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C. G. Pérez-Zuñiga ∗,∗∗ E. Chanthery ∗ L. Travé-Massuyès ∗
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Abstract: Distributed diagnosis is important for complex systems as a way to reduce
computational costs or for large systems that require minimizing data transfer. This paper
presents a distributed diagnosis method for continuous systems that only requires the knowledge
of local models and limited knowledge of their neighboring subsystems. The notion of Fault-
Driven Minimal Structurally Overdetermined (FMSO) set is used as the corner stone of the
design of residual generators. We show that all the FMSO sets of the global system can be
obtained in a distributed manner from so-called shared FMSO sets and shared CMSO sets that
are computed along a structural approach for every local site.
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1. INTRODUCTION

For complex systems with constraints such as communi-
cation bandwidth or large geographic distribution, it is
more appropriate to use distributed approaches. In some
cases, this is even the only viable solution given structural,
computational and robustness issues.

Researchers have developed several decentralized and dis-
tributed diagnosis schemes in the past, mostly in the dis-
crete event framework. Distributed schemes, Su and Won-
ham (2005), unlike decentralized schemes, do not make use
of the global system model; instead, they use subsystem
models for diagnosis, and the local diagnosers (LDs) for
each them, communicate their diagnosis results to each
other to obtain the global solution. Distributed diagnosis
methods have been proposed recently for continuous sys-
tems, Bregon et al. (2014) presents a distributed diagnosis
framework for physical systems with continuous behav-
ior using structural model decomposition and employing
Possible Conflicts approach. The global system model is
decomposed into submodels that contain sufficient ana-
lytical redundancy to perform fault detection. However
this is done ignoring pre-existing constraints that may
be functional, geographical or privacy-based. Khorasgani
et al. (2015) presents a distributed approach that provides
a set of diagnosers that are as local as possible by extend-
ing local models with their neighboring subsystem’s until
maximal isolability is achieved.

Our approach considers pre-existing constraints manda-
tory and therefore considers predefined subsystems and
in that context is designed in a distributed framework.
It does not require a coordinator online, and there is no
exchange of diagnosis information among the LDs, only ex-
change of measurements. Besides, this method introduces
important properties of Fault-Driven Minimal Structurally

Overdetermined (FMSO) sets Pérez et al. (2015), that
allow us to establish the relation between FMSO sets for
the subsystems and FMSO sets for the global system. This
properties are key to demonstrate that all global FMSO
sets can be generated from computations only at the level
of the subsystems, hence achieving a truly distributed
architecture. We use the structural framework that has
shown to be a flexible and efficient tool for fault diagnosis
and fault-tolerant control design, Krysander et al. (2010).
FMSO sets are used to ensure the minimal redundancy
of residual generators in order to optimize LDs. Each
subsystem is monitored by a LD using the information
provided by measured local variables and, when necessary,
by a minimal amount of measurements from neighboring
subsystems. In a large industrial systems due to the large
number of components it is quite unrealistic to rely on a
global model of such systems, accordingly we assume the
non-availability of a global system model. The algorithm
achieves the same results as a global diagnoser by extend-
ing local models as least as possible when it is required.

This paper is structured as follows: in section 2, some
concepts of the structural approach are presented and the
notion of FMSO set is introduced. Section 3 presents some
fault distributed diagnosis concepts and properties for the
structural approach. Section 4 explains how to design the
set of LDs so that they achieve the same detectability
and diagnosability as a centralized diagnoser. A four tanks
example illustrates the approach in section 5. Finally, a
conclusion and future work end the paper.

2. BACKGROUND THEORY

2.1 Analytical Redundancy via Structural Analysis

Let the system description consist of a set of ne equations
involving a set of variables partitioned into a set Z of nZ



known (or measured) variables and a set X of nX unknown
(or unmeasured) variables. We refer to the vector of known
variables as z and the vector of unknown variables as x.
The system may be impacted by the presence of nf faults
that appear as parameters in the equations. F is the set
of faults and we refer to the vector of faults as f.

Definition 1. (System). A system, denoted Σ(z, x, f) or Σ
for short, is any set of equations relating z, x and f. The
equations ei(z, x) ⊆ Σ(z, x, f), i = 1, . . . , ne, are assumed
to be differential or algebraic in z and x.

A four tank system (Fig. 1) is used to show the concepts
throughout this paper. Its model Σ(z, x, f) is composed of
20 equations e1 to e20 relating the known variables Z =
{u1, u2, y1, y2, y3, y4, y5, y6}, the unknown variables X =
{ṗ1, p1, ṗ2, p2, ṗ3, p3, ṗ4, p4, qin1, qin2, q1, q2, q3, q4} and the
set of system faults F = {f1, f2, f3, f4, f5, f6}. All the
equations are given in Khorasgani et al. (2015).

Fig. 1. Four Tank System.

Definition 2. (ARR for Σ(z, x, f)). Let Σ(z, x, f) be a sys-
tem. Then, a relation r(z, ż, z̈, ...) = 0 is an Analytical
Redundancy Relation (ARR) for Σ(z, x, f) if for each z
consistent with Σ(z, x, f) the relation is fulfilled.

Definition 3. (Residual Generator for Σ(z, x, f)). A system
taking a subset of the variables z as input, and generating
a scalar signal r as output, is a residual generator for the
model Σ(z, x, f) if, for all z consistent with Σ(z, x, f), it
holds that lim

t→∞
r(t) = 0.

ARRs can be used to check if the measured variables z
are consistent with the system model and as the basis of
residual generators used for diagnosis purposes.

The structural model of the system Σ(z, x, f), also denoted
with some abuse by Σ(z, x, f) or Σ in the following, can
be obtained abstracting the functional relations. It only
retains a representation of which variables are involved
in the equations. This abstraction leads to a biadjacency
matrix representation between the set of equations of the
system and the set X of its unknown variables.

Obtaining ARRs for a system Σ(z, x, f) involves the elim-
ination of unknown variables, which can be inferred from
structural analysis, Travé-Massuyès et al. (2006). One
should notice that results obtained in a structural frame-
work are a best case scenario: causality considerations, al-
gebraic and differential loops, etc. ultimately define which
structural redundancies can be used for the design of
actual residual generators.

2.2 Focused Residual Generation

A key tool for analyzing a structural model is the Dulmage-
Mendelson (DM) canonical decomposition.

It results in a partition of the system model Σ into
three parts: the structurally overdetermined (SO) part
Σ+ with more equations than unknown variables; the
structurally just determined part Σ0, and the structurally
underdetermined part Σ− with more unknown variables
than equations (Blanke et al., 2006).

Definition 4. (Structural redundancy). The structural re-
dundancy ρ

Σ′ of a set of equations Σ′ ⊆ Σ is defined as
the difference between the number of equations and the
number of unknown variables.

Proposition 1. Consider two sets of equations Σ′ ⊆ Σ and
Σ′′ ⊆ Σ, then ρ

Σ′∪Σ′′ = ρ
Σ′ + ρ

Σ′′ + |X
Σ′ ∩XΣ′′ |.

Definition 5. (PSO and MSO sets). A set of equations Σ
is proper structurally overdetermined (PSO) if Σ = Σ+

and minimally structurally overdetermined (MSO) if no
proper subset of Σ is overdetermined , Krysander et al.
(2010).

Since PSO and MSO sets have more equations than vari-
ables, they can be used to generate ARRs and residuals.
MSO sets are of special interest since they are just overde-
termined, i.e. they have structural redundancy 1. However,
not all MSO sets are interesting to construct residual
generators, in particular those that are not impacted by
faults. Hence it is desirable to consider a fault-focused
concept. The concept of test equation support (TES) has
been introduced in Krysander et al. (2010). A TES is a
set of equations expressing redundancy specific to a set of
considered faults, known as the test support (TS) or as the
fault support, term that we use in this paper. A minimal
TES (MTES) is such that no proper subset is a TES.

It is necessary to notice that, whereas an MSO set is
just overdeterminated and hence has redundancy 1, an
MTES may have higher redundancy. This may be an
advantage to develop more powerful tests; however, for
the distribution problem, the aim is to minimize the
information shared by subsystems, hence the concept
of Fault-Driven Minimal Structurally Overdetermined set
defined below is preferable, Pérez et al. (2015).

A Fault-Driven Minimal Structurally Overdetermined
(FMSO) set can be defined as an MSO set of Σ(z, x, f)
whose fault support is not empty. In particular, an MTES
of structural redundancy 1 is an FMSO set.

Let us define Zϕ ⊆ Z, Xϕ ⊆ X, and Fϕ ⊆ F as the set of
known variables, unknown variables involved in the FMSO
set ϕ, and the set of faults in its fault support, respectively.
We then have the following formal definition.

Definition 6. (FMSO set). A subset of equations ϕ ⊆
Σ(z, x, f) is an FMSO set of Σ(z, x, f) if (1) Fϕ 6= ∅ and
ρϕ = 1 that means |ϕ| = |Xϕ|+ 1, (2) no proper subset of
ϕ is overdeterminated.

We also define the concept of Clear Minimal Structurally
Overdetermined (CMSO) set as an MSO set of Σ(z, x, f)
whose fault support is empty.

Definition 7. (CMSO set). A subset of equations Λ ⊆
Σ(z, x, f) is a CMSO set of Σ(z, x, f) if (1) FΛ = ∅ and



ρΛ = 1 that means |Λ| = |XΛ|+ 1, (2) no proper subset of
Λ is overdeterminated.

To illustrate these concepts, we consider an academic ex-
ample with: Σ = {e1, e2, e3, e4, e5, e6},X = {x1, x2, x3, x4}
and F = {f1, f2} as shown in Fig. 2.

Eq Unknown Faults
x1 x2 x3 x4 f1 f2

e1 X
e2 X X X
e3 X
e4 X
e5 X
e6 X X X X

Fig. 2. Academic example.

If we consider the fault f1 and use the algorithm proposed
in Krysander et al. (2010), there exists an MTES focused
in fault f1, Σ1 = {e1, e2, e3, e4} with redundancy ρΣ1

= 2.
In the other hand, using our approach we can find minimal
redundancy by two FMSO sets: ϕ1 = {e1, e2, e3} and
ϕ2 = {e1, e2, e4} both focused on fault f1 which is more
efficient for distribution.

3. DISTRIBUTED DIAGNOSIS

This section reconsiders the concept of FMSO set in the
distributed case. We establish properties on relations be-
tween FMSO sets for the subsystems and FMSO sets for
the global system. This properties are key to demonstrate
that all global FMSO sets can be generated from computa-
tions only at the level of the subsystems, hence achieving
a truly distributed architecture.

3.1 Distribution and Related Notions

Let us consider the system Σ and define the following:

Definition 8. (Global FMSO set). A global FMSO set is
an FMSO set of Σ(z, x, f). The set of global FMSO sets is
denoted by Φ.

A decomposition of the system Σ, into several subsystems
Σi is defined as a partition of its equations. Let Σ =

{Σ1,Σ2, ...,Σn} with Σi ⊆ Σ,
n⋃

i=1

Σi = Σ, Σi 6= ∅ and

Σi ∩ Σj = ∅ if i 6= j.

This decomposition leads to n subsystems denoted Σi(zi, xi,-
fi), with i = 1, ..., n, where zi is the vector of known
variables in Σi, xi the vector of unknown variables in Σi

and fi the vector of faults in Σi. The set of variables and
faults of the ith subsystem Σi, denoted as Xi, Zi, and Fi

respectively, are defined as the subset of variables of X, Z,
and F respectively, that are involved in the subsystem Σi.

For the four tanks system example, we consider that each
tank and the outlet pipe to its right, constitute a sub-
system. It is for example possible to define Σ1(z1, x1, f1)
as: Σ1 = {e1, e2, e3, e4, e5, e6};F1 = {f1, f2}; X1 =
{ṗ1, p1, p2, qin1, q1} and Z1 = {u1, y1, y2}.
Definition 9. (Local variables). The set of local variables
of the ith subsystem, denoted X l

i , is defined as the subset

of variables of Xi that are only involved in the subsystem
Σi.

Definition 10. (Shared Variables). The set of shared vari-
ables of the ith subsystem, denoted as Xs

i , is defined as:

Xs
i =

n⋃
j=1,j 6=i

(Xi ∩Xj) = Xi \X l
i (1)

The set of shared variables of the whole system Σ is
denoted by Xs.

Without loss of generality, we consider that all known vari-
ables of Zi are local to the subsystem Σi, for i = 1, . . . , n.
If the same input was applied to several subsystems, it
could be artificially replicated.

3.2 Distributed FMSO sets

Definition 11. (Local FMSO set). ϕ is a local FMSO set
of Σi(zi, xi, fi) if ϕ is an MFSO set of Σ(z, x, f) and if
ϕ ⊆ Σi, Xϕ ⊆ Xi and Zϕ ⊆ Zl

i . The set of local FMSO
sets of Σi is denoted by Φl

i. The set of all local FMSO sets

is denoted by Φl =
n⋃

i=1

Φl
i.

Obviously, a local FMSO set for any subsystem Σi is also
an FMSO set of Σ, hence a global FMSO set.

For the four tanks example, a local FMSO set ϕ1 =
{e1, e3, e4, e5, e6} is obtained for Σ1. These equations in-
clude local and shared variables of Σ1 and only involve the
fault f1. It can be deduced that to achieve detectability of
fault f1, only the equations included in ϕ1 are required.

We now define shared FMSO sets for a subsystem Σi

by considering shared variables as known variables and
computing FMSO sets. FMSO sets including equations
with shared variables are called shared FMSO sets.

Definition 12. (Shared FMSO set). ϕ is a shared FMSO
set of subsystem Σi(zi, xi, fi) if ϕ is an FMSO set of

Σ̃i(z̃i, x̃i, f̃i), where z̃i is the vector of variables in Z̃i = Zi∪
Xs

i , x̃i is the vector of variables in X̃i = X l
i , and f̃i = fi.

The set of shared FMSO sets for Σi is denoted by Φs
i . The

set of all shared FMSO sets is denoted by Φs =
n⋃

i=1

Φs
i .

From the above definition, a shared FMSO set ϕ for
subsystem Σi(zi, xi, fi) is such that ϕ ⊆ Σi, Xϕ ⊆ X l

i ,
Zϕ ∩Xs

i 6= ∅, and Zϕ ⊆ (Zi ∪Xs
i ).

For the four tank example, the set of shared FMSO sets for
Σ1 is Φs

1 is {ϕ1, ϕ2, ϕ3}, where ϕ1 = {e2, e5}, Xϕ1 = {p1},
Zϕ1 = {q1, p2, y1, y2}, Fϕ1 = {f2}.
Definitions 11 and 12 can also be applied to CMSO sets
to define local CMSO sets Λl

i and shared CMSO sets Λs
i .

The set of all shared CMSO sets is denoted by Λs.

Definition 13. (Compound FMSO set). A global FMSO
set ϕ that includes at least one shared FMSO set ϕ′ ∈ Φs

i is
called a compound FMSO set. The set of compound FMSO
sets of Σi is denoted by Φc

i . The set of all compound FMSO

sets is denoted by Φc =
n⋃

i=1

Φc
i .



Definition 14. (Root FMSO set). If a compound FMSO
set ϕ ∈ Φc includes a shared FMSO set ϕ′ ∈ Φs

i , then
ϕ′ is a root FMSO set of ϕ with respect to system Σi.

Definition 15. (Locally detectable fault). f ∈ Fi is locally
detectable in the subsystem Σi(zi, xi, fi) if there is an
FMSO set ϕ ∈ Φl

i such that f ∈ Fϕ.

Definition 16. (Locally isolable fault). Given two locally
detectable faults fj and fk of Fi, j 6= k, fj is locally
isolable from fk if there exists an FMSO set ϕ ∈ Φl

i such
that fj ∈ Fϕ and fk 6∈ Fϕ.

3.3 Properties of FMSO sets

This section aims at stating the properties of locally
computed FMSO sets, i.e. local FMSO sets and shared
FMSO sets, with regards to the generation of global FMSO
sets. Interestingly, these properties allow us to prove that
the whole set of global FMSO sets Φ can be obtained from
the set of locally computed FMSO sets.

Property 1. A local FMSO set ϕ ∈ Φl is also a global
FMSO set.

Property 2. A global FMSO set ϕ ∈ Φ for which ∃!i ∈
1, . . . , n s.t. Xϕ ⊆ X l

i is also a local FMSO set of Σi.

In the following, we show that global FMSO sets can
be obtained from locally computed FMSO sets only, by
forming compound FMSO sets with shared FMSO sets
and shared CMSO sets.

Begin with a simple reasoning. Consider a shared FMSO
set ϕ ∈ Φs

i . The particularity of shared FMSO sets is that
they are computed hypothesizing that the shared variables
they include are known (cf. Definition 12). Actually, this
hypothesis is just a trick that allows us to account locally
for the FMSO sets that can possibly be generated if
equations of other subsystems, indicated by the shared
variables, are introduced. However, shared variables are
actually unknown so we can define Xs

ϕ = Zϕ ∩ Xs. The
shared FMSO set ϕ can give rise to a global FMSO set
if it can be supplemented with sets of equations from
other subsystems (more precisely shared FMSO or CMSO
sets) to balance the number of shared variables Xs

ϕ of
ϕ and achieve structural redundancy 1. Let us notice
that ϕ has a structural redundancy of 1 − |Xs

ϕ|. As a
matter of fact, every shared variable xs ∈ Xs

ϕ decreases
the structural redundancy of ϕ by 1. Consider a shared
FMSO set ϕ′ ∈ Φs

j , j 6= i for which xs is also a shared
variable, i.e. xs ∈ Xs

ϕ′ . By Proposition 1, unioning ϕ′ to ϕ
potentially balances the structural redundancy deficiency
for one shared variable, say xs, in ϕ. However, if ϕ′

introduces new shared variables, these also need to be
balanced, each by an additional shared FMSO set. In
addition, if xs is not the only shared variable of ϕ, the
other shared variables each require unioning a different
shared FMSO set. The same reasoning also holds if ϕ′ is a
shared CMSO set. This leads to the following proposition.

Proposition 2. Let G(X,Γ) be a bipartite graph such that
X = X1 ∪ X2 where: X1 = Φs ∪ Λs, X2 = Xs and
Γ : X1 −→ 2X2 is a function that gives the set of successors
of each ϕ ∈ X1. Let ϕ ∈ X1 and x ∈ X2 then (ϕ, x) belongs
to the edges of G if x ∈ Xϕ.

A compound FMSO set X′1 is built by a subgraph
Gs(X′,Γ′) of G(X,Γ), where X′ = X′1 ∪ X′2, X′1 ⊂ X1,
X′2 ⊂ X2 if: (i) Gs(X′,Γ′) contains no cycles.(ii) ∀ϕ ∈
X′1,Γ(ϕ) ⊂ X′2 and ∀x ∈ X′2 ∃ϕ ∈ X′1 such that Γ′(ϕ) = x.
(iii) The terminal nodes of the graph belong to X′1.

Proposition 2 states the conditions for which a union
of shared FMSO/CMOS sets originating from different
subsystems forms a compound FMSO set. Condition (ii)
guarantees that if an FMSO set belongs to the subgraph,
then all shared variables are in this subgraph and for all
shared variables there exists one shared FMSO/CMSO set
that belongs to a subsystem different from any subsystem
at the above level. Conditions (i) and (iii) guarantee that
the structural redundancy of X′1 is equal to one and that
X′1 = ϕc is a compound FMSO set.

Equivalently to Proposition 2 and in accordance with
Chanthery et al. (2015) (Proposition 1 and its proof), com-
pound FMSO can be characterized as sets of FMSO/CMSO
that are MSOs with respect to shared variables. Com-
pound FMSO sets can hence be found by running the
FMSO generation algorithm (the algorithm run for every
subsystem) considering FMSO/CMSO sets as equations
and shared variables as unknown variables. Proposition 2
is stated in a form that makes the optimization problem
aiming at only generating the compound FMSO sets that
guarantee maximal diagnosability while minimizing shared
information easier to formulate as a search problem.

Lemma 1. The subgraph Gs(X′,Γ′) corresponding to a
compound FMSO set has a specific AND/OR tree struc-
ture (Fig. 3).

Fig. 3. AND/OR tree structure of a compound FMSO set.

The FMSO set at the top of Fig. 3 is considered as the
root FMSO set. Its set of shared variables is then included
in the structure. For each of them, only one FMSO set
is chosen among the FMSO/CMSO sets that include
the shared variable. For each chosen FMSO/CMSO set,
the shared variables are included in the structure. This
property repeats down the graph levels until there is no
additional shared variable to include in the structure. We
talk of an iterative matching procedure. It can be proved
that all the global FMSO sets can be obtained from locally
computed FMSO sets.

Proposition 3. The set of global FMSO sets Φ is given by
the union of the set of local FMSO sets Φl and the set of
compound FMSO sets Φc.

Φ = Φl ∪ Φc (2)



Algorithm 1. Generation of the set of global FMSO sets

1: Φ = ∅;
2: for i=1...n do
3: Φl

i ← Calculate local FMSO sets of Σi;
4: Φs

i ← Calculate shared FMSO sets of Σi;
5: Λs

i ← Calculate shared CMSO sets of Σi;
6: for each shared FMSO set ϕ ∈ Φs

i do
7: Label ϕ as root FMSO: ϕr ← ϕ;
8: Let Xs

ϕr
be the set of shared variables of ϕr;

9: while it is possible to find a set ϕc ⊇ ϕr that
10: can be a set X′1 in Proposition 2 and such
11: that ϕc is not included in Φ do
12: Store the global FMSO set ϕc:
13: Φ← Φ ∪ ϕc;
14: end while
15: end for
16: Φ← Φ ∪ Φl

i;
17: end for
18: Return Φ;

4. OPERATIONAL PROCEDURE FOR
DISTRIBUTED DIAGNOSIS

4.1 Distributed generation of all global FMSO sets

Our approach assumes the non-availability of a global sys-
tem model. However, if needed, Algorithm 1 implements
the procedure for computing the set of global FMSO sets
starting with the local stage. As Khorasgani et al. (2015),
our approach guarantees maximal diagnosability, i.e. the
same diagnosability as a centralized approach. For each
shared FMSO set computed at a local level, the iterative
matching procedure is used to cover all the shared vari-
ables. The procedure is repeated for the new sets of shared
variables that come with newly introduced shared FMSO
sets. Iterations stop when no new shared variables are
introduced. The computational complexity of the search
problem increases with the number of shared variables.
However, in practice, subsystems are generally designed so
that their links are quite weak, hence sharing few variables.
This makes the proposed approach applicable to complex
dynamic systems made up of several subsystems.

4.2 Distributed generation of an optimized set of global
FMSO sets

If the residuals corresponding to all the global FMSO sets
were generated and used on-line to monitor the system,
they would obviously achieve maximal detectability and
isolability. However, all of them are not necessary and it is
more efficient to minimize their number while maintaining
the same property. The aim of this section is to obtain a
set of distributed LD that together make the entire sys-
tem completely diagnosable through local and compound
FMSO sets. These LDs are designed to achieve maximal
diagnosability with minimal communication between sub-
systems. First, local FMSO sets are determined for every
subsystem Σi. If these are not sufficient to detect and
isolate all of the faults in Fi, then a set of compound FMSO
sets is determined to achieve full diagnosability, consider-
ing constraints of distance and amount of communication
between subsystems.

Algorithm 2. Generation of LDs.

1: for i=1...n do
2: Φi = ∅;
3: Φl

i ← Calculate local FMSO sets of Σi;
4: if there is any fault f ∈ Fi not locally detectable
5: or not locally isolable with the set of local
6: FMSO sets Φl

i then
7: Φs

i ← Calculate shared FMSO sets of Σi;
8: Λs

i ← Calculate shared CMSO sets of Σi;
9: end if

10: while it exists f ∈ Fi that is not detectable
11: or isolable do
12: Let ϕ∗ ∈ Φs

i such that f ∈ Fϕ∗ be the ’best’
13: (not already selected) shared FMSO set of Φs

i ;
14: Label ϕ∗ as root FMSO set: ϕr ← ϕ∗;
15: Let Xs

ϕr
be the set of shared variables of ϕr;

16: Φc∗
i ← Find a ’good’ compound FMSO set

17: including ϕ∗ by always selecting the ’best’
18: shared FMSO sets to cover newly introduced Xs

i
19: Φi ← Φi ∪ Φc∗

i ;
20: Φl∗

i ← Find a minimal cardinality set of local
21: FMSO sets achieving the same diagnosability
22: as all local FMSO sets;
23: Φi ← Φi ∪ Φl∗

i ;
24: end while
25: end for

The diagnosers design is done off-line with Algorithm 2,
performed for each subsystem Σi, i = 1...n. The procedure
to compute ’good’ compound FMSO sets starting with ϕ∗

as a root FMSO set makes use of an optimization heuristic
based on the number of shared variables. In Algorithm 2,
the term ’best’ is hence used in the sense of this heuristic.
Further work must be performed to assess the properties
of the heuristic in terms of optimality.

5. APPLICATION TO THE FOUR TANKS SYSTEM

5.1 Finding of Global FMSO sets

Running Algorithm 1 on the four tanks system, we cal-
culate local FMSO sets Φl

i, shared FMSO sets Φs
i and

shared CMSO sets Λs
i of each subsystem (i = 1..4) as

shown in Table 1. Then with each shared FMSO set as root
FMSO set, we found all compound FMSO sets ϕ ∈ Φc.For
example, in Σ1, considering the shared FMSO set ϕ1 as
a root FMSO set, a compound FMSO set is computed
iteratively by the set ϕc = ∪ck=1ϕk = ϕ1 ∪ ϕ5 ∪ ϕ6 ∪
λ3 ∪ ϕ7 ∪ λ4 ∪ λ6, with ∪ck=1X

s
ϕk

= {q1, p2, q2, p3, q3, p4},
where each shared variable xs is covered by two shared
FMSO/CMSO sets as it is shown in the subgraph (Fig. 4).
As a result, the compound FMSO set ϕ′ obtained is
{e2, e5, e7, e8, e9, e11, e13, e16, e20}. Considering all possible
ϕc, 164 compound FMSO sets are computed for this sys-
tem. Added to ϕ4 = {e1, e3, e4, e5, e6} ∈ Φl

1, we found 165
global FMSO sets in Φ.

5.2 Distributed Diagnosis

Given a set of faults, measurements and local models for
every subsystem, we construct diagnosers that together
make the entire system completely diagnosable. Comput-
ing the set of local FMSO sets Φl

i , i = 1..4 and adding



Table 1. local FMSO sets Φl
i, shared FMSO

sets Φs
i and shared CMSO sets: Λs

i , (i = 1..4).

Φs
1 = {ϕ1, ϕ2, ϕ3}, Φl

1 = {ϕ4}, Λs
1 = {λ1},

Φs
2 = {ϕ5, ϕ6}, Φl

2 = ∅, Λs
2 = {λ2, λ3},

Φs
3 = {ϕ7}, Φl

3 = ∅, Λs
3 = {λ4, λ5},

Φs
4 = {ϕ8}, Φl

4 = ∅, Λs
4 = {λ6},

Φi Xs Fi

Σ1 q1 p2 q2 p3 q3 p4 F1

ϕ1 = {e2, e5} X X {f2}
ϕ2 = {e1, e3, e4, e5} X {f1}
ϕ3 = {e1, e2, e3, e4} X X {f1, f2}
ϕ4 = {e1, e3, ..., e6} X X {f1}
λ1 = {e6} X

Σ2 q1 p2 q2 p3 q3 p4 F2

ϕ5 = {e8} X X X {f4}
ϕ6 = {e7, e9} X X X {f3}
λ2 = {e10} X
λ3 = {e11} X

Σ3 q1 p2 q2 p3 q3 p4 F3

ϕ7 = {e13} X X X {f5}
λ4 = {e16} X
λ5 = {e12, e14, e15} X X X

Σ4 q1 p2 q2 p3 q3 p4 F4

ϕ8 = {e17, e18, e19} X X {f6}
λ6 = {e20} X

Fig. 4. Subgraph of ϕ′.

subsets of shared variables to found the set of shared
FMSO sets Φs

i for each subsystem i = 1..4, we found
FMSO sets for all faults.

The results demonstrate that all considered faults can be
detected and isolated, e.g. in Σ1: detectability is achieved
for f1 using ϕ4 ∈ Φl

1 of Table 1 (not additional measure-
ment is needed). For f2, detectability is achieved obtaining
a compound FMSO set ϕ9 lumping ϕ1 ∈ Φs

1 with λ1 ∈ Λs
1

and λ2 ∈ Λs
2. Fig. 5 shows a scheme of the proposed model

based diagnosis for this system: the four subsystems with
their physical interactions are represented on the left. On
the right, each LDi is rendered as a rectangle with selected
FMSO sets. The arrows from the corresponding subsystem
symbolize the direct measurement of local variables by the

Fig. 5. Scheme of the distributed diagnosis designed.

LD, while the arrows between the LDs account for shared
information necessary to complete local diagnosis.

6. CONCLUSION

In this paper, a distributed fault-driven structural diag-
nosis method is presented. FMSO sets are used in a dis-
tributed context to derive local tests and to build relevant
tests minimizing shared information between subsystems.
The operational procedures are presented. Future work
will emphasize the optimization process.
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