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ASYMPTOTIC EXPANSION OF THE MEAN-FIELD APPROXIMATION

THIERRY PAUL AND MARIO PULVIRENTI

Abstract. We established and estimate the full asymptotic expansion in integer powers of 1
N

of the

[
√
N] first marginals of N -body evolutions lying in a general paradigm containing Kac models and

non-relativistic quantum evolution. We prove that the coefficients of the expansion are, at any time,

explicitly computable given the knowledge of the linearization on the one-body meanfield kinetic limit

equation. Instead of working directly with the corresponding BBGKY-type hierarchy, we follows a

method developed in [22] for the meanfield limit, dealing with error terms analogue to the v-functions

used in previous works. As a by-product we get that the rate of convergence to the meanfield limit in
1
N

is optimal.
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1. Introduction: motivation and main results

Mean field limit concerns systems of interacting (classical or quantum)

particles whose number diverges in a way linked with a rescaling of the

interaction insuring an equilibrium between interaction and residual kinetic

energies. In the case of an additive one-body kinetic energy part and a two-

body interaction, and without taking in consideration quantum statistics,
1



2 T. PAUL AND M. PULVIRENTI

this equilibrium is reached by putting in front of the interaction a coupling

constant proportional to the inverse of the number of particles.

The system is then described by isolating the evolution of one (or j) par-

ticle(s) and averaging over all the other. This leads to a partial information

on the system driven by the so-called j-marginals. The mean field theory

insures then that the j-marginals tends, as the number of particles diverges,

to the j-tensor power of the solution of a non-linear one-body meanfield

equation (Vlasov, Hartree,...) issued from the 1-marginal on the initial

N -body state. This program has be achieved in many different situations,

and the literature concerning the mean field approach is protuberant. We

refer to the review article [25] for a reasonable bibliography.

Much less is known about the fluctuations around this limit, namely

the correction to be added in order to the factorized limit to get better

approximations of the true evolution of the j-marginals.

The identification of the leading order of these fluctuations with a Gauss-

ian stochastic process has been established in the quantum context first in

[14] and in the classical one in [5]. For the classical dynamics of hard

spheres, the fluctuations around the Boltzmann equation have been com-

puted at leading order in [24], generalizing to non-equilibrium states the

results of [3]. More recently, for the quantum case, fluctuations near the

Hartree dynamics has been derived in [2] and in [20] (after [19]) and, in

the grand canonical ensamble (number of particles non fixed) in [2], using

methods of second quantization (Fock space).

Recently, we developed in [22] (together with S. Simonella) a method to

derive mean field limit, alternative to the ones using empirical measures

or direct estimates on the “BBGKY-type” hierarchies (systems of coupled

equations satisfied by the set of j-marginals). This method rather uses the

hierarchy followed by the “kinetic errors” Ej−k (defined below), already

used (under the name “v-functions”) to deal with kinetic limits of sto-

chastic models [10, 7, 4, 11, 12, 6, 8, 13] and recently investigated in the

more singular low density limit of hard spheres [23]. These quantities are,

roughly speaking, the coefficient of the decomposition of the j-marginal as

a linear combination of the k-tensor powers, k = 1, . . . , j, of the solution
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of the mean-field equation issued from of the 1-marginal of the initial full

state. We developed in [22] a strategy suitable in particular for Kac models

(homogeneous original one [15, 16] and non-homogeneous [9]) and quantum

mean field theory. This strategy allowed us to derive the limiting factor-

ization property of the j-marginals up to, roughly speaking, j ≲
√
N . This

threshold is, on the other side, the one obtained by heuristic arguments as

shown in [22].

Here and in all this article, N is the number of particles of the system

under consideration.

In the present note we provide and estimate a full asymptotic expan-

sion in powers of 1
N of the difference between the evolution of j-marginals

and its factorized leading order form (Corollary 1.5), following a similar

result for the kinetic errors Ej(t) (Theorem 1.4). Our results are valid

for j ≲
√
N in an abstract paradigm, slight generalization of the abstract

formalism developed in [22], which is described in the next paragraph and

applies of course to the different Kac models and quantum mean field the-

ory treated in [22]. Moreover, we show that the additional knowledge of

the linearization of the mean field flow, around the meanfield solution is-

sued from the 1-marginal of the initial data, gives an explicit construction

of the full asymptotic expansion of the j-marginals in powers of 1
N .

In the present article, we will establish the results just described in the

following situations:

● the quantum mean-field model

● the homogeneous and non-homogeneous Kac models

● a general “abstract” model containing the two first situations

We will state in this section the quantum results and postpone in Section

5 and in the Appendix A the Kac’s type and the abstract results, respec-

tively. Sections 2 and 3 contain the algebraic and anlytical proofs of our

results in the quantum case, immediately transposable to the Kac and ab-

stract situations as shown in Section 5 and Appendix A. In Section 4 one

compute explicitly the first terms of the asymptotic expansions obtained

in the quantum case and rely them to previous works.
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1.1. Quantum mean-field. L1(L2(Rd), the space of trace class operators

on L2(Rd), with their associated norms.

We consider the evolution of a system of N quantum particles interacting

through a (real-valued) two-body, even potential V , described for any value

of the Planck constant h̵ > 0 by the Schrödinger equation

ih̵∂tψ =HNψ , ψ∣
t=0

= ψin ∈ HN ∶= L2(Rd)⊗N ,

where

HN ∶= −1
2h̵

2
N

∑
k=1

∆xk +
1

2N
∑

1≤k,l≤N

V (xk − xl).

Instead of the Schrödinger equation written in terms of wave functions,

we shall rather consider the quantum evolution of density matrices. An

N -body density matrix is an operator FN such that

0 ≤ FN = (FN)∗, traceHN
(FN) = 1 .

The evolution of the density matrix FN ↦ FN(t) of a N -particle system

is governed for any value of the Planck constant h̵ > 0 by the von Neumann

equation

(1) ∂tF
N =

1

ih̵
[HN , F

N].

Positivity, norm and trace are obviously preserved by (1).

For each j = 1, . . . ,N , the j-particle marginal FN
j (t) of FN(t) is the

unique operator on Hj such that

traceHN
[FN(t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj ⊗ IHN−j)] = traceHj

[FN
j (t)(A1 ⊗ ⋅ ⋅ ⋅ ⊗Aj)] .

for all A1, . . . ,Aj bounded operators on H. Alternatively the FN
j can be

defined by the partial trace of FN on the N − j last variables (see [1].

Namely, defining FN through its integral kernel FN(x1, . . . , xn;x′1, . . . , x
′
n),

the integral kernel of FN
j is defined as

FN
j (x1, . . . , xj;x

′
1, . . . , x

′
j) ∶= (Trj+1 . . .TrNFN)(x1, . . . , xj;x

′
1, . . . , x

′
j)

∶= ∫
Rd(Nj)

FN(x1, . . . , xN ;x′1, . . . , x
′
j, xj+1, . . . , xN)dxj+1dxN .(2)

It will be convenient to rewrite (1) in the following operator form

(3) ∂tF
N = (KN + V N)FN
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where KN , V N are operators on L1(L2(RNd)) defined by

(4) KN =
1

ih̵
[−
h̵2

2
∆RdN , ⋅], V N =

1

2N
∑
k,l

Vk,l with Vk,l ∶=
1

ih̵
[V (xk − xl), ⋅].

Note that the (essantial) self-adjointness of HN implies that

(5) ∥et(K
N+V N)∥L1(L2(Rd))→L1(L2(Rd)) = ∥etK

N

∥L1(L2(Rd))→L1(L2(Rd)) = 1, t ∈ R.

We will also denote by

(6) L = L1(L2(Rd)) so that L⊗n = L1(L2(Rnd)), n = 1, . . . ,N,

and, with a slight abuse of notation, by

(7)

⎧⎪⎪
⎨
⎪⎪⎩

∥⋅∥1 the trace norm on any L⊗j,

∥⋅∥ the operator norm on any L(L⊗i,L⊗j)

for i, j = 1, . . . ,N (here L(L⊗i,L⊗j) is the set of bounded operators form

L⊗i to L⊗j).

A density matrix F n ∈ L⊗n is called symmetric if its integral kernel

F n(x1, . . . , xn;x′1, . . . , x
′
n) is invariant by any permutation

(xi, x
′
i)↔ (xj, x

′
j), i, j = 1, . . . , n.

Note that the symmetry of FN is preserved by the equation (1) due to the

particular form of the potential.

We define, for n = 1, . . . ,N ,

(8) Dn = {F ∈ L⊗n ∣ F > 0, ∥F ∥1 = 1 and F is symmetric}.

Note that FN
j ∈ L⊗j (FN

0 = 1 ∈ L⊗0 ∶= C) and FN
j > 0, ∥FN

j ∥1 = ∥FN∥1, and

obviously FN
j is symmetric as FN . That is to say:

FN
j ∈ Dj.

The family of j-marginals, j = 1, . . . ,N , are solutions of the BBGKY

hierarchy of equations (see [1])

(9) ∂tF
N
j = (Kj +

Tj
N

)FN
j +

(N − j)

N
Cj+1F

N
j+1

where:

(10) Kj =
1

ih̵
[−
h̵2

2
∆Rjd, ⋅]

(11) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vir
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and

(12) Cj+1F
N
j+1 =

j

∑
i=1

Ci,j+1F
N
j+1

with

Ci,j ∶ L⊗(j+1) → L⊗j

Ci,j+1FN
j+1 = Trj+1 (Vi,j+1F

N
j+1) ,(13)

where Trj+1 is the partial trace with respect to the (j + 1)th variable, as in

(2).

Note that, for all i ≤ j = 1, . . . ,N ,

(14) ∥Tj∥ ≤ j
2∥V ∥L∞

h̵
, and ∥Ci,j+1∥ ≤ j

∥V ∥L∞

h̵
.

(meant for ∥Tj∥L⊗j→L⊗j and ∥Ci,j+1∥L⊗(j+1)→L⊗j in accordance with (7)).

The Hartree equation reads

(15) ih̵∂tF = [−
h̵2

2
∆ + VF (x), F ], F (0) ∈ D1,

where VF (x) = ∫Rd V (x − y)F (y, y)dy, F (y, y′) being the integral kernel

of F .

Note that (15) reads also

(16) ∂tF =K1F +Q(F,F ),

with

(17) Q(F,F ) = Tr2
(V1,2(F ⊗ F )).

Since V is bounded, (15) has for all time a unique solution F (t) > 0 and

∥F (t)∥ = 1 (see again [1]).

In order to define the correlation error in an easy way, we need a bit

more of notations concerning the variables of integral kernels.

We define the variables zi, i = 1, . . . ,N, equal to (xi, x′i), and Zj = (z1, . . . , zj).

We will also denote by Z
/{i1,⋯,ik}
j ∈ R2(j−k)d, where {i1,⋯, ik} ⊂ {1,⋯, j}, the

vector Zj ∶= (z1, . . . , zj) after removing the components zi1, . . . zik.
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Definition 1.1. For any j = 1, . . . ,N , we define the correlation error

Ej ∈ L⊗j by its integral kernel

(18) Ej(Zj) =
j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

(−1)kF (zi1) . . . F (zik)F
N
j−k(Z

/{i1,⋯,ik}
j ).

By convention and consistently with FN
0 = ∥F ∥ = 1, we define E0 ∶= 1.

In [22] was shown that (18) is inverted by the following equality.

(19) FN
j (Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (zi1) . . . F (zik)Ej−k(Z
/{i1,⋯,ik}
j ), j = 0, . . . ,N..

i.e. FN
j is the operator of integral kernel given by (19).

Note that, in order to avoid too heavy notations, we made, in (18) and

(19), a slight abuse of notation as writing integral kernels as functions of

Zj = ((x1, x′1), . . . , (xj, x
′
j)) and not functions of (x1, . . . , xj;x′1, . . . , x

′
j).

In the sequel, we will take h̵ = 1, the correct value being easy to restore

in the different expressions.

1.2. Main results of [22]. Theorem 2.4, theorem 2.1 and Corollary 2.2

in [22] state the following facts.

The kinetic errors Ej, j = 1, . . . ,N, satisfy the system of equations

∂tEj = (Kj +
1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D

−1
j Ej−1 +D

−2
j Ej−2,(20)

where the operators DJ ,D1
j ,D

−1
j ,D

−2
j , j = 0, . . . ,N , are defined at the be-

ginning of the Section 2, formulas (35)-(38).

Theorem 1.2 (Theorem 2.2. and Corollary 2.3 in [22]).

Let Ej(0) satisfy for some C0 > 1,B > 0

(21)

⎧⎪⎪
⎨
⎪⎪⎩

∥E1(0)∥1 ≤ B
N

∥Ej(0)∥1 ≤ (
j2

N )j/2Cj
0 , j ≥ 2.

Then, for all t > 0 and all j = 1, . . . ,N , one has
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(22)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

∥E1(t)∥1 ≤ 1
N (B2e

B1t∥V ∥L∞
h̵ )

∥Ej(t)∥1 ≤ (C2e
C1t∥V ∥L∞

h̵ )
j

(
j

√
N
)
j

for some B1,C1 > 0, B2,C2 ≥ 1 explicit (see formulas (78),(81) in [22]),

and

(23) ∥FN
j (t) − F (t)⊗j∥1 ≤D2e

D1t∥V ∥L∞
h̵

j2

N
,

where D2 = sup{B2, (eC0)
2}, B1 = sup{B1,2C1}.

1.3. Asymptotic expansion and main result of the present article.

Two questions arise naturally:

(1) are the estimates (22) sharp?

(2) could (23) be improved with a r.h.s. of any order we wish?1

We will see below that, indeed, not only the estimates (22) are true,

but N j/2EN
j (t) has a full asymptotic expansion in ( 1

N )
1
2 (actually we will

show that this expansion contains only powers ( 1
N )

k
2 with k + j even) if

N j/2EN
j (0) do posses such an expansion in half powers of 1/N .

More precisely we will show that, under the hypothesis (21) on the initial

data,

(25) Ej(t) = N
−j/2Ej, Ej(t) ∼

∞

∑
`=0

E `j(t)N
−`/2 with Ekj = 0 for j + k odd.

for all time t and all j = 1, . . . ,N .

Moreover we will see that all the E `j can be explicitly recursively computed

after the knowledge of the linearization of the mean field equation (15)

around the solution of (15) with initial condition F (0) = (FN(0))1. Indeed

the proof will involve the “j-kinteic linear mean field flow” defined by the

1Of course (22) and (23) imply that

(24) ∥FN
j (t) − F⊗j

− ∑
J≠K⊂J
∣K∣≤k≤∣J ∣

F⊗∣K∣EN
∣J ∣−∣K∣∥ = O(N−(k+1)/2

),

but first one cannot go further in the approximation, and second (24) is meaningless without the knowledge of the EN
j s.
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linear kinetic mean field equation of order j:

(26)
d

dt
A(t) = (Kj +∆j(t))A(t), A(0) ∈ L⊗j,

solved by the two parameter semigroup U 9
J(t, s) solving

∂tU
0
j (t, s) = (Kj +∆j(t))U

0
j (t, s).(27)

U 0
j (s, s) = I.

Here ∆j(t) = lim
N→∞

Dj(t) and U 0
j exists since Kj generates a unitary flow

and ∆j is bounded.

The reason of the terminology comes form the fact that, as shown by

(35), ∆1 = Q(F, ⋅)+Q(⋅, F ) so that, for j = 1, (26) is the linearization of the

mean field equation (15) around its solution F (t). Note moreover that, for

G1,G2 ∈ L,

∆2(G
1G2 +G2G1) =(28)

(∆1G
1)G2 +G1(∆1G

2) + (∆1G
2)G1 +G2(∆1G

1).

and therefore

(29) U 0
2 (t, s)(G

1G2 +G2G1) = (U 0
1 (t, s)G

1)(U 0
1 (t, s)G

2).

More generally, if Pj ∶ Lj → L⊗j is any homogeneous polynomial invariant

by permutations,

(30) U 0
J(t, s)Pj(G

1, . . . ,Gj) = Pj(U
0
1 (t, s)G

1, . . . , U 0
1 (t, s)G

j).

That is: U 0
J drives each Gj along the linearized mean field flow “factor by

factor”. Denoting by L⊗j
sym the subspace of symmetric (by permutations)

vectors, we just prove the following result.

Lemma 1.3.

U 0
j (t, s)∣L⊗jsym

= U 0
1 (t, s)

⊗j.

Note also that U 0
j (t, s) is given by a convergent Dyson expansion and

that, by Gronwall Lemma and the isommetry of the flow generated by Kj,

we have that ∥U o
j (t, s)∥ ≤ e

j∣t−s∣. Moreover, we will also need in the sequel

the semigroup defined by

∂tUj(t, s) = (Kj +
Tj
N +

N−j
N Dj(t))Uj(t, s).(31)

Uj(s, s) = I.
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Uj(t) exists by the same argument as for U 0
j (t). Moreover, since we are

in the regime j2/N small, Uj can be also computed out of U 0
j by convergent

perturbation expansion (in j2/N). Indeed (35), (100) and (40) show clearly

that ∥
Tj
N +

N−j
N Dj −∆j∥ ≤

j2

N . Therefore Uj(t) can be approximated for any

t by a finite Dyson expansion up to any power of j2/N .

Finally, we will extend (23) as we will show that FN
j has an asymptotic

expansion in positive powers of 1/N whose partial sums up to any order

n ≥ 0 is O(jN−n−1)-close to FN
j .

The main results of the present note are the following.

Theorem 1.4. Consider for j = 0, . . . ,N, k = 0, . . . , t ≥ 0 the system of

recursive relations

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ekj (t) = Uj(t,0)Ekj (0)

+ ∫
t
s=0Uj(t, s)(∆

=
jE

k
j−2(s) +∆+

j E
k−1
j+1 (s) +∆−

j E
k−1
j−1 (s))ds

Ek0 (t) = δk,0,

Ek−1(t) = Ek−2(t) = E−1
j (t) = 0 by convention.

where Uj(t, s) is the two times flow defined by (31) and ∆+
jD

1
j , ∆−

j =

ND−1
j , ∆=

j = ND
−2
j , the Djs being given by (35)-(38).

Then, for any j = 1, . . . ,N, k = 0, . . . , t ≥ 0, the knowledge of Ek
′

j′ (0) for

j′ = 1, . . . , j + k, k′ = 0, . . . , k, determine in a unique way Ekj (t), and

Ekj (t) = 0 when j + k is odd

if Ekj (0) satisfies the same property.

Moreover, if Ej(t) ∶= N−j/2Ej(t) solves the equation (117) and satisfies

(21), one has

∥Ej(t) −
2n

∑
k=1

N−k/2Ekj (t)∥1 ≤ tC2n(t)N
−n− 1

2(A2n
t j

2)j/2,

where Cn(t),An
t are defined in (77) below.

Let us define, for j = 1, . . . ,N, n = 0, . . .

(32) En
j (t) =

2n

∑
k=0

N−
j+k
2 Ekj (t)
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(note that En
j (t) contains only integer powers ofN−1, since Ekj = 0 when j+ k

is odd, that is En
j =

n

∑
k=[(j+1)/2]

cjkN
−k), and FN,n

j (t) the operator of integral

kernel FN,n
j (t)(Zj) defined by

(33) FN,n
j (t)(Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (t)(zi1) . . . F (t)(zik)E
n
j−k(Z

/{i1,⋯,ik}
j ),

(that is (109) truncated at order n, same slight abuse of notation). FN,n
j

is therefore a polynomial of order n in 1
N .

Corollary 1.5. Let FN(t) the solution of the quantum N body system (1)

with initial datum FN(0) = F⊗N , F ∈ L(L2(Rd)), F ≥ 0,TrF = 1, and F (t)

the solution of the Hartree equation (15) with initial datum F .

Then, for all n ≥ 1,

∥FN
j (t) − FN,n

j (t)∥1 ≤ N
−n− 1

2
2tC2n(t)eA

2n
t j

√
N

.

for N ≥ 4(eA2n
t j)

2.

Remark 1.6. If one is interested only to the expansion up to order n < j,

we can change the sum in the l.h.s. of the inequality in Corollary 1.5 by a

sum up to ` = n.

Proof. The proof is similar to the one of Corollary 2.2 in [22].

∥FN
j (t) − ∑

K⊂{1,...,j}

j

Π
K

(F⊗∣K ∣ ⊗En
j−∣K ∣

)∥

≤

j

∑
k=1

(
j − k

k
)∥Ek −E

n
k ∥

≤ N−n− 1
2

j

∑
k=1

(
j

k
)C2n−k(t)(

A2n−k
t k2

N
)k/2

≤ N−n− 1
2C2n(t)

j

∑
k=1

j(j − 1) . . . (j − k + 1)(
A2n
t√
N

)k
kk

k!

≤ N−n− 1
2C2n(t)

j

∑
k=1

(
jeA2n

t√
N

)k ≤ N−n− 1
2

2C2n(t)eA
2n
t j

√
N

for N ≥ 4(eA2n
t j)

2 (we used kk

k! ≤
ek√
2πk

). �

Corollary 1.7. The rate of convergence to the meanfield limit in 1
N is

optimal.
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Remark 1.8. In the asymptotic expansion Ej(t) ∼
∞

∑
k=[(j+1)/2]

cjk(t)N
−k the

coefficients cjk(t), such as Ekj (t), depend on N as well: first by the de-

pendence of ∆+
j = (1 − j

N )Cj+1 and also by Uj(t, s) defined by (41). As

mentioned already the latter can be expressed as a (convergent) series in 1
N

out of the linearization of the meanfield equation so that obtaining a full

asymptotic expansion of Ej(t) with the only knwoledge of the linearization

of the meanfield equation is (tedious but) elementary.

2. The recursive construction

Let us recall from [22] that the hierarchy of error terms saisfy the follow-

ing equation:

∂tEj = (Kj +
1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D

−1
j Ej−1 +D

−2
j Ej−2.(34)

Here the four operator Dj,D1
j ,D

−1
j ,D

−2
j , j = 0, . . . ,N , are defined as follows

(here again, J = {1, . . . , j}): for any operator G ∈ L⊗n, n = 1, . . . ,N , we de-

note by G(Zn) its integral kernel, and for any function F (Zn), n = 1, . . . ,N,

we define F (Zn) as being the operator on L⊗n of integral kernel F (Zn) then
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Dj ∶ L⊗j → L⊗j

Ej ↦
N − j

N
∑
i∈J

Ci,j+1 (F (zi)Ej(Z
/{i}
j+1 ) + F (zj+1)Ej(Zj))

−
1

N
∑
i≠l∈J

Ci,j+1(F (zl)Ej(Z
/{l}
j+1 )(35)

D1
j ∶ L⊗(j+1) → L⊗j

Ej+1 ↦
N − j

N
Cj+1Ej+1

(36)

D−1
j ∶ L⊗(j−)1 → L⊗j

Ej−1 ↦
1

N
∑
i,r∈J

Ti,rF (zi)Ej−1(Z
/{i}
j ) −

j

N
∑
i∈J

Q(F,F )(zi)Ej−1(Z
/{i}
j )

−
1

N
∑
i≠l∈J

Ci,j+1(F (zl)F (zj+1)Ej−1(Z
/{l}
j )

−
1

N
∑
i≠l∈J

Ci,j+1(F (zl)F (zi)Ej−1(Z
/{i,l}
j+1 )(37)

D−2
j ∶ L⊗(j−2) → L⊗j

Ej−2 ↦
1

N
∑
i,s∈J

Ti,sF (zi)F (zr)Ej−2(Z
/{i,r}
j ).

−
1

N
∑
i≠l∈J

Q(F,F )(zi)F (zl)Ej−2(Z
/{i,l}
l ).(38)

where, by convention,

(39)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

D1
N ∶=D−2

1 ∶= 0

D−1
1 (E0) ∶= −

1
NQ(F,F ) ,

D−2
2 (E0) ∶=

1
N (T1,2(F ⊗ F ) −Q(F,F )⊗ F − F ⊗Q(F,F )) .

In (35)-(38), F (z) is meant as being the integral kernel of F (t) solution of

the Hartree equation 15.

Note that one has the following estimates:

(40) ∥Dj∥, ∥D
1
j∥ ≤ j and ∥D−1

j ∥, ∥D−2
j ∥, ∥D−1

1 (E0)∥, ∥D
−2
2 (E0)∥ ≤

j2

N
.

Remark 2.1. We shall see that the properties (39)-(40), together with (5),

are actually the only ones being used in the proof of Theorem 1.4.
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We define the (two parameters) semigroup Uj(t, s) for s ≤ t, satisfying

∂tUj(t, s) = (KJ +
TJ
N

+Dj(t))Uj(t, s), j = 1, . . . ,N

Uj(s, s) = I =∶ U0(t, s)(41)

Obviously Uj(t, s)Uj(s, t) = I so that

(42) Uj(t, s)
−1 = Uj(s, t).

Having in mind the result of Theorem 2.1. of [22] and calling Ej = N−j/2Ej,,

Hj =Kj +Tj/N +Dj, ∆+
j =D

1
j , ∆−

j = ND
−1
j ,∆

=
j ∶= ND

−2
j we find easily that

∂tE1 = H1E1 +N
− 1

2∆+
1E2 +N

− 1
2∆−

1E0

= H1E1 +N
− 1

2∆+
1E2 −N

− 1
2Q(F,F )

∂tEj = HjEj +N
− 1

2D1
jEj+1 +N

1
2D−1

j Ej−1 +ND
−2
j Ej−2

= HjEj +N
− 1

2∆+
j Ej+1 +N

− 1
2∆−

j Ej−1 +∆=
jEj−2, j ≥ 2(43)

Therefore

∂tE1 = H1E1 +O(N− 1
2)

∂tE2 = H2E2 +∆=
2E0 +O(N− 1

2)

= H2E2 + V
2F ⊗ F +O(N− 1

2)

.

∂tEj = HjEj +∆=
jEj−2 +O(N− 1

2), j ≥ 3.

We define E0
j (t) as the solution of

∂tE
0
1 = H1E

0
1(44)

∂tE
0
2 = H2E

0
2 + V

2F⊗2(45)

.

∂tE
0
j = HjE

0
j +∆=

jE
0
j−2, j ≥ 3.(46)

(67) and (68) are closed equations whose solutions are given by

(47) E0
1(t) = U1(t,0)E

0
1(0) = 0

since we supposed E1(0) = O(N−1), and

(48) E0
2(t) = U1(t,0)E

0
2(0) +U2(t,0)∫

t

0
U2(0, s)V F (s)⊗2ds.
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Iterating till j, we get

(49) E0
j (t) = Uj(t,0)E

0
j (0) +Uj(t,0)∫

t

0
Uj(0, s)∆

=
jE

0
j−2(s)ds, j ≥ 1,

with the convention Ekl = 0, l < 0.

Therefore, for j = 1, . . . ,N, t ≥ 0, the knowledge of Uj(t, s), s ≤ t, and

E0
j0
(0), j0 = 1, . . . , j guarantees the knowledge of E0

J(t). We write this fact

as

(50) (E0
j0
(0))j0=1,...,j ↝ (E0

j0
(t))t≥0,j0=1,...,j

To go one step further, one find

∂tE
1
1 = H1E

1
1 +∆+

1E
0
2 +∆−

1E
0
0(51)

+∆+
1E

0
2 −Q(F,F )

∂tE
1
2 = H2E

1
2 +∆+

2E
0
3 +∆−

2E
0
1(52)

⋅

∂tE
1
j = H1E

1
j +∆=

jE
1
j−2 +∆+

j E
0
j+1 +∆−

j E
0
j−1, j > 2(53)

Recursively we find:

∂tE
k
1 = H1E

k
1 +∆+

1E
k−1
2 +∆−

1E
k−1
0(54)

∂tE
k
2 = H2E

k
2 +∆+

2E
k−1
3 +∆−

2E
k−1
1(55)

⋅

∂tE
k
j = HjE

k
j +D

−2
j E

k
j−2 +∆+

j E
k−1
j+1 +∆−

j E
k−1
j−1 ,(56)

solved respectively by

Ek1 (t) = U1(t,0)E
k
1 (0) +U1(t,0)∫

t

0
U1(0, s)(∆

+
1E

k−1
2 +∆−

1E
k−1
0 )ds

(57)

Ek2 (t) = U2(t,0)E
k
2 (0) +U2(t,0)∫

t

0
U2(0, s)(∆

+
2E

k−1
3 (s) +∆−

2E
k−1
1 (s))ds

(58)

Ekj (t) = Uj(t,0)E
k
j (0)

+ ∫

t

s=0
Uj(t, s)(∆

=
jE

k
j−2(s) +∆+

j E
k−1
j+1 (s) +∆−

j E
k−1
j−1 (s))ds

(59)

Note that (59) reduces to (57),(58) for j = 1,2, by convention (39)
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Therefore, the knowledge of (Ek
′

j′ (s))s≤t,k′≤k−1,j′=1,...,j+1 guarantees, by (57),(58),

the knowledge of Ek1 (t),E
k
2 (t) and therefore, by (59), the knowledge of

Ek3 (t), E
k
4 (t) and so forth till Ekj (t):

(Ek
′

j′ (s))s≤t,k′≤k−1,j′=1,...,j+1 ↝ E
k
j (t).

Therefore

(Ek
′

j′ (s))s≤t,k′≤k−2,j′=1,...,j+2 ↝ (Ek
′

j′ (s))s≤t,k′≤k−1,j′=1,...,j+1 ↝ E
k
j (t).

and by iteration

(E0
j′(s))s≤t,j′=1,...,j+k ↝ E

k
j (t)

so that, by (50),

(E0
j′(0))j′=1,...,j+k ↝ E

k
j (t).

We just proved the following result.

Proposition 2.2. For any j = 1, . . . ,N, t ≥ 0, k = 0, . . . , let Ekj (t) be the

solution of (59). Then Ekj (t) is determined by the values Ek
′

j′ (0) for 0 ≤ k′ ≤

k, 1 ≤ j′ ≤ j + k.

Formula (59) will give easily the following result.

Proposition 2.3. Ekj (t) = 0 if j and k have inverse parity2.

Proof. Let us write (59) again

(60) Ekj (t) = ∫
t

0
Uj(t, s)(∆

=
jE

k
j−2(s) +∆+

j E
k−1
j+1 (s) +∆−

j E
k−1
j−1 (s))ds

By (67) we have that E0
1(t) = 0 since E0

1(0) = 0. Since (60) gives Ekj (t) =

∫
t
s=0Uj(t, s)∆

=
jE

0
j−2(s)ds, we get E0

j (t) = 0 for all j odd.

Since E0(t) = 1, E j0(t) = 0, j > 0, and we have that E1
1(t) = 0 and therefore

E1
j (t) = 0 for all j even, since then j ± 1 is odd, and therefore E0

j±1 = 0.

This gives E2
0 = 0 and so on. �

Corollary 2.4. Ej(t) has an asymptotic expansion in powers of N−1 with

leading order N−[
j+1
2 ].

2j even, k odd or j odd, k even
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3. Estimates and proof of Theorem 1.4

In order to simplify the expressions, we will first suppose that ∥V ∥L∞
h̵ = 1.

Let us first notice that (117) expressed on the Ejs reads

(61) ∂tEj =HjEj +N
− 1

2∆+
j Ej+1 +N

− 1
2∆−

j Ej−1 +∆=
jEj−2

and that (21) and (22) can be rephrased as

(62) ∥Ej(0)∥ ≤ (Aj2)j/2 Ô⇒ ∥Ej(t)∥ ≤ (Atj
2)j/2, At = A

′eCt

for some explicit constants A′,C.

Let us consider the solution at order k of (61) given by (59):

Ekj (t) = ∫
t

s=0
Uj(t, s)(∆

=
jE

k
j−2(s) +∆+

j E
k−1
j+1 (s) +∆−

j E
k−1
j−1 (s))ds +Uj(t,0)E

k
j .

We get

∂tE
k
j (t) = Hj(t)E

k
j (t) +∆=

jE
k
j−2(t) +∆+

j E
k−1
j+1 (t) +∆−

j E
k−1
j−1 (t)

= Hj(t)E
k
j (t) +∆=

jE
k
j−2(t) +∆+

j E
k
j+1(t) +∆−

j E
k
j−1(t)

+∆+
j (E

k−1
j+1 (t) − E

k
j+1(t)) +∆−

j (E
k−1
j−1 (t) − E

k
j−1(t)),

and, calling Ēnj =
n

∑
k=0
N−k/2Ekj , one easily check that

∂tĒ
n
j (t) = Hj(t)Ē

n
j (t) +∆=

j Ē
n
j−2(t) +

1
√
N

(∆+
j Ē

n
j+1(t) +∆−

j Ē
n
j−1(t))

+(
1

√
N

)n+1(∆+
j (E

n
j+1(t)) +∆−

j (E
n
j−1(t)).(63)

Therefore An
j ∶= Ej − Ē

n
j satisfies the equation

∂tA
n
j (t) = Hj(t)A

n
j (t) +∆=

jA
n
j−2(t) +

1
√
N

(∆+
jA

n
j+1(t) +∆−

jA
n
j−1(t))

+(
1

√
N

)n+1(∆+
j (E

n
j+1(t)) +∆−

j (E
n
j−1(t))(64)

Let us define

UN
j (t, s) ∶ (Ej(s))j=1,...,N ↦ UN

j (t, s)((Ej(s))j=1,...,N) ∶= Ej(t).

In other words, the family (UN
j (t, s))j=1,...,N solves the equation:

∂tU
N
j (t, s) = Hj(t)U

N
j (t, s) +∆=

jU
N
j−2(t, s)

+
1

√
N

(∆+
jU

N
j+1(t, s) +∆−

jU
N
j−1(t, s)),

UN
j (s, s) = I.
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Hence, the solution of (64) reads

(65)

An
j (t) = N

−n+1
2 ∫

t

0
UN
j (t, s)(∆+

j (s)E
n
j+1(s))+∆−

j (s)E
n
j−1(s))ds+U

N
j (t,0)(An

j (0))

where ∆+
j (s)E

n
j+1(s))+∆−

j (s)E
n
j−1(s) (resp. An

j (0)) is meant for the sequence

((∆+
j (s)E

n
j+1(s)) +∆−

j (s)E
n
j−1(s))δk,j)k=1,...,N

(resp. (An
k(0)δk,j)k=1,...,N).

Let us suppose that that Ej(0) has an asymptotic expansion of the form
∞

∑
0
N−k/2Ekj (0) so that ∥An

j (0)∥ ≤ N−n+1
2 Dn(Aj2)j/2 for some positive con-

stants Dn,A. Then (62) implies that

(66) ∥UN
j (t,0)(An

j (0))∥ ≤ N
−n+1

2 Dn(A
′eCtj2)j/2.

By the same idea we get that, if

(67) ∥∆+
j (E

n
j+1(s)) +∆−

j (E
n
j−1(s)∥ ≤ Cn(s)(A

n
s j

2)j/2, ∀s ≤ t,

for two increasing functions C(s,An
s) of s (say), then

(68) ∥Ej(t) − Ē
n
j (t)∥ ≤ N

−n+1
2 tCn(t)((A

n
t )

′eC ∣t∣j2)j/2,

where (An
t )

′ depends only on An
t , and on the same way that A′ depends on

A in (62).

It remains to prove an estimate like (67).

We will obtain such an estimate by iterating (59). We first remark that,

since eK
j+Tj/N is unitary and ∥Dj∥ ≤ j, the Gronwall Lemma gives that

(69) ∥Uj(t, s)∥ ≤ e
j∣t−s∣.

We will use
m

∏
i=0

e(j+i)(ti−ti+1) ≤ e(j+m)∣tm+1−t0∣ for any (ti)i=0,...,m (see [22]),(70)

∥∆±∥ ≤ j2,(71)

∥Ej′(t)∥ ≤ (At(j
′)2)(j

′)/2 ≤ (At(j + n)
2)(j+n)/2, j′ ≤ j + n,

and

∫

t

0
dt1∫

t−1

0
dt2 . . .∫

tn−1

0
dtn =

tn

n!
.(72)

Let us remind that we have Ek0 (t) = δk,0 for all t. Without loss of general-

ity, we might take Ekj (0) = δk,0E
0
j (0) (possibly depending on N) such that

∥E0
j (0)∥ ≤ (A[j + 1]2)[j+1]/2, A ≥ 1. Under this hypothesis, (59) reads:

⎧⎪⎪
⎨
⎪⎪⎩

E0
j (t) = Uj(t,0)E0

j (0) + ∫
t
s=0Uj(t, s)∆

=
jE

0
j−2(s)ds

Ekj (t) = ∫
t
s=0Uj(t, s)(∆

=
jE

k
j−2(s) +∆+

j E
k−1
j+1 (s) +∆−

j E
k−1
j−1 (s))ds, k > 0.
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Therefore we get easily, using (70),(71),(72),

(73) ∥E0
j (t)∥ ≤ e

2j∣t∣j(Aj2)j/2.

Moreover iterating the second line M times, we will end up with the sum

of less than M 3 terms involving the values En−s−tj−2r+s−t for any (r,s,t) such that

M = r + s + t with the two constraints n − s − t ≥ 0, j − 2r + s − t ≥ 0. Using

the first constraint we see that

j − 2r + s − t ≤ j − 2r + n ≤ j − 2(M − n) + n = j − 2M + 3n.

So that, taking M = [(j + 3n)/2] ∶=Mj,n, the second constraint reduces to

j − 2r + s − t = 0 and the first one to s + t = n since Ek0 = δk,0.

We easily (and very roughly) estimate

∥Ekj (t)∥ ≤ ((j + 3n)/2)3e(j+3n)∣t∣((j + n)2)
j+3n
2

≤ (1 + 3n)3(n+1)e3n∣t∣j3(n+1)(1 + n/j)j(e2∣t∣j2)j/2

so that, using (1 + n/j)j ≤ en and jλ ≤ ejλ/e, λ > 0, we get

(74) ∥Ekj (t)∥ ≤ (1 + 3n)3(n+1)e(3n+1)∣t∣(e2∣t∣+3(n+1)/2j2)j/2, k > 0

and, since A ≥ 1,

(75) ∥Ekj (t)∥ ≤ (1 + 3n)3(n+1)e(3n+1)∣t∣(Ae2∣t∣+3(n+1)/2j2)j/2, k ≥ 0.

We conclude by

(76) ∥∆+
j (E

n
j+1(s)) +∆−

j (E
n
j−1(s)∥ ≤ Cn(s)(A

n
s j

2)j/2

with, after restoring the dependence in ∥V ∥L∞
h̵ by the same argument as in

[22], Section 3,

(77)

Cn(s) = j(j + 1)(1 + 3n)3(n+1)e(3n+1)∣t∣
∥V ∥L∞
h̵ and An

s = Ae
2∣t∣

∥V ∥L∞
h̵ +3(n+1)/2.

Therefore (68) is satisfied and Theorem 1.4 is proven.
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4. Explicit computations of first orders

We have

∂tU
0
1 (t, s) =

1

ih̵
[−h̵2∆ + VF , U

0
1 (t, s)] +

1

ih̵
[VU0

1 (t,s)
, F ]

where, in the last term, VU0
1 (t,s)

acts on E1(s) as VU0
1 (t,s)E1(s).

More generally,

∂tU
0
j (t) =

1

ih̵
[−h̵2∆Rjd + V ⊗j

F , U 0
j (t)] + P (U o

j , F )

where

(P (U o
j , F )Ej)(Zj) =

∑
i
∫ dx(V (xi − x) − V (x′i − x))(U

0
j (t, s)Ej(Z

≠i
j , (x,x))F (xi, x

′
i),

that is

(P (U 0
j , F )Ej) =

j

∑
i=1

[V ⋆i (U
0
j (t, s)Ej), F ]i.

Finally

E0
2(t)(Z2) = ∫

t

0
∫
R2d

dsdZ ′
2U2(t, s)(Z2, Z

′
2)V (x′1−x

′
2)F (s)(z′1)F (s)(z′2)dsdZ

′
2

and

E1
1(t) = ∫

t

0
U1(t, s)Q(F,F )ds

+(1 − 1
N )∫

t

0
∫

s

0
U1(t, s)Tr2

[V U2(s, u)V F (u)⊗ F (u)]dsdu

(78)

5. The Kac and “soft spheres” models

In this section we consider the two following classes of mean field models

(see [22] for details).

● Kac model. In this model, the N -particle system evolves according to a

stochastic process. To each particle i, we associate a velocity vi ∈ R3. The

vector VN = {v1,⋯, vN} changes by means of two-body collisions at random

times, with random scattering angle. The probability density FN(VN , t)

evolves according to the forward Kolmogorov equation

(79) ∂tF
N =

1

N
∑
i<j
∫ dωB(ω; vi − vj){F

N(V
i,j
N ) − FN(VN)} ,

where V i,jN = {v1,⋯, vi−1, v′i, vi+1,⋯, vj−1, v′j, vj+1,⋯, vN} and the pair v′i, v
′
j

gives the outgoing velocities after a collision with scattering (unit) vector
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ω and incoming velocities vi, vj.
B(ω;vi−vj)

∣vi−vj ∣
is the differential cross-section

of the two-body process. The resulting mean-field kinetic equation is the

homogeneous Boltzmann equation

(80) ∂tF (v) = ∫ dv1∫ dωB(ω; v − v1){F (v′)F (v′1) − F (v)F (v1)} .

● ‘Soft spheres’ model. A slightly more realistic variant, taking into account

the positions of particles XN = {x1,⋯, xN} ∈ R3N and relative transport,

was introduced by Cercignani [9] and further investigated in [17]. The

probability density FN(XN , VN , t) evolves according to the equation

∂tF
N +

N

∑
i=1

vi ⋅ ∇xiF
N =

1

N
∑
i<j

h (∣xi − xj ∣)B (
xi − xj
∣xi − xj ∣

; vi − vj)

×{FN(XN , V
i,j
N ) − FN(XN , VN)} .(81)

Here h ∶ R+ → R+ is a positive function with compact support. Now a pair

of particles collides at a random distance with rate modulated by h. The

associated mean-field kinetic equation is the Povzner equation

∂tF (x, v) + v ⋅ ∇xF (x, v) = ∫ dv1∫ dx1 h(∣x − x1∣)B (
x − x1

∣x − x1∣
; v − v1)

×{F (x, v′)F (x1, v
′
1) − F (x, v)F (x1, v1)},

which can be seen as an h−mollification of the inhomogeneous Boltzmann

equation (formally obtained when h converges to a Dirac mass at the ori-

gin). Both classes have be treated in [22] and Theorem 1.2 apply to them,

in the following sense.

The underlying space L is now L1(Rd, dv) (resp. L1(R2d, dxdv))) for the

Kac model (resp. soft spheres) both endowed with the L1 norms ∥⋅∥1. For

FN ∈ L⊗N , FN
j ∈ L⊗j is defined by

FN
j (Zj) = ∫

Ω
FN(z1, . . . , zj, zJ+1, . . . , zN)dzj+1 . . . dzN

for Zn = (z1, . . . , zn), n = 1, . . . ,N with zi = vi ∈ Rd,Ω = R(N−j)d (resp.

zi = (xi, vi) ∈ R2d,Ω = R2(N−j)d) for the Kac (resp. soft spheres) model.

In both cases Ej(t) is defined by (18), inverted by (19), and it was proven

in [22] that Theorem 1.2 holds true verbatim in both cases.

Stating now the dynamics driven by (79) and (81) under the form (3) with

KN = 0 (resp. KN = − ∑
i=1,...,N

vi∂xi) for the Kac (resp. soft spheres) model

and V N given by the right hand-sides of (79),(81) respectively, one sees
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immediately that the proofs contained in Sections 2,3 remain valid after

an elementary redefinition of the operators Dj,D−1
j ,D

−2
j in (35)-(38) as (in

the left hand sides below, we use a slight abuse of notation by identifying

functions with evaluations)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(DjEj)(Zj) =
N−j
N ∑

i∈J
Ci,j+1 (F (zi)Ej(Z

/{i}
j+1 ) + F (zj+1)Ej(Zj))

− 1
N ∑
i≠l∈J

Ci,j+1(F (zl)Ej(Z
/{l}
j+1 )

(D−1
j Ej−1)(Zj) = 1

N ∑
i,r∈J

Ti,r(F (zi)Ej−1(Z
/{i}
j ))

−
j
N ∑
i∈J
Q(F,F )(zi)Ej−1(Z

/{i}
j )

− 1
N ∑
i≠l∈J

Ci,j+1(F (zl)F (zj+1)Ej−1(Z
/{l}
j ))

− 1
N ∑
i≠l∈J

Ci,j+1(F (zl)F (zi)Ej−1(Z
/{i,l}
j+1 ))

(D−2
j Ej−2)(Zj) = 1

N ∑
i,s∈J

Ti,s(F (zi)F (zr)Ej−2(Z
/{i,r}
j ))

− 1
N ∑
i≠l∈J

Q(F,F )(zi)F (zl)Ej−2(Z
/{i,l}
l ).

with

(82)

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D1
N ∶=D−2

1 ∶= 0

D−1
1 (E0) (z1) ∶= −

1
NQ(F,F )(z1) ,

D−2
2 (E0) (z1, z2) ∶=

1
N (T1,2(F ⊗ F )(z1, z2) −Q(F,F )(z1)F (z2)

−F (z1)Q(F,F )(z2)) .

Note that one has the following estimates:

(83) ∥Dj∥, ∥D
1
j∥ ≤ j and ∥D−1

j ∥, ∥D−2
j ∥, ∥D−1

1 (E0)∥, ∥D
−2
2 (E0)∥ ≤

j2

N
.

Therefore, by Remark 2.1, the statements contained in Theorem 1.4 and

Corollary 1.7 hold true, in both cases, verbatim. Moreover defining FN,n
j

by (33) in both cases, Corollary 1.5 reads now as follows

Corollary 5.1. [Kac case] Let FN(t) the solution of the N body system

(79) (resp. 81) with initial datum FN(0) = F⊗N , 0 < F ∈ L1(Rd)), ∫
Rd

f(v)dv =

1 (resp, 0 < F ∈ L1(R2d)), ∫
R2d

f(x, v)dxdv = 1), and F (t) the solution of the

homogeneous Boltzmann equation (80) (resp. the Povzner equation(82))

with initial datum F .

Then, in both cases, for all n ≥ 1,

∥FN
j (t) − FN,n

j (t)∥1 ≤ N
−n− 1

2
2tC2n(t)eA

2n
t j

√
N

.



ASYMPTOTIC EXPANSION OF THE MEAN-FIELD APPROXIMATION 23

for N ≥ 4(eA2n
t j)

2.

Appendix A. The asbtract model

A.1. The model. We will show in this section that the main results of

[22] and of Section 1 of the present paper remain true in the “abstract‘”

mean field formalism for a dynamics of N particles that we will describe

now. The present formalism contains the abstract formalism developed

in [22], without requiring a space of states endowed with a multiplicative

structure.

States of the particle system and evolution equations. Let L be a vector

space on the complex numbers. We suppose the family of (algebraic) ten-

sor products {L⊗n, n = 1, . . . ,N} equipped with norms ∥⋅∥n satisfying as-

sumption (A) below. the N -body dynamics will be driven on L⊗N by a

one- and two- body interaction satisfying assumption (B) and the mean

field limit equation will be supposed to satisfy assumption (C).

Assumptions (A) − (C) below will be followed by their incarnations in

the K(ac), S(oft spheres) and Q(uantum) models.

By convention we denote L⊗0 ∶= C, ∥z∥0 = ∣z∣ and we denote by L⊗̂n the

completion of L⊗n with respect to the norm ∥⋅∥n.

For the K, S and Q models, L⊗n is L1(Rd, dv), L1(R2d, dxdv) and L1(L2(Rd),

the space of trace class operators on L2(Rd), with their associated norms.

(A) There exists a family of subsets L⊗̂n
+ of L⊗̂n, n = 1, . . . ,N of positive

elements F denoted by F > 0 stable by addition, multiplication by

positive reals and tensor product and there exists a linear function

Tr ∶ L→C, called trace.
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For every 1 ≤ k,n ≤ N and 1 ≤ i ≤ j ≤ n ≤ N , let Trkn and σni,j be the

two mapping defined by3

(84)

Trkn ∶ L⊗n → L⊗n−1

n
⊗
ı=1
vi ↦ Tr(vk)

n
⊗
ı=1
i≠k

vi,

σni,j ∶ L⊗n → L⊗n

n
⊗
ı=1
vi ↦

n
⊗
ı=1
v′i, v′k = vk, i ≠ k ≠ j ; v′i = vj, v

′
j = vi.

We will suppose that TrkN and σni,j, i, j, k ≤ n ≤ N , satisfy, for any

F ∈ L⊗n,

(85)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

TrkN(F ), σni,j(F ) > 0, ∥Trkn(F )∥n−1 = ∥F ∥n when F > 0

∥σni,j(F )∥n = ∥F ∥n

∥Trkn(F )∥n−1 ≤ ∥F ∥n

In particular one has that ∥F ∥n = Trn . . .Tr1F when F > 0 and

∣Trn . . .Tr1F ∣ ≤ ∥F ∥n in general.

Note that (85) allows to extend Trkn and σni,j to L⊗̂n by continuity.

We will use the same notation for these extensions.

For the K, S and Q models, Trk is ∫Rd ⋅dvk, ∫R2d ⋅dxkdvk and the

k-partial trace, namely, defining A through its integral kernel

a(x1, . . . , xn, x′1, . . . , x
′
n), the integral kernel of TrkA is defined as

∫R2d a(x1, . . . , xn, x′1, . . . , xk, . . . , x
′
n)dxk, respectively. Moreover, the

action of σni,j consists obviously in exchanging the variables vi and

vj, (xi, vi) and (xj, vj) and (xi, yi) and (xj, yj) (in the integral ker-

nel), respectively. Finally (85) is satisfied in the three cases.

From now on and when no confusion is possible, we will identify L⊗n

with its completion L⊗̂ and we will denote TrkN = Trk (note also that Tr =

Tr1
1 = Tr1), σNi,j = σi,j and Tr(= Trn) = TrnnTrn−1

n . . .Tr1
n.

We call symmetric any element of L⊗n invariant by the action of σni,j,∀i, j ≤

n.

We call state of the N−particle system an element of

3The fact that the second and fourth lines of (84) define a mapping on the whole tensor space L⊗n results easily from

the definition of tensors products through the so-called universal property [18]. Indeed, let ϕn be the natural embedding

L×n → L⊗n, (v1, . . . , vn) ↦ v1 ⊗ ⋅ ⋅ ⋅ ⊗ vn, and let h be any mapping L×n → L×n
′

, then the universal property of tensor

products says that there is a unique map h̃ ∶ L⊗n → L⊗n′ such that h̃○ϕn = ϕn′ ○h. Taking n′ = n−1, h(v1, . . . , vk, . . . , vn) =

(trace(vk)v1, . . . , vk−1, vk+1, . . . , vn) for Trkn, and n′ = n, h(v1, . . . , vi, . . . , vj , . . . , vn) = (v1, . . . , vj , . . . , vi, . . . , vn) for σn
i,j

give the desired extensions.
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(86) DN = {F ∈ L⊗n ∣ F > 0, ∥F ∥ = 1 and F is symmetric}.

For j = 0, . . . ,N , the j-particle marginal of FN ∈ (L⊗N)+1 is defined as the

the partial trace of order N − j of FN , that is

(87) FN
j = TrNTrN−1

⋯Trj+1FN , FN
N ∶= FN .

Note that FN
j ∈ L⊗j (FN

0 = 1 ∈ L⊗0 ∶= C) and FN
j > 0, ∥FN

j ∥j = ∥FN∥N since

Tr is positivity and norm preserving, and obviously FN
j is symmetric as

FN . That is to say:

FN
j ∈ Dj.

(B) The evolution of a state FN in L⊗N is supposed to be given by the

N−particle dynamics associated to a two-body interaction:

(88)
d

dt
FN = (KN + V N)FN ,

where the operators on the right hand side are constructed as follows.

(89) KN =
N

∑
i=1

I⊗(i−1)
L ⊗K ⊗ I⊗(N−i)

L

and

(90) V N =
1

N
∑

1≤i<j≤N

Vi,j, Vi,j ∶= σ
N
1,iσ

N
2,jV ⊗ IL⊗(N−2)σN1,iσ

N
2,j

for a (possibly unbounded) operator K acting on L and a bounded

two-body (potential) operator V acting on L⊗2.

We assume furthermore that K is the generator of a strongly con-

tinuous, isometric, positivity preserving semigroup (in L)

(91) eKtF > 0 if F > 0 ; ∥etK∥ = 1 .

and KN + V N is the generator of a strongly continuous, isometric,

positivity preserving semigroup (in L⊗N)

(92) e(K
N+V N)tFN > 0 if FN > 0 ; ∥et(K

N+V N)∥ = 1 .

Finally, for any F ∈ L, FN ∈ L⊗N and i, r > j, we assume

(93) Tr(KF ) = 0 and Trj,N(Vi,rF
N) = 0 .

This last property is necessary to deduce the forthcoming hierarchy.



26 T. PAUL AND M. PULVIRENTI

For the K, S and Q models, the ingredients in (88) are given in

the table bellow and (91)-(93) are easily shown to be satisfied.

Note the symmetry property of the equation (88) induced by the defini-

tion of V N : if the initial condition FN
0 for (88) is symmetric, then FN(t)

is still symmetric.

The following table specifies the applications of the above abstract model

to the three models presented in the introduction.

Kac Soft Spheres Quantum Mean field

L L1(v) L1(x, v) L1(L2(Rd))

∣ ⋅ ∣ f → ∣f ∣ =
√
f̄f f → ∣f ∣ =

√
f̄f A→ ∣A∣ =

√
A∗A

Tr f → ∫ dvf f → ∫ ∫ fdxdv A→ TrA

Kn 0 −v ⋅ ∇x
1
ih̵[−∆, ⋅]

Vi,j

∫ dω

B(ω; vi − vj)

{fN(V i,j
N )

−fN(VN)}

h (∣xi − xj ∣)

B (
xi−xj
∣xi−xj ∣

; vi − vj)

{fN(XN , V
i,j
N )

−fN(XN , VN)}

1
ih̵[V (xi − xj), ⋅]

Hierarchies. The family of j-marginals, j = 1, . . . ,N , are solutions of the

BBGKY hierarchy of equations

(94) ∂tF
N
j = (Kj +

Tj
N

)FN
j +

(N − j)

N
Cj+1F

N
j+1

where:

(95) Kj =

j

∑
i=1

I⊗(i−1)
L ⊗K ⊗ I⊗(j−i)

L ,

(96) Tj = ∑
1≤i<r≤j

Ti,r with Ti,r = Vir

and

(97) Cj+1F
N
j+1 = Trj+1 ⎛

⎝
∑
i≤j

Vi,j+1F
N
j+1

⎞

⎠
=

j

∑
i=1

Ci,j+1F
N
j+1

with

(98) Ci,j+1F
N
j+1 = Trj+1 (Vi,j+1F

N
j+1) ,

(99) Ci,j ∶ L⊗(j+1) → L⊗j.
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Indeed, thanks to (93) we get easily by applying Trj,N on (88) that

d

dt
FN
j = (Kj +

Tj
N

)FN
j +

1

N
Trj,N( ∑

1≤i≤j<k≤N

Vi,kF
N)

By symmetry of FN and Vi,k we get Trj,N(Vi,kFN) = Trj+1
(Vi,j=1FN

j+1) for

all k > j and (94) follows.

Note that, thanks to the assumption (85) and for all i ≤ j = 1, . . . ,N ,

(100) ∥Ti∥ ≤ j
2∥V ∥, and ∥Ci,j+1∥ ≤ j∥V ∥

(meant for (∥Ti∥L⊗i→L⊗i, ∥Ci,j+1∥L⊗(j+1)→L⊗j , ∥V ∥L⊗2→L⊗2).

We introduce the non-linear mapping Q(F,F ), Q ∶ L × L → L by the

formula

(101) Q(F,F ) = Tr2
(V1,2(F ⊗ F ))

and the nonlinear mean field equation on L

(102) ∂tF =KF +Q(F,F ), F (0) ≥ 0, ∥F (0)∥1 = 1.

Eq. (102) is the Boltzmann, Povzner or Hartree equation according to the

specifications established in the table above. In full generality we will

assume

(C) (102) has for all time a unique solution F (t) > 0 and ∥F (t)∥ = 1.

For the K, S and Q models, (C) is true by standard perturbations

methods.

Correlation error. To introduce the correlation errors, we need to extend

slightly the above structure.

For any subset J ⊂ {1, . . . ,N} we first define

(103) L⊗J
N ∶=

N
⊗
i=1
L⊗χJ(i),

where χJ is the characteristic function of J and L⊗0 = C.

Then we introduce L⊗J , the subspace of L⊗J
N formed by vectors of the

form
N
⊗
i=1
vi where vi = 1 ∈ C for i ∉ J and vi ∈ L for i ∈ J . Note that L⊗J is

sent to L⊗∣J ∣ by the mapping

Π ∶
N
⊗
i=1
vi ∈ L⊗J ↦ ⊗

i∈J
vi ∈ L⊗∣J ∣.
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We define

∥⋅∥L⊗J = ∥Π(⋅)∥L⊗∣J ∣.

For F ∈ L and K ⊂ J ⊂ {1, . . . ,N} we introduce the linear operator

[F ]
⊗K
J , defined through its action on factorized elements as

[F ]
⊗K
J ∶ L⊗J/K → L⊗J

N
⊗
i=1
vi ↦

N
⊗
i=1
ai,(104)

where

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

as = 1 ∈ C if s ∉ J

as = F if s ∈K

as = vs if s ∈ J/K

.

Note that, for K,K ′ ⊂ J, K ∩K ′ = ∅, we have the composition

(105) [F ]
⊗K
J [F ]

⊗K ′
J/K = [F ]

⊗(K∪K ′)
J = [F ]

⊗K ′
J [F ]

⊗K
J/K ′

and more generally, for all F,G,

(106) [F ]
⊗K
J [G]

⊗K ′
J/K = [G]

⊗K ′
J [F ]

⊗K
J/K ′.

For any subset J ⊂ {1, . . . ,N}, we define the correlation error by

(107) EJ = ∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J FN

J/K

where F solves (102), the operator [F ]
⊗K
J is defined by (104) and FN

L ∈ L⊗L

is defined through its decomposition on factorized states. Namely if

FN = ∑
`1,...,`N

c`1,...,`Nv`1 ⊗ ⋅ ⋅ ⋅ ⊗ v`N ,

then

FN
L = ∑

`1,...,`N

c`1,...,`Na`1 ⊗ ⋅ ⋅ ⋅ ⊗ a`N ,

where

⎧⎪⎪
⎨
⎪⎪⎩

as = Tr(vs) ∈ C if s ∉ L

as = vs if s ∈ L
.

The link between the definition of FN
L and the definition of the marginals

FN
j given in (87) is the following:

(108) FN
{1,...,`} = F

N
` ⊗ (1)⊗(N−`) ∈ L⊗` ⊗ (L⊗0)⊗(N−`).

The formula inverse to (107) reads

(109) FN
J = ∑

K⊂J

[F ]
⊗K
J EJ/K .
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Note that the contribution in the right hand side of (109) corresponding

to K = J and K = ∅ are F⊗∣J ∣ and EJ respectively. To prove (109), we plug

(107) in the r.h.s. of (109) and we use (105):

∑
K⊂J

[F ]
⊗K
J EJ/K = ∑

K⊂J

[F ]
⊗K
J [ ∑

K ′⊂J/K
(−1)∣K

′∣[F ]
⊗K ′
J/KF

N
(J/K)/K ′]

= ∑
K∪K ′⊂J

∑
K⊂J

K ′∩K=∅

(−1)∣K
′∣[F ]

⊗K
J [F ]

⊗K ′
J/KF

N
J/(K∪K ′)

= ∑
L⊂J

( ∑
K ′⊂L

(−1)∣K
′∣)[F ]

⊗L
J FN

J/L = F
N
J

since ∑
K ′⊂L

(−1)∣K
′∣ =

∣L∣

∑
k′=0

(
∣L∣
k′)(−1)∣K

′
= 0∣L∣ = 0 if L ≠ ∅, and = 1 if L = ∅ (since

∑
K ′⊂∅

(−1)∣K
′∣ = (−1)0 = 1).

We will use the notation

(110) δK,K ′ = 1 if K =K ′ and 0 if K ≠K ′.

One notices that since FN
j is the marginal of some FN which decomposes

on elements of the form v1 ⊗ ⋯ ⊗ vN , FN
j decomposes on elements of the

form (
N

∏
k=j+1

Trvk)v1 ⊗ ⋅ ⋅ ⋅ ⊗ vj. Since one knows that FN
j is symmetric, it is

enough to choose one bijection iJ ∶ {1, . . . , j}→ J, ∣J ∣ = j, and consider the

mapping

ΦiJ ∶ L⊗∣J ∣
ΦiJ
→ L⊗J

⊗
j∈J
vj ∈ L⊗∣J ∣ ↦

N
⊗
i=1
ai ∈ L⊗J(111)

FN
∣J ∣ ↦ FN

J(112)

where as = 1 if i ∉ J and aiJ(j) = vj.

ΦiJ is obviously one-to-one since iJ is so, and, though (111) depends on

the embedding chosen, (112) does not: ΦiJ restricted to the space L⊗∣J ∣
S of

symmetric-by-permutation elements of L⊗∣J ∣, depends only on J and not

on iJ . We will call ΦJ this restriction,

(113) ΦJ = ΦiJ ∣L⊗∣J ∣S
.

The same argument is also valid for EJ which enjoys the same symmetry

property than FN
J and we define

(114) E∣J ∣ = Φ−1
J EJ .
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ΦJ is obviously isometric and we have that

(115) ∥EJ∥L⊗J = ∥E{1,...,∣J ∣}∥L⊗{1,...,∣J ∣} = ∥E∣J ∣∥L⊗∣J ∣.

Therefore, considering the one-to-one correspondence ΦJ , it is enough to

compute/estimate the quantities Ej, j = 1, . . . ,N . Ej and FN
j are linked by

(116)

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

Ej = ∑
K⊂J

(−1)∣K ∣[F ]⊗KJ ΦJ/KF
N
j−∣K ∣

FN
j = ∑

K⊂J
[F ]⊗KJ ΦJ/KEj−∣K ∣ .

For the K, S and Q models, let us define the variables zi, i = 1, . . . ,N,

equal to vi, (xi, vi) and (xi, x′i) respectively. In the three situations,

elements of L⊗j, j = 1, . . . ,N, are identified as functions of the vari-

ables zi, i = 1, . . . , j (through, as before, the integral kernel of the

density matrix in the quantum case), that is functions F (Zj) where

we denote Zj = (z1, . . . , zj). . Let us also denote by Z
/{i1,⋯,ik}
j , where

{i1,⋯, ik} ⊂ {1,⋯, j}, the vector Zj ∶= (z1, . . . , zj) after removing the

components zi1, . . . zik. The formulas defining the error and its inverse

read

Ej(Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

(−1)kF (zi1) . . . F (zik)F
N
j−k(Z

/{i1,⋯,ik}
j ) ,

FN
j (Zj) =

j

∑
k=0

∑
1≤i1<⋅⋅⋅<ik≤j

F (zi1) . . . F (zik)Ej−k(Z
/{i1,⋯,ik}
j ) .

.

A.2. Main results similar to [22]. The kinetic errors Ej, j = 1, . . . ,N,

satisfy the system of equations

∂tEj = (Kj +
1

N
Tj)Ej +DjEj

+ D1
jEj+1 +D

−1
j Ej−1 +D

−2
j Ej−2,(117)

where the operators Dj,D1
j ,D

−1
j ,D

−2
j , j = 1, . . . ,N , are defined in Appendix

B below, equations (138)-(139), together with the proof of (117). Moreover,

since (140) holds true, we know by Remark 3.2 in [22], that the proof

of Theorem 2.1 (and therefore Corollary 2.2) in [22] remain valid in our

present setting. We get the following result.
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Theorem A.1 (Analog to Theorem 1.2 (Theorem 2.2.

and Corollary 2.3 in [22])).

Let Ej(0) satisfy for some C0 > 1,B > 0

(118)

⎧⎪⎪
⎨
⎪⎪⎩

∥E1(0)∥1 ≤ B
N

∥Ej(0)∥1 ≤ (
j2

N )j/2Cj
0 , j ≥ 2.

Then, for all t > 0 and all j = 1, . . . ,N , one has

(119)

⎧⎪⎪
⎨
⎪⎪⎩

∥E1(t)∥1 ≤ 1
N (B2eB1t∥V ∥)

∥Ej(t)∥1 ≤ (C2eC1t∥V ∥)
j
(

j
√
N
)
j

for some B1,C1 > 0, B2,C2 ≥ 1 explicit (see formulas (78),(81) in [22]),

and

(120) ∥FN
j (t) − F (t)⊗j∥1 ≤D2e

D1t∥V ∥ j
2

N
,

where D2 = sup{B2, (eC0)
2}, B1 = sup{B1,2C1}.

A.3. Asymptotic expansion. It is easy to see that the proofs of the

main results expressed in Section 1.3 are adaptable in an elementary way

to the present abstract paradigm. Indeed they use only the three properties

stated in Remark 2.1, valid in the present setting as pointed out at the very

end of Appendix B, formula (140), together with (91)-(92).

Therefore, the statements contained in Theorem 1.4 and Corollary 1.7

hold true, verbatim, under the hypothesis of Theorem A.1, and with the

definition of corrections errors given by the first line of (116) and replacing
∥V ∥L∞
h̵ by ∥V ∥ in (77).

Moreover defining now FN,n
j by truncating the second line of (116) at

order n, that is

FN,n
j = ∑

K⊂J

[F ]⊗KJ ΦJ/KE
n
j−∣K ∣

where En
j is defined by (32), Corollary 1.5 reads as follows.

Corollary A.2. [abstract] Let FN(t) the solution of the N body system

(88) with initial datum FN(0) = F⊗N , 0 < F ∈ L, ∥F ∥1 = 1, and F (t) the

solution of the mean-field equation (15) with initial datum F .
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Then, for all n ≥ 0,

∥FN
j (t) − FN,n

j (t)∥1 ≤ N
−n− 1

2
2tC2n(t)eA

2n
t j

√
N

.

for N ≥ 4(eA2n
t j)

2.

Appendix B. Derivation of the correlation hierarchy (117)

From the definition of Ej (cf. (107)) we find

∂tEJ = ∑
K⊂J

(−1)∣K ∣ (∂t([F ]
⊗K
J )FN

J/K
+ [F ]

⊗K
J ∂tFN

J/K
)

Moreover, by (104)

(121) ∂t ([F ]
⊗K
J ) = ∑

k0∈K

[F ]
⊗K/{k0}
J [∂tF ]

⊗{k0}

J/(K/{k0})
.

Applying ΦJ defined in (114) to the BBGKY hierarchy (94), one finds

easily that FN
J satisfies, denoting α(j,N) ∶=

N−j
N ,

(122) ∂tF
N
J =KJFN

J +
1

N
∑
i<r∈J

Ti,rF
N
J + α(j,N)∑

i∈J

Ci,j+1F
N
J∪{j+1}

(for j + 1 ∉ J). Finally, we recall the mean-field equation

∂tF =KF +Q(F,F ) .

From this we deduce that

∂tEJ = ∑
K⊂J

(−1)∣K ∣ ∑
k0∈K

[F ]
⊗K/{k0}
J (KF +Q(F,F ))

⊗{k0}

J/(K/{k0}
FN
J/K

+ ∑
K⊂J

(−1)∣K ∣α(j − ∣K ∣,N) ∑
i∈J/K

[F ]
⊗K
J Ci,j+1FN

(J/K)∪{j+1}

+ 1
2N ∑

K⊂J
(−1)∣K ∣[F ]

⊗K
J ( ∑

i≠r∈J/K
Ti,r)FN

J/K

+ ∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J (KJ/KFN

J/K
) .

(123)

We compute now the four terms in the r.h.s. of (123), denoted by Ti, i =

1,2,3,4 respectively. As we shall see, this computation is purely algebraic

and uses only the decompositions ∑
K⊂L

(−1)∣K ∣ = δL,∅, ∑
K⊂L

∣K ∣(−1)∣K ∣ = −δ∣L∣,1

(cf. (110)) and the two following properties

⎧⎪⎪
⎨
⎪⎪⎩

[F ]
⊗K
J [F ]

⊗K ′
J/K = [F ]

⊗K ′
J [F ]

⊗K ′
J/K ′ = [F ]

⊗(K∪K ′)
J , K,K ′ ⊂ J, K ∩K ′ = ∅

Ci,j+1[F ]
⊗K
(J/K)∪{j+1} = [F ]

⊗K
(J/K)Ci,j+1, K ⊂ J, j + 1 ∉ J.
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Using again the definition (107),

T1 ∶= ∑
K⊂J

(−1)∣K ∣
∑
k0∈K

[F ]
⊗K/{k0}
J (KF +Q(F,F ))

⊗{k0}

J/(K/{k0})
FN
J/K

= − ∑
k0∈J

(KF +Q(F,F ))
⊗{k0}
J ∑

K⊂J/{k0}

(−1)∣K ∣[F ]
⊗K
J/{k0}

FN
(J/{k0})/K

= −∑
i∈J

(KF +Q(F,F ))
⊗{i}
J EJ/{i} .

(124)

To compute T2 we make use of the inverse definition (109):

T2 ∶= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J Ci,j+1F

N
(J/K)∪{j+1}

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′ .

Now we have to distinguish among several cases so we decompose

(125) T2 =
4

∑
s=1

T s2

where each T s2 concerns the part of the sum corresponding to the following

constraints:

● s = 1 ∶ i, j + 1 ∈K ′ ,

● s = 2 ∶ i, j + 1 ∉K ′ ,

● s = 3 ∶ i ∈K ′, j + 1 ∉K ′ ,

● s = 4 ∶ i ∉K ′, j + 1 ∈K ′ .
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For s = 1 we have

T 1
2 = ∑

K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}

i,j+1∈K ′

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′′⊂(J/K)/{i}

[F ]
⊗K ′′∪{i,j+1}

(J/K)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′′⊂(J/{i})/K

[F ]
⊗K ′′∪{i,j+1}

(J/K)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J

[F ]
⊗K
J . . .

. . . ∑
K ′′⊂(J/{i})/K

[F ]
⊗K ′′
(J/K)Ci,j+1[F ]

⊗{i,j+1}

((J/K)/K ′′)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣[F ]
⊗K
J ∑

K ′′⊂(J/{i})/K
[F ]

⊗K ′′
(J/K) . . .

. . .Ci,j+1[F ]
⊗{i,j+1}

((J/K)/K ′′)∪{j+1}
E(J/K)/(K ′′∪{i})

= ∑
i∈J

∑
L⊂J/{i}

(∑
K⊂L

α(j − ∣K ∣,N)(−1)∣K ∣)[F ]
⊗L
J . . .

. . .Ci,j+1[F ]
⊗{i,j+1}

((J/L)∪{j+1}
EJ/(L∪{i})

= α(j,N)∑
i∈J

Ci,j+1[F ]
⊗{i,j+1}

J∪{j+1}
EJ/{i} −

1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1[F ]

⊗{i,j+1}

(J/{l})∪{j+1}
EJ/({i,l})

= α(j,N)∑
i∈J

[Q(F,F )]
⊗{i}
J EJ/{i} −

1

N
∑
i≠l∈J

Ci,j+1[F ]
⊗{l}

J∪{j+1}
[F ]

⊗{i,j+1}

(J/{l})∪{j+1}
EJ/({i,l})

= α(j,N)∑
i∈J

[Q(F,F )]
⊗{i}
J EJ/{i} −

1

N
∑
i≠l∈J

Ci,j+1[F ]
⊗{i,l,j+1}

J∪{j+1}
EJ/({i,l})

since ∑
K⊂L

(−1)∣K ∣ = δL,∅. We get

T 1
2 = α(j,N)∑

i∈J

[Q(F,F )]
⊗{i}
J EJ/{i}

−
1

N
∑
i≠l∈J

[Q(F,F )]
⊗{i}
J [F ]

⊗{l}

J/{i}
EJ/{i,l}(126)
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and therefore there is a crucial compensation:

T1 + T
1

2 = −
j

N
∑
i∈J

[Q(F,F )]
⊗i
J EJ/{i}

−
1

N
∑
i≠l∈J

[Q(F,F )]
⊗{i}
J [F ]

⊗{l}

J/{i}
EJ/{i,l}.(127)

Furthermore,

T 2
2 = ∑

K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}
i∉K ′,j+1∉K ′

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′∈((J/{i})/K)

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
i∈J

∑
L⊂J/{i}

(∑
K⊂L

α(j − ∣K ∣,N)(−1)∣K ∣)[F ]
⊗L
J Ci,j+1E((J/L)∪{j+1})

= α(j,N)∑
i∈J

Ci,j+1E(J∪{j+1}) −
1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1E((J/{l})∪{j+1})(128)

having used Ci,j+1[F ]
⊗K ′
(J/K)∪{j+1} = [F ]

⊗K ′
(J/K)Ci,j+1 when j + 1 ∉K ′.

By the same argument,

T 3
2 = ∑

i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}
i∈K ′,j+1∉K ′

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣[F ]
⊗K
J ∑

K ′′⊂(J/{i})/K
[F ]

⊗K ′′
((J/{i})/K) . . .

. . .Ci,j+1[F ]
⊗i
J∪{j+1}/(K∪K ′′)E((J/({i}∪K∪K ′′)∪{j+1})

= α(j,N)∑
i∈J

Ci,j+1[F ]
⊗i
J∪{j+1}E((J/{i})∪{j+1})

−
1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1[F ]

⊗{i}

(J/{l})∪{j+1}
E((J/{i,l})∪{j+1}) .(129)



36 T. PAUL AND M. PULVIRENTI

Finally,

T 4
2 = ∑

K⊂J

α(j − ∣K ∣,N)(−1)∣K ∣
∑
i∈J/K

[F ]
⊗K
J . . .

. . .Ci,j+1 ∑
K ′⊂(J/K)∪{j+1}
i∉K ′,j+1∈K ′

[F ]
⊗K ′
(J/K)∪{j+1}E((J/K)∪{j+1})/K ′

= ∑
i∈J

∑
K⊂J/{i}

α(j − ∣K ∣,N)(−1)∣K ∣Ci,j+1[F ]
⊗K
J∪{j+1} . . .

. . . ∑
K ′⊂(J/{i})/K

[F ]
⊗K ′∪{j=1}

(J/K)∪{j+1}
E((J/K)∪{j+1})/(K ′∪{j+1})

= ∑
i∈J

∑
L⊂J/{i}

(∑
K⊂L

α(j − ∣K ∣,N)(−1)∣K ∣)Ci,j+1[F ]
⊗L∪{j+1}

J∪{j+1}
EJ/L

= α(j,N)∑
i∈J

Ci,j+1[F ]
⊗{j+1}

J∪{j+1}
EJ −

1

N
∑
i≠l∈J

Ci,j+1[F ]
⊗{l,j+1}

J∪{j+1}
EJ/{l}

= α(j,N)∑
i∈J

Ci,j+1[F ]
⊗{j+1}

J∪{j+1}
EJ −

1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1[F ]

⊗{j+1}

(J/{l})∪{j+1}
EJ/{l} .

(130)

Next we compute the term

T3 ∶=
1

2N
∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J ( ∑

i≠r∈J/K

Ti,r)F
N
J/K

=
1

2N
∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J ( ∑

i≠r∈J/K

Ti,r) ∑
K ′⊂J/K

[F ]
⊗K ′
J/KEJ/(K∪K ′) .

We set

(131) T3 =
4

∑
s=1

T i3

where each term T i3 corresponds to the constraints

● s = 1 i, r ∈K ′ ,

● s = 2 i, r ∉K ′ ,

● s = 3 i ∈K ′, r ∉K ′ ,

● s = 4 i ∉K ′, r ∈K ′ . We obtain
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T 1
3 =

1

2N
∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J ( ∑

i≠r∈J/K

Ti,r) ∑
K ′⊂J/K
i,r∈K ′

[F ]
⊗K ′
J/KEJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J Ti,r ∑

K ′⊂J/K
i,r∈K ′

[F ]
⊗K ′
J/KEJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J Ti,r

∑
K ′′⊂(J/K)/{i,r}

[F ]
⊗K ′′∪{i,r}
J/K

EJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J

∑
K ′′⊂(J/K)/{i,r}

Ti,r[F ]
⊗K ′′
J/K [F ]

⊗{i,r}

J/(K∪k′′)EJ/(K∪K ′′∪{i,r})

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J

∑
K ′′⊂(J/K)/{i,r}

[F ]
⊗K ′′
J/K Ti,r[F ]

⊗{i,r}

J/(K∪k′′)EJ/(K∪K ′′∪{i,r})

=
1

2N
∑
i≠r∈J

∑
L⊂J/{i,r}

(∑
K⊂L

(−1)∣K ∣)[F ]
⊗L
J Ti,r[F ]

⊗{i,r}

J/(L)
EJ/(L∪{i,r})

=
1

2N
( ∑
i≠r∈J

Ti,r[F ]
⊗{i,r}
J )EJ/{i,r} ,(132)

T 2
3 =

1

2N
∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J ( ∑

i≠r∈J/K

Ti,r) ∑
K ′⊂J/K
i,r∉K ′

[F ]
⊗K ′
J/KEJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J

∑
K ′⊂(J/{i,r})/K

[F ]
⊗K ′
J/KTi,rEJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
L⊂J{i,r}

(∑
K⊂L

(−1)∣K ∣)[F ]
⊗L
J Ti,rEJ/L

=
1

2N
( ∑
i≠r∈J

Ti,r)EJ =
1

2N
TJEJ(133)
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and

T 3
3 =

1

2N
∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J ( ∑

i≠r∈J/K

Ti,r) ∑
K ′⊂J/K
i∈K ′,r∉K ′

[F ]
⊗K ′
J/KEJ/(K∪K ′)

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J

∑
K ′′⊂(J/{i,r})/K

Ti,r[F ]
⊗K ′′∪{i}
J/K

EJ/(K∪K ′′∪{i})

=
1

2N
∑
i≠r∈J

∑
K⊂J/{i,r}

(−1)∣K ∣[F ]
⊗K
J

∑
K ′′⊂(J/{i,r})/K

[F ]
⊗K ′′
J/K Ti,r[F ]

⊗{i}

(J/K)/K ′′EJ/(K∪K ′′∪{i})

=
1

2N
∑
i≠r∈J

∑
L⊂J/{i,r}

(∑
K⊂L

(−1)∣K ∣)[F ]
⊗L
J/{i}Ti,r[F ]

⊗{i}

J/L
EJ/(L∪{i})

=
1

2N
∑
i≠r∈J

Ti,r[F ]
⊗{i}
J EJ/{i} .

Note also that

T 4
3 = T 3

3 ∣i↔r ,(134)

therefore

(135) T 4
3 + T 3

3 =
1

N
∑
i,r∈J

Ti,r[F ]
⊗{i}
J EJ/{i} .

Finally,

T4 = ∑
K⊂J

(−1)∣K ∣[F ]
⊗K
J (KJ/KFN

J/K)

= ∑
K⊂J

∑
K ′⊂J/K

(−1)∣K ∣[F ]
⊗K
J KJ/K[F ]

⊗K ′
J/KE(J/K)/K ′

= ∑
K⊂J

∑
K ′⊂J/K

(−1)∣K ∣[F ]
⊗K
J ( ∑

j∈J/K

Kj[F ]
⊗K ′
J/KE(J/K)/K ′)

= ∑
K⊂J

∑
j∈J/K

Kj
∑

K ′⊂J/K
(−1)∣K ∣[F ]

⊗K
J [F ]

⊗K ′
J/KE(J/K)/K ′

= ∑
j∈J

Kj
∑

K⊂J/{j}

∑
K ′⊂J/K

(−1)∣K ∣[F ]
⊗K
J [F ]

⊗K ′
J/KE(J/K)/K ′

= ∑
j∈J

Kj
∑

L⊂J/{j}

(∑
K⊂L

(−1)∣K ∣)[F ]
⊗L
J E(J/L)

= ∑
j∈J

KjE(J)

= KJEJ .(136)
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Remark B.1. Note that, in the Kac model case, K = 0 so T4 = 0.

Summing (127), (128), (129), (130), (132), (133), (135) and (136), we

get

∂tEJ =

(KJ + 1
NTJ)EJ +

N−j
N ∑

i∈J
Ci,j+1 ([F ]

⊗i
J∪{j+1}E(J∪{j+1})/{i} + [F ]

⊗j+1
J∪{j+1}EJ)

− 1
N ∑
i≠l∈J

Ci,j+1([F ]
⊗{l}

J∪{j+1}
E((J/{l})∪{j+1}))

+
N−j
N Cj+1EJ∪{j+1}

+( 1
N ∑
i,r∈J

Ti,r[F ]
⊗i
J −

j
N ∑
i∈J

[Q(F,F )]
⊗i
J )EJ/{i}(137)

− 1
N ∑
i≠l∈J

Ci,j+1 ([F ]
⊗{l}

J∪{j+1}
[F ]

⊗{j+1}

(J/{l})∪{j+1}
EJ/{l})

− 1
N ∑
i≠l∈J

Ci,j+1 ([F ]
⊗{l}

J∪{j+1}
[F ]

⊗{i}

(J/{l})∪{j+1}
E((J/{i,l})∪{j+1}))

+ 1
2N ( ∑

i≠s∈J
Ti,s[F ]

⊗i
J [F ]

⊗r
J/{i})EJ/{i,s} −

1
N ∑
i≠l∈J

[Q(F,F )]
⊗{i}
J [F ]

⊗{l}

J/{i}
EJ/{i,l}.

We organized the terms in the above equation, according to the following

rule. The two first lines contains operators which do not change the particle

number. The third line increases the number of particles by one. The three

next lines decrease it by one and the last one by two. We get (117) after

specializing (137) to J = {1, . . . , j}, using (114) and setting
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Dj ∶ L⊗j → L⊗j, j = 1, . . . ,N,

Ej ↦
N − j

N
∑
i∈J

Ci,j+1 ([F ]
⊗{i}

J∪{j+1}
Φ(J∪{j+1})/{i}Ej + [F ]

⊗{j+1}

J∪{j+1}
Ej) ,

−
1

N
∑
i≠l∈J

Ci,j+1([F ]
⊗{l}

J∪{j+1}
Φ(J/{l})∪{j+1}Ej)

D1
j ∶ L⊗(j+1) → L⊗j, j = 1, . . . ,N − 1,

Ej+1 ↦
N − j

N
Cj+1Ej+1 ,

D−1
j ∶ L⊗(j−1) → L⊗j j = 2, . . . ,N,

Ej−1 ↦
⎛

⎝
−
j

N
∑
i∈J

[Q(F,F )]
⊗{i}
J +

1

2N
∑
i,r∈J

Ti,r[F ]
⊗{i}
J

⎞

⎠
ΦJ/{i}Ej−1 ,

−
1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1[F ]

⊗{j+1}

(J/{l})∪{j+1}
ΦJ/{l}Ej−1

−
1

N
∑
i≠l∈J

[F ]
⊗{l}
J Ci,j+1[F ]

⊗{i}

(J/{l})∪{j+1}
Φ(J/{i,l})∪{j+1}Ej−1

D−2
j ∶ L⊗(j−2) → L⊗j, j = 3, . . . ,N,

Ej−2 ↦
1

2N
∑
i,s∈J

Ti,s[F ]
⊗{i}
J [F ]

⊗{s}

J/{i}
ΦJ/{i,s}Ej−2

−
1

N
∑
i≠l∈J

[Q(F,F )]
⊗{i}
J [F ]

⊗{l}

J/{i}
ΦJ/{i,l}Ej−2.(138)

where, by convention,

(139)

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

D1
N ∶=D−2

1 ∶= 0

D−1
1 (E0) ∶= −

1
NQ(F,F ) ,

D−2
2 (E0) ∶=

1
N (T1,2(F ⊗ F ) −Q(F,F )⊗ F − F ⊗Q(F,F )) .

Note that one has the following estimates:

(140) ∥Dj∥, ∥D
1
j∥ ≤ j and ∥D−1

j ∥, ∥D−2
j ∥, ∥D−1

1 (E0)∥, ∥D
−2
2 (E0)∥ ≤

j2

N
.
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