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A Weighted Splitting Approach For Low-Mach
Number Flows

David Iampietro1,3, Frédéric Daude1, Pascal Galon4, and Jean-Marc Hérard2,3

Abstract In steady-state regimes, water circulating in the nuclear power plants pipes
behaves as a low Mach number flow. However, when steep phenomena occur, strong
shock waves are produced. Herein, a fractional step approach allowing to decouple
the convective from the acoustic effects is proposed. The originality is that the split-
ting between these two parts of the physics evolves dynamically in time according
to the Mach number. The first one-dimensional explicit and implicit numerical re-
sults on a wide panel of Mach numbers show that this approach is as accurate and
CPU-consuming as a state of the art Lagrange-Projection-type method.

1 Introduction

Even if it is intrinsically quasi-incompressible, water flowing inside nuclear plants
can generate strong shock waves through which pressure can vary by dozens of bar.
From a numerical point of view this diversity of behaviors raises a dilemma. Indeed,
an efficient way to capture shocks in a fluid is to use exact or approximate Riemann
solvers. However, stationary cases shown in [9] and theory developped in [7] prove
that these latter are unable to maintain the approximated solution in the initial low-
Mach phase space also called ”well-prepared space”. What is more, they suffer from
a serious loss of accuracy in case of low-Mach number flows. Eventually, the CFL
condition inherent to explicit schemes requires very demanding non-dimensional
timesteps bounded by the Mach number. One way to bypass these difficulties is to
decouple convection from acoustic waves production by splitting the original con-
servation laws into two subsystems. Then, they can be successively solved and a
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specific low-Mach number treatment or a direct implicitation can be done on the
acoustic subsystem. Such a strategy has been tested in [4] where a transport and an
acoustic subsystems are exhibited, the latter being reformulated in Lagrange vari-
ables. Inspired by the pioneering work of [1], the present approach introduces a
splitting weighted by a parameter related to the instantaneous flow Mach number.
By doing so, it becomes sensitive to any change of Mach regime, allows to capture
shocks and may be accurate in the case of low-Mach number flows.

2 A Weighted Splitting Approach

Our work focuses on the compressible Euler system whom differential structure is
similar to these of two-phase homogeneous models. In one dimension, the mass,
momentum and energy conservation laws read:

∂t ρ +∂x (ρ u) = 0, (1a)

∂t (ρu)+∂x (ρ u2 + p) = 0, (1b)
∂t (ρ e)+∂x ((ρ e+ p)u) = 0. (1c)

Here, e = u2/2+ ε is the specific total energy made of the kinetic contribution
plus the specific internal energy ε related to pressure and density by the equation
of state ε = εEOS (ρ, p). Eventually, one can introduce c the sound speed such that
(ρ c)2 =

(
∂p ε|ρ

)−1 (p− ρ2 ∂ρ ε|p
)

which strongly depends on the fluid equation
of state and governs the acoustic waves speed. Following [1], let us introduce C
(respectively A ) a convective (respectively an acoustic) subsystem, namely:

C :


∂t ρ +∂x (ρ u) = 0,

∂t (ρ u)+∂x
(
ρ u2 +E 2

0 (t) p
)
= 0,

∂t (ρ e)+∂x
(
(ρ e+E 2

0 (t) p)u
)
= 0.

A :


∂t ρ = 0,

∂t (ρ u)+∂x
(
(1−E 2

0 (t)) p
)
= 0,

∂t (ρ e)+∂x
(
(1−E 2

0 (t)) pu
)
= 0.

Here, E0(.) is a time-dependent weighting factor belonging to interval ]0, 1]. It is
directly related to the maximal Mach number of the flow by the expression below:

E0(t) = min(Mmax(t), 1) ; with: Mmax(t) = sup
x∈Ω

(
M(x, t) =

|u(x, t)|
c(x, t)

)
, (2)

Ω being the computational domain. One can notice that formally summing conser-
vative subsystems C and A allows to recover the original Euler system (1). In the
case of a globally low-Mach number flow, Mmax(t)≈ E0(t)� 1, and pressure terms
completely disappear from C which turns out to be a pure ”convective” subsystem.
Pressure terms are treated afterwards in A which becomes an ”acoustic” subsys-
tem. Actually, a low-Mach correction or a straight time-implicit resolution applied
on its flux would allow to reduce the numerical diffusion or remove the most con-
straining part of the CFL condition. However, suppose that at instant t the flow is
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such that Mmax(t) jumps to 1 suddenly. Then, E0(t) will be close to 1, C formally
converges towards the full Euler system while A is a degenerated stationary subsys-
tem. Hence, if C is solved using a time-explicit Godunov-like scheme, Euler shocks
would be optimally captured. This strategy relies on the hypothesis that the waves
produced by C and A are real and also that their asymptotic behavior in terms of
E0 is the expected one. The proposition below clarifies this point (see [10]):

Proposition 1 (Hyperbolicity of convective and acoustic subsystems).
Let us introduce cC (ρ, p) and cA (ρ, p) two modified sound speeds such that:

(ρ cC (ρ, p))2 =
(
∂p ε|ρ

)−1 (
E 2

0 p− ρ
2

∂ρ ε|p
)
,

(ρ cA (ρ, p))2 =
(
∂p ε|ρ

)−1 p.
(3)

In case of a stiffened gas thermodynamics, c2
C ≥ 0. Besides, if pressure remains

positive, c2
A ≥ 0. Under this condition, the subsystems C and A are hyperbolic.

The eigenvalues of C and A are:

λ
C
1 = u−E0 cC ≤ λ

C
2 = u≤ λ

C
3 = u+E0 cC ,

λ
A
1 =−

(
1−E 2

0
)

cA ≤ λ
A
2 = 0≤ λ

A
3 =

(
1−E 2

0
)

cA ,
(4)

the 1-wave and 3-wave of both subsystems are associated to genuinely non-linear
fields whereas the 2-wave field are linearly degenerate.

3 Suliciu-like Relaxation Schemes To Solve C and A

Relaxation schemes emerge from the theory of kinetic schemes described in [2, 3].
As shown in [5], such a method can be applied on a rather general fluid model en-
dowed with a set of conservation laws, a strictly convex entropy and basic thermo-
dynamical constraints linking state variables. Following the Suliciu-like relaxation
method, also used in [4], let us introduce C µ (respectively A µ ) the relaxed convec-
tive (respectively the relaxed acoustic) subsystem:

C µ :



∂t ρ +∂x (ρ u) = 0,

∂t (ρ u)+∂x (ρ u2)+∂x
(
E 2

0 (t)Π
)
= 0,

∂t (ρ e)+∂x
(
(ρ e+E 2

0 (t)Π)u
)
= 0,

∂t (ρ Π)+∂x
(
(ρ Π +a2

C )u
)
=

ρ

µ
(p−Π) ,

A µ :



∂t ρ = 0,

∂t (ρ u)+∂x
(
(1−E 2

0 (t))Π
)
= 0,

∂t (ρ e)+∂x
(
(1−E 2

0 (t))Π u
)
= 0,

∂t (ρ Π)+∂x
(
(1−E 2

0 (t))a2
A u
)
=

ρ

µ
(p−Π) .
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Here, ρ

µ
(p−Π) can be formally interpreted as a correction term of time scale

µ forcing the relaxed pressure Π to converge towards the physical pressure instan-
taneously if µ tends to zero. Besides, aC and aA are the constant relaxation coef-
ficients encapsulating the thermodynamical nonlinearity. What is more, under the
subcaracteristic condition aC > ρ cC (respectively aA > ρ cA ), C µ (respectively
A µ ) converges formally towards C (respectively A ) at order one in µ . Then, the
augmented set of conservation laws is still hyperbolic and all its fields are linearly
degenerate. Hence, it is possible to derive an exact Godunov solver for these relaxed
subsystems. The eigenvalues of C µ are u−E0 aC τ , u and u+E0 aC τ with τ = 1/ρ

the specific volume. The ones of A µ are −
(
1−E 2

0
)

aA τ , 0, and
(
1−E 2

0
)

aA τ .
The numerical flux related to C (respectively A ) is derived by solving a convective
(respectively an acoustic) Riemann problem associated to C µ (respectively A µ ). In
the end, for an explicit time integration, the convective flux at face i+1/2 and time
tn reads:

Hc
n
i+1/2 =



1
2
(
FC (Un

i )+FC

(
Un

i+1
))

− 1
2

∣∣un
i −E n

0 (an
C )i+1/2 τ

n
i
∣∣ (U∗,ni+1/2−Un

i )

− 1
2

∣∣∣(u∗C )n
i+1/2

∣∣∣ (U∗∗,ni+1/2−U∗,ni+1/2)

− 1
2

∣∣un
i+1 +E n

0 (an
C )i+1/2 τ

n
i+1
∣∣ (Un

i+1−U∗∗,ni+1/2),

(5)

with FC (U) =
[
ρ u, ρ u2 +E 2

0 p, (ρ e+E 2
0 p)u

]T , and:

U∗,ni+1/2 =

 (ρ∗i,C )
n

(ρ∗i,C )
n (u∗C )

n
i+1/2

(ρ∗i,C )
n (e∗i,C )

n

 , U∗∗,ni+1/2 =

 (ρ∗i+1,C )
n

(ρ∗i+1,C )
n (u∗C )

n
i+1/2

(ρ∗i+1,C )
n (e∗i+1,C )

n

 ,
(an

C )i+1/2 = K max
(
ρ

n
i (cC )

n
i , ρ

n
i+1 (cC )

n
i+1
)
, K > 1.

The expressions of intermediate quantities like (u∗C )
n
i+1/2, (ρ∗k,C )

n and (e∗k,C )
n, k∈

{i, i+1} are close to these derived in [6, 4]. More details are given in [10]. The
acoustic flux is simpler because of the zero eigenvalue:

Hac
n,θ
i+1/2 =

(
1− (E n

0 )
2)
 0

(Π ∗A )n,θ
i+1/2

(Π ∗A )n,θ
i+1/2 (u

∗
A )n

i+1/2

 , (6)

with:


(u∗A )n

i+1/2 =
un

i+1 +un
i

2
− 1

2(aA )n
i+1/2

(
pn

i+1− pn
i
)
,

(Π ∗A )n,θ
i+1/2 =

pn
i+1 + pn

i

2
−

(aA θ)n
i+1/2

2
(
un

i+1−un
i
)
,

(an
A )i+1/2 = K max

(
ρ

n
i (cA )n

i , ρ
n
i+1 (cA )n

i+1
)
, K > 1.

(7)
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Following [7], the parameter θ n
i+1/2 introduced in (7) is a low-Mach number

correction term. Indeed, θ n
i+1/2 = 1 is the original formula with no correction,

θ n
i+1/2 =

∣∣∣(u∗A )n
i+1/2

∣∣∣/max
(
cn

i , cn
i+1
)

prevents an initial well-prepared solution from
leaving the well-prepared space after one iteration. It also diminishes the numerical
diffusion in the low-Mach number configurations. See [9, 7, 4] for more details. The
discrete expression of the weighting parameter E0 follows the continuous definition
written in (2):

E n
0 = max

(
Ein f , min(Mn

max, 1)
)

; with: Mn
max = max

i∈[1,Ncells]

(
|un

i |
cn

i

)
. (8)

Here, 0 < Ein f � 1 is only a lower bound preventing E n
0 from being exactly

equal to zero if velocity is initially null everywhere. Finally, the overall dynamical
fractional step approach can be summed up in the following equations:

C :

{
Un+

i = Un
i − ∆ t

∆x

(
Hci+1/2

(
Un

i , Un
i+1
)
−Hci−1/2

(
Un

i−1, Un
i
))

,

Π
n+
i = pEOS

(
Un+

i

)
= pn+

i ,

A :

{
Un+1

i = Un+
i −

∆ t
∆x

(
Haci+1/2

(
Un+

i , Un+
i+1

)
−Haci−1/2

(
Un+

i−1, Un+
i

))
,

Π
n+1
i = pEOS

(
Un+1

i

)
= pn+1

i .

(9)

We also have the following results (see [10] for a proof):

Proposition 2 (Conservativity, Positivity, Low-Mach Accuracy).

• Conservativity: The overall scheme (9) is conservative.
• Positivity: Assume ∀i : ρn

i > 0, εn
i > 0. Then, ρ

n+1
i > 0, ε

n+1
i > 0 is ensured

under modified subcaracteristic conditions:

(an
C )i+1/2 = K max

(
ρ

n
i (cC )

n
i , ρ

n
i+1 (cC )

n
i+1, aρ ;ε,n

i , aρ ;ε,n
i+1

)
(10a)

(an
A )i+1/2 = K max

(
ρ

n
i (cA )n

i , ρ
n
i+1 (cA )n

i+1, aρ ;ε,n
i , aρ ;ε,n

i+1

)
(10b)

where the non-dimensional expressions associated with aρ;ε,n
i and aρ;ε,n

i+1 are of
order O(1); and under a global CFL condition: ∆ tn = min

(
∆ tn

E , ∆ tn
C , ∆ tn

A

)
,

with ∆ tn
E (respectively ∆ tn

C , ∆ tn
A ) the timestep bounded by the Euler (respec-

tively C , A ) CFL condition garanteeing no interaction between waves produced
by the face Riemann problems.

• Low-Mach accuracy: Assume that the initial conditions belong to the well-
prepared space (see [7] for a definition) and that E n

0 is given by (8). Then, the
non-dimensional numerical diffusion of a smooth solution computed thanks to
the scheme is a O(∆x) instead of O(∆x/M) if the above global CFL condition
holds, and if the discrete low-Mach correction θ n

i+1/2 is triggered.
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4 Numerical Results

We perform a one-dimensional Sod-type shock tube. The fluid is endowed of an
ideal gas thermodynamics with γ = 7/5. The initial data are: ρ0

L = 1 kg.m−3,
u0

L = 0 m.s−1, p0,L = p0,R (1+ ε), ρ0
R = 0.125 kg.m−3, u0

R = 0 m.s−1, p0,R = 0.1 bar.
By tuning ε , the maximal flow Mach number can be modified. Fig. 1 shows the pres-
sure convergence curves for three different Mach values: M = 0.92, M = 9.5×10−2

and M = 4.2× 10−3. The cells number varies from 102 to 9× 104. Five different
schemes have been tested: ”no-Sp” corresponds to the case where E n

0 = 1 is imposed
along the simulation. Thus, the splitting is not triggered. ”Sp-(

√
M)” is the weighted

splitting approach with E n
0 = max

(
Ein f , min(

√
Mn

max, 1)
)

while ”Sp-(M)” involves
E n

0 defined in formula (8) which is optimal, because, as proven in [10], it minimizes
the numerical diffusion of the subsystem C in the low-Mach number case. Even-
tually, ”LP” is the Lagrange Projection splitting method, fully described in [4] and
taken as a benchmark. ”-corr” means that the low-Mach correction is triggered.

102 103 104 105
10−6

10−4

10−2

Cells number (log scale)

L 1
E

rr
or

(l
og

sc
al

e)

104 104.48 104.7 104.85104.95

10−5

10−4

10−3

Cells number ≥ 104 (log scale)

M = 0.92 M = 9.5 ·10−2 M = 4.2 ·10−3
no-Sp Sp-(

√
M) Sp-(M) Sp-(

√
M)-corr Sp-LP-corr

Fig. 1: Pressure Convergence Curves: Explicit Schemes

One can notice that, when M ≈ 1, all the schemes are equivalent in terms of
accuracy. In the sequel, as the Mach number decreases the low-Mach corrected
schemes become the most accurate ones. Particularly, Sp-(

√
M)-corr seems to be

more precise than Sp-LP-corr at M = 4.2× 10−3. However, one should notice that
for every schemes, the order of convergence is depreciated as the Mach number de-
creases. Indeed for pressure, it passes from 0.87 at M = 0.92 (the expected order
already obtained in [8]) to 0.82 at M = 9.5×10−2 and 0.56 in the low-Mach case.
Velocity profiles are plotted on Fig. 2. It seems that the accuracy of Sp-(M) is higher
than these of Sp-(

√
M) through the left rarefaction wave where the exact solution

is continuous. Besides, the low-Mach correction applied on the weighted splitting
approach results in small overshoots located in the tail of the left rarefaction wave
and before the shock front.

Instead of using the low-Mach correction, one can directly apply an implicit
approximation of the acoustic flux (6) using a method that relies on strong re-
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0.38 0.39 0.4 0.41 0.42 0.43 0.44 0.45

0

0.2

0.4

x (m)

u
m

s−
1

Left Rarefaction Wave

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79

0

0.2

0.4

x (m)

Right Shock

Exact no-Sp Sp-(
√

M) Sp-(M) Sp-(
√

M)-corr Sp-LP-corr

Fig. 2: Velocity Profiles: M = 4.2×10−3, Ncells = 103

102 103 104 105

10−5

10−4

10−3

Cells number ≥ 104 (log scale)

L 1
E

rr
or

(l
og

sc
al

e)

104 104.5 105

10−5

10−4.5

Cells number ≥ 104 (log scale)

no-Sp Sp-(M) Sp-(M)-Imp-RI-cfl0.5
Sp-(M)-Imp-RI-cfl5
Sp-(M)-Imp-RI-cfl20

Sp-LP-Imp-RI-cfl0.5
Sp-LP-Imp-RI-cfl5
Sp-LP-Imp-RI-cfl20

Fig. 3: Pressure Convergence Curves: Implicit Schemes, M = 4.2 ·10−3

laxed Riemann Invariants (see [6] and [4] for more details). Pressure convergence
curves for different implicit schemes at M = 4.2×10−3 are shown on Fig. 3. Here,
∀k ∈ {1/2, 5, 20}, the mention ”-cfl[k]” indicates that the Courant number involved
in the determination of ∆ tn

E and ∆ tn
A defined in Proposition 2 is equal to ”k”. As

expected, the implicit techniques are more diffusive than explicit schemes. Besides,
at a given mesh, CPU time diminishes considerably as the Courant number in-
creases. For example, at Ncells = 103, Sp-(M)-Imp-RI-cfl0.5 takes 10.1s whereas
Sp-(M)-Imp-RI-cfl5 (respectively Sp-(M)-Imp-RI-cfl20) requires 1.9s (respectively
0.7s). Finally, one can notice that the present implicit weighted splitting approach
is as accurate as the implicit Lagrange-Projection method. In the low-Mach regime,
the trade-off between explicit-accuracy versus the implicit-CPU-rapidity is solved
thanks to the efficiency curve plotted on Fig. 4. At a given precision, for low-Mach
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unsteady cases, explicit schemes are still less CPU-consuming than implicit tech-
niques.

10−5 10−3 10−1 101

10−5

10−4

10−3

CPU time (h)

L1
er

ro
r(

p)
no-Sp
Sp-(
√

M)
Sp-(
√

M)-corr

Sp-(M)
Sp-(M)-Imp-RI-cfl5
Sp-(M)-Imp-RI-cfl20

Sp-LP-corr
Sp-LP-Imp-RI-cfl5
Sp-LP-Imp-RI-cfl20

Fig. 4: Pressure Efficiency Curve: M = 4.2×10−3

Acknowledgement: D. Iampietro received a financial support by ANRT through
an EDF-CIFRE contract 2015/0561. Numerical facilities were provided by EDF.

References

1. Baraille, R., Bourdin, G., Dubois, F., Le Roux, A.Y.: Une version à pas fractionnaires du
schéma de Godunov pour l’hydrodynamique. Compte Rendu de l’Académie des Sciences
314, 147–152 (1992)

2. Bouchut, F.: Entropy satisfying flux vector splittings and kinetic BGK models. Numerische
Mathematik 94, 623–672 (2003)

3. Bouchut, F.: Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws.
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