Relations between oxidation induced microstructure and mechanical durability of oxide scales
Résumé
Most industrial heat-resistant stainless steels contain silicon as a minor constituent. At high temperature, the internal formation of amorphous silica reduces oxidation rates but decreases the metal/oxide interface toughness. Tensile testing experiments performed on AISI 304L previously oxidized in synthetic air for 50 h at 900 or 1000 °C showed a relation between the silica morphology and location and the crack patterns. A micromechanical modeling using cohesive zone models to describe interfaces fracture behavior is proposed to investigate relevant parameters controlling the silica/alloy interface debonding. Calculations carried out using the finite elements method have shown that location of silica inclusions and silica/metal interface toughness are key parameters determining the cracks pattern morphology and the critical strain at failure.
Origine | Fichiers produits par l'(les) auteur(s) |
---|
Loading...