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ASYMPTOTIC EXPANSION OF THE MEAN-FIELD
APPROXIMATION

THIERRY PAUL AND MARIO PULVIRENTI

Abstract. We consider the N-body quantum evolution of a particle system in the mean-field approximation. We

show that the jth order marginals FN
j (t), for factorized initial data F (0)⊗N , are explicitly expressed, modulo N−∞,

out of the solution F (t) of the corresponding non-linear mean-field equation and the solution of its linearization

around F (t). The result is valid for all times t, uniformly in j = O(N 1

2
−α) for any α > 0. We establish and

estimate the full asymptotic expansion in integer powers of 1

N
of FN

j (t), j = O(
√
N), whose computation at order

n involves a finite number of operations depending on j and n but not on N . Our results are also valid for more

general models including Kac models. As a by-product we get that the rate of convergence to the mean-field limit

in 1

N
is optimal in the sense that the first correction to the mean-filed limit doesn’t vanish.
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1. Introduction

The mean-field limit concerns systems of interacting (classical or quantum) particles

whose number diverges in a way linked with a rescaling of the interaction insuring an

equilibrium between interaction and kinetic energy. In the case of an additive one-body

kinetic energy part and a two-body interaction, and without taking in consideration
1



2 T. PAUL AND M. PULVIRENTI

quantum statistics, this equilibrium is reached by putting in front of the interaction a

coupling constant proportional to the inverse of the number of particles.

The system is then described by isolating the evolution of one (or j) particle(s) and

averaging over all the other. This leads to a partial information on the system driven

by the so-called j-marginals. The mean-field theory insures that the j-marginals tend,

as the number of particles diverges, to the j-tensor power of the solution of a non-linear

one-body mean-field equation (Vlasov, Hartree,...) issued from the 1-marginal on the

initial N -body state. This program has be achieved in many different situations, and

the literature concerning the mean-field approach is protuberant. We refer to [29] for

a review and recent references.

Much less is known about the fluctuations around this limit, namely the correction

to be added to the factorized limit in order to get better approximations of the true

evolution of the j-marginals.

The identification of the leading order of these fluctuations with a Gaussian sto-

chastic process has been established in the quantum context first in [16] and in the

classical one in [5]. For the classical dynamics of hard spheres, the fluctuations around

the Boltzmann equation have been computed at leading order in [28], generalizing to

non-equilibrium states the results of [3]. More recently, for the quantum case, fluctu-

ations near the Hartree dynamics has been derived in [22] (after [21]) and in [2] also

for the grand canonical ensamble formalism (number of particles non fixed), using in

both cases the methods of second quantization (Fock space) (see also [24] for a proof

using the usual quantization formalism): in the case of pure states, the N -body wave

function is shown to be 1√
N
-close in L2 norm to a sum of partially factorized states

constructed out of the so-called Bogoliubov hierarchy. Note that these results rise a

problem fundamentally different form the one treated in the present paper, whose goal

is to compute mean-field approximation of the N -body problem with an accuracy of

any order in powers of 1
N
.

Recently, we developed (together with S. Simonella) in [25] a method to derive mean-

field limit, alternative to the ones using empirical measures or direct estimates on the

“BBGKY-type” hierarchies (systems of coupled equations satisfied by the set of the

j-marginals). This method rather uses the hierarchy followed by the “kinetic errors”

Ej−k (defined below), already used (under the name “v-functions”) to deal with kinetic

limits of stochastic models [10, 7, 4, 11, 12, 6, 8, 13] and recently investigated in the
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more singular low density limit of hard spheres [26] (note that error terms are also used

in [22, 21, 2, 24] for the total (pure state) wave function with a quite different point

of view). These quantities are, roughly speaking, the coefficient of the decomposition

of the j-marginal as a linear combination of the k-th tensor powers, k = 1, . . . , j, of the
solution of the mean-field equation issued from of the 1-marginal of the initial full state.

We developed in [25] a strategy suitable in particular for Kac models (homogeneous

original one [17, 18] and non-homogeneous [9]) and quantum mean-field theory. This

strategy allowed us to derive the limiting factorization property of the j-marginals up

to, roughly speaking, j ≲ √N . This threshold is, on the other side, the one obtained

by heuristic arguments as shown in [25] and rigorously in [15] for the Kac’s model.

Here and in all this article, N denotes the number of particles of the system under

consideration.

In the present paper we provide and estimate a full asymptotic expansion in powers of
1
N
of the difference between the evolution of j-marginals and its factorized leading order

form (Theorem 3.2), following a similar result for the kinetic errors Ej(t) (Theorem
3.1). Our results are valid for j ≤ C√N for some explicit constant C and are valid for

quantum, Kac’s models and in the framework of the abstract formalism, slightly more

general than the one developed in [25], described in Appendix A.

The non-vanishing of the first correction is established, showing therefore that the

rate of the mean-field convergence is at most of order 1
N

(Theorem 3.4).

Moreover, as the mean-field solution issued from the first marginal of the N body

symmetrical factorized initial data determines the leading order of the the j-marginal,

we show that the additional knowledge of the linearization of the mean-field flow around

it gives an explicit construction of the full asymptotic expansion of the j-marginals in

powers of 1
N

uniformly in j,N satisfying j ≤ CN 1

2
−α for any C,α > 0 (Theorem 3.5).

Let us note the analogy with the quantum propagation of semiclassical observables,

driven by the classical underlying flow at leading order in the Planck constant, and

whose full asymptotic expansion is explicitly computable by the only knowledge of the

linearized flow.

Let us summarized in words our main result:

The knowledge of the mean-field flow F (t) and its linearization around F (t)
determines explicitly, modulo N−∞, uniformly for j = O(N 1

2
−α), α > 0, the

j-marginals of the N-body flow issued from F (0)⊗N .
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2. Quantum mean-field

Let L1(L2(Rd) be the space of trace class operators on L2(Rd), with their associated

norms.

We consider the evolution of a system of N quantum particles interacting through a

(real-valued) two-body, even potential V , described for any value of the Planck constant

h̵ > 0 by the Schrödinger equation

ih̵∂tψ =HNψ , ψ∣
t=0 = ψin ∈ HN ∶= L2(Rd)⊗N ,

where

HN ∶= −h̵2
2

N∑
k=1

∆xk
+ 1

2N
∑

1≤k,l≤N
k≠l

V (xk − xl).

We will suppose in the whole present paper that V is bounded so that the N -body

Hamiltonian HN is self-adjoint on a suitable domain.

Instead of the Schrödinger equation written in terms of wave functions, we shall

rather consider the quantum evolution of density matrices. An N -body density matrix

is an operator FN such that

0 ≤ FN = (FN)∗, traceHN
(FN) = 1 .

The evolution of the density matrix FN ↦ FN(t) of a N -particle system is governed

for any value of the Planck constant h̵ > 0 by the von Neumann equation

(1) ∂tF
N = 1

ih̵
[HN , F

N],
equivalent to the Schrödinger equation when FN(0) is a rank one projector, modulo a

global phase.

Positivity, norm and trace are obviously preserved by (1) since HN is self-adjoint.

For each j = 1, . . . ,N , the j-particle marginal FN
j (t) of FN(t) is the unique trace

class operator on Hj such that

traceHN
[FN(t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj ⊗ IHN−j

)] = traceHj
[FN

j (t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj)] .
for all A1, . . . ,Aj bounded operators on H. Alternatively and equivalently, the FN

j can

be defined by the partial trace of FN on the N −j last “particles”: defining FN through

its integral kernel FN(x1, x′1; . . . ;xN , x′N), the integral kernel of FN
j is defined as (see
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[1])

FN
j (x1, x′1; . . . ;xj, x′j) ∶= (Trj+1 . . .TrNFN)(x1, x′1; . . . ;xj, x′j)

∶= ∫
R

d(Nj)
FN(x1, x′1; . . . ;xj;x′j;xj+1, xj+1; . . . ;xN , xN)dxj+1⋯dxN .(2)

It will be convenient for the sequel to rewrite (1) in the following operator form

(3) ∂tF
N = (KN

+ V N)FN

where KN , V N are operators on L1(L2(RNd)) defined by

(4) KN = 1

ih̵
[−h̵2

2
∆RdN , ⋅], V N = 1

2N
∑
k,l

Vk,l with Vk,l ∶= 1

ih̵
[V (xk − xl), ⋅].

The self-adjointness of HN implies that

(5) ∥et(KN+V N)∥L1(L2(Rd))→L1(L2(Rd)) = ∥etKN∥L1(L2(Rd))→L1(L2(Rd)) = 1, t ∈R.
We will denote

(6) L ∶= L1(L2(Rd)) so that L⊗n = L1(L2(Rnd)), n = 1, . . . ,N,
and, with a slight abuse of notation,

(7)

⎧⎪⎪⎨⎪⎪⎩
∥⋅∥1 the trace norm on any L⊗j,

∥⋅∥ the operator norm on any L(L⊗i,L⊗j)
for i, j = 1, . . . ,N (here L(L⊗i,L⊗j) is the set of bounded operators form L⊗i to L⊗j).

A density matrix F n ∈ L⊗n is called symmetric if its integral kernel F n(x1, x′1; . . . ;xn, x′n)
is invariant by any permutation

(xi, x′i) ↔ (xj, x′j), i, j = 1, . . . , n.
Note that the symmetry of FN is preserved by the equation (1) due to the particular

form of the potential.

We define, for n = 1, . . . ,N ,

(8) Dn = {F ∈ L⊗n ∣ F > 0, ∥F ∥1 = 1 and F is symmetric}.
Note that FN

j ∈ L⊗j (FN
0 = 1 ∈ L⊗0 ∶= C) and FN

j > 0, ∥FN
j ∥1 = ∥FN∥1, and obviously

FN
j is symmetric as FN . That is to say:

FN
j ∈ Dj .

The family of j-marginals, j = 1, . . . ,N , are solutions of the BBGKY hierarchy of

equations (see [27] and also [1])
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(9) ∂tF
N
j = (Kj

+
Tj

N
)FN

j +
(N − j)
N

Cj+1F
N
j+1

where:

(10) Kj = 1

ih̵
[−h̵2

2
∆Rjd, ⋅]

(11) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vi,r
and

(12) Cj+1F
N
j+1 =

j∑
i=1
Ci,j+1F

N
j+1

with

Ci,j ∶ L⊗(j+1) → L
⊗j

Ci,j+1FN
j+1 = Trj+1 (Vi,j+1FN

j+1) ,(13)

where Trj+1 is the partial trace with respect to the (j + 1)th variable, as in (2).

Note that, for all i ≤ j = 1, . . . ,N ,

(14) ∥Tj∥ ≤ j2∥V ∥L∞
h̵

, and ∥Ci,j+1∥ ≤ j ∥V ∥L∞
h̵

.

(meant for ∥Tj∥L⊗j→L⊗j and ∥Ci,j+1∥L⊗(j+1)→L⊗j in accordance with (7)).

The Hartree equation is

(15) ih̵∂tF = [−h̵2
2
∆ + VF (x), F ], F (0) ∈ D1,

where VF(x) = ∫Rd V (x − y)F (y, y)dy, F (y, y′) being the integral kernel of F .

Note that (15) reads also

(16) ∂tF =K1F +Q(F,F ),
with

(17) Q(F,F ) = Tr2(V1,2(F ⊗ F )).
Since V is bounded, (15) has for all time a unique solution F (t) > 0 and ∥F (t)∥ = 1

(see again [27] and [1]).
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In order to define the correlation error in an easy way, we need a bit more of notations

concerning the variables of integral kernels.

For i ≤ j = 1, . . . ,N, we define the variables zi = (xi, x′i), and Zj = (z1, . . . , zj). For

{i1,⋯, ik} ⊂ {1,⋯, j}, we denote by Z
/{i1,⋯,ik}
j ∈ R2(j−k)d, the vector Zj ∶= (z1, . . . , zj)

after removing the components zi1, . . . zik .

Definition 2.1. For any j = 1, . . . ,N , we define the correlation error Ej ∈ L⊗j by its

integral kernel

(18) Ej(Zj) = j∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

(−1)kF (zi1) . . . F (zik)FN
j−k(Z/{i1,⋯,ik}j ).

By convention and consistently we set

(19) FN
0 = ∥F ∥ = 1,E0 ∶= 1 ∈ L⊗0 ∶=C.

.

In [25] it was shown that (18) is inverted by the following equality:

(20) FN
j (Zj) = j∑

k=0
∑

1≤i1<⋅⋅⋅<ik≤j
F (zi1) . . . F (zik)Ej−k(Z/{i1,⋯,ik}j ), j = 0, . . . ,N..

i.e. FN
j is the operator of integral kernel given by (20).

Theorem 2.4, Theorem 2.1 and Corollary 2.2 in [25] state the following facts, among

others.

The kinetic errors Ej, j = 1, . . . ,N, satisfy the system of equations

∂tEj = (Kj
+

1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D

−1
j Ej−1 +D

−2
j Ej−2,(21)

where the operators Dj,D
1
j ,D

−1
j ,D

−2
j , j = 0, . . . ,N , are defined at the beginning of the

Section 2, formulas (40)-(43).

We note that the operators Dα
j , α = 1,−1,−2 map functions of j + α variables into

functions of j variables.
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Theorem 2.2 (out of Theorem 2.2. and Corollary 2.3 in [25]).

Let Ej(0) satisfy for some C0 > 1
(22) ∥Ej(0)∥1 ≤ C

j
0 ( j√

N
)j , j ≥ 1.

Then, for all t > 0 and all j = 1, . . . ,N , one has

(23) ∥Ej(t)∥1 ≤ (C2e
C1t∥V ∥L∞

h̵ )j ( j√
N
)j , j ≥ 1.

for some C1 > 0, C2 ≥ 1 explicit (see Theorem 2.2 in [25]),

and

(24) ∥FN
j (t) −F (t)⊗j∥1 ≤D2e

D1t∥V ∥L∞

h̵
j2

N
,

where D2 = sup{B2, (eC0)2}(B1 = sup{B1, 2C1}, B1,B2 being taken in Theorem 2.2 in

[25] at the value B0 = 0).

3. Asymptotic expansion and main result

Two questions arise naturally:

(1) are the estimates (23) sharp?

(2) Could (24) be improved with a r.h.s. of any order we wish?

Of course, defining F
N,n
j (t), n = 1, . . . , j, by its integral kernel FN,n

j (Zj) =
n∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (zi1) . . . F (zik)Ej−k(Z/{i1,⋯,ik}j ), we get by (20), (23) and (24) that,

for any n ≤ j, ∥FN
j (t) − FN,n

j ∥ = O(N−(n+1)/2). However one cannot go further in

the approximation that is, in any case useless without the knowledge of the true

Ejs.

As we will see later on, one of our main results states that, not only estimates (23)

are true, but Ej(t) ∶= N j/2EN
j (t) has a full asymptotic expansion in positive powers of

( 1
N
)12
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More precisely we will show that, under the hypothesis (22) on the initial data, and

for all time t and all j = 1, . . . ,N , there exist sequences (E ℓj (t))ℓ∈N such that

(25) Ej(t) ∼ ∞∑
ℓ=0
E ℓj (t)N−ℓ/2

(in the sense that for all k ∈N, ∥Ej(t) − k∑
ℓ=0
E ℓj (t)N−ℓ/2∥ = o(N−k/2)).

The coefficients E ℓj can be determined as solutions of a partial differential equa-

tions which can be solved recursively. More than that, E ℓj (t) turn out to be explicitly

computed in terms of a perturbative expansion, after the knowledge of the lineariza-

tion of the mean-field equation (15) around the solution of (15) with initial condition

F (0) = (FN(0))1 which will be discussed in detail later on.

The starting point of our analysis is the evolution equation for Ej(t), obtained by

the substitution Ej = N−j/2Ej in (21):

(26) ∂tEj =HjEj +N− 1

2∆+j Ej+1 +N− 1

2∆−j Ej−1 +∆=jEj−2
where

(27)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Hj = Kj +
Tj

N
+Dj(t)

∆+j = D1
j

∆−j = ND−1j
∆=j = ND−2j

the D′js being given by formulas (40)-(43) below. It follows that Hj,∆+j ,∆
−

j ,∆
=
j act on

functions of j, j + 1, j − 1, j − 2 particles, namely L⊗j,L⊗j+1,L⊗j−1,L⊗j−2.

Inserting the expansion (25) into (26) we find for (Ekj (t))j=1,...,N,k=0,... the following

sequence of equations

(28) ∂tEkj =HjEkj +∆=jEkj−2 +∆+j Ek−1j+1 +∆
−

j Ek−1j−1

with the convention,

(29) Ek0 (t) = δk,0, Ek−1(t) = Ek−2(t) = E−1j (t) = 0
and the ones inherited form (44).

(28) can be solved recursively. Indeed we realize that

(30) ∂tE0j =HjE0j +∆=jE0j−2
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can be solved by iteration in j (note that E01(t) = 0). Thus knowing E0j , we can also

solve

(31) ∂tE1j =HjE1j +∆=jE1j−2 +∆+j E0j+1 +∆−j E0j−1.
by iteration in j and so on.

However we will see below that the computation of Ekj (t) depends actually only on Ek′j′
k′ ≤ k, j′ ≤ j+k through a number of operations depending only on j and k independent

of N .

We now introduce the two-parameter semigroup defined by

∂tUj(t, s) = Hj(t)Uj(t, s).(32)

Uj(s, s) = I.

The existence of Uj(t) is guaranteed by the classical theory of perturbation of semi-

group, Kj generating an isometric semigroup and
Tj

N
and Dj(t) being bounded all the

operators. Moreover, let us define U(t, s) as the linearisation of the Hartree flow around

F (t), namely

∂tU(t, s) = (K1 +∆1))U(t, s), ∆1 ∶= Q(⋅, F (t)) +Q(F (t), ⋅)(33)

U(s, s) = I.

We will see in Section 4.3 that Uj(t, s), when acting on symmetric states, is a per-

turbation of U(t, s)⊗j , and can be explicitly computed out of U(t, s) by a convergent,

entire, expansion in j2

N

∥V ∥
h̵
. In particular, we’ll see that expansions of Uj(t, s) up to any

power of 1
N

can be explicitly obtained under the only knowledge of the linearisation of

the Hartree flow around F (t).
Using of this semigroup Uj(t, s) leads immediately to solving (28) by the family of

relations:

(34)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ekj (t) = Uj(t, 0)Ekj (0)
+ ∫ t

s=0Uj(t, s)(∆=jEkj−2(s) +∆+j Ek−1j+1 (s) +∆−j Ek−1j−1 (s))ds,Ek0 (t) = δk,0,

∆−1 (E00) ∶= −Q(F,F ),
∆=2 (E00) ∶= T1,2(F ⊗ F ) −Q(F,F )⊗ F −F ⊗Q(F,F ),
Ek
−1(t) = Ek−2(t) = E−1j (t) = 0 by convention.

We are now in position of stating the main results of the present paper.



ASYMPTOTIC EXPANSION OF THE MEAN-FIELD APPROXIMATION 11

Theorem 3.1. Consider for j = 0, . . . ,N, k = 0, . . . , t ≥ 0 the system of recursive

relations (34). Then, for all t ∈ R, the knowledge of Uj(t) (see Remark 3.6 below)

makes true the following

(i) Ekj (t) is explicitly determined by Ek′j′ (0), j′ ≤ j + k, k′ ≤ k
(ii) Ekj (t) = 0 if Ekj (0) = 0, both for j + k odd

(iii) Let Ej(0) be the solution of (28) with the condition ∥Ej(0)∥ ≤ (Aj2)j/2 for some

A > 1. Let us take moreover Ekj (0) = δk,0Ej(0) (concerning this hypothesis, see

Remark 3.6 below). Then the following estimate holds true

(35) ∥Ej(t) − 2n∑
k=0
N−k/2Ekj (t)∥1 ≤ L2n(t)N−n− 1

2(L′2n(t)j2)j/2,
where Lk(t), L′k(t) are defined in (55) below and satisfy, as k, ∣t∣→∞,

logLk(t) = 3k
2 (logk + ∣t∣∥V ∥∞h̵

) +O(k + ∣t∣∥V ∥∞
h̵
) and logL′k(t) = O(k + ∣t∣∥V ∥∞h̵

).
The proof of the theorem is given in Sections 4.1 and 4.2.

Let us set, for j = 1, . . . ,N, n = 0, . . . , Ekj (0) = δk,0Ej(0) and
(36) En

j (t) = 2n∑
k=0
N−

j+k
2 Ekj (t)

and FN,n
j (t) the operator of integral kernel FN,n

j (t)(Zj) defined by

(37) F
N,n
j (t)(Zj) = j∑

k=0
∑

1≤i1<⋅⋅⋅<ik≤j
F (t)(zi1) . . . F (t)(zik)En

j−k(Z/{i1,⋯,ik}j ),
(that is (104) truncated at order n).

Theorem 3.2. Let FN(t) the solution of the quantum N body system (1) with initial

datum FN(0) = F⊗N , F ∈ L(L2(Rd)), F ≥ 0,TrF = 1, and F (t) the solution of the

Hartree equation (15) with initial datum F .

Then, for all n ≥ 0 and N ≥ 4(e√L′2n(t)j)2,
∥FN

j (t) − FN,n
j (t)∥1 ≤N−n− 1

2
2L2n(t)e

√
L′
2n(t)j√

N
.

Moreover the expansion of FN,n
j (t) contains only integer powers of 1

N
.

Remark 3.3. The condition of factorization of the initial condition FN(0) = F⊗N ,
equivalent to Ej(0) = δj,0, is not necessary. It can be mildly modified by taking any

Ej(0) satisfying (22) and the associated sequence Ej(0). We leave to the interested

reader the elaboration of the precise corresponding statements out of Theorem 3.1.
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Proof. The proof is similar to the one of Corollary 2.2 in [25].

The fact that En
j (t), and therefore FN,n

j (t) contains only integer powers of 1
N

comes

form the fact that the factorization of FN(0) implies that Ekj (0) = δk,0δj,0 and therefore

Ekj (0) = Ekj (t) = 0 for j + k odd.

Moreover

∥FN
j (t) −FN,n

j (t))∥
≤ j∑

k=0
( j

j − k
)∥Ek −E

n
k ∥ ≤ N−n− 1

2

j∑
k=1
(j
k
)L2n(t)(L′2n(t)k2

N
)k/2

≤ N−n−
1

2L2n(t) j∑
k=1
j(j − 1) . . . (j − k + 1)⎛⎝

√
L′2n(t)√
N

⎞
⎠
k

kk

k!

≤ N−n−
1

2L2n(t) j∑
k=1

⎛
⎝
je
√
L′2n(t)√
N

⎞
⎠
k

≤ N−n− 1

2
2L2n(t)e

√
L′
2n(t)j√

N

for N ≥ 4(e√L′2n(t)j)2 (we used that E0(t) = En
0 (t) = 1 and kk

k! ≤ ek√
2πk

). �

Let us remark that, under the hypothesis of Theorem 3.2, (36) gives that En
j (t) =

O(N−2) for j > 2, En
0 (t) = 1, En

1 (t) = N−1E11(t) + O(N−2) and En
2 (t) = N−1E02(t) +

O(N−2).
Therefore, keeping in FN,1

j (t), given by (37), only the terms k = j − 1, j − 2, and

defining G−11 (t) = E11(t), G−12 (t) = E02(t) and G−1j (t), j > 2, by its integral kernel

G−1j (t)(Zj) = ∑
1≤i1<⋅⋅⋅<ij−2≤j

F (t)(zi1) . . . F (t)(zij−2)E02(Z/{i1,⋯,ij−2}j )
+ ∑

1≤i1<⋅⋅⋅<ij−1≤j
F (t)(zi1) . . . F (t)(zij−1)E11(Z/{i1,⋯,ij−1}j ),

we get, by Theorem 3.2, that

FN
j (t) −F (t)⊗j = 1

N
G−1j (t) +O(N−3/2).

Since G−11 (t),G0
2(t) don’t vanish identically by Lemma 4.6 (we guess one can prove the

same for all the G−1j (t)s), we get the following bi-product.

Corollary 3.4. The rate of convergence to the mean-field limit in 1
N

is optimal.

As we mentioned already, Uj(t, s) is given by a convergent perturbative expansion

out of U(t, s)⊗j where U(t, s) is the flow generated by the linearization of the Hartree

equation around its solution F (t).
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More precisely, let ∆̃j = 1
N
Tj +Dj −∆j and, for n ∈ N, let us define the truncated

Dyson expansion of Uj(t, s) as
Un
j (t, s) =(38)

2n+1∑
k=0
∫ t

s
dt1...∫ t2n

s
dt2n+1U(t, t1)⊗j∆̃j(t1)U(t1, t2)⊗j∆̃j(t2) . . . U(t2n, t2n+1)⊗j.

Let us consider FN,n,n
j (t) be defined as FN,n

j (t), but by replacing Uj(t, s) by U(t, s)⊗j
in all underlying used expressions. Namely, the integral kernel of FN,n,n

j (t) is given

by (37) after replacing EN,n
j (t) by EN,n,n

j (t) ∶= 2n∑
k=0
En,nj (t) where En,nj (t) are the explicit

solutions of the recurrence relations

(39)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ek,nj (t) = Un

j (t, 0)Ek,nj (0)
+ ∫ t

s=0U
n
j (t, s)(∆=jEk,nj−2(s) +∆+j Ek−1,nj+1 (s) +∆−j Ek−1,nj−1 (s))ds,Ekj (0) = δk,0Ej(0)

with the same conventions as in (34).

Obviously the solution of (39) satisfies the items (i) − (ii) of Theorem 3.1 and the

statements of Proposition 4.1.

Theorem 3.5. Let α(0, 12) and C > 0. Then, under the same hypothesis than in

Theorem 3.2, one has, for any n ∈ N, t ∈ R and j ≤ CN 1

2
−α,

∥FN
j (t) −FN,n,n

j (t)∥ ≤Mn,α,tN
−n− 1

2

for all N >M ′

α,t (Mn,α,t and M ′

α,t are given in (74)).

Note that the expansion of FN,n
j (t) contains again only integer powers of 1

N
and, by

the construction of Un
j and Proposition 4.1, its explicit computation involves a finite

number of operations depending only on j and n (and not inN) and the only knowledge

of F (t) and the solution of the Hartree equation linearized around it.

The proof of the theorem is given in Section 4.3.

Remark 3.6. [Nature of the expansion in 1
N
] In the asymptotic expansion Ej(t) ∼

∞∑
k=[(j+1)/2]

c
j
k(t)N−k the coefficients cjk(t), such as Let us remark finally that each coef-

ficient Ekj (t) depend on N as well: first by the dependence in N of ∆+j = (1 − j
N
)Cj+1

and also Uj(t, s) defined by (32). Moreover, since the condition ∥Ej(0)∥ ≤ (Aj2)j/2 in

Theorem 3.1 is a condition only on the size, all the result of this paper hold true under

any dependence of Ej(0) in N . In particular, this allows to reincorporate in Ej(0) all
the terms Ekj (0)N−1/2, k = 1 . . . , as done in the second item of Theorem 3.1.
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4. Proofs of Theorems 3.1 and 3.5

Let us first recall from [25] the expression of the ingredients present in equation (21):

For any operator G ∈ L⊗n, n = 1, . . . ,N ,G(Zn) denotes its integral kernel and, for

any function F (Zn), n = 1, . . . ,N , F (Zn)⋀ is defined as the operator on L⊗n of integral

kernel F (Zn). Moreover J ∶= {1, . . . , j}.

Dj ∶ L
⊗j → L

⊗j

Ej ↦
N − j

N
∑
i∈J
Ci,j+1 (F (zi)Ej(Z/{i}j+1 )
⋀

+F (zj+1)Ej(Zj)⋀)(40)

−
1

N
∑
i≠l∈J

Ci,j+1F (zl)Ej(Z/{l}j+1 )
⋀

D1
j ∶ L

⊗(j+1) → L
⊗j

Ej+1 ↦
N − j

N
Cj+1Ej+1(41)

D−1j ∶ L
⊗(j−)1 → L

⊗j

Ej−1 ↦
1

N
∑
i,r∈J

Ti,rF (zi)Ej−1(Z/{i}j )
⋀

−
j

N
∑
i∈J
Q(F,F )(zi)Ej−1(Z/{i}j )⋀(42)

−
1

N
∑
i≠l∈J

Ci,j+1F (zl)F (zj+1)Ej−1(Z/{l}j )
⋀

−
1

N
∑
i≠l∈J

Ci,j+1F (zl)F (zi)Ej−1(Z/{i,l}j+1 )
⋀

and

D−2j ∶ L
⊗(j−2) → L

⊗j

Ej−2 ↦
1

N
∑
i,s∈J

Ti,sF (zi)F (zr)Ej−2(Z/{i,r}j )⋀(43)

−
1

N
∑
i≠l∈J

Q(F,F )(zi)F (zl)Ej−2(Z/{i,l}l )⋀.

where, by convention,

(44)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D1

N ∶=D−21 ∶= 0
D−11 (E0) ∶= − 1

N
Q(F,F ) ,

D−22 (E0) ∶= 1
N
(T1,2(F ⊗ F ) −Q(F,F )⊗ F −F ⊗Q(F,F )) .
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In (40)-(43), F (z) is meant as being the integral kernel of F (t) solution of the Hartree

equation 15.

4.1. Recursive construction and proof of Theorem 3.1 (i)-(ii). Specializing (34)

to k = 0, we get immediately that (we recall E00(t) = 1)
(45) E0j (t) = Uj(t, 0)E0j (0) +Uj(t, 0)∫ t

0
Uj(0, s)∆=jE0j−2(s)ds, j ≥ 1,

with the convention Ekl = 0, l < 0, and ∆=2 (E00) ∶= (T1,2(F⊗F )−Q(F,F )⊗F−F⊗Q(F,F ).
Therefore, for j = 1, . . . ,N, t ∈ R, the knowledge of Uj(t, s), ∣s∣ ≤ ∣t∣,, and E0j′(0), j′ =

1, . . . , j guarantees the knowledge of E0j′(t), t ∈R, j′ ≤ j. We write this fact as

(46) (E0j′(0))j′=1,...,j ↝ (E0j′(t))t∈R,j′=1,...,j

Since Ek
−1(t) = 0 by convention and Ek0 (t) = 0 for k ≥ 1 since E0(t) ∶= 1, we find after

(46) that E11(t) and E12(t) are determined by E11(0) and E12(0). Therefore, by (34),

E1j (t), j = 1, . . . ,N are determined by (E1j (0))j=1,...,N , and determine E21(t) and E22(t).
These ones determine in turn all the E2j (t), j = 1, . . . ,N and so on.

Therefore, the knowledge of (Ek′j′ (s))∣s∣≤∣t∣,k′≤k−1,j′=1,...,j+1 and Ekj (0) guarantees for all

j, k, by induction, the knowledge of Ekj (t). Thus
((Ekj (0), (Ek′j′ (s))∣s∣≤∣t∣,k′≤k−1,j′=1,...,j+1)↝ (Ek′j′ (s))∣s∣≤∣t∣,k′≤k,j′=1,...,j.

Supposing now (Ek′j′ )k′≤k,j′≤j known,
(Ek′j′ (s))s≤t,k′≤k−2,j′=1,...,j+2 ↝ (Ek′j′ (s))s≤t,k′≤k−1,j′=1,...,j+1 ↝ Ekj (t).

and by iteration

(E0j′(s))s≤t,j′=1,...,j+k ↝ Ekj (t)
so that, by (46),

(E0j′(0))j′=1,...,j+k ↝ Ekj (t).
We just proved the following result.

Proposition 4.1. For any j = 1, . . . ,N, t ≥ 0, k = 0, . . . , let Ekj (t) be the solution of (34).

Then Ekj (t) is determined by the values Ek′j′ (0) for 0 ≤ k′ ≤ k, 1 ≤ j′ ≤ j + k. Moreover

the number of operations leading to Ekj (t) depends on j and k, but is independent of

N .

Formula (34) will give easily the following result.
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Proposition 4.2. Let Ek′j′ (0) = 0 for j′ ≤ j, k′ ≤ k, j′ + k′ odd. Then Ekj (t) = 0 for j + k

odd.

Proof. Let us suppose Ek′j′ (0) = 0 for j′ ≤ j, k′ ≤ k, j′ + k′ odd. By (34) we have that

E01(t) = 0 since E01(0) = 0. Therefore, by induction on j in (34), E0j (t) = 0 for all j odd.

Since E0(t) ∶= 1, E j0(t) = 0, j > 0, so that E12(t) = 0 by (34) and therefore E1j (t) = 0 for

all j even, since then j ± 1 is odd, and therefore E0j±1(s) = 0 . This gives E21(t) = 0 by

(34) and so on. �

Propositions 4.1 and 4.2 are precisely the contents of the two first items of Theorem

3.1.

4.2. Estimates and proof of Theorem 3.1 (iii). In order to simplify the expres-

sions, we will first suppose that ∥V ∥L∞
h̵
= 1.

Note that one has therefore the following estimates:

(47) ∥Dj∥, ∥∆1
j∥ ≤ j and ∥∆−j ∥, ∥∆=j∥, ∥∆−1(E0)∥, ∥∆=2(E0)∥ ≤ j2.

Let us first recall that (21) expressed on the Ejs reads
(48) ∂tEj =HjEj +N− 1

2∆+j Ej+1 +N− 1

2∆−j Ej−1 +∆=jEj−2
and that (22) and (23) can be rephrased as

(49) ∥Ej(0)∥ ≤ (Aj2)j/2Ô⇒ ∥Ej(t)∥ ≤ (Atj
2)j/2, At = C ′AeCt

for some explicit constants A′, C.

Furthermore for the reader’s convenience we recall the equations for Ekj (t)
(50) ∂tEkj (t) =Hj(t)Ekj (t) +∆=jEkj−2(t) +∆+j Ek−1j+1 (t) +∆−j Ek−1j−1 (t)
Calling Ēnj = n∑

k=0
N−k/2Ekj , one easily check that

∂tĒnj (t) = Hj(t)Ēnj (t) +∆=j Ēnj−2(t) +N− 1

2(∆+j Ēnj+1(t) +∆−j Ēnj−1(t))
−N−

n+1
2 (∆+j (Enj+1(t)) +∆−j (Enj−1(t)).(51)

Therefore Rn
j ∶= Ej − Ēnj satisfies the equation

∂tR
n
j (t) = Hj(t)Rn

j (t) +∆=jRn
j−2(t) +N− 1

2(∆+jRn
j+1(t) +∆−jRn

j−1(t))
+N−

n+1
2 (∆+j (Enj+1(t)) +∆−j (Enj−1(t))(52)

Let us define the mapping

Uj(t, s) ∶ (Ej(s))j=1,...,N ↦ Uj(t, s)((Ej(s))j=1,...,N) ∶= Ej(t).
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In other words, the family (Uj(t, s))j=1,...,N solves the equation:

∂tUj(t, s) = Hj(t)Uj(t, s) +∆=jUj−2(t, s)
+N−

1

2(∆+jUj+1(t, s) +∆−jUj−1(t, s)),
Uj(s, s) = I.

Hence, the solution of (52) reads

Rn
j (t) = Uj(t, 0)((Rn

j (0))j=1,...,N)
+ N−

n+1
2 ∫ t

0
Uj(t, s)((∆+j (s)Enj+1(s)) +∆−j (s)Enj−1(s))j=1,...,N)ds(53)

with again the same convention on negative indices.

By hypothese, Rn
j (0) = 0 since Enj (0) = δn,0E0j (0).

Let us suppose now that

(54) ∥∆+j (Enj+1(s)) +∆−j (Enj−1(s)∥ ≤ Cn(s)(C ′n(s)j2)j/2, ∣s∣ ≤ ∣t∣,
for two increasing functions Cn(s), C ′n(s), C ′n(s) ≥ 1, Then (49) implies that

∥Uj(t, s)((∆+j (s)Enj+1(s)) +∆−j (s)Enj−1(s))j=1,...,N)∥ ≤ Cn(s)(C ′C ′n(s)eC ∣t∣j2)j/2,
and thus

∥Ej(t) − Ēnj (t)∥ = ∥Rn
j (t)∥

= ∥∫ t

0
Uj(t, s)((∆+j (s)Enj+1(s)) +∆−j (s)Enj−1(s))j=1,...,N)ds∥

≤ N−
n+1
2 Ln(t)(L′n(t)j2)j/2,

where

(55) Ln(t) = tCn(t) and L′n(t) = C ′C ′n(t)eC ∣t∣.
It remains to prove an estimate like (54).

We will obtain such an estimate by iterating (34). We first remark that, since eK
j
+Tj/N

is unitary and ∥Dj∥ ≤ j, the Gronwall Lemma gives that

(56) ∥Uj(t, s)∥ ≤ ej∣t−s∣.
We will use

m∏
i=0
e(j+i)(ti−ti+1) ≤ e(j+m)∣tm+1−t0∣ for any (ti)i=0,...,m (see [25]),(57)

∥∆±∥, ∥∆=∥ ≤ j2,(58)

∫ t

0
dt1∫ t1

0
dt2⋯∫ tn−1

0
dtn = tn

n!
.(59)
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Let us remind that we have

Ek0 (t) = δk,0, Ekj (0) = δk,0Ej(0)
together with the estimate ∥Ej(0)∥ ≤ (Aj2)j/2.
(50) reads:

⎧⎪⎪⎨⎪⎪⎩
E0j (t) = Uj(t, 0)E0j (0) + ∫ t

s=0Uj(t, s)∆=jE0j−2(s)ds,Ekj (t) = ∫ t

0 Uj(t, s)(∆=jEkj−2(s) +∆+j Ek−1j+1 (s) +∆−j Ek−1j−1 (s))ds, k ≥ 1.

Let us note first that (50) for k = 0 is verbatim (21) after replacing Ej by E0j and D±j
by 0. On the other side, we know by Remark 3.2 in [25], that the proof of Theorem

2.1 in [25], Theorem 3.1 in the present paper, depends on D±j only through its norm

∥D±j ∥ required to satisfy (47). Therefore we get immediately,

(60) ∥E0j (t)∥ ≤ (C ′AeC ∣t∣j2)j/2,
and thus, by (56), (58) and using jλ ≤ ejλ/e, λ > 0,
(61) ∥∫ t

0
Uj(t, s)(∆+j E0j+1(s) +∆−j E0j−1(s))ds∥1 ≤ 2∣t∣(C ′Ae4/ee(C+1)∣t∣j2)j/2,

and the same argument as the one which leads to (60), we get, for j odd,

(62) ∥E1j (t)∥ ≤ (1 + 2∣t∣)(C ′Ae4/ee(C+1)∣t∣j2)j/2.
For k > 1 we will estimate ∥Ekj (t)∥ by iterating the third line M times, we will

end up with the sum of 3M terms involving the values Ek−s−uj−2r+s−u for any (r,s,u) such

that M = r + s + u with the two constraints k − s − u ≥ 0, j − 2r + s − u ≥ 0. Actually

s, r, u are the numbers of operators ∆+,∆=,∆+ occurring respectively in the term under

consideration.

Using the first constraint we see that

j − 2r + s − u ≤ j − 2r + k ≤ j − 2(M − k) + k = j − 2M + 3k.
So that, takingM = [(j + 3k)/2], the second constraint reduces to j −2r+ s−u = 0 and

the first one to s + u = k since Ek0 = δk,0.
We easily (and very roughly) estimate, using respectively M = [(j + 3k)/2], (59),

(57) and (58),

∥Ekj (t)∥ ≤ 3(j+3k)/2
∣t∣(j+3k)/2((j + 3k)/2)!e3(j+k)∣t∣/2((j + k)2)

j+3k
2
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so that, using (1 + k/j)j ≤ ek, jλ ≤ ejλ/e, λ > 0 and n! ≥ nne−n 1, we get

∥Ekj (t)∥ ≤ (2∣t∣e∣t∣+53(3 + k))3k/2(3e6k/e∣t∣e3∣t∣j2)j/2, k > 1
and, for all k ≥ 0, using (61),

(63) ∥Ekj (t)∥ ≤ (2∣t∣e∣t∣+53(3 + k))3k/2((3e6ke ∣t∣e3∣t∣ + ∣t∣C ′Ae4/ee(C+1)∣t∣)j2)j/2.
We conclude by (58): for some constants Ck(s), C ′k(s), we have

(64) ∥∆+j (Ekj+1(s)) +∆−j (Ekj−1(s)∥ ≤ Ck(s)(C ′k(s)j2)j/2.
Remark 4.3. In the estimate of ∥Ekj (t)∥ the dangerous term is ∆+j Ek−1j+1 which increases

the number of particles. However k is simultaneously decreasing so that we can stop the

iteration after a finite number of steps thus avoiding the usual short time assumption

necessary for a full iteration procedure.

After restoring the dependence in ∥V ∥L∞
h̵

by the same argument as in [25], Section 3,

namely a rescaling of the time and the kinetic part of the Hamiltonian, we find

(65)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ck(s) = 4e(2 ∣s∣∥V ∥L∞h̵
e
∣s∣∥V ∥L∞

h̵ k)3k/2
×(3e6k+4e

∣s∣∥V ∥L∞
h̵

e3
∣s∣∥V ∥L∞

h̵ +C ′AeC
∣s∣∥V ∥L∞

h̵ )1/2
C ′

k
(s) = (3e6ke ∣s∣∥V ∥L∞

h̵
e3
∣s∣∥V ∥L∞

h̵ +
∣s∣∥V ∥L∞

h̵
C ′Ae4/ee(C+1)

∣s∣∥V ∥L∞
h̵ )e6/e

Therefore (54) is satisfied and Theorem 3.1 is proven.

The values of the two constants Dn(t),D′n(t) in (55) can be expressed out of (65)

by taking, by Theorem 2.2, C = sup (B1, C1), C ′ = sup (B2, C2) where B1, C1,B2, C1, C2

are given in Theorem 2.2. in [25].

Remark 4.4. We see that the properties (44)-(47), together with (5), are actually the

only ones being used in the proof of Theorem 3.1.

4.3. Computability and proof of Theorem 3.5. The main result of the present

paper is Theorem 1.4 which asserts the approximability of FN
j (t), a state of the real

N -body evolution, in terms of FN,n
j (t), up to an arbitrary accuracy. Of course the

interest of the result is related to the computability of FN,n
j (t), at least in principle.

The starting point is obviously the knowledge of the solution of the Hartree equation.

The second ingredient is the semigroup Uj(t, s) defined by (32). We underline that

to compute Uj(t, s) we need in principal to solve a j-body problem. But we will show

1although the argument is quite standard, let us recall it: logn! =
n

∑
j=2

log j ≥ ∫
n
1

log(x)dx = [x logx − x]n
1
= n logn − n + 1.
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now how, up to the desired order of accuracy, this problem can be solved by a explicit

perturbative expansion.

The N -independent part of the computation is the “j-kinteic linear mean-field flow”

defined by the linear kinetic mean-field equation of order j:

(66)
d

dt
A(t) = (Kj

+∆j(t))A(t), A(0) ∈ L⊗j,
where ∆j(t) = lim

N→∞
Dj(t).

(66) is solved by the two parameter semigroup U 0
j (t, s) solving

∂tU
0
j (t, s) = (Kj

+∆j(t))U 0
j (t, s).(67)

U 0
j (s, s) = I.

Note that U 0
j exists since Kj generates a unitary flow and ∆j is bounded.

The reason of the terminology comes form the fact that, as shown by (40), ∆1 =
Q(F, ⋅) +Q(⋅, F ) so that, for j = 1, (66) is the linearization of the mean-field equation

(15) around its solution F (t): U(t, s) ∶= U 0
1 (t, s) solves (33).

Note moreover that, for G1,G2 ∈ L,
∆2(G1G2

+G2G1) = (∆1G
1)G2

+G1(∆1G
2) + (∆1G

2)G1
+G2(∆1G

1).(68)

and therefore

U 0
2 (t, s)(G1G2

+G2G1) =(69)

(U(t, s)G1)(U(t, s)G2) + (U(t, s)G2)(U(t, s)G1).
More generally, if Pj ∶ L

j → L⊗j is any homogeneous polynomial invariant by permu-

tations,

(70) U 0
j (t, s)Pj(G1, . . . ,Gj) = Pj(U(t, s)G1, . . . , U(t, s)Gj).

That is: U 0
J drives each Gj along the linearized mean-field flow “factor by factor”.

Denoting by L
⊗j
sym the subspace of symmetric (by permutations) vectors, we just prove

the following result.

Lemma 4.5.

U 0
j (t, s)∣L⊗jsym

= U(t, s)⊗j.

Note also that, since ∆1A(t) is a commutator, we have that ∂tTrA(t) = 0 when A(t)
solves (66). Therefore U 0

j (t, s) preserves trace on L
⊗j
sym.
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To be more concrete, let us present the explicit computation of the first orders.

We have

∂tU(t, s) = 1

ih̵
[−h̵2∆ + VF , U(t, s)] + 1

ih̵
[VU(t,s), F ]

where, in the last term, VU(t,s) acts on E1(s) as VU(t,s)E1(s).

More generally,

∂tU
0
j (t) = 1

ih̵
[−h̵2∆Rjd + V

⊗j
F , U 0

j (t)] +P(U o
j , F )

where

(P(U o
j , F )Ej)(Zj) =

∑
i
∫ dx(V (xi − x) − V (x′i − x))(U 0

j (t, s)Ej(Z≠ij , (x, x))F (xi, x′i),
that is

(P(U 0
j , F )Ej) = j∑

i=1
[V ⋆i (U 0

j (t, s)Ej), F ]i.
Finally

E02(t)(Z2) = ∫ t

0
∫
R2d

dsdZ ′2U2(t, s)(Z2, Z
′

2)V (x′1 − x′2)F (s)(z′1)F (s)(z′2)dsdZ ′2
and

E11(t) = ∫ t

0
U1(t, s)Q(F,F )ds

+(1 − 1
N
)∫ t

0
∫ s

0
U1(t, s)Tr2[V U2(s, u)V F (u)⊗ F (u)]dsdu(71)

Lemma 4.6. E1! and E02 don’t vanish identically.

Proof. By (28) and (34), E02(t) = 0 for all t would imply that T1,2(F⊗F ) = Q(F,F )⊗ F −
F ⊗Q(F,F ) = 0, which is wrong, and E11(t) would imply that ∆+1E02 = Q(F,F ), incom-

patible with applying ∆+1 to (28) taken at j = 2. �

Proof of Theorem 3.5. Let us first note that U 0
j (t, s) is given by a convergent Dyson

expansion and that, by the isometry of the flow generated by Kj and (47), we have by

Gronwall Lemma that ∥U o
j (t, s)∥ ≤ ej∣t−s∣. Since ∥ 1NTj +Dj −∆j∥ ≤ 3ej∣t∣ j2N ∥V ∥L∞h̵

, Uj(t, s)
is itself given by a convergent Dyson expansion.

Let again ∆̃j = 1
N
Tj +Dj −∆j. and Un

j (t, s) be defined by (38).
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We get easily that, for j ≤ CN 1

2
−α,

∥Uj(t, s) −Un
j (t, s)∥ + 1 ≤ (3ej∣t∣

j2

N

∥V ∥L∞
h̵
)n+1

(n + 1)! e3e
j∣t∣C2

∥V ∥L∞
h̵
)n+1
∶= cn,j,α,tN−n−1.

Let us define Ek,nj (t) the solution of (34) where Uj(t, s) is replaced by Un
j (t, s) and∥Ekj (0)∥ ≤ δk,j(Aj2)j/2. One easily adapt the derivation of (63) in order to get the

following result.

Lemma 4.7. Let us rewrite the r.h.s. of (63) as dk,j,t(Aj2)j/2. Then

∥Ekj (t) − Ek,nj (t)∥ ≤ (j + k − 1)!cj+k−1n,j,α,tdk,j,t(Aj2)j/2N−n−1
Proof. Iterating j +k times the first equality of (34), we get that the difference Ekj (t)−Ek,nj (t) is given by the sum of (k + j − 1)! expressions similar to the one for Ekj (t) with
m Ujs replaced by Uj − U

n
j , m = 1, . . . , j + k − 1. Since m ∈ [1, j + k − 1], each such

expression is bounded by c
j+k−1
n,j,α,tN

−n−1 times a similar expression where the Ujs are

replaced by some Vjs, equals either to Uj or to Uj − U
n
j renormalized. That is, in all

cases, ∥Vj(t, s)∥ ≤ ej∣t−s∣. Since the derivation of (63) uses only (56)-(59), the Lemma

is proven. �

Defining Ēn,nj = n∑
k=0
N−k/2Ek,nj , Lemma 4.7 gives immediately that

∥Ēnj − Ēn,nj ∥ ≤ (n + 1)(j + k − 1)!cj+kn,j,α,tdk,j,t(Aj2)j/2N−n−1.
Hence, defining En,n

j = N−j/2Ēn,nj , we get, using (35) and under the hypothesis of The-

orem 3.2,

(72) ∥Ej(t) −En,n
j (t)∥ ≤ Cn,j,tN

−n− 1

2

with

(73) Cn,j,t = L2n(t)N−n− 1

2(L′2n(t)j2)j/2 + (n + 1)(j + k − 1)!cj+kn,j,α,tdk,j,t(Aj2)j/2.
Let us fix n and let us define jα = [(n + 1

2)/α] + 1 (so that N−αjα ≤ N−n− 1

2 ). If

j ≤ jα, (72) gives the result with Mn,α,t = Cn,jα,t. When j > n, let us decompose

FN
j (t) = FN

j, ≤jα(t)+FN
j, >jα(t) where the integral kernel of FN

j,≤jα(t) is given by the r.h.s.

of (37) where the sum is restricted to k ∈ {0, . . . , j − jα}.
By (23), ∥FN

j, ≤jα(t)∥ ≤ 2(C2e
CC1t∥V ∥L∞

h̵ )jαN−n− 1

2 for N > (2C2e
CC1t∥V ∥L∞

h̵ )1/α (by the same

argument as in the proof of Theorem 3.2) and, by (72), ∥FN
j, >jα(t)∥ ≤ ( jα∑

k=0
(jα
k
)Cn,k,t)N−n− 1

2 .
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Theorem 3.5 is proven by setting

(74) M ′

α,t = (2C2e
CC1t∥V ∥L∞

h̵ )1/α, Mn,α,t = Cn,n,t + 2(C2e
CC1t∥V ∥L∞

h̵ )jα + jα∑
k=0
(jα
k
)Cn,k,t.

�

5. The Kac and “soft spheres” models

In this section we consider the two following classes of mean-field models (see [25]

for details).

● Kac model. In this model, the N -particle system evolves according to a stochastic

process. To each particle i, we associate a velocity vi ∈ R3. The vector VN = {v1,⋯, vN}
changes by means of two-body collisions at random times, with random scattering

angle. The probability density FN(VN , t) evolves according to the forward Kolmogorov

equation

(75) ∂tF
N = 1

N
∑
i<j
∫ dωB(ω; vi − vj){FN(V i,jN ) −FN(VN)} ,

where V i,jN = {v1,⋯, vi−1, v′i, vi+1,⋯, vj−1, v′j, vj+1,⋯, vN} and the pair v′i, v
′

j gives the out-

going velocities after a collision with scattering (unit) vector ω and incoming velocities

vi, vj.
B(ω;vi−vj)
∣vi−vj ∣ is the differential cross-section of the two-body process. The resulting

mean-field kinetic equation is the homogeneous Boltzmann equation

(76) ∂tF (v) = ∫ dv1∫ dωB(ω; v − v1){F (v′)F (v′1) −F (v)F (v1)} .
● ‘Soft spheres’ model. A slightly more realistic variant, taking into account the po-

sitions of particles XN = {x1,⋯, xN} ∈ R3N and relative transport, was introduced by

Cercignani [9] and further investigated in [19]. The probability density FN(XN , VN , t)
evolves according to the equation

∂tF
N
+

N∑
i=1
vi ⋅ ∇xi

FN = 1

N
∑
i<j

h (∣xi − xj ∣)B ( xi − xj∣xi − xj ∣ ; vi − vj)
×{FN(XN , V

i,j
N ) − FN(XN , VN)} .(77)

Here h ∶ R+ → R+ is a positive function with compact support. Now a pair of particles

collides at a random distance with rate modulated by h. The associated mean-field
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kinetic equation is the Povzner equation

∂tF (x, v) + v ⋅ ∇xF (x, v) = ∫ dv1∫ dx1 h(∣x − x1∣)B ( x − x1∣x − x1∣ ; v − v1)
×{F (x, v′)F (x1, v′1) −F (x, v)F (x1, v1)},

which can be seen as an h−mollification of the inhomogeneous Boltzmann equation

(formally obtained when h converges to a Dirac mass at the origin). Both classes have

be treated in [25] and Theorem 2.2 apply to them, in the following sense.

The underlying space L is now L1(Rd, dv) (resp. L1(R2d, dxdv))) for the Kac model

(resp. soft spheres) both endowed with the L1 norms ∥⋅∥1. For FN ∈ L⊗N , FN
j ∈ L⊗j is

defined by

FN
j (Zj) = ∫

Ω
FN(z1, . . . , zj, zJ+1, . . . , zN)dzj+1 . . . dzN

for Zn = (z1, . . . , zn), n = 1, . . . ,N with zi = vi ∈ Rd,Ω = R(N−j)d (resp. zi = (xi, vi) ∈
R2d,Ω =R2(N−j)d) for the Kac (resp. soft spheres) model.

In both cases Ej(t) is defined by (18), inverted by (20), and it was proven in [25]

that Theorem 2.2 holds true verbatim in both cases.

Stating now the dynamics driven by (75) and (77) under the form (3) with KN = 0
(resp. KN = − ∑

i=1,...,N
vi∂xi

) for the Kac (resp. soft spheres) model and V N given

by the right hand-sides of (75),(77) respectively, one sees immediately that the proofs

contained in Sections 4.1,4 remain valid after an elementary redefinition of the operators

Dj ,D
−1
j ,D

−2
j in (40)-(43) consisting in removing the bottom and overhead straight lines

in the right hand sides and, by a slight abuse of notation, identifying functions with

their evaluations. The convention (44) remains verbatim the same, together with the

estimates

(78) ∥Dj∥, ∥D1
j∥ ≤ j and ∥D−1j ∥, ∥D−2j ∥, ∥D−11 (E0)∥, ∥D−22 (E0)∥ ≤ j2

N
.

Therefore, by Remark 4.4, the statements contained in Theorem 3.1 and consequences

hold true, in both cases, verbatim. Moreover defining F
N,n
j by (37) in both cases,

Theorem 3.2 reads now as follows

Theorem 5.1. [Kac case] Let FN(t) the solution of the N body system (75) (resp.

77) with initial datum FN(0) = F⊗N , 0 < F ∈ L1(Rd)), ∫
Rd

f(v)dv = 1 (resp, 0 < F ∈
L1(R2d)), ∫

R2d

f(x, v)dxdv = 1), and F (t) the solution of the homogeneous Boltzmann

equation (76) (resp. the Povzner equation(78)) with initial datum F .
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Then, in both cases, for all n ≥ 1 and N ≥ 4(eA2n
t j)2,

∥FN
j (t) −FN,n

j (t)∥1 ≤ N−n− 1

2
2tC2n(t)eA2n

t j√
N

.

The statements of Corollary 3.4 and Theorem 3.5 (witth the hypothesis of Theorem

5.1), and the Remarks 3.3 and 3.6 remain verbatim true.

Appendix A. The asbtract model

A.1. The model. We will show in this section that the main results of [25] and of

Section 1 of the present paper remain true in the “abstract‘” mean-field formalism for

a dynamics of N particles that we will describe now. The present formalism contains

the abstract formalism developed in [25], without requiring a space of states endowed

with a multiplicative structure.

States of the particle system and evolution equations. Let L be a vector space on the

complex numbers. We suppose the family of (algebraic) tensor products {L⊗n, n =
1, . . . ,N} equipped with a family of norms ∥⋅∥n satisfying assumption (A) below. the
N -body dynamics will be driven on L⊗N by a one- and two- body interaction satis-

fying assumption (B) and the mean-field limit equation will be supposed to satisfy

assumption (C).
Assumptions (A) − (C) below will be followed by their incarnations in the K(ac),

S(oft spheres) and Q(uantum) models.

By convention we denote L⊗0 ∶= C, ∥z∥0 = ∣z∣ and we denote by L⊗̂n the completion

of L⊗n with respect to the norm ∥⋅∥n.
For the K, S and Q models, L⊗n is L1(Rd, dv), L1(R2d, dxdv) and L1(L2(Rd), the

space of trace class operators on L2(Rd), with their associated norms.

(A) There exists a family of subsets L⊗̂n+ of L⊗̂n, n = 1, . . . ,N , of positive elements F

denoted by F > 0 stable by addition, multiplication by positive reals and tensor

product and there exists a linear function Tr ∶ L → C, called trace. For every

1 ≤ k, n ≤ N and 1 ≤ i ≤ j ≤ n ≤ N , let Trkn and σn
i,j be the two mapping defined
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by2

(79)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Trkn ∶ L⊗n → L⊗n−1

n
⊗
ı=1
vi ↦ Tr(vk) n

⊗
ı=1
i≠k
vi,

σn
i,j ∶ L⊗n → L⊗n

n
⊗
ı=1
vi ↦

n
⊗
ı=1
v′i, v′

k
= vk, i ≠ k ≠ j ; v′i = vj, v′j = vi.

We will suppose that TrkN and σn
i,j, i, j, k ≤ n ≤ N , satisfy, for any F ∈ L⊗n,

(80)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
TrkN(F ), σn

i,j(F ) > 0, ∥Trkn(F )∥n−1 = ∥F ∥n when F > 0
∥σn

i,j(F )∥n = ∥F ∥n∥Trkn(F )∥n−1 ≤ ∥F ∥n
In particular one has that ∥F ∥n = Trn . . .Tr1F when F > 0 and ∣Trn . . .Tr1F ∣ ≤
∥F ∥n in general.

Note that (80) allows to extend Trkn and σn
i,j to L⊗̂n by continuity. We will use

the same notation for these extensions.

For the K, S and Q models, Trk is ∫Rd ⋅dvk, ∫R2d ⋅dxkdvk as indicated in Section

5, and the partial traces defined in Section 2. The action of σn
i,j consists obviously

in exchanging the variables vi and vj, (xi, vi) and (xj, vj) and (xi, x′i) and (xj, x′j),
(in the integral kernel), respectively. Finally (80) is satisfied in the three cases.

From now on and when no confusion is possible, we will identify L⊗n with its com-

pletion L⊗̂ and we will denote TrkN = Trk (note also that Tr = Tr11 = Tr1), σN
i,j = σi,j and

Tr(= Trn) = TrnnTrn−1n . . .Tr1n. Moreover, with a slight abuse of notation, we will denote

(81)

⎧⎪⎪⎨⎪⎪⎩
∥⋅∥1 = ∥⋅∥n, ∀n = 1, . . . ,N∥⋅∥ the operator norm on any L(L⊗i,L⊗j), ∀i, j = 1, . . . ,N

(here L(L⊗i,L⊗j) is the set of bounded operators form L⊗i to L⊗j).

We call symmetric any element of L⊗n invariant by the action of σn
i,j, i, j ≤ n.

We call state of the N−particle system an element of

(82) DN = {F ∈ L⊗n ∣ F > 0, ∥F ∥ = 1 and F is symmetric}.
2The fact that the second and fourth lines of (79) define a mapping on the whole tensor space L

⊗n results easily from the definition of

tensors products through the so-called universal property [20]. Indeed, let ϕn be the natural embedding L
×n
→ L

⊗n, (v1, . . . , vn)↦ v1⊗ ⋅ ⋅ ⋅⊗vn,
and let h be any mapping L

×n
→ L

×n′ , then the universal property of tensor products says that there is a unique map h̃ ∶ L⊗n → L
⊗n′ such that

h̃ ○ϕn = ϕn′ ○h. Taking n′ = n− 1, h(v1, . . . , vk, . . . , vn) = (trace(vk)v1, . . . , vk−1, vk+1, . . . , vn) for Trkn, and n′ = n, h(v1, . . . , vi, . . . , vj , . . . , vn) =
(v1, . . . , vj , . . . , vi, . . . , vn) for σn

i,j give the desired extensions.
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For j = 0, . . . ,N , the j-particle marginal of FN ∈ (L⊗N)+1 is defined as the the partial

trace of order N − j of FN , that is

(83) FN
j = TrNTrN−1⋯Trj+1FN , FN

N ∶= FN .

Note that FN
j ∈ L⊗j (FN

0 = 1 ∈ L⊗0 ∶= C) and FN
j > 0, ∥FN

j ∥j = ∥FN∥N since Tr is

positivity and norm preserving, and obviously FN
j is symmetric as FN . That is to say:

FN
j ∈ Dj .

(B) The evolution of a state FN in L⊗N is supposed to be given by the N−particle

dynamics associated to a two-body interaction:

(84)
d

dt
FN = (KN

+ V N)FN ,

where the operators on the right hand side are constructed as follows.

(85) KN = N∑
i=1

I
⊗(i−1)
L

⊗K ⊗ I
⊗(N−i)
L

and

(86) V N = 1

N
∑

1≤i<j≤N
Vi,j, Vi,j ∶= σN

1,iσ
N
2,jV ⊗ IL⊗(N−2)σ

N
1,iσ

N
2,j

for a (possibly unbounded) operator K acting on L and a bounded two-body

(potential) operator V acting on L⊗2.

We assume furthermore that K is the generator of a strongly continuous, iso-

metric, positivity preserving semigroup (in L)

(87) eKtF > 0 if F > 0 ; ∥etK∥ = 1 .
and KN + V N is the generator of a strongly continuous, isometric, positivity

preserving semigroup (in L⊗N)

(88) e(K
N
+V N)tFN > 0 if FN > 0 ; ∥et(KN

+V N)∥ = 1 .
Finally, for any F ∈ L, FN ∈ L⊗N and i, r > j, we assume

(89) Tr(KF ) = 0 and Trj,N(Vi,rFN) = 0 .
This last property is necessary to deduce the forthcoming hierarchy.

For the K, S and Q models, the ingredients in (84) are given in Sections 5 and

2, where (87)-(89) are shown to be satisfied.
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Note the symmetry property of the equation (84) induced by the definition of V N :

if the initial condition FN
0 for (84) is symmetric, then FN(t) is still symmetric.

Hierarchies. The family of j-marginals, j = 1, . . . ,N , are solutions of the BBGKY

hierarchy of equations

(90) ∂tF
N
j = (Kj

+
Tj

N
)FN

j +
(N − j)
N

Cj+1F
N
j+1

where:

(91) Kj = j∑
i=1

I
⊗(i−1)
L

⊗K ⊗ I
⊗(j−i)
L

,

(92) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vir
and

(93) Cj+1F
N
j+1 = Trj+1 ⎛⎝∑i≤j Vi,j+1FN

j+1

⎞
⎠ =

j∑
i=1
Ci,j+1F

N
j+1,

(94) Ci,j+1 ∶ L
⊗(j+1) → L

⊗j, Ci,j+1F
N
j+1 = Trj+1 (Vi,j+1FN

j+1) ,
Indeed, thanks to (89) we get easily by applying Trj,N on (84) that

d

dt
FN
j = (Kj

+
Tj

N
)FN

j +
1

N
Trj,N( ∑

1≤i≤j<k≤N
Vi,kF

N)
By symmetry of FN and Vi,k we get Trj,N(Vi,kFN) = Trj+1(Vi,j=1FN

j+1) for all k > j and

(90) follows.

Note that, thanks to the assumption (80) and for all i ≤ j = 1, . . . ,N ,

(95) ∥Ti∥ ≤ j2∥V ∥, and ∥Ci,j+1∥ ≤ j∥V ∥
(meant for (∥Ti∥L⊗i→L⊗i, ∥Ci,j+1∥L⊗(j+1)→L⊗j , ∥V ∥L⊗2→L⊗2 using (81)).

We introduce the non-linear mapping Q(F,F ), Q ∶ L ×L → L by the formula

(96) Q(F,F ) = Tr2(V1,2(F ⊗ F ))
and the nonlinear mean-field equation on L

(97) ∂tF =KF +Q(F,F ), F (0) ≥ 0, ∥F (0)∥1 = 1.
Eq. (97) is the Boltzmann, Povzner or Hartree equation according to the specifications

established in the table above. In full generality we will assume
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(C) (97) has for all time a unique solution F (t) > 0 and ∥F (t)∥ = 1.
For the K, S and Q models, (C) is true by standard perturbations methods.

Correlation error. To introduce the correlation errors, we need to extend slightly the

above structure.

For any subset J ⊂ {1, . . . ,N} we first define

(98) L
⊗J
N ∶= N

⊗
i=1
L
⊗χJ(i),

where χJ is the characteristic function of J and L⊗0 =C.

Then we introduce L⊗J , the subspace of L⊗JN formed by vectors of the form
N
⊗
i=1
vi

where vi = 1 ∈ C for i ∉ J and vi ∈ L for i ∈ J . Note that L⊗J is sent to L⊗∣J ∣ by the

mapping

Π ∶
N
⊗
i=1
vi ∈ L⊗J ↦ ⊗

i∈J
vi ∈ L⊗∣J ∣.

We define a norm on L⊗J by

∥⋅∥L⊗J = ∥Π(⋅)∥1.
For F ∈ L and K ⊂ J ⊂ {1, . . . ,N} we introduce the linear operator [F ]⊗KJ , defined

through its action on factorized elements as

[F ]⊗KJ ∶ L
⊗J/K → L

⊗J

N
⊗
i=1
vi ↦

N
⊗
i=1
ai,(99)

where

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
as = 1 ∈ C if s ∉ J
as = F if s ∈K
as = vs if s ∈ J/K

.

Note that, for K,K ′ ⊂ J, K ∩K ′ = ∅, we have the composition

(100) [F ]⊗KJ [F ]⊗K ′J/K = [F ]⊗(K∪K ′)J = [F ]⊗K ′J [F ]⊗KJ/K ′
and more generally, for all F,G,

(101) [F ]⊗KJ [G]⊗K ′J/K = [G]⊗K ′J [F ]⊗KJ/K ′.
For any subset J ⊂ {1, . . . ,N}, we define the correlation error by

(102) EJ = ∑
K⊂J
(−1)∣K ∣[F ]⊗KJ FN

J/K
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where F solves (97), the operator [F ]⊗KJ is defined by (99) and FN
L ∈ L⊗L is defined

through its decomposition on factorized states. Namely if

FN = ∑
ℓ1,...,ℓN

cℓ1,...,ℓNvℓ1 ⊗ ⋅ ⋅ ⋅ ⊗ vℓN ,

then

FN
L = ∑

ℓ1,...,ℓN

cℓ1,...,ℓNaℓ1 ⊗ ⋅ ⋅ ⋅ ⊗ aℓN ,

where

⎧⎪⎪⎨⎪⎪⎩
as = Tr(vs) ∈C if s ∉ L
as = vs if s ∈ L .

The link between the definition of FN
L and the definition of the marginals FN

j given in

(83) is the following:

(103) FN
{1,...,ℓ} = FN

ℓ ⊗ (1)⊗(N−ℓ) ∈ L⊗ℓ ⊗ (L⊗0)⊗(N−ℓ).
The formula inverse to (102) reads

(104) FN
J = ∑

K⊂J
[F ]⊗KJ EJ/K.

Note that the contribution in the right hand side of (104) corresponding to K = J and

K = ∅ are F⊗∣J ∣ and EJ respectively. To prove (104), we plug (102) in the r.h.s. of

(104) and we use (100):

∑
K⊂J
[F ]⊗KJ EJ/K = ∑

K⊂J
[F ]⊗KJ [ ∑

K ′⊂J/K
(−1)∣K ′∣[F ]⊗K ′J/KF

N
(J/K)/K ′]

= ∑
K∪K ′⊂J

∑
K⊂J

K ′∩K=∅

(−1)∣K ′∣[F ]⊗KJ [F ]⊗K ′J/KF
N
J/(K∪K ′)

= ∑
L⊂J
( ∑
K ′⊂L
(−1)∣K ′∣)[F ]⊗LJ FN

J/L = FN
J

since ∑
K ′⊂L
(−1)∣K ′∣ = ∣L∣∑

k′=0
(∣L∣
k′
)(−1)∣K ′ = 0∣L∣ = 0 if L ≠ ∅, and = 1 if L = ∅ (since

∑
K ′⊂∅
(−1)∣K ′∣ = (−1)0 = 1).

One notices that since FN
j is the marginal of some FN which decomposes on elements

of the form v1 ⊗ ⋯ ⊗ vN , FN
j decomposes on elements of the form ( N

∏
k=j+1

Trvk)v1 ⊗
⋅ ⋅ ⋅ ⊗ vj. Since one knows that FN

j is symmetric, it is enough to choose one bijection
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iJ ∶ {1, . . . , j}→ J, ∣J ∣ = j, and consider the mapping

ΦiJ ∶ L
⊗∣J ∣ ΦiJ→ L

⊗J

⊗
j∈J
vj ∈ L⊗∣J ∣ ↦ N

⊗
i=1
ai ∈ L⊗J(105)

FN
∣J ∣ ↦ FN

J(106)

where as = 1 if i ∉ J and aiJ(j) = vj.
ΦiJ is obviously one-to-one since iJ is so, and, though (105) depends on the embedding

chosen, (106) does not: ΦiJ restricted to the space L
⊗∣J ∣
S of symmetric-by-permutation

elements of L⊗∣J ∣, depends only on J and not on iJ . We will call ΦJ this restriction,

(107) ΦJ = ΦiJ ∣L⊗∣J ∣S

.

The same argument is also valid for EJ which enjoys the same symmetry property

than FN
J and we define

(108) E∣J ∣ = Φ−1J EJ .

ΦJ is obviously isometric and we have that

(109) ∥EJ∥L⊗J = ∥E{1,...,∣J ∣}∥L⊗{1,...,∣J ∣} = ∥E∣J ∣∥1.
Therefore, considering the one-to-one correspondence ΦJ , it is enough to compute/estimate

the quantities Ej, j = 1, . . . ,N . Ej and FN
j are linked by

(110)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ej = ∑
K⊂J
(−1)∣K ∣[F ]⊗KJ ΦJ/KF

N
j−∣K ∣

FN
j = ∑

K⊂J
[F ]⊗KJ ΦJ/KEj−∣K ∣ .

For the K, S and Q models, the corrsponding expression are given in Sections 5

and 2.

A.2. Main results similar to [25]. The kinetic errors Ej, j = 1, . . . ,N, satisfy the

system of equations

∂tEj = (Kj
+

1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D

−1
j Ej−1 +D

−2
j Ej−2,(111)

where the operators Dj ,D
1
j ,D

−1
j ,D

−2
j , j = 1, . . . ,N , are defined in Appendix B below,

equations (120)-(121), together with the proof of (111). Moreover, since (122) holds

true, we know by Remark 3.2 in [25], that the proof of Theorem 2.1 (and therefore

Corollary 2.2) in [25] remain valid in our present setting.
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We get the following result.

Proposition A.1. The statements of Theorem 2.2 hold true in the abstract setting

defined in Section A.1.

A.3. Asymptotic expansion. It is easy to see that the proofs of the main results

expressed in Section 3 are adaptable in an elementary way to the present abstract

paradigm. Indeed they use only the three properties stated in Remark 4.4, valid in the

present setting as pointed out at the very end of Appendix B, formula (122), together

with (87)-(88).

Therefore, the statements contained in Theorem 3.1 and Corollary 3.4 hold true,

verbatim, under the hypothesis of Theorem 2.2, and with the definition of corrections

errors given by the first line of (110) and replacing ∥V ∥L∞
h̵

by ∥V ∥ in (65).

Moreover defining now F
N,n
j by truncating the second line of (110) at order n, that

is

F
N,n
j = ∑

K⊂J
[F ]⊗KJ ΦJ/KE

n
j−∣K ∣

where En
j is defined by (36), Theorem 3.2 reads as follows.

Theorem A.2. [abstract] Let FN(t) the solution of the N body system (84) with initial

datum FN(0) = F⊗N , 0 < F ∈ L, ∥F ∥1 = 1, and F (t) the solution of the mean-field

equation (97) with initial datum F .

Then, for all n ≥ 0 and N ≥ 4(eA2n
t j)2,

∥FN
j (t) −FN,n

j (t)∥1 ≤ N−n− 1

2
2tC2n(t)eA2n

t j√
N

.

The statements of Corollary 3.4 and Theorem 3.5 (witth the hypothesis of Theorem

A.2), and the Remarks 3.3 and 3.6 remain verbatim true.

Appendix B. Derivation of the correlation hierarchy (111)

From the definition of Ej (cf. (102)) we find

∂tEJ = ∑
K⊂J
(−1)∣K ∣ (∂t([F ]⊗KJ )FN

J/K + [F ]⊗KJ ∂tF
N
J/K)

Moreover, by (99)

(112) ∂t ([F ]⊗KJ ) = ∑
k0∈K
[F ]⊗K/{k0}J [∂tF ]⊗{k0}J/(K/{k0}).
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Applying ΦJ defined in (108) to the BBGKY hierarchy (90), one finds easily that FN
J

satisfies, denoting α(j,N) ∶= N−j
N

,

(113) ∂tF
N
J =KJFN

J +
1

N
∑
i<r∈J

Ti,rF
N
J + α(j,N)∑

i∈J
Ci,j+1F

N
J∪{j+1}

(for j + 1 ∉ J).
By the mean-field equation (97) we deduce that

∂tEJ = ∑
K⊂J
(−1)∣K ∣ ∑

k0∈K
[F ]⊗K/{k0}J (KF +Q(F,F ))⊗{k0}

J/(K/{k0}F
N
J/K

+ ∑
K⊂J
(−1)∣K ∣α(j − ∣K ∣,N) ∑

i∈J/K
[F ]⊗KJ Ci,j+1F

N
(J/K)∪{j+1}

+
1
2N ∑

K⊂J
(−1)∣K ∣[F ]⊗KJ ( ∑

i≠r∈J/K
Ti,r)FN

J/K

+ ∑
K⊂J
(−1)∣K ∣[F ]⊗KJ (KJ/KFN

J/K) .(114)

We denote by Ti, i = 1, 2, 3, 4, the four terms contained in the four lines of the r.h.s. of

(114), respectively. The computation of the Tis is purely algebraic and will use only

the four following properties

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
K⊂L
(−1)∣K ∣ = δ∣L∣,∅

∑
K⊂L
∣K ∣(−1)∣K ∣ = −δ∣L∣,1

[F ]⊗KJ [F ]⊗K ′J/K = [F ]⊗K ′J [F ]⊗K ′J/K ′ = [F ]⊗(K∪K ′)J , K,K ′ ⊂ J, K ∩K ′ = ∅
Ci,j+1[F ]⊗K(J/K)∪{j+1} = [F ]⊗K(J/K)Ci,j+1, K ⊂ J, j + 1 ∉ J.

In order not to make the paper too heavy, we will compute extensively two terms and

leave to the reader the straightforward (but tedious) computation of the other terms.

Using the definition (102), we get

T1 ∶= ∑
K⊂J
(−1)∣K ∣ ∑

k0∈K
[F ]⊗K/{k0}J (KF +Q(F,F ))⊗{k0}

J/(K/{k0})F
N
J/K

= − ∑
k0∈J
(KF +Q(F,F ))⊗{k0}J ∑

K⊂J/{k0}
(−1)∣K ∣[F ]⊗KJ/{k0}FN

(J/{k0})/K

= −∑
i∈J
(KF +Q(F,F ))⊗{i}J EJ/{i} .(115)
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To compute T2 we make use of the inverse definition (104):

T2 ∶= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ Ci,j+1F
N
(J/K)∪{j+1}

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

[F ]⊗K ′(J/K)∪{j+1}E((J/K)∪{j+1})/K ′ .(116)

Distinguishing among the belonging or not to K ′ of i and j + 1 in the r.h.s. of (116),

we decompose

(117) T2 = T i,j+1∈K ′
2 + T i,j+1∉K ′

2 + T i∈K ′,j+1∉K ′
2 + T i∉K ′,j+1∈K ′

2

We have

T i,j+1∈K ′
2 = ∑

K⊂J
α(j − ∣K ∣,N)(−1)∣K ∣ ∑

i∈J/K
[F ]⊗KJ . . .

. . . Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

i,j+1∈K ′

[F ]⊗K ′(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . . Ci,j+1 ∑
K ′′⊂(J/K)/{i}

[F ]⊗K ′′∪{i,j+1}(J/K)∪{j+1}E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣ ∑
i∈J/K

[F ]⊗KJ . . .

. . . Ci,j+1 ∑
K ′′⊂(J/{i})/K

[F ]⊗K ′′∪{i,j+1}(J/K)∪{j+1}E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣∑
i∈J
[F ]⊗KJ . . .

. . . ∑
K ′′⊂(J/{i})/K

[F ]⊗K ′′(J/K)Ci,j+1[F ]⊗{i,j+1}((J/K)/K ′′)∪{j+1}E(J/K)/(K ′′∪{i})

= ∑
i∈J
∑

K⊂J/{i}
α(j − ∣K ∣,N)(−1)∣K ∣[F ]⊗KJ ∑

K ′′⊂(J/{i})/K
[F ]⊗K ′′(J/K) . . .

. . . Ci,j+1[F ]⊗{i,j+1}((J/K)/K ′′)∪{j+1}E(J/K)/(K ′′∪{i})

= ∑
i∈J
∑

L⊂J/{i}
(∑
K⊂L

α(j − ∣K ∣,N)(−1)∣K ∣)[F ]⊗LJ . . .

. . . Ci,j+1[F ]⊗{i,j+1}((J/L)∪{j+1}EJ/(L∪{i})
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= α(j,N)∑
i∈J
Ci,j+1[F ]⊗{i,j+1}J∪{j+1}EJ/{i}

−
1

N
∑
i≠l∈J
[F ]⊗{l}J Ci,j+1[F ]⊗{i,j+1}(J/{l})∪{j+1}EJ/({i,l})

= α(j,N)∑
i∈J
[Q(F,F )]⊗{i}J EJ/{i}

−
1

N
∑
i≠l∈J

Ci,j+1[F ]⊗{l}J∪{j+1}[F ]⊗{i,j+1}(J/{l})∪{j+1}EJ/({i,l})

= α(j,N)∑
i∈J
[Q(F,F )]⊗{i}J EJ/{i} −

1

N
∑
i≠l∈J

Ci,j+1[F ]⊗{i,l,j+1}J∪{j+1} EJ/({i,l})

since ∑
K⊂L
(−1)∣K ∣ = δL,∅. Note that there is a crucial compensation:

T1 + T
i,j+1∈K ′
2 = − j

N
∑
i∈J
[Q(F,F )]⊗{i}J EJ/{i}

−
1

N
∑
i≠l∈J
[Q(F,F )]⊗{i}J [F ]⊗{l}

J/{i}EJ/{i,l}.(118)

The computations of T i,j+1∉K ′
2 , T i∈K ′, j+1∉K ′

2 . T i∉K ′,j+1∈K ′
2 go the same way and we omit

it here.

We consider a similar dichotomy for the term

T3 ∶= 1

2N
∑
K⊂J
(−1)∣K ∣[F ]⊗KJ ( ∑

i≠r∈J/K
Ti,r)FN

J/K

= 1

2N
∑
K⊂J
(−1)∣K ∣[F ]⊗KJ ( ∑

i≠r∈J/K
Ti,r) ∑

K ′⊂J/K
[F ]⊗K ′J/KEJ/(K∪K ′) .

according, this time, to the cases i, r ∈ K ′, i, r ∉ K ′, i ∈ K ′, r ∉ K ′ and i ∉ K ′, r ∈ K ′.
The computation of the different terms uses the same “tricks” than for T2 and we omit

them.

Finally, we obtain easily that

T4 ∶= ∑
K⊂J
(−1)∣K ∣[F ]⊗KJ (KJ/KFN

J/K) =KJEJ .(119)

Summing up all the contributions T1, 1 = 1, . . . , 4, we get (111) after specializing to the

case J = {1, . . . , j}, using (108) and setting
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Dj ∶ L
⊗j → L

⊗j, j = 1, . . . ,N,
Ej ↦

N − j

N
∑
i∈J
Ci,j+1 ([F ]⊗{i}J∪{j+1}Φ(J∪{j+1})/{i}Ej + [F ]⊗{j+1}J∪{j+1}Ej) ,

−
1

N
∑
i≠l∈J

Ci,j+1([F ]⊗{l}J∪{j+1}Φ(J/{l})∪{j+1}Ej)
D1

j ∶ L
⊗(j+1) → L

⊗j, j = 1, . . . ,N − 1,
Ej+1 ↦

N − j

N
Cj+1Ej+1 ,

D−1j ∶ L
⊗(j−1) → L

⊗j j = 2, . . . ,N,
Ej−1 ↦

⎛
⎝−

j

N
∑
i∈J
[Q(F,F )]⊗{i}J +

1

2N
∑
i,r∈J

Ti,r[F ]⊗{i}J

⎞
⎠ΦJ/{i}Ej−1 ,

−
1

N
∑
i≠l∈J
[F ]⊗{l}J Ci,j+1[F ]⊗{j+1}(J/{l})∪{j+1}ΦJ/{l}Ej−1

−
1

N
∑
i≠l∈J
[F ]⊗{l}J Ci,j+1[F ]⊗{i}(J/{l})∪{j+1}Φ(J/{i,l})∪{j+1}Ej−1

D−2j ∶ L
⊗(j−2) → L

⊗j, j = 3, . . . ,N,
Ej−2 ↦

1

2N
∑
i,s∈J

Ti,s[F ]⊗{i}J [F ]⊗{s}
J/{i}ΦJ/{i,s}Ej−2

−
1

N
∑
i≠l∈J
[Q(F,F )]⊗{i}J [F ]⊗{l}

J/{i}ΦJ/{i,l}Ej−2.(120)

where, by convention,

(121)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D1

N ∶=D−21 ∶= 0
D−11 (E0) ∶= − 1

N
Q(F,F ) ,

D−22 (E0) ∶= 1
N
(T1,2(F ⊗ F ) −Q(F,F )⊗ F −F ⊗Q(F,F )) .

Note that one has the following estimates:

(122) ∥Dj∥, ∥D1
j∥ ≤ j and ∥D−1j ∥, ∥D−2j ∥, ∥D−11 (E0)∥, ∥D−22 (E0)∥ ≤ j2

N
.
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(LYSM). T. P. thanks also the Dipartimento di Matematica, Sapienza Università di
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