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Abstract. Constructive heuristics have a great interest as they manage
to find in a very short time, solutions of relatively good quality. Such
solutions may be used as initial solutions for metaheuristics for example.
In this work, we propose a new efficient constructive heuristic for the No-
Wait Flowshop Scheduling Problem. This proposed heuristic is based on
observations on the structure of best solutions of small instances as well
as on analyzes of efficient constructive heuristics principles of the liter-
ature. Experiments have been conducted and results show the efficiency
of the proposed heuristic compared to ones from the literature.

1 Introduction

Scheduling problems is an important class of combinatorial optimization prob-
lems, most of them being NP −hard. They consist in the allocation of different
operations on a set of machines over the time. The aim of scheduling problems
is to optimize different criteria such as the makespan or the flowtime. Among
these scheduling problems, some of them, for example the jobshop or the flow-
shop, have been widely studied in the literature, as they represent many in-
dustrial situations. In this paper, we are specifically interested in the No-Wait
Flowshop Scheduling Problem (NWFSP). This extension of the classical permu-
tation Flowshop Scheduling Problem (FSP) imposes that operations have to be
processed without any interruption between consecutive machines. This addi-
tional constraint aims at describing real process constraints that may be found
in the chemical industry for example. Regarding the solving of the problem, this
additional constraint also introduces interesting characteristics that we propose
to exploit within the design of an efficient constructive heuristic.

Indeed, while solving NP −hard problems, the use of exact methods, mostly
based on enumerations, is not practicable. Therefore heuristics and metaheuris-
tics are developed. Heuristics designed for a specific problem can use, for exam-
ple, priority rules to construct the schedule. Their advantages are their speed
– most of them are greedy heuristics – and their specificity – characteristics of
the problem to be solved can be exploited –. Metaheuristics, on their side, are
generic methods that can be applied to many optimization problems. Their ef-
ficiency is linked to their high ability of exploring the search space and the way



the metaheuristic has been adapted to the problem under study. The initial so-
lution, when one is required, may also influence the quality of the final solution
provided.

Hence, as explained, the quality of solutions provided by heuristics and meta-
heuristics depends on the way these methods can integrate specificities of the
problem under study. Several approaches exist to integrate such specificities.
For example, it is possible to analyze off line caracteristics of instances and to
identify the best heuristic (or parameters of metaheuristic) for each kind of in-
stances. Then, during the search, the method can identify the type of instance
to solve and adapt the heuristic to use. This has been successfully used, for
example, for a set partitioning problem [8]. Another approach deals with the
integration of knowledge about interesting structures of solutions within the op-
timization method. In this context, the aim of the present work is to develop
such a heuristic method for the No-Wait Flowshop Scheduling Problem. Thus,
the contributions are the following: 1/ analysis of interesting structure of optimal
solutions, 2/ integration of these observations in the design of a new constructive
heuristic, 3/ study the interest of the proposed approach when used alone or as
the initialization of a metaheuristic.

The remainder of this paper is organized as follows. Section 2 introduces the
problem formulation and provides a literature review on constructive heuristics
for the NWFSP. Section 3 presents in details the proposed constructive heuristic.
In Section 4 experiments are conducted and a comparison with efficient heuristics
of the literature is provided. Some conclusions and perspectives for future works
are given in Section 5.

2 The No-Wait Flowshop Scheduling Problem

2.1 Description of the problem

The No-Wait Flowshop Scheduling Problem (NWFSP) is a variant of the well-
known Permutation Flowshop Scheduling Problem (FSP), where no waiting time
is allowed between the executions of a job on the successive machines. It may be
defined as follows: Let J be a set of n jobs that have to be processed on a set of
M ordered machines; pi,j is defined as the processing time of job i on machine j.
A solution of the NWFSP is a sequence of jobs and so, is commonly represented
by a permutation π = {π1, . . . , πn} where π1 is the first job scheduled and πn
the last one. In this paper, the goal is to find a sequence that minimizes the
makespan criterion (recorded as Cmax) defined as the total completion time of
the schedule.

Regarding the complexity of the problem, it has been proved by Wismer
that the NWFSP can be viewed as an Asymmetric Traveling Salesman Problem
(ATSP) [17]. In addition, Röck [13] proved that for m-machines (m ≥ 3), the
NWFSP is NP-hard while, the 2-machines case can be solved in O(n∗ log n) [4].

However, the NWFSP possesses a characteristic not present in the classical
FSP. Indeed, the start-up interval between two defined consecutive jobs of the



sequence on the first machine is constant and does not depend on their position
within the sequence. This interval, called the delay between two jobs, has been
defined by Bertolissi [2]. Let di,i′ be the delay of two jobs i and i′, it is computed
as follows:

di,i′ = pi,1 + max
1≤r≤m

 r∑
j=2

pi,j −
r−1∑
j=1

pi′,j , 0


This allows to compute the completion time Ci(π) of the job πi of sequence

π directly from the delays of the preceding jobs as follows:

Ci(π) =

i∑
k=2

dπk−1,πk
+

m∑
j=1

pπi,j (1)

where i ∈ {2, ..., n}. Note that C1(π) is the sum of the processing times on
the m machines of the first scheduled job and then, is not concerned by the
delay. Therefore, the makespan (Cmax(π)) of a sequence π can be computed
from equation (1) with a complexity of O(n).

Experiments we will present, involve local search methods at different steps.
These methods need a neighborhood operator to move from a solution to another.
Such neighborhood operators are specific to the problem and more precisely to
the representation of a solution. In this work, we use a permutation representa-
tion and a neighborhood structure based on the insertion operator [14]. For a
sequence π, it consists in inserting a job πi at position k (i 6= k). Hence, jobs
between positions i and k are shifted. The size of this neighborhood, i.e., the
number of neighboring solutions, is (n−1)2. Two sequences π and π′ are said to
be neighbors when they differ from exactly one insertion move. It is very inter-
esting to note that exploiting the characteristics of the NWFSP, the makespan
of π′ can be directly computed from the makespan of π with a complexity of
O(1) [11].

2.2 State-of-the-art

Many heuristics and metaheuristics have been proposed to solve scheduling prob-
lems and in particular the No-Wait Flowshop variant. The literature review pro-
posed here, focuses on constructive heuristics as it is the scope of the article.

First, let us note that the well-known NEH (Nawaz, Enscore, Ham) heuristic,
proposed for the classical permutation FSP [10], has been successfully applied on
the No-Wait variant. Moreover, constructive heuristics have been designed specif-
ically for the NWFSP. We may cite BIH (Bianco et al. [3]), BH (Bertolissi [2])
and RAJ (Rajendran [12]) among others. These heuristics define the order in
which jobs are considered, regarding one criterion (e.g. decreasing order of sum
of processing time of each job i -

∑
m pi,m), but this may be improved with

other jobs orders, even random. Indeed, in some contexts, it has been shown
that repeating a random construction of solutions, may be more efficient than
applying a constructive heuristic [1].



All these heuristics construct good quality solutions that can be further im-
proved by a neighborhood-based metaheuristic, for example. In this paper, we
focus on NEH and BIH as they provide high quality solutions and are consid-
ered as references for this problem. These two heuristics will be used later in the
article for comparison.

The principle of NEH heuristic is to iteratively build a sequence π of jobs J .
First, the n jobs of J are sorted by decreasing sums of processing times. Then,
at each iteration, the first remaining unscheduled job is inserted in the partial
sequence π in order to minimize the partial makespan. Algorithm 1 presents
NEH.

Algorithm 1: NEH

Data: Set J of n jobs, π the sequence of jobs scheduled
π = ∅;
Sort the set J in decreasing sums of processing times;
for k = 1 to n do

Insert job Jk in π at the position, which minimizes the partial makespan.

This is a greedy heuristic; only n iterations are needed to build a sequence. At
each iteration, a job Jk is inserted. The makespan of the new partial sequence,
may be computed with a complexity of O(n) thanks to the delay, when job Jk
is inserted at the first position (see section 2.1). Partial sequences, in which Jk
is inserted at another position in the sequence, are neighbors of the previous
one so, their makespan may be computed with a complexity of O(1), according
to the property exposed at the end of Section 2.1. Thus the complexity of one
iteration of NEH is O(n). Therefore, the complexity of the whole execution of
NEH is O(n2).

BIH heuristic is another constructive heuristic based on the best insertion
of a job in the partial sequence. The main difference with NEH is that all the
unscheduled jobs are tested to find the best partial makespan. Indeed, while
unscheduled jobs are remaining, for each one, all the possible positions to insert
it into the partial sequence are evaluated ; the job and the position that minimize
the partial makespan are chosen. Algorithm 2 presents BIH.

If we consider the schedule of a job as one iteration, BIH builds a sequence
with n iterations only. However, at each iteration, each job is a candidate to be
inserted at one of all the possible positions to find the one that minimizes the
partial makespan. For each job, finding the position that minimizes the partial
makespan has a maximal complexity of O(n) so, the complexity of one iteration
of BIH is O(n2). Therefore, the complexity of the whole execution of BIH is
O(n3).



Algorithm 2: BIH

Data: Set J of n jobs, π the sequence of jobs scheduled
π = ∅;
while J 6= ∅ do

Find job k ∈ J , which can be inserted in the sequence π, such that the
partial makespan is minimized. Let h be the best insertion position of job
k in the sequence π;

Insert job k at position h in the sequence π;
Remove k from set J ;

BIH has been proposed in the literature after NEH in order to construct
better quality solutions. However, the complexity of BIH is O(n3) whereas the
one of NEH is O(n2). Thus, NEH is much faster than BIH, and for large size
problems a compromise between computational time and quality is required.

3 IBI: Iterated Best Insertion heuristic

Following the construction’s principles of previously exposed heuristics and af-
ter analyzing the structure of optimal solutions, we propose the Iterated Best
Insertion (IBI) heuristic.

3.1 Analysis of optimal solutions structure

Most of constructive heuristics are based on the best insertion principle. Indeed,
the principle of the heuristic is to increase to increase, at each iteration, the
problem size by one. It starts with a sub-problem of size one (only one job to
schedule), then increases the size of the problem to solve (two jobs to schedule,
three jobs. . . ) until the size of the initial problem is reached.

In order to understand the dynamic of such a construction, we analyzed the
structure of consecutive constructed sub-sequences and compare them to optimal
sequences. Obviously this can be done only for first steps, as it is impossible to
enumerate all the sequences, and find the optimal one, when the problem size
is too large. Our proposition is to extend observations realized on sub-problems
to the whole problem, in order to provide better solution. This approach can be
compared to the Streamlined Constraint Reasoning, where the solution space
is partitioned into sub-spaces whose structures are analyzed to better solve the
whole problem [5].

Figure 1 gives an example starting from a sub-problem of size 8, P8, where 8
jobs are scheduled in the optimal order to minimize the makespan. Then, follow-
ing the constructive principle, job 9 is inserted at the position that minimizes the
makespan leading to the sub-problem P9 of size 9. This sequence corresponds
to the one given by NEH strategy. When comparing the obtained sequence with
the optimal solution of P9, we can observe that they are very close. Indeed, only



Fig. 1. Example of the evolution of the structure of the optimal solution from a sub-
problem P8 of size 8 to a sub-problem P9 of size 9.
P8 2 7 8 4 3 1 5 6 C∗

max = 350 optimal solution

insertion of job 9 2 7 9 8 4 3 1 5 6 Cmax = 447
P9 re-insertion of job 7 2 9 8 4 3 1 5 6 7 Cmax = 435

re-insertion of job 2 9 8 4 3 1 5 6 7 2 C∗
max = 427 optimal solution

two improving re-insertions (re-insertions of jobs 7 and 2) are needed to obtain
this optimal solution from the NEH solution.

Experimental analysis on different instances have confirmed the following
observations:

– at each step the structure of the obtained solution is not far from the struc-
ture of the optimal solution for the sub-problem,

– a few improving neighborhood applications may often lead to this optimal
solution.

3.2 Design of IBI

Following these observations, we propose a new constructive heuristic called Iter-
ated Best Insertion (IBI). At each iteration, two phases are successively achieved:
(i) the first remaining unscheduled job is inserted in the partial sequence in order
to minimize the partial makespan (same strategy than NEH) and (ii), an iterative
improvement is performed on this partial solution to re-order jobs and to expect
to be closer to the optimal solution of the sub-problem (see Algorithm 3). An
iterative improvement is a method that moves, using a neighborhood operator,
from a solution to one of its improving neighbors, which optimizes the quality. It
naturally stops when a local optimum (a solution with no improving neighbors)
is reached. Here, the neighborhood operator is based on the insertion and then
possible move are applied while a better makespan is found.

Algorithm 3: IBI

Data: Set J of n jobs, π the sequence of jobs scheduled, σ criterion to sort J ,
cycle number of iterations without iterative improvement.

π = ∅;
Sort set J according to σ ;
for k = 1 to n do

Insert job Jk in π at the position which minimizes the partial makespan.;
if k ≡ 0 [cycle] then

Perform an iterative improvement from π.

Two parameters have been introduced in the proposed method. First, σ a
criterion to initially sort the set of jobs J . It will indicate in which order jobs



will be considered during the construction. Second, cycle the number of itera-
tions without applying the iterative improvement procedure. Indeed, even if the
experimental analysis shows that the sequence built in phase (i) is not far from
the optimum of the sub-problem, it is known that the exploration of the neigh-
borhood is more and more time-consuming and the optimum more and more
difficult to reach with the increase of the problem size. In order to control the
time-performance of IBI, the cycle parameter allows the iterative improvement
to be executed at a regular number of iterations only.

3.3 Experimental Analysis of parameters

As the initial sort of IBI σ, may impact its performance as well as the cycle
parameter, the performance of IBI is evaluated under these two parameters. This
part, first presents the experimental protocol used, and then compare several
versions of the IBI algorithm, using several initial sorts and finally analyses the
impact of the cycle parameter.

Experimental Protocol The benchmark used to evaluate the performance of
the different variants of IBI is the Taillard’s instances [15], initially provided
for the flowshop problem but also widely used in the literature for the NWFSP.
This benchmark proposes 120 instances, organized by 10 instances of 12 different
sizes. Our experiments are conducted on the 10 available instances of size N M

where the number of jobs N is ranging from 20 to 200 and the number of machines
M from 5 to 20 (total of 110 instances).

To compare the algorithms, the Relative Percentage Deviation (RPD) with
the best known solution is computed. For a quality Q to minimize, the RPD is
computed as follows:

RPD =
Q(Solution)−Q(Best known solution)

Q(Best known solution)
∗ 100 (2)

Because of its Iterative Improvement phase, IBI is a stochastic method. Thus,
30 runs are required to allow making conclusions about results obtained. To
follow this recommendation, all variants of the algorithm are executed 30 times
per instance and the statistical Friedman test is performed on the RPD of all
executions to compare algorithms.

Each algorithm is implemented using C++ and the experiments were exe-
cuted on an Intel(R) Xeon(R) 3.5GHz processor.

IBI: Initial Sort Greedy heuristics, such as IBI, consider jobs in a given order.
For example, in NEH, jobs are ordered by the decreasing sum of processing times.
The specificity of the NWFSP gives other useful information as the GAP between
two jobs on each machine that represents the idle time of the machine between
the two jobs [9]. This measure does not depend on the schedule. Hence, for each
machine, the GAP between each pair of jobs can be computed independently



from the solving. The sum of GAPs for a pair of jobs represents the sum of
their GAP on all the machines. To obtain a single value per job, we propose to
define the total GAP of one job as the sum of the sum of GAPs. Hence, a high
value of total GAP for a job indicates that the job has no good matching in the
schedule. On the other hand, a low total GAP indicates that the job fits well
with the others. In order to evaluate the impact of the initial sort and to define
the most efficient one for the IBI heuristic, we experiment several initial sorts σ,
based on (i) the total GAP or on (ii) the sum of processing times in decreasing
or increasing order for both.

Table 1. Average RPD obtained on each size of Taillard’s instances for different sorts:
No Sort, Decreasing Mean GAP (DecrMeanGAP), Increasing Mean GAP (IncrMean-
GAP), Decreasing sum of processing times (DecrPI) and the increasing sum of process-
ing times (IncrPI). RPD values in bold stand for algorithms outperforming the other
ones according to the statistical Friedman test.

Instance NoSort DecrMeanGAPIncrMeanGAP DecrPI IncrPI

20 5 1.79 2.32 2.57 2.13 1.38
20 10 2.04 1.72 1.67 1.30 1.77
20 20 1.44 1.26 1.04 1.12 1.15
50 5 3.74 3.65 4.01 3.23 3.04
50 10 2.78 3.17 3.25 2.74 2.57
50 20 2.53 2.41 2.47 2.80 2.50
100 5 4.68 4.52 4.67 4.13 4.12
100 10 3.45 3.36 3.53 3.24 3.27
100 20 3.05 2.82 2.81 2.79 2.89
200 10 4.32 4.19 4.22 3.81 3.87
200 20 3.24 3.26 3.23 3.03 2.99

Table 1 provides a detailed comparison of the different initial sorts on the
110 Taillard’s instances. This table shows that when a significant difference is
observed the best initial sort is to consider the sum of processing times. Ordering
jobs by increasing or decreasing order has no significant influence. Thus for the
following, we choose the increasing sum of processing times as the initial sort of
IBI.

IBI: Cycle The use of an iterative improvement at each iteration can be time
expensive. In order to minimize the execution time, we introduce a cycle. A cycle
is a sequence of x iterations without any iterative improvement.

In Table 2, we study the impact of the size of the cycle on both the quality
of solutions and the execution time.

These results show that the quality decreases with a large cycle size, but is
obviously faster. As the objective of such a constructive heuristic is to provide



Table 2. Average RPD and time (milliseconds) obtained on Taillard’s instances for
different sizes of cycle. RPD values in bold stand for algorithms outperforming the
other ones according to the Friedman test. A cycle of size x, indicates the iterative
improvement is executed every x iterations. Thus, a cycle of size n indicates the iterative
improvement is executed only once, at the end of the construction.

1 2 5 10 n

Instance RPD time RPD time RPD time RPD time RPD time

20 5 1.38 0.77 1.24 0.55 1.43 0.27 1.78 0.20 1.62 0.18
20 10 1.77 0.83 1.82 0.52 1.85 0.26 1.49 0.20 1.69 0.19
20 20 1.15 0.77 1.35 0.47 1.71 0.25 1.74 0.19 1.68 0.16
50 5 3.04 12.16 3.25 6.76 3.46 3.52 3.62 2.49 3.94 1.74
50 10 2.57 11.55 2.49 6.69 2.75 3.62 3.07 2.39 3.26 1.48
50 20 2.50 11.73 2.37 6.67 2.58 3.58 2.65 2.42 3.14 1.59
100 5 4.12 95.74 4.22 55.96 4.42 30.22 4.65 19.40 5.29 9.62
100 10 3.27 93.43 3.27 54.56 3.30 29.19 3.45 18.78 4.17 9.71
100 20 2.89 92.90 2.93 53.60 3.07 28.35 3.16 18.28 3.56 9.88
200 10 3.87 755.09 3.91 435.40 4.07 225.52 4.09 146.26 4.74 55.04
200 20 2.99 746.62 3.10 431.33 3.11 222.80 3.18 146.26 3.93 57.83

in a very reasonable time a solution as good as possible, and as the time re-
quired here even for large instances stays reasonable, we propose not to use any
cycle, that is to say to execute the iterative improvement at each step of the
construction.

In conclusion of these experiments we propose to fix for the remainder of this
work as IBI parameters: an initial sort based on the increasing sum of processing
times and no cycle (i.e. cycle of size 1).

4 Experiments

The aim of this section is to analyze the efficiency of the proposed IBI method in
two situations. First, IBI alone will be compared to other constructive heuristics
of the literature, and in a second time these different heuristics will be used as
initialization of a classical local search. Along this section, the same experimental
protocol as before is used, and parameters used for IBI are those resulting from
experiments of section 3.3.

4.1 Efficiency of IBI

We choose to compare IBI with two other heuristics of the literature: NEH and
BIH. Indeed, as exposed in section 2.2 NEH and BIH are both interesting and
efficient constructive heuristics for the NWFSP:

1/ NEH is a classical heuristic for flow-shop problems and it has the advan-
tage to be very fast. Moreover, the proposed method IBI can be viewed as an
improvement of NEH, as an iterative improvement is added at each step.



2/ BIH is a classical heuristic for the NWFSP and very efficient as, according
to some preliminary experiments, it offers the best performance among several
tested heuristics.

Table 3 shows the comparative study between IBI and the two other con-
structive heuristics. Both RPD and computation time are given to exhibit the
gain in quality with regards to the time. NEH and BIH are deterministic and
so, both values of an instance size are average ones computed from the ten RPD
values obtained for the 10 instances respectively. On the other hand, IBI values
correspond to the average ones over the 30 runs and the 10 instances of each
instance size.

Table 3. RPD and time (milliseconds) obtained on Taillard’s instances for NEH, BIH
and IBI (average values). RPD values in bold stand for algorithms statistically outper-
forming the other ones according to the Friedman test.

NEH BIH IBI

Instance RPD time RPD time RPD time

20 5 3.95 0.03 3.03 0.10 1.38 0.77
20 10 4.18 0.02 3.60 0.09 1.77 0.82
20 20 2.92 0.02 1.74 0.08 1.15 0.76
50 5 6.84 0.10 5.98 1.10 3.04 12.16
50 10 4.59 0.09 4.10 1.13 2.57 11.54
50 20 4.84 0.10 4.01 1.18 2.50 11.72
100 5 8.14 0.32 6.85 9.07 4.12 95.74
100 10 6.10 0.33 5.66 9.29 3.27 93.43
100 20 5.17 0.33 4.65 9.30 2.89 92.90
200 10 6.72 1.21 5.85 72.44 3.87 755.09
200 20 5.74 1.21 4.51 71.95 2.99 746.62

Solutions built by IBI have a better quality (lower RPD) than those built by
NEH or BIH. It has statistically been verified with the Friedman Test. Beside,
IBI was able to better perform than NEH or BIH for 106 instances over the 110
available instances. The counterpart of this performance is the computational
time required to execute IBI regarding to the two other heuristics. However,
this time remains reasonable as, less than one second is required even for larger
instances. IBI is an efficient alternative to the classical heuristics used to build
good quality solutions.

4.2 IBI as initialization of a local search

A general use of constructive heuristics is to execute them as an initialization
phase of meta-heuristics. In order to evaluate the pertinence of using IBI in
such an initialization phase, it has been combined with a Tabu Search (TS).



This local search is widely used to solve flowshop problems [16], [7], [6] and so
is a good candidate to show the pertinence to build solutions with IBI rather
than NEH or BIH. The three heuristics are combined with TS. In order to be
fair, every combined approaches have the same running time fixed to 1000 ∗ n
milliseconds (with n the number of jobs). These experiments aim at checking if
the quality reached is enough to justify the use of IBI as initialization or if its
higher execution time penalizes its use.

Table 4 presents results about the average RPD values among the 30 runs
for each combined approach for each instance size. Results exposed in this table
compared to those of Table 3 first indicate that the Tabu Search manages to
improve solutions produced by the different heuristics. It also indicates that IBI
used as an initialization phase, gets better results than the others, even if the
difference is not always statistically proved. In particular for instances with a
high number of jobs to schedule, IBI shows a very good performance.

Table 4. Average RPD on Taillard’s instances for NEH+TS, BIH+TS and IBI+TS.
RPD values in bold stand for algorithms statistically outperforming the other ones
according to the Friedman test.

Instance NEH+TS BIH+TS IBI+TS

20 5 1.12 1.30 0.83
20 10 1.30 1.35 1.39
20 20 1.15 0.71 0.73
50 5 3.17 3.49 2.63
50 10 2.68 2.53 2.15
50 20 2.53 2.41 2.03
100 5 4.66 4.55 3.78
100 10 3.70 3.48 2.94
100 20 2.97 2.93 2.62
200 10 4.25 4.20 3.67
200 20 3.56 2.99 2.77

As an illustration, Figure 2 shows the evolution of the average makespan
for a particular instance with 200 jobs and 20 machines (mean of the 30 runs).
Regarding only the quality after the initialization, IBI is better than the two
other heuristics, as shown in Table 3 previously. After the improvement of the
Tabu Search for the two other heuristics, the final quality seems to be equivalent
to the one obtained by IBI without applying the local search. That shows the
efficiency of this approach. Finally, the Tabu Search does not help a lot IBI.
Indeed, thanks to the successive local improvement in the second phase of IBI,
the solution provided by IBI is already a local optimum. Therefore, it is difficult
for the Tabu Search to improve the solution obtained with IBI.



Fig. 2. Evolution of the average makespan on 30 runs for the 7th instance of Taillard
(200 jobs, 20 machines) for the three combined approaches. IBI+TS is represented by
squares, NEH+TS by crosses and BIH+TS by circles.

In conclusion, these experiments show the good performance of IBI for both
aspects: as a constructive heuristics and as initialization of a meta-heuristic. In
particular, they show the contribution of the local improvement to build the
solution.

5 Conclusion and Perspectives

This work presents IBI, a new heuristic to minimize the makespan for the No-
Wait Flowshop Scheduling Problem. IBI has been designed from the analysis of
existing heuristics of the literature as well as of the structure of optimal solutions.
Indeed, IBI is an improvement of the widely used heuristic (NEH), where an
iterative improvement procedure has been added after each insertion of a job.
Even if this additional procedure increases the computational time compared to
other constructive heuristics of the literature (NEH and BIH), the improvement
of the quality of the final solution built is noticeable and has statistically been
validated with the Friedman test.

Then, we analyzed if this extra computational time is justified in term of
quality obtained by evaluating the capacity of IBI to provide a good solution.
IBI and the others heuristics have been used as initialization for a metaheuristic
i.e., the initial solution of the approach is a solution built by a heuristic. The
experiments, on the Taillard instances, show that IBI helps the metaheuristic to
be more efficient and the extra time needed to build an initial solution is not a
drawback.



What is interesting in this work is that the addition of a simple modifica-
tion of an existing constructive heuristic improves the results. This modification
has been proposed from properties observed which make the application of an
iterative improvement procedure at each step 1/ useful – only a few steps are
required to reach the optimal solutions for the small sub-problems – and 2/ no
time consuming – the makespan of a neighborhood solution can be computed
in O(1)–. We can now wonder whether such a modification can be performed to
other constructive heuristics for other variants of the flowshop or more generally,
for other problems (if they also present equivalent properties).
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13. Hans Röck. The three-machine no-wait flow shop is NP-complete. Journal of the
ACM, 31(2):336–345, mar 1984.



14. T. Schiavinotto and T. Stützle. A review of metrics on permutations for search
landscape analysis. Computers & Operations Research, 34:3143–3153, 2007.

15. E. Taillard. Benchmarks for basic scheduling problems. European Journal of Op-
erational Research, 64(2):278–285, jan 1993.

16. Chuyang Wang, Xiaoping Li, and Qian Wang. Accelerated tabu search for no-wait
flowshop scheduling problem with maximum lateness criterion. European Journal
of Operational Research, 206(1):64–72, oct 2010.

17. D. A. Wismer. Solution of the flowshop-scheduling problem with no intermediate
queues. Operations Research, 20(3):689–697, jun 1972.


	A new constructive heuristic for the No-Wait Flowshop Scheduling Problem

