq tactics to reason on equality (especially destruct and rewrite). We circum-
vented this by defining a tactic destruct_path and a Coq plugin to fix rewrite (c.f. the
documentation of the formalization).

3.3 Model in cubical sets
Models of HTS are usually given as refinements of the simplicial or cubical models. For
simplicity, we choose to give a model of MLTT2 in the Bezem-Coquand-Huber category of
cubical sets without connections [7]. We mainly follow Huber’s thesis [14], which provides
a clear exposition of this model. In [4], Altenkirch et al. have defined a model for a 2-
level type theory to be a pair of categories with families (CwF) with a structure-preserving
morphism between them. Here the CwF for strict equality is given by cubical sets (it is a
CwF as a presheaf model), and the CwF for univalent equality is given by the subcategory
of uniform Kan cubical sets (shown to be a CwF in [14]).
We only recall the definitions of the cubical sets model needed to understand the difference
between MLTT2 and the refined system of Section 4; we refer the reader to Huber’s thesis
for a comprehensive presentation.

Cubical sets

We suppose given an infinite set of names or dimensions x, y, z . . . For each finite set I of
names, we suppose given a chosen fresh name xI /∈ I. We write I, x and I x for the union
and the difference with the singleton {x}. 2 is the set {0, 1}.
I Definition 8. The cube category � has for objects I, J, . . . the finite sets of names. The
morphisms f : I → J are set theoretic function f : I → J t 2 which are injective on the set
of their defined elements: def( f ) = f−1(J) = { x ∈ I | f (x) /∈ 2 }. Composition is defined
as in a monad. For f : I → J and g : J → K, we write f g = g ◦ f the composition in reverse
order. For f : I → J, x /∈ I and c ∈ J t 2, we write ( f , x = c) : I, x → J for f extended
with x 7→ c.

I Definition 9. The face maps are the morphisms (x = 0), (x = 1) : I → I x for x ∈ I.
A degeneracy map is an inclusion J → I for J ⊆ I. For x /∈ I the degeneracy associated to
I ⊆ I, x is written sx : I → I, x.

I Definition 10. A cubical set Γ is functor Γ : � → Set. In other words, a cubical set is a
presheaf over �op. We write cSet the category of cubical sets.

Given a cubical set Γ, an element ρ ∈ Γ(I) is called an I-cube. For x ∈ I, ρ is said to be
degenerate along x if it can be written ρ = ρ′sx, in such a case ρ′ = ρ(x = 0) = ρ(x = 1).
As a presheaf category, cSet constitutes a category with families (and hence a model of
type theory) which supports Π types, Σ types, strict equality, . . . Let’s recall how types and
terms are interpreted in such a model:

I Definition 11. Given a cubical set Γ, a cubical family Γ ` A, is given by:
a set A(I, ρ) for each I ∈ � and ρ ∈ Γ(I)
a restriction A(I, ρ)→ A(J, ρ f ), a 7→ a f for each f : I → J and ρ ∈ Γ(I)
such that for all a ∈ A(I, ρ), a idI = a and (a f )g = a( f g)
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We freely use Aρ, A(ρ) or A(I, ρ) to denote the same set. The same goes for terms.

I Definition 12. A term Γ ` t : A inhabiting a family Γ ` A is given by:
for each I ∈ � and ρ ∈ Γ(I), an I-cube tρ ∈ Aρ

such that for all f : I → I′, (tρ) f = t(ρ f )

Kan cubical families

Bare types are interpreted as cubical families. Concerning fibrant types, they are inter-
preted by uniform Kan families. To define them we need the notions of shape and open-
box.

I Definition 13. Let I ∈ � and x ∈ I. A shape S on I of direction x is a tuple (I ; (x, a) ; J)
with x ∈ I, a ∈ 2 and J ⊆ I x.
The indices of S are defined by 〈S〉 = {(x, ā)} t J × 2 (with ā the negation of a). And the
principal face of S is (x, a). Given a morphism f : I → I′ with J, x ⊆ def( f ), we define
S f = (I′ ; ( f (x), a) ; f (J)) which is a shape on I′ of direction f (x).

I Definition 14. Given a family Γ ` A. Given I ∈ �, S a shape on I of direction x and
ρ ∈ Γ(I), an open-box ~u of shape S in Aρ is given by:

for all (y, b) ∈ 〈S〉, an I y - cube uyb ∈ A(ρ(y = b))
such that for all (y, b), (z, c) ∈ 〈S〉 with y 6= z, uyb(z = c) = uzc(y = b)

Given f : I → I′ with J, x ⊆ def( f ), ~u f is an open-box of shape S f in A(ρ f ).

I Definition 15. Given a family Γ ` A, a uniform Kan structure over A is given by:
for all I ∈ �, ρ ∈ Γ(I), S shape on I of direction x and ~u open-box of shape S in Aρ, an
I-cube [Aρ]S~u ∈ Aρ called the filler of ~u
such that for all (y, b) ∈ 〈S〉, ([Aρ]S~u)(y = b) = uyb
and such that for each f : I → I′ with J, x ⊆ def( f ), ([Aρ]S~u) f = [A(ρ f )]S f (~u f )

The last condition is the uniformity condition. And the I x - cube ([Aρ]S~u)(x = a) is called
the composition of ~u.
We write Γ ` A Kan when A is equipped with such a structure.

A fibrant type of MLTT2 is interpreted by a cubical family equipped with a uniform Kan
structure.

Identity types and universes

We recall here how identity types are interpreted using I-cubes of higher dimension.

I Definition 16. Let Γ ` A be a family, and Γ ` t, t′ : A two terms inhabiting A. The identity
type between t and t′ is the family Γ ` IdA(t, t′) given by

IdA(t, t′)ρ = {ω ∈ A(I, xI , ρsxI ) |ω(xI = 0) = tρ and ω(xI = 1) = t′ρ }

The restriction induced by f : I → I′ is given by ω f = ω( f , xI = xI′) (restriction in IdA on
the left and in A on the right).

In [14], this cubical family is shown to model properly the identity types in MLTT2. That
is: IdA commutes with substitutions and hence is a type former; there is always a term
inhabiting IdA(t, t); if A is a Kan family so is IdA(t, t′); and the identity types support
an eliminator J. To define J, Huber starts by defining a (non dependent) transport which
requires only P to be Kan (but not A). Then, using that singletons of A are contractible
when A is Kan, it is shown that the full eliminator can be derived.
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A cumulative hierarchy of universes of cubical sets (Ui) and another of Kan cubical sets
(UF i) can be defined (see Appendix C). As remarked in [14], the category of cubical sets
enjoy a fibrant replacement, however, it does not lift to a type theoretic operator as it does
not commute with substitutions (see Appendix E and Section 4.3).

3.4 Homotopy Fibers and Cylinders
The model structure on UF i requires the two dual notions of homotopy fibers and mapping
cylinders. Homotopy fibers are definable using Σ-types and identity types [18]. Let f :
A → B be a function. The homotopy fibers of f are defined by the type family fib f : B → Ui
with

fib f := λ y. Σ x : A. f x = y

Cylinders are defined as an Higher Inductive Type (HIT, see [18] for an introduction). They
were introduced in [17] and [16]. The formation and introduction rules for cylinders are
given as follows (all the rules have Γ ` A, B : Ui and Γ ` f : A→ B as additional premises).

Γ ` Cyl f : B→ Ui

Γ ` A, B Fib Γ ` t : B

Γ ` Cyl f t Fib Γ ` top f : Π x : A. Cyl f ( f x)

Γ ` base f : Π y : B. Cyl f y Γ ` cyl_eq f : Π x : A. top f x = base f ( f x)

This expresses that there are two ways to inhabit a cylinder, with top and base, and that
those two ways coincide on f x. The elimination rule is given by:

Γ ` A, B Fib Γ, y : B, w : Cyl f y ` P Fib
Γ ` top′ : Π x : A. P ( f x) (top x) Γ ` base′ : Π y : B. P y (base y)

Γ ` cyl_eq′ : Π x : A. (cyl_eq x) # (base′ ( f x)) = top′ x

Γ ` cyl_ind(P, top′, base′, cyl_eq′) : Π y : B. Π w : Cyl f y. P y w

where # denotes transport along identity types and ap is the action of a function on identity
types (as in [18]). The computation rules are given in Appendix A.
As for the identity type, cylinders are fibrant when the underlying types are and we restrict
the elimination of cylinders to fibrant predicates and fibrant underlying types. We left for
future work the constructions of cylinders in the cubical model.

3.5 Model Structure on UF i

We now describe a model structure on the universe of fibrant types UF i. In [10], Gambino
and Garner define the (AC,F)-wfs, and in [16] (and also in [5, Section 3.2]), Lumsdaine
define the (C,AF)-wfs. One can see this section as a synthesis and formalization of those
works in MLTT2. Our work emphasizes the fact that those factorization systems are only
defined for fibrant types. Throughout this section, A and B denote fibrant types.

Weak Equivalences.

Weak equivalences are defined as type equivalences in the sense of [18, Chapter 4]:

I Definition 17. A function f : A→ B is a type equivalence if there exists g : B→ A and
θ : Π x : A. g ( f x) = x
ε : Π y : B. f (g y) = y
α : Π x : A. ap f (θ x) = ε ( f x).
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(AC, F)-WFS.

The (AC, F)-wfs system is given by homotopy fibers. Every function f factorizes as:

A B

Σy:B fib f y

f

λx. ( f x, x, refl f x)

∼
π1

I Remark. As we now have two equalities, we have to be careful about what we mean
by “being equal” or “commuting”. In the following, all commutations of diagrams are
required to be with respect to strict equality.

I Definition 18. A function f : A → B is said to be a fibration if there exists a fibrant type
family P : A′ → UF i such that f is a retract of π1 : ΣxP x→ A′ .
We write F the class of fibrations. The class of acyclic cofibrations is defined as LLP(F).

I Proposition 1. (LLP(F), F) is a weak factorization system on UF i.

Proof. We have to check that:
for all f , f ′ := λ x. ( f x, x, refl f x) ∈ LLP(F)
RLP(LLP(F)) ⊆ F

We only sketch the proof of the first point. All other proofs of this section are similar and
can be found in the formalization.
As the lifting property is stable under retracts, to show that f ′ ∈ LLP(F) we only have to
solve the following lifting problem:

A Σx:A′P x

Σy:B fib f y A′

F

f ′ π1

G

γ

We define γ as the composition Σy:B fib f y Σy:BP (G y) Σx:A′P xα β
where

α := λ (y, x, p). ((y, x, p), π2 (F x)) and β := λ (w, z). (G w, z) (modulo the transports
along strict equalities). We can check that both triangles commute. J

(C, AF)-WFS

The (C, AF)-wfs is given by cylinders. Every function f factorizes as:

A B

Σy:B Cyl f y

f

λx. ( f x, top x) π1
∼

To define cofibrations, we first characterize acyclic fibrations:

I Proposition 2. A function f : A → B is an acyclic fibration (i.e. both a fibration and a
weak equivalence) iff there exists a fibrant type family P : A′ → UF i such that for all x,
P x is contractible (i.e. weakly equivalent to unit 1) and f is a retract of π1 : ΣxP x→ A′ .
We write AF the class of acyclic fibrations. The class of cofibrations is defined as LLP(AF).

I Proposition 3. (AF, LLP(AF)) is a weak factorization system on UF i.
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I Theorem 4. There is a model structure on UF i with the weak equivalences, fibrations and
cofibrations as previously defined. Remark that UF i is not a model categories as MLTT2 as
not all small colimits (it would need some quotient types).

Note that it is possible to state a simpler characterizations of the classes of maps. The two
factorization systems give prototypical examples of maps which are (acyclic) fibration and
(acyclic) cofibrations. We proved that, in fact, all (acyclic) fibrations and (acyclic) cofibra-
tions arise as retracts (in a canonical sense) of such maps. Diagrammatically, we have (see
also Appendix B for a type theoretic statement):

f ∈ F iff.
A Σy fib f y A

B

f ′

id

f

j

π1
f

f ∈ AF iff.
A Σy Cyl f y A

B

top′

id

f

j

π1
f

f ∈ C iff.
A

B Σy Cyl f y B

f f
top′

j

id

π1

f ∈ AC iff.
A

B Σy fib f y B

f f
f ′

j

id

π1

where f ′ is λ x. ( f x, x, refl f x) and top′ is λ x. (x, top f x).

4 Model Structure on Types

In Section 3, we have given a model structure on UF i in MLTT2. Unfortunately, this does
not extend to the whole universe Ui because there is no fibrant replacement in MLTT2. To
circumvent this issue, we propose MLTTF2 : a refinement of MLTT2 where the notion of
fibrancy is finer; a type family can be either degenerately fibrant or regularly fibrant. This
distinction allows us to define a fibrant replacement in MLTTF2 , and then to extend the
model structure on Ui.

4.1 A Context-Dependent Notion of Fibrancy

MLTTF2 is equipped with a new typing judgment Γ ; ∆ ` A Fib (∆ is another context), re-
placing the fibrancy judgment of MLTT2. We thus distinguish two levels of context. When
this judgment is derivable, we say that, in the context Γ, the type family ∆ ` A is regularly
fibrant. In the case where only Γ, ∆ ; . ` A Fib is derivable, we say that ∆ ` A is degen-
erately fibrant—which is a weaker condition. Indeed, regular fibrancy implies degenerate
fibrancy but the converse does not hold.
All typing rules of MLTT2 are still valid, except when they mention the fibrancy judgment,
in which case they must be modified to take the new notion of fibrancy into account. The
rules for fibrancy are given in Figure 4, with the notation Γ ` A Fib for Γ ; . ` A Fib. As in
MLTT2, the only non fibrant types are strict equality types, and the fibrancy commutes with
all other type constructors. The universes of types and fibrant types remain fibrant. Note
the additional presence of a rule for substitutions (bottom right corner) where σ : ∆′ → ∆ is
a context morphism and Aσ the substituted type. This is because this rule is not admissible
anymore in the presence of a fibrant replacement.



12 Model structure on the universe in a two level type theory

(rules for Ui and UF i are unchanged)
Γ ; ∆ ` A Fib Γ ; ∆, x : A ` B Fib

Γ ; ∆ ` Π x : A. B Fib

Γ ; ∆ ` A Fib Γ ; ∆, x : A ` B Fib

Γ ; ∆ ` Σ x : A. B Fib

Γ ; ∆ ` A Fib Γ, ∆ ` t, t′ : A

Γ ; ∆ ` t =A t′ Fib

Γ ; ∆ ` A Fib Γ ; ∆ ` B Fib
Γ, ∆ ` f : A→ B Γ, ∆ ` t : B

Γ ; ∆ ` Cyl f t Fib

Γ ; ∆ ` A Fib Γ ` σ : ∆′ → ∆

Γ ; ∆′ ` Aσ Fib

Figure 4 Rules for fibrancy in MLTTF2

We now refine the elimination rule for identity types:

Γ ` A Fib Γ ` t, t′ : A Γ ` p : t =A t′

Γ ; y : A, q : t =A y ` P Fib Γ ` u : P {y := t, q := reflt}
Γ ` J=(A, y.q.P, t, t′, p, u) : P

{
y := t′, q := p

}
The family P along which we eliminate a path equality is required to be regularly fibrant
with respect to y and p.
The elimination rule for the cylinder have to be refined exactly in the same way: the family
P along which we eliminate is required to be regularly fibrant with respect to y and w.

Fibrant replacement

Last, we introduce a fibrant replacement in MLTTF2 . The fibrant replacement is an operator
that turns any type A into a degenerately fibrant type A. Asking only for a degenerately
fibrant replacement is the key to avoid inconsistency. There is a canonical way to embed an
element of A into A given by ηA, and there is an eliminator repl_ind.

Γ ` A : Ui

Γ ` A : Ui

Γ ` A : Ui

Γ ; . ` A Fib

Γ ` A : Ui

Γ ` ηA : A→ A

Γ ; z : A ` P(z) Fib Γ ` t : Π x : A. P(ηA x)

Γ ` repl_indP t : Π z : A. P(z)
repl_indP t (ηA x) 'βη t x

Such a fibrant replacement can be used as the base type in the elimination of the identity
type but can not directly appear in the predicate of the elimination. This is why we can
not replay the usual proofs of inconsistency [1, 8] (both rely on the existence of a map
t = t′ → t ≡ t′); we can however use the elimination of the identity type to prove, for
instance, the ω-groupoid laws on A.
Using repl_ind, it is possible to define a non dependent eliminator

repl_recA,B : (A→ B)→ (A→ B)

for any fibrant type B and a function f : A → B for any function f : A → B. Moreover, the
construction f satisfies the following strict equalities:

idA ≡ idA g ◦ f ≡ g ◦ f
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Note that it has already be noticed in [7, Section 8.5] that the fibrant replacement is not uni-
versal (which means that there is no η-rule for repl_ind) but it is on functions preserving
the Kan structure (hence the two strict equalities above). However, fibrant replacement is
weakly universal, which turns it into a modality in the sense of [18, Section 7.7].
Last, repl_rec satisfies the following fibrancy rule which says that given a regularly fibrant
family P : A→ Ui, the induced family A→ Ui is still regularly fibrant:

Γ ` P : A→ Ui Γ ; x : A ` P x Fib

Γ ; z : A ` repl_recA,Ui
P z Fib

This rule is quite strong as it allow to define the transport of a property P(x) along a proof
of η t = η t′ as long as P is sufficiently fibrant. More precisely, if Γ ; x : A ` P(x) Fib, then
from η t = η t′ you can get a term of type P(t) → P(t′). However, this rule is justified in
the cubical model of Section 4.3.

4.2 Implementation
The implementation of MLTTF2 is very similar to the one of MLTT2. The only difference is
that we have to make explicit the second part of the context (∆) in the type class FibrantF
keeping track of fibrant families.

Axiom FibrantF : ∀ {∆ : Type}, (∆→ Type)→ Type.
Existing Class FibrantF.

4.3 Model of MLTTF2
We now give a model of MLTTF2 in cubical sets by refining the notion of Kan structure.
A fibrant type of MLTTF2 is interpreted by a cubical set family equipped with a uniform
degenerate Kan structure:

I Definition 19. Given a family Γ, ∆ ` A, a uniform degenerate Kan structure over A relative
to Γ is given by:

for all I ∈ �, S shape on I of direction x, ρ ∈ Γ(I) degenerate along x, δ ∈ ∆(ρ) and ~u
open-box of shape S in A(ρ, δ), a filler [A(ρ, δ)]S~u ∈ A(ρ, δ)

such that for all (y, b) ∈ 〈S〉, ([Aρ]S~u)(y = b) = uyb
and such that for each f : I → I′ with J, x ⊆ def( f ) (ρ f is thus degenerate along f (x)),
([A(ρ, δ)]S~u) f = [A(ρ f , δ f )]S f (~u f )

The only difference with a bare Kan structure (Definition 15) is that the quantification on
the elements in the first part of the context is restricted to degenerate elements. We write
Γ ; ∆ ` A Kan when the family A is equipped with such a structure.
Fibrancy rules of Figure 4 hold in the model (see Appendix D).

The structure Γ ; A ` P Kan is actually the maximal way of relaxing the notion of Kan
structure and still get the transport of a path equality in A along P. The transport general-
izes to the J-rule using the same technique as in [14].

I Proposition 5. Let Γ ; A ` P Kan be a fibrant family. And let Γ ` t, t′ : A, Γ ` p :
IdA(t, t′) and Γ ` u : P[t] be terms. We can then define an element Γ ` p #P u : P[t′].

Proof. The proof is similar to the case of bare Kan structure [14]. The only point to remark
is that fillers are only used on degenerate elements of Γ.
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Let I ∈ � and ρ ∈ Γ(I), we want to define (p #P u)ρ ∈ P(ρ, t′ρ). We consider the fresh
direction xI and the shape S given by (I, xI ; (xI , 1) ; ∅). Then we have an open-box ~w on
S in P(ρsxI , pρ) given by wxI0 = uρ. As ρsxI is degenerate along xI , we can define (p #P u)ρ
as the composition operation:

(p #P u)ρ := ([P(ρsxI , pρ)]S~w)(xI = 1)

The naturality conditions for p #P u follows from the uniformity of fillers. J

Let’s now move on to the definition of fibrant replacement. In his thesis, Huber defines the
fibrant replacement of a cubical sets and remarks that the generalization to a cubical family
does not commute with substitution. The problem comes from the fact that Huber defines
a regular fibrant replacement whereas the only one that commutes with substitution is a
degenerate fibrant replacement. Both fibrant replacements coincide on cubical sets, but they
differ when contexts are taken into account.
The definition is based on an inductive-recursive set by freely adding filling and composi-
tion operations. The “recursive” part is used to define restrictions.

I Definition 20. Let Γ ` A be a family. The family Γ ` A, the degenerate fibrant replacement
of A, is given by the sets and restrictions defined by induction-recursion as follow:

for each I ∈ �, ρ ∈ Γ(I) and u ∈ Aρ, η(u) ∈ Aρ

for each I ∈ �, S = (I ; (x, a) ; J), ρ ∈ Γ(I) degenerate along x, ~u in Aρ, fillS(~u) ∈ Aρ

for each I ∈ �, S = (I ; (x, a) ; J), ρ ∈ Γ(I) deg. along x,~u in Aρ, compS(~u) ∈ Aρ(x = a)
and:

for f : I → I′, (η(u)) f := η(u f )
for f : I → I′,

(fillS(~u)) f :=


uyb f ′ if f = ( f ′, y = b) for some (y, b) ∈ 〈S〉
(compS(~u)) f ′ if f = ( f ′, x = a) for (x, a) the principal face

fillS f (~u f ) otherwise

for f : I x → I′,

(compS(~u)) f :=

{
uyb(x = a) f ′ if f = ( f ′, y = b) for some (y, b) ∈ 〈S〉
compS f ′(~u f ′) otherwise, with f ′ = ( f , x = xI′)

I Proposition 6. The degenerate fibrant replacement lifts to a type operator: it commutes
with substitutions. For all context morphism σ : Γ′ → Γ, Aσ = Aσ as Kan families. (Proof
in Appendix E).

4.4 Model Structure on Ui

We can now extend the definitions of fibrations, cofibrations and weak equivalences to
encompass non fibrant types:

a fibration (in a context Γ) is a retract of a map π1 : ΣxP x → A′ where P is regularly
fibrant, that is when Γ ; x : A′ ` P x Fib holds
an acyclic fibration is a fibration such that for all x : A′, P x is contractible
a weak equivalence is a map f : A→ B such that f : A→ B is a type equivalence (def. 17)
cofibrations and acyclic cofibrations are still defined as LLP(AF) and LLP(F)
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Fibrant replacement is used to lift the model structure from fibrant to bare types in the same
way as geometric realization is used in the classical model structure on simplicial sets.
Given a map f : A → B, its homotopy fiber in y : B is now fib f (η y). And the two wfs. on
Ui are given by:

A B

Σy:B fib f (η y)

f

λx. ( f x, η x, refl)
∼

π1

A B

Σy:B Cyl f (η y)

f

λx. ( f x, top (η x))) π1
∼

The development goes exactly the same way as for fibrant types and we get:

I Theorem 7. The two factorization systems given above form a model structure on Ui.

Again, characterizations of (acyclic) fibrations and cofibrations can be derived (Appendix B).
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A Mapping Cylinders

The computation rules of elimination of mapping cylinders are given by:

cyl_ind(P, top′, base′, cyl_eq′, f x, top x) 'βη top′ x

cyl_ind(P, top′, base′, cyl_eq′, y, base y) 'βη base′ y

ap cyl_ind(P, top′, base′, cyl_eq′, f x) (cyl_eq f x) ≡ cyl_eq′ x

B Characterizations of Fibrations and Cofibrations

In MLTT2

I Proposition 8. Let A and B be fibrant types.
f : A→ B is a fibration if and only if there exists j : Σ y. fib f y→ A such that f ◦ j ≡ π1
and j ◦ (λ x. ( f x, x, refl f x)) ≡ idA

f : A→ B is an acyclic fibration if and only if there exists j : Σ y. Cyl f y→ A such that
f ◦ j ≡ π1 and j ◦ (λ x. (x, top f x)) ≡ idA

f : A → B is a cofibration if and only if there exists j : B → Σ y. Cyl f y such that
j ◦ f ≡ λ x. (x, top f x) and π1 ◦ j ≡ idB

f : A → B is an acyclic cofibration if and only if there exists j : B → Σ y. fib f y such
that j ◦ f ≡ λ x. ( f x, x, refl f x) and π1 ◦ j ≡ idB

I Remark. There is always a candidate for j. For instance, in the diagram of fibrations, π2
is one. It makes the upper triangle strictly commute but not the one on the right. Hence, j
can be seen as a more constrained π2.

Acyclic cofibrations have an even better description. As already noticed by Gambino and
Garner [10], they are the injective equivalences:

I Proposition 9. Let A and B be fibrant types. A map f : A→ B is an acyclic cofibration if
and only if it is an injective equivalence, i.e. if an only if there exists r : B→ A and

θ : Π x : A. r ( f x) ≡ x
ε : Π y : B. f (r y) = y
α : Π x : A. strict_to_path(ap≡ f (θ x)) = ε ( f x).

where strict_to_path is the map t ≡ t′ → t = t′.

In MLTTF2
I Proposition 10. Let A and B be any types.

f : A → B is a fibration if and only if there exists j : Σ y. fib f (η y) → A such that
f ◦ j ≡ π1 and j ◦ (λ x. ( f x, η x, reflη ( f x))) ≡ idA

f : A → B is an acyclic fibration if and only if there exists j : Σ y. Cyl f (η y) → A such
that f ◦ j ≡ π1 and j ◦ (λ x. (η x, top f x)) ≡ idA

f : A → B is a cofibration if and only if there exists j : B → Σ y. Cyl f (η y) such that
j ◦ f ≡ λ x. (η x, top f x) and π1 ◦ j ≡ idB

f : A→ B is an acyclic cofibration if and only if there exists j : B→ Σ y. fib f (η y) such
that j ◦ f ≡ λ x. ( f x, η x, reflη ( f x)) and π1 ◦ j ≡ idB
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And as previously, acyclic cofibrations are injective equivalences, whose definition gener-
alizes as:

I Definition 21. Let A and B be any types. A map f : A → B is an injective equivalence if
there exists r : B→ A and

θ : Π x : A. r ( f x) ≡ ηA x
ε : Π y : B. f (r y) = ηB y
α : Π x : A. strict_to_path (ap≡ f (θ x)) = ε ( f x).

C Universes

In presheaf models, universes are usually interpreted as Grothendieck universes thanks to
the Yoneda lemma. We suppose given a hierarchy of Grothendieck universes Set0, Set1, . . .

I Definition 22. For I ∈ �, let hI = Hom(I, _) be the cubical set given by the Yoneda
embedding. The cubical set Ui is defined by:

Ui(I) = { A cubical set family over hI | ∀ f : I → I′, A f ∈ Seti }

And, similarly, Huber defines in [14] a universes UF i of Kan cubical sets.

I Definition 23. The cubical set UF i is defined by:

UF i(I) = { hI ` A Kan | ∀ f : I → I′, A f ∈ Seti }

I Proposition 11 ([14] chap. 4). Ui and UF i are Kan cubical sets.

Proof. Huber’s proof lifts to Ui because the Kan structure of the families hI ` A is not used
to define the Kan structure on UF i but only to show that the fillers of UF i are themselves
Kan. J

D Fibrancy rules in cSet

We now outline some proofs of fibrancy rules in the MLTTF2 model of Section 4.3.

I Proposition 12. The fibrancy rule for sigma types holds in cSet:

Γ ; ∆ ` A Kan Γ ; ∆, A ` B Kan

Γ ; ∆ ` Σ A B Kan

Proof. A filler in Σ A B is a pair made of a filler in A and a filler in B. More formally,
[(Σ A B)(δ)]S~u is given by:

(a, [B(δ, a)]S(π2 ~u))

where a := [A(δ)]S(π1 ~u). J

I Proposition 13. The fibrancy rule for identity types holds in cSet:

Γ ; ∆ ` A Kan Γ, ∆ ` t, t′ : A

Γ ; ∆ ` IdA(t, t′) Kan
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Proof. Once again, the Huber proof lifts to degenerate fibrancy.
Let I ∈ �, S a shape on I of direction x, ρ ∈ Γ(I) degenerate along x, δ ∈ ∆(δ) and ~u an
open-box of shape S in IdA(t, t′)(δ). Then for (y, b) ∈ 〈S〉:

uyb ∈ {ω ∈ A(δ(y = b)sxI ) |ω(xI = 0) = tδ(y = b) and ω(xI = 1) = t′δ(y = b) }

Let S, xI be the shape S with xI added as a non principal direction. We extend ~u to an
open-box on S, xI in A(δsxI ) by:

uxI0 := tδ

uxI1 := t′δ

ρsxI is still degenerate along x and coherences conditions are indeed satisfied. We thus get
[A(δsxI )]S,xI~u ∈ A(δsxI ). We check that [IdA(t, t′)(δ)]S~u := [A(δsxI )]S,xI~u suits. J

E Degenerate Fibrant Replacement in cSet

I Proposition 14. If Γ ` A then Γ ` A Kan, and the fibrant replacement commutes with
substitutions: for σ : Γ′ → Γ, Aσ = Aσ as Kan cubical families.

Proof. First, we show that for all I ∈ � and ρ ∈ Γ′, the sets Aσ(I, ρ) and A(I, σI(ρ)) are
equal. We show that each set is a subset of the other. The inclusion ⊆ does not raise any
problem, so we focus on the inclusion ⊇. We show by induction on u that:

∀I ∈ �, ∀ρ ∈ Γ′(I), ∀u ∈ A(I, σI(ρ)), u ∈ Aσ(I, ρ)

If u = η(u0) with u0 ∈ A(σI(ρ)) = (Aσ)(ρ), then η(u0) also belongs to Aσ(ρ))

If u = fillS(~u) with S on I and ~u in A(σI(ρ)). Then each uyb is in A(σI y(ρ(y = b)), and
then (by induction), in Aσ(ρ(y = b)). Then, fillS(~u) also belongs to Aσ(ρ)

If u = compS(~u). This is the interesting case. Let x be the direction of S, then x /∈ I and
S is on I, x. There is also a δ ∈ Γ(I, x), degenerate along x, such that δ(x = a) = σI(ρ).
As δ is degenerate, we have δ = σI,x(ρsx). Then each uyb is in A(σI,x y(ρsx(y = b)), and
then (by induction), in Aσ(ρ(y = b)). Then, compS(~u) also belongs to Aσ(ρ).

We remark that, in the last case, it is only because δ is degenerate that we can expose uyb as
an element of a A(σI,x y(. . . )) and thus apply the induction hypothesis. That is the step that
doesn’t work when considering the regular fibrant replacement (we give a counterexample
in Appendix F).
Aσ and Aσ therefore have the same underlying sets. We easily conclude that they are
equals as Kan families, as the restrictions are defined independently of the family, and the
Kan structure is given by the fill elements in both cases. J

I Proposition 15. The rules idA ≡ idA and g ◦ f ≡ g ◦ f hold in cSet.

Proof. Let’s consider the first rule for instance, the proof of the other one is similar.
idA is defined by induction, and sends fill and comp elements to filler and composition
operations of A. But the fillers and compositions of A are also the elements fill and comp.
Hence, idA is the identity on A. J
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I Proposition 16. The following rule holds in cSet:

Γ, A ` P : Ui Γ ; A ` P Kan

Γ ; A ` P̃ Kan

where P̃ := repl_recA,Ui
P.

Proof. We only give the proof that this rule holds in the case where Γ is the empty context,
and leave for future work the lifting of the proof to its full generality. In fact, in this case,
we can directly use a result of Huber to conclude, namely, the fact that the cubical set UF i
is itself fibrant [14, Chap. 4].
Given a cubical family A ` Q in Seti, it is not hard to check that Q is fibrant ( . ; A ` Q Kan)
if and only if the induced morphism of cubical sets Q : A→ Ui factorizes as:

A Ui

UF i

Q

Q′

Thus, we know that P factorizes through P′ and we want also to factorize P̃ to get the
following commuting diagram:

A Ui

A

UF i

P

η

P′

P̃

The dashed arrow is given by lifting P′ as a function from A to UF i, using the fact that UF i
is fibrant. The right triangle commutes because fillers of UF i and Ui are the same (and thus
preserved by the inclusion). J

F Counter example for the regular Fibrant Replacement

We give a counter example showing that the regular fibrant replacement does not com-
mute with substitutions. This has already been noticed by various authors [1, 14, 8] but we
provide an example (based on the proof of [1]) internally in cSet to get a better understand-
ing of what goes wrong, in this particular setting, with the regular fibrant replacement. The
regular fibrant replacement Â is defined as the degenerate one (Def. 20) but removing the
degeneracy restriction in the definitions of fill and comp.
Let I be the cubical set defined by I(I) := I t 2 representing the interval. The restriction
induced by f : I → I′ is defined by z f = f (z) if z ∈ I and z f = z if z ∈ 2. And let 1 be the
unit cubical set (1(I) = {?}).
We now define the cubical family x : I ` A—representing the type 0 ≡ x— by:

for all I ∈ � and ρ ∈ I(I), Aρ :=

{
{?} if ρ = 0

∅ otherwise
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and σ : 1→ I the morphism given by σI(?) = 1. The family Âσ represents 0̂ ≡ 1 while Âσ

represents 0̂ ≡ x {x := 1}. To show that both cubical sets are different, it suffices to remark
that:

For all I, Âσ(I, ?) is empty because the base case η of the inductive-recursive type is
always empty.
Âσ(∅, ?) = Â(∅, 1) is not empty because η(?) is in Â(∅, x(x = 0)) and so compS(η(?))
belongs to Â(∅, x(x = 1)) for S = ({x} ; (x, 1) ; ∅). This element is in fact the transport
of the term of 0̂ ≡ 0 along the segment 0 = 1 of the interval.

Note that this proof can not be replayed with the degenerate fibrant replacement because
compS(η(?)) can not be formed due to the degeneracy restriction on x.
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