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Abstract—We are interested in an independent, affordable
demand responsive transportation structure involving high
quality of service and comfort similar to individual cars. The
reduced fares will be achieved by raising the number of car
passengers while keeping vehicles as busy as possible. The
high standard of service will be ensured by a smart allocation
of passengers to vehicles whilst optimal car itineraries will
be defined according to their present state and the current
traffic conditions. Moreover, the detours which clients can
tolerate will be controlled and client waiting times will be
taken into consideration. The system covers an entire urban
area (including the suburbs), ensuring autonomous door-to-
door services and flexible operational modes while it is destined
for all classes of commuters. Various strategies on the system
management and dimensioning will be examined and each
resulting performance will be appraised (in balance with the
pending costs). Metrics on client detours, client waiting times,
vehicle occupancy etc. are provided. Optimisation of all the
real-time controls governing the system (e.g. client acceptance,
vehicle itinerary, idle vehicle management etc.) will be achieved
within a virtual but reliable environment by a made-to-measure
discrete event decision tool.

Keywords-Demand responsive transport; travel demand
management; discrete-event simulation; Monte Carlo simu-
lation; Poisson arrival processes; routing algorithms; Pareto
optimality; performance evaluation; parameter optimisation;

I. INTRODUCTION

A. Principal Arguments for Collective Taxis

Efficient transport systems can be regarded as essential
to the requirements of urban development and productivity.
Tentative proposals such as car sharing or pooling have been
put forward to reduce the dependency of individuals on their
automobiles or imposing deterrents such as vehicle prohibi-
tion and tolls for entering city centres. All these initiatives,
mostly remain partial solutions, often encouraging the driver
willingness to bear additional costs to ensure comfort, safety
and convenience. In this paper, an innovative transportation
mode is proposed, called “collective or shared taxis”. More
precisely, spare vehicle capacity will be used in an optimal
way with the purpose of providing similar quality of ser-
vice to classical taxis while associated with reduced fares
(“sharing” being the means of reducing the fares). The idea

of associating more than one passenger with each vehicle
already exists, but often various limitations are encountered
(fixed routes [1], advanced booking [2]), services often at
the disposal of particular groups of citizens, etc. The present
research is an extension of a study initially proposed by [3]
in which the authors were interested in providing a complete
alternative to individual vehicles covering a city centre and
its suburbs whilst releasing clients from many constraints:
no prior reservations (decentralised approach) nor fixed pick-
up points (where the term “innovative” transportation mode)
but dynamically constructed itineraries depending upon the
passenger destinations.

B. Operating Modes

The behaviour of the “Collective Taxi” system will be ap-
praised according to the following three possible approaches:
• the decentralised management where no pre-requisite

seat reservation is involved
• the centralised management dealing only with clients

who have previously confirm a seat reservation
• the mixed management where we are dealing with

both types of clients.
We can then proceed to a comparison of the resulting
performance of each mode, checking the related benefits
and drawbacks and consequently select the most favourable
approach. Although both models are introduced in this paper,
evaluation of the the decentralised approach is developed.

II. MODEL OVERVIEW

The “collective taxi” transportation structure forms a dy-
namic complex system, presenting asynchronous behaviour
while uncertainty, synchronisation and concurrence elements
are encountered. It is unnatural and inefficient to consider
a particular time step to govern the system state transitions.
An event-driven approach is considered specifying the oc-
currence of events as the only responsible entities for driving
all dynamics.

In a discrete event model, the system evolution is
represented as a chronological sequence of the form
{. . . , si, ei, si+1, ei+1, . . . }, i = 0, 1, . . . .



In such a formulation, the system state at time ti is si
and ei is the event occurring at time ti bringing the system
to the new state si+1 and so forth.

A. Modelling Framework

Approaches based on Petri nets, dioid algebras, Perturba-
tion Analysis, simulation techniques etc. can be utilised for
the study of event-driven structures.

In the considered “collective taxi” model, where most of
the ruling constraints have been removed in order to increase
its flexibility, it is difficult or almost impossible a precise
comprehension without a reliable virtual representation of
the system behaviour. Direct experience on a “trial and
error basis” would imply risking unnecessarily high financial
costs and possibly irreparable damage to customer relations
due to client dissatisfaction. A combination of mathematical
methods such as Optimisation, Operational Research and
advanced computer science techniques, is required for a
refined model representation and evaluation.

Computer simulations are often used where deterministic
solutions are intractable. They form a viable and effective re-
search tool allowing the many aspects of complex problems
to be explored, reproducing precisely all stochastic features
which inevitably randomly occur. Answers to all “what-if”
questions, such as “how much time does the system spent
at a particular time”, “how soon can a particular state be
reached”, etc. can be provided within secure environment
and master the system without the consequences of poor
decision making. Moreover, simulation is the only mean
for reproducing various scenarios with just a single factor
modified at each run. This is a crucial condition for tuning
optimal parameter values.

B. Designing the Simulator

With the purpose of providing the best policy for any
demand level and geometry, various operational schemes and
control algorithms will be experimented. Their manifested
influence on the system behaviour will be studied, even
within the most complex conditions, not simply under ideal
or trivial situations.

With this aspect, the simulation program is split into two
parts depending upon the nature of the tasks (see Figure 1).
These two parts are independent but closely interacting with
each other.
• The mechanical part forms a virtual representation

of the real system. It receives two types of entry
deterministic and stochastic parameters (demand, traffic
condition etc.) and controls ruling the system, in the
form of a feedback.

• The real time management corresponds to the system
intelligence. It is comprised of all the decision algo-
rithms responding the enquiries made by the mechan-
ical part. In addition to that, design and dimensioning

decisions are being considered at the stage of data input,
at every run of the simulator.
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Figure 1. The simulator architecture

C. Formalising the System Behaviour

In this section, it is described how state transitions are
generated and the interaction of the system entities (clients,
vehicles, . . . ) is specified. Each modelling event is comprised
of the time at which it occurs, its type and the system entities
involved (clients, vehicles, network nodes, etc). For each
type of event, a specific procedure is defined related to its
treatment. In order to get empowering simulation results,
a sophisticated model closely representing the real world
system is necessary. However, if too many simplifications
are taken into consideration, we will end up with unrealistic
situations whilst, conversely, the use of a complex model
will lead to extremely complicated results, unlikely to be
studied and understood.

A brief description of the modelling events is presented.

1) Events generated by decentralised clients
Client appearance. A new client arriving somewhere
in the network, wishes an immediate departure. If an
available vehicle is found a dialogue begins. Other-
wise, the client decides whether and for how long
he/she will wait.
Client enters the vehicle. At this time and after a
positive answer concerning the client acceptance to a
given vehicle, the client enters it.
Client abandons the system. If no vehicle is found
before the max waiting period of the client is reached,
the client quits the system (and the structure is pe-
nalised).

2) Events generated by centralised clients
Client makes a request. This event represents the
client behaviour when he/she joins the dispatching
center aiming at a seat booking. If an available



dispatcher/server is immediately found an informa-
tion exchange begins; otherwise the customer decides
whether and for how long he will wait.
Client abandons the dispatching center. If no con-
troller has taken the client request by this time, the
client quits the system without being served.
Client arrives at meeting node. At this time the
client arrives at the pickup point and searches for the
associated vehicle. In case of an absent absent, the
client decides whether and for how long to wait.
Client abandons waiting at the meeting node. At
this moment, the client quits his/her origin node.
Reservation cancellation. It is possible that, a cus-
tomer desires to cancel a previously confirmed reser-
vation. If a dispatcher (or server) is found, a dialogue
starts; otherwise the client decides whether and for
how long he will wait.
Clients enters the vehicle. At this time, one or
more passengers enter(s) the vehicle at the pick up
point. The car may depart or wait for other customers
to arrive, according the defined vehicle max waiting
period.

3) Events initiated by vehicles
Vehicle starts its service. From this time, the vehicle
is at the client disposal.
Vehicle finishes its service. At this moment, the
vehicle ceases its service. This event takes place only
if the vehicle has completed all its tasks.
Vehicle arrives at a node. This event describes the
vehicle operations every time it joins a node.
Vehicle completes the dialogue with a decentralised
type of client. At this point, the response for the client
acceptance or refusal is obtained.
Clients disembark the car. The current position of
the vehicle is the destination of one or more of its
passengers.
Empty vehicle considers alternative parking. Every
time a vehicle has an empty itinerary, a node is chosen
to park during a specified time. If by this moment the
vehicle has found no client, it requests for its future
planning.
Vehicle ceases waiting for missing centralised
clients. At this moment the vehicle quits waiting for
absent clients with whom an appointment is planned.

4) Events generated by the dispatchers or servers
Dispatcher is on-duty. From this time, the associated
dispatcher or server is at the client disposal.
Dispatcher is off-duty. From now on, the controller
is out of service. This event will take place only if the
dispatcher is not occupied with a call.
Dispatcher finishes a call. At this moment, the answer
for the client acceptance/refusal is provided. In case of
acceptance, the corresponding meeting information is
given (vehicle id, pick up point and time period etc.).

Potential vehicle updates may be required in this case.

D. Simulator Engine-Exploitative Possibilities of the Simu-
lator

According to the needs of the study, the following simu-
lation options are available.
• Either a new simulation will be initiated. In this case

the initial state of the system is empty and vehicles
must be placed at nodes and clients have to appear so
as their interaction will begin.

• Alternatively, a previously completed simulation can
be extended (e.g. case when the duration of the initial
simulation is not enough to draw conclusions, etc.).

For each of these two possibilities, the choice of creating
new demand or utilising a previously generated one is
possible, (for instance, when analysing how the same clients
behave under different management strategies).

E. Brief Description of Simulation Data.

Hereafter, the necessary input data required by the simu-
lator are briefly described.

The network in which the collective taxis system will be
applied: its topology comprised of nodes and edges (directed
graph) and the probability laws defining the travel times
at different periods of the simulation duration (representing
congestions, off peak hours etc.).

The demand is composed of probability distributions for :
• the client appearance on the network (stated for all

types of clients with or without reservations),
• the client destination,
• the duration of the client maximal waiting time at each

node, before the final abandonment.
The demand is characterised by:
• a vector λ defining the intensity of client arrival at

nodes. The client appearance follows a Poisson process
(λi is the average number of clients appearing per time
unit at node i);

• the origin-destination matrix M , defining the geometry
of the demand. The entry Mij indicates the probability
of choosing node j as destination when the origin is
node i.

Multiple types of demand geometry are explored in asso-
ciation with various levels of demand intensity. It worths
to highlight the centripetal geometry of demand in which
clients move mostly from the outskirts to the centre of the
network, the centrifugal one when the periphery is more
attractive than the town centre and finally the balanced
demand where the client attraction is equal to the client
emission at each node. Combination of centripetal and
centrifugal demand allow the study of the system behaviour
during an entire day (early in the morning when a large
majority of travels correspond to people going to work and
later in the evening when the population comes back home).



Moreover, the following information needs to be mod-
elled:
• the service duration of all resources (vehicles, dispatch-

ers or servers etc.). These values can be dynamically
decided during the simulation, depending upon the
current system state. Potentially, these durations can
also be pre-defined and provided as input data

• the duration of various operations (dialogues, client
embarking/disembarking etc).

F. System Performance and Statistics.

G. Simulation Results Treatment

All proceeded events are recorded in a database the
analysis of which is performed at a second stage after the
completion of the implementations.
• A Micro analysis allows an individual examination of

all agents (nodes, clients, vehicles, edges etc.).
• A Macro analysis provides global statistics such as

mean values, variances, histograms etc. on vehicles,
customers, node statistics and so forth.

III. DECISION ALGORITHM FOR CLIENT ACCEPTANCE
IN THE DECENTRALISED APPROACH

Among the crucial algorithms composing the decision part
of the simulator are those relative to the acceptance of clients
to vehicles in the decentralised mode, as well as the ones
choosing the best suited vehicle for a centralised type of
client. Hereafter, an algorithm for the decentralised client
acceptance to a given vehicle is presented. However, one can
consider a whole set of algorithms and this is where one can
see some of the simulation strong points. Each version of
each algorithm can be tried and tested so as to choose the
one providing the most desirable performance.

We are dealing with the following problem: a vehicle
with a certain number of passengers on board having a
given itinerary comprised of destination nodes arranged in
an optimal way, meets a prospective client with a given
destination (possibly already included in the itinerary of the
vehicle). A binary decision has to be taken as to whether
this potential client will be accepted or refused and in
case of acceptance the vehicle itinerary has to be redefined.
A possible rejection of the candidate customer is due to
the impossibility of meeting the constraint of a “maximal
detour” tolerated by each passenger, including the candidate
himself. In case of acceptance, the chosen itinerary will
be the one optimising a given cost function related to the
arrival times of the passengers prioritising the nodes with
the greater number of disembarking passengers. In order to
mathematically formulate this problem, we first introduce
some notation.
• t0 present (meeting) time;
• n0 present node;
• noi origin of passenger i (already on board);

• ndi destination of passenger i;
• c index of candidate to getting on board;
• ndc destination of this candidate (his origin is of course
n0);

• L = {n1, n2, . . . , nm} sorted list of destination nodes
of passengers according to the planned itinerary (prior
to acceptance of the candidate);

• ` = L ∪ {ndc} unsorted list of destinations in case the
candidate would be accepted (one part of the decision
consists in finding the best order with which to visit
those nodes);

• J index set of elements in ` ; namely, J = {1, . . . ,M}
where M is the length of ` (indeed M = m or m+1,
according to whether nc was already present in L or
not);

• I index set of vehicle passengers and candidate c (I =
I ∪ {c});

• d : I → J mapping which provides the destination
nodes of clients, that is, ∀i ∈ I, ndi = nd(i) ∈ `;

• p(j) for j ∈ J is the number of passengers whose
destination is node j, that is, p(j) is the size of d−1(j);

• δ(a, b) duration (in time units) of the direct trip from
node a to node b through the graph by the shortest path
using average travel times (this matrix is pre-computed
and part of the data);

• toi time at which passenger i got on board (for i = c,
toc = t0);

• tpj forecasted arrival time at destination nj ∈ L prior
to acceptance of the candidate:

tpj = t0 + δ(n0, n1) +
∑
nk∈L

k=1,...,j−1

δ(nk, nk+1) ;

• s the diversion threshold borne by each client with
respect to his direct travel. This is a parameter to be
optimised as we shall see below;

• tlimj deadline for arrival time at node nj ∈ `:

tlim(j) =



max
(
tpj ,

mini∈d−1(j)

(
toi + s× δ(noi , ndi )

))
if nj ∈ L,

t0 + s× δ(n0, ndc)
if nj = ndc and if ndc 6∈ L.

(1)
Equation 1 is underlying that the serve time of each

passenger must not exceed the accepted ratio of detour
in proportion of his direct travel (that which would result
of the use of a classical taxi). This constraint however
may be impossible to be satisfied due to reasons such as
past stochastic travel times, delays etc. Consequently, in
the above definition, the maximum between the predicted
arrival time (before any new passenger is accepted, updated
according to the know conditions at t0) and the allowed



arrival time taking into account the maximal detour ratio is
considered.

A mathematical formulation of the decision problem as
a dynamic programming problem (this is inspired from [4])
is going to be presented. The purpose consists in finding an
order for visiting the nodes in ` such that the deadline of
each node is respected whilst a certain objective function
(defined hereafter) is minimised. If no feasible solution is
found, the candidate must be rejected (and the planned
taxi itinerary is not changed). Otherwise, a new itinerary
is defined by this order (including the possible additional
stop nc in `).

The whole itinerary requires M moves between the M +
1 nodes in ` ∪ {n0}; those stages are indexed by k from 0
to M . Define:
• x(k), k = 1, . . . ,M, a (considered) sorted sequence of

nodes in `; in addition, set x(0) = n0;
• u(k), k = 0, . . . ,M−1, choice of the next node to visit

once x(k) has been reached; thus x(k + 1) = u(k);
• E(k) set of nodes already visited at stage k; consider

that E(0) = ∅; of course E(k + 1) = E(k) ∪ {u(k)};
in order that all nodes be visited after M moves, we
require that ∀k, u(k) 6∈ E(k);

• t(k) arrival time at x(k); t(0) = t0 and t(k + 1) =
t(k) + δ(x(k), u(k)).

Finally, we aim at solving the following problem:

min
u(·)

M∑
k=1

p
(
x(k)

)
t(k)

s.t. x(k + 1) = u(k), k = 0, . . . ,M − 1, x(0) = n0,

E(k + 1) = E(k) ∪
{
u(k)

}
, k = 0, . . . ,M − 1,

E(0) = ∅,

t(k + 1) = t(k) + δ(x(k), u(k)), k = 0, . . . ,M − 1,

t(0) = t0,

u(k) 6∈ E(k), k = 0, . . . ,M − 1,

t(k) ≤ tlim(x(k)), k = 1, . . . ,M.

IV. MANAGEMENT OF IDLE VEHICLES

Each time a vehicle is left with an empty itinerary at some
network node, a station location will have to be assigned.

The designated node is defined according to a probabil-
ity law constructed by taking into consideration both the
distance of the present vehicle location from the parking
node and also the client arrival intensity of the candidate
node. In other words, an empty vehicle has a preference to
chose nodes to park where the chances of finding prospective
clients are greater, but preferably in the neighbourhood of
its position, so as to avoid long journeys with no passengers
on board. An empty vehicle parks at a node for a maximal
period of time, and if no client was found within this time,
the vehicle makes another request.

V. RUNNING THE SIMULATOR

In this section, we are not demonstrating a thorough
optimisation procedure. We are simply aiming at showing
the enormous variety of information that a single simulation
can provide. At this stage, we explore the decentralised man-
agement in which clients appear randomly on the network
looking for a vehicle for an immediate departure.

A. Case study

The data utilised during the studied implementations
are going to be introduced. At present, results employing
real data could not be published, consequently we had to
construct fictitious but sufficiently realistic ones so as to
proceed to the system assessment for the applied policy. We
wish to make it clear that the data are merely inputs for
the simulator and in no case they compromise the presented
methodology evaluating the system performance.

1) Network: A network inspired by the Paris metro plan
(288 nodes and 674 edges — see Figure 2) in employed.
The travel time at each edge follows a shifted log-normal
distribution (the shift ensures a minimal nonzero travel
duration). On each edge, the shift represents 80% of its
mean travel time. The mean travel time is proportional to
the length of the edge.

Figure 2. The network

2) Demand: For this run, in average 15, 393 clients per
hour are generated on the entire network, according to a
predominantly centripetal movement.

3) Duration of operations: The duration of each dialogue
between a client and a vehicle is of 30 seconds independently
of a potential acceptance or refusal. The maximum waiting
time of each client at the origin node is 10 minutes and
the maximum parking duration of an idle vehicle is of
15 minutes. We have allowed 10 seconds for each client
embarking/disembarking.



4) Resources: We are employing 13 taxis per node
(3, 744 vehicles in total) initially uniformly allocated, but
this distribution rapidly changes as soon as the simulation
starts. Each vehicle has 5 available passenger seats.

5) Diversion Threshold: The acceptable detour threshold
of a client, regarding his direct travel, is s = 1.9.

6) Simulation Duration: Simulation duration is of 8 hours
(real time) and after multiple verifications, this duration is
proved to be long enough to provide statistical results with
an insignificant variance (stochastic model).

B. Some Statistical Observations for a Single Run
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Figure 3. Abandonment rate at each node

1) Client Abandonment Rate and Waiting Time: Figure 3
represents the mean abandonment rate at each node. The
average value is of 1.33% for the entire network.

Furthermore it would be of interest to know the client
waiting time at each node of the network.
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Figure 4. Mean client waiting time at each node

Figure 4 shows the mean client waiting time (plus/minus
the standard deviation) at each node whilst Figure 5 is colour
coordinated in which darker shades represent higher values
of waiting time. As one can see, it is mostly the outskirts
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Figure 5. Map of mean client waiting time at each node

of the town which present increased values of client waiting
times. However, some very dark shades are located close
to the town center. This phenomenon is not normal for a
centripetal movement where most of the entities (clients,
vehicles) move towards the city center.

Let us consider the dark coloured node 149 and explain
the reasons causing this result. Examination of the corre-
sponding client abandonment rate implies increased values
as well. We proceed to a micro analysis for this node.
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Figure 6. Evolution of client queue at node 149

Figure 6 shows the evolution of the client queue length
at node 149 during the entire simulation duration while
Figure 7 illustrates the histogram depicting the percentage
of time with n clients in the queue. One observes that the
client queue size frequently reaches high values at this node.
After a deeper examination, we came to the conclusion
that this is mainly due to the geometry of the network.
In Figure 8, we show nodes in the vicinity of node 149
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with their node number and (in parenthesis) the frequency
of vehicle passages for each node per minute. We see that
there are only 0.87 vehicles passing through node 149 per
minute. As Figure 8 shows, there are two possibilities for
going from node 51 to 50: either by choosing the direct edge
(most popular choice) or by passing by the intermediate node
149. Moreover links joining these nodes (51, 50 and 149) are
mostly one-way, so vehicles can not pass by easily. Finally
we conclude that the high abandonment rate at this node is
mostly due to its inaccessibility. This example manifests how
a refined and consequently efficacious analysis can detect
even minor negative features and potentially improve the
system behaviour.

2) Probability of client acceptance by vehicles: In Fig-
ure 9, we present the probability that during a dialogue
between a vehicle and a candidate client, there are 0, 1, . . . ,
4 passengers on board (the vehicle capacity is 5 passenger
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Figure 9. Conditional probability of client acceptance

seats) and the conditional probability of the client to be
accepted for each of these cases. For example the conditional
probability of a client to be accepted when there are 0
passengers on board is naturally 100%, and this case has
a 0.07 probability to be realised.

1 1.5 2 2.5 3 3.5

Figure 10. Total detour histogram

3) Service Quality and System Reliability: The provided
quality of service as well as the system reliability can be
measured by the total detour, characterising all passengers
brought to their destination. It is defined as the ratio of
the sum of the client initial waiting time (if any) plus his
effective trip duration over his direct trip duration (the one
he would have made if he had chosen a classical taxi or a
private vehicle).

Figure 10 displays the histogram of the total diversion
ratio. One observes that for the majority of passengers their
detour tolerance has been respected (recall that the diversion
threshold for this run is s = 1.9) with a mean total detour



value approximately equal to 1.64. There are even some
clients who have a total detour ratio less than 1. This is
due to the fact that travel times are stochastic: those clients
probably had a zero waiting time and they were lucky
enough during their trip. Nevertheless, one also observes that
there are clients having total diversion ratios greater than 2.
Going along a tentative to explain the reasons of this result,
we observed that these are mostly clients having very short
trip durations (perhaps they should not consider taking a taxi
for such a short distance).
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Figure 11. Percentage of time taxis travelled with 0 to 5 passengers
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Figure 12. How busy taxis are

4) How busy taxis are: The histogram on Figure 11
represents the percentage of time with 0, 1, . . . , 5 passengers
on board on all vehicles (while they travel on edges). Thus,
during the 33% of the vehicle travelled time, there were two

passengers on board, while 4 passengers were during the 9%
of the time. The vehicle travel time in an empty state is only
during the 9% of the time.

In Figure 12, the blue (larger — 88%) area of the pie
chart indicates the percentage of time spent by vehicles on
travelling. The green part (medium area — 9%) shows the
percentage of time during which vehicles were doing various
operations at nodes (entering/disembarking passengers, ex-
amining candidate clients). Finally the red (smaller — 3%)
area corresponds to the parking time of vehicles.

Obviously these statistics can be similarly calculated for
each vehicle separately.

C. Comparison Between Collective and Conventional Taxis

In this section, we are interested in examining a system
of classical taxis and evaluating the related performance in
comparison with a collective taxi system. In our model,
classical taxis can be merely viewed as collective taxis with
capacity 1. In other words, they always accept single clients
whenever they are empty and cannot take any new trips
before serving their unique passenger, since they are full (in
real life, they may accept simultaneously a group of clients
if those customers go together from the same origin to the
same destination node. However, customer groups are not
considered in the following implementations).

Our reference will be the simulation analysed at §V-A
in which there were 3, 744 taxis (of capacity 5) in service
and we observed that the average number of passengers per
taxi was 2.16. Therefore we are considering here exactly the
same sequence of generated clients but with individual taxis
ranging from 3, 744 taxis in service to twice that number
(7, 488 and even three times more (11, 232).

Table I summarises the results for those three cases and
compare them with the case of 3, 744 collective taxis in
service of capacity 5. In terms of quality of service offered
to clients (with respect to average waiting time or queue
length, and abandonment rate), the only case of conventional
taxis which can compete with the collective taxis structure
is the case when we employe three times more vehicles in
service (that is, 11, 232 cars). Even in that case, the client
abandonment rate is still almost three times larger. Of course,
as one can expect it, the total diversion ratio is necessarily
close to 1 with individual taxis (as long as the initial waiting
time is not penalising this ratio heavily as this is the case
with 3,744 taxis — second column — for example).

Hence, let us concentrate now on the comparison of a
conventional taxi system (with three times more taxis in
service) versus the collective taxi system studied earlier.
Waiting times are comparable for both structures, abandon-
ment rate is worse for classical taxis but total diversion ratio
is necessarily better. Now, consider the activity of taxis and
the corresponding costs (and consequently fares). In terms
of the average number of clients transported per taxi (in 8
hours), this number is almost divided by 3 for the classical



Table I
COMPARISON OF TAXIS WITH CAPACITY 5 VS. INDIVIDUAL TAXIS

Collective taxis Classical taxis
Number of taxis in service 3,744 3,744 7,488 11,232

Abandonment rate 1.33% 28.95% 6.78% 3.53%
Mean client queue length 1.54 6.7 2.47 1.5
Mean client waiting time 97 sec 394 sec 135 sec 82 sec

Total diversion ratio 1.64 1.41 1.13 1.09
Total number of transported clients 112,883 82,628 109,481 113,494

Mean number of passengers per taxi 2.16 0.99 0.9 0.88
Mean number of transported clients per taxi (in 8 hours) 41 31 23 15

taxis (which is consistent with the total number of clients
served, comparable in both cases, and the number of taxis
in service).
Remark 1. One may wonder why the total number of
transported clients in the simulation is slightly higher in the
last column compared to the first column (since the sequence
of generated clients is the same in all simulations and the
abandonment rate is larger in the last column than in the
first). This is because are considered as “transported clients”
only those clients who effectively reached their destination
before the end of the simulation. It is highly probable that
there are more passengers still on board of taxis at the end
of the simulation (and thus not counted as “transported”)
with taxis of capacity 5 than with taxis of capacity 1.

travelling
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3,744 in service
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stopped 9%

travelling
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Figure 13. Collective and Conventional Taxis effectiveness

Figure 13 is also enlightening in understanding a fun-
damental difference in the behaviour of conventional and
collective taxis. Considering the histograms of taxi activity
corresponding to the first and last columns of the table (pie
charts NW and SE in the figure), one can see that collective
taxis are kept very busy all the time since the time of parking

(idle time) is only 3% of the total time of simulation whereas
it jumps to 46% with conventional taxis (employing 11, 232
cars).

VI. CONCLUSIONS - FUTURE WORK

In this paper, a decentralised management of a “collective
taxi” system is studied covering an entire urban area while
offering door-to-door services. During this work, we have
tried to preserve the provided quality of service compared to
the one of classical taxis, maintaining reasonable diversions,
and keeping low fares by smartly associating more than
one passengers to each vehicle. The collective taxi system
being a real world stochastic, complex dynamic system
is heavily affected by a random behaviour, and difficult
to be evaluated by real life applications. Discrete-event
simulation is a promising mean allowing an accurate com-
prehension of the system behaviour at low costs and without
any risk. After developing a decision tool specifically for
the study of the “collective taxi” system, modelling each
one of the three approaches (clients with and/or without
reservations), we are able to construct multiple strategies,
develop various control algorithms and appraise the resulting
system performances. Thus, optimisation of all the controls
ruling the system can be achieved and reasonable trade-
offs between conflicting performance statistical indicators
can be provided. The decentralised approach, discussed in
this paper, consists of clients who randomly appear in the
network, looking for a vehicle for an immediate departure.
Every time a client meets a vehicle a decision algorithm
responds whether the client can be accepted or refused,
providing the corresponding optimal vehicle itinerary in case
of a positive answer. The involved quality of service is
measured in terms of client initial waiting time and detours.
Metrics on the client abandonment rate are also studied.
The system controls idle vehicles indicating station nodes
with increased chances of finding new prospective clients.
Furthermore,vehicle performance is examined in terms of
occupancy, travel duration in empty state etc.

Comparison of the actual travel time and trip costs of
the proposed “collective taxi” system versus other public
transport modes in urban areas is an interesting element for
characterising the urban mobility. Research in this direction



is currently in progress. The development of more sophis-
ticated decisions algorithms for the decentralised mode is
already planned. Moreover, future work aims at the study
of the centralised and mixed approaches. Measuring the
benefits of each structure and consequently comparing the
system performance with the aim to examine if and when
settling up a dispatching center is worth the corresponding
cost, is an interesting issue to be studied.

We believe that if a real application could be achieved,
it would form an alternative to individual cars and classi-
cal taxis (without aiming at replacing these two transport
modes).
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