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ON THE COHOMOLOGY OF CALOGERO-MOSER SPACES

by

CÉDRIC BONNAFÉ & PENG SHAN

Abstract. — We compute the equivariant cohomology of smooth Calogero-Moser spaces and
some associated symplectic resolutions of symplectic quotient singularities.

1. Notation and main results

Throughout this note, we will abbreviate ⊗C as ⊗. By an algebraic variety, we mean a
reduced scheme of finite type over C.

1.A. Reflection group. — Let V be a C-vector space of finite dimension n and let W be
a finite subgroup of GLC(V ). We set

Ref(W ) = {s ∈W | dimCV s = n −1}

and we assume that
W = 〈Ref(W )〉.

We set ǫ : W →C×, w 7→ det(w ).
If s ∈Ref(W ), we denote by α∨s and αs two elements of V and V ∗ respectively such that

V s =Ker(αs ) and V ∗s =Ker(α∨s ), where α∨s is viewed as a linear form on V ∗.
If w ∈W , we set

cod(w ) = codimC(V
w )

and we define a filtration F•(CW ) of the group algebra of W as follows: let

Fi (CW ) =
⊕

cod(w ) ¶ i

Cw .

Then
C IdV =F0(CW )⊂F1(CW )⊂ · · · ⊂Fn (CW ) =CW =Fn+1(CW ) = · · ·

is a filtration of CW . For any subalgebra A of CW , we setFi (A) = A ∩Fi (CW ), so that

C IdV =CF0(A)⊂F1(A)⊂ · · · ⊂Fn (A) = A =Fn+1(A) = · · ·
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is also a filtration of A. Let ħh be a formal variable, and write

Rees•F (A) =
⊕

i¾0

ħh iFi (A)⊂C[ħh ]⊗A (the Rees algebra),

gr•F (A) =
⊕

i¾0

Fi (A)/Fi−1(A).

Recall that gr•F (A)≃Rees•F (A)/ħh Rees•F (A).

1.B. Rational Cherednik algebra at t = 0. — Throughout this note, we fix a function
c : Ref(W ) → C which is invariant under conjugacy. We define the rational Cherednik
algebra Hc to be the quotient of the algebra T(V ⊕V ∗)⋊W (the semi-direct product of the
tensor algebra T(V ⊕V ∗) with the group W ) by the relations

(Hc )









[x , x ′] = [y , y ′] = 0,

[y , x ] =
∑

s∈Ref(W )

(ǫ(s )−1)cs

〈y ,αs 〉〈α
∨
s , x 〉

〈α∨s ,αs 〉
s ,

for all x ,x ′ ∈ V ∗, y , y ′ ∈ V . Here 〈 , 〉 : V ×V ∗→C is the standard pairing. The first commu-
tation relations imply that we have morphisms of algebras C[V ]→ Hc and C[V ∗]→ Hc .
Recall [4, Theorem 1.3] that we have an isomorphism of C-vector spaces

(1.1) C[V ]⊗CW ⊗C[V ∗]
∼
−→Hc

induced by multiplication (this is the so-called PBW-decomposition).
We denote by Zc the center of Hc : it is well-known [4] that Zc is an integral domain,

which is integrally closed and contains C[V ]W and C[V ∗]W as subalgebras (so it contains
P = C[V ]W ⊗C[V ∗]W ), and that it is a free P-module of rank |W |. We denote by Zc the
affine algebraic variety whose ring of regular functions C[Z c ] is Zc : this is the Calogero-
Moser space associated with the datum (V , W , c ).

Using the PBW-decomposition, we define a C-linear map Ωc
H : Hc −→CW by

Ω
c
H( f w g ) = f (0)g (0)w

for all f ∈C[V ], g ∈C[V ∗] and w ∈CW . This map is W -equivariant for the action on both
sides by conjugation, so it induces a well-defined C-linear map

Ω
c : Zc −→ Z(CW ).

Recall from [3, Corollary 4.2.11] that Ωc is a morphism of algebras, and that

(1.2) Zc is smooth if and only if Ωc is surjective.

The “only if” part is essentially due to Gordon [6, Corollary 5.8] (see also [3, Proposi-
tion 9.6.6 and (16.1.2)]) while the “if” part follows from the work of Bellamy, Schedler
and Thiel [13, Corollary 1.4].

1.C. Grading. — The algebra T(V ⊕ V ∗) ⋊W can be Z-graded in such a way that the
generators have the following degrees







deg(y ) =−1 if y ∈V ,
deg(x ) = 1 if x ∈V ∗,
deg(w ) = 0 if w ∈W .

This descends to a Z-grading on Hc , because the defining relations (Hc ) are homoge-
neous. Since the center of a graded algebra is always graded, the subalgebra Zc is also
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Z-graded. So the Calogero-Moser space Zc inherits a regular C×-action. Note also that
by definition P=C[V ]W ⊗C[V ∗]W is clearly a graded subalgebra of Zc .

1.D. Main results. — For a complex algebraic variety X (equipped with its classical
topology), we denote by Hi (X ) its i -th singular cohomology group with coefficients in
C. If X carries a regular action of a torus T, we denote by Hi

T(X ) its i -th T-equivariant
cohomology group (still with coefficients in C). Note that H2•(X ) =

⊕

i ¾ 0 H2i (X ) is a
graded C-algebra and H2•

T (X ) =
⊕

i ¾ 0 H2i
T (X ) is a graded H2•

T (pt)-algebra. The following
result [4, Theorem 1.8] describes the algebra structure on the cohomology of Zc (with
coefficients in C):

Theorem 1.3 (Etingof-Ginzburg). — Assume that Zc is smooth. Then:

(a) H2i+1(Zc ) = 0 for all i .
(b) There is an isomorphism of graded C-algebras H2•(Zc )≃ gr•F (Z(CW )).

In this note, we prove an equivariant version of this statement (we identify H∗
C×
(pt)

with C[ħh ] in the usual way):

Theorem A. — Assume that Zc is smooth. Then:

(a) H2i+1
C×
(Zc ) = 0 for all i .

(b) There is an isomorphism of graded C[ħh ]-algebras H2•
C×
(Zc )≃Rees•F (Z(CW )).

Note that Theorem A(a) just follows from statement (a) of Etingof-Ginzburg Theorem
by Proposition 2.4(a) below. As a partial consequence of Theorem A, we also obtain the
following application to the equivariant cohomology of some symplectic resolutions.

Theorem B. — Assume that the symplectic quotient singularity (V ×V ∗)/W admits a symplectic
resolution π :X −→ (V ×V ∗)/W . Recall that the C×-action on (V ×V ∗)/W lifts (uniquely) toX
(see [11, Theorem 1.3(ii)]). Then:

(a) H2i+1
C×
(X ) = 0 for all i .

(b) There is an isomorphism of graded C[ħh ]-algebras H2•
C×
(X )≃Rees•F (Z(CW )).

Note that for W =Sn acting on Cn , Theorem B describes the equivariant cohomology
of the Hilbert scheme of n points in C2: this was already proved by Vasserot [14]. In [5,
Conjecture 1.3], Ginzburg-Kaledin proposed a conjecture for the equivariant cohomology
of a symplectic resolution of a symplectic quotient singularity E /G , where E is a finite
dimensional symplectic vector space and G is a finite subgroup of Sp(E ). However, their
conjecture cannot hold as stated, because they considered the C×-action by dilatation,
which is contractible. Theorem B shows that the correct equivariant cohomological re-
alization of the Rees algebra is provided by the symplectic C×-action, which exists only
when G stabilizes a Lagrangian subspace of E .

Remark 1.4. — Recall from the works of Etingof-Ginzburg [4], Ginzburg-Kaledin [5],
Gordon [6] and Bellamy [1] that the existence of a symplectic resolution of (V ×V ∗)/W is
equivalent to the existence of a parameter c such that Z c is smooth, and that it can only
occurs if all the irreducible components of W are of type G (d , 1, n ) (for some d , n ¾ 1) or
G4 in Shephard-Todd classification. �
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1.E. Conjectures. — In [3, Chapter 16, Conjectures COH and ECOH], Rouquier and
the first author proposed the following conjecture which aims to generalize the above
Etingof-Ginzburg Theorem 1.3 into two directions: it includes singular Calogero-Moser
spaces and it extends to equivariant cohomology.

Conjecture 1.5. — With the above notation, we have:

(1) H2i+1(Zc ) = 0 for all i .
(2) We have an isomorphism of graded C-algebras H2•(Zc )≃ grF (Im(Ωc )).
(3) We have an isomorphism of graded C[ħh ]-algebras H2•

C×
(Zc )≃ReesF (Im(Ωc )).

By (1.2), when Zc is smooth, the image of Ωc coincide with the center of CW . So
Theorem A proves this conjecture for smooth Zc .

We will also prove in Example 3.6 the following result:

Proposition 1.6. — If dimC(V ) = 1, then Conjecture 1.5 holds.

1.F. Structure of the paper. — The paper is organized as follows. The proof of The-
orem A relies on classical theorems on restriction to fixed points in cohomology and
K-theory. In Section 2, we first recall basic properties on equivariant cohomology and
equivariant K-theory and restriction to fixed points. Section 3 explains how these general
principles can be applied to Calogero-Moser spaces. Theorem A will be proved in Sec-
tion 4. The cyclic group case (Proposition 1.6) will be handled in Example 3.6. The proof
of Theorem B will be given in Section 5.

2. Equivariant cohomology, K-theory and fixed points

2.A. Equivariant cohomology. — LetX be a complex algebraic variety equipped with
a regular action of a torus T. Recall that the equivariant cohomology ofX is defined by

H•T(X ) =H•(ET×BT
X ),

where ET→ BT is a universal T-bundle. The pullback of the structural morphism x :X →

pt yields a ring homomorphism H•T(pt)→ H•T(X ), which makes H•T(X ) a graded H•T(pt)-
algebra.

Denote by X (T) the character lattice of T. The for each χ ∈ X (T), denote by Cχ the one
dimensional T-module of character χ , the first Chern class cχ of the line bundle ET×TCχ

on BT is an element in H2(BT). Identify the vector space C⊗Z X (T) with the dual t∗ of the
Lie algebra t of T via χ 7→ dχ . Then the assignment χ 7→ cχ yields an isomorphism of
graded C-algebras S (t∗) =H2•

T (pt).
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2.B. Equivariant K-theory. — We denote by KT(X ) the Grothendieck ring of the cate-
gory of T-equivariant vector bundles on X . Note that a T-equivariant vector bundle on
a point is the same as a finite dimensional T-module. We have a canonical isomorphism
KT(pt) =Z[X (T)] which sends the class of a T-module M to

(2.1) dimT(M ) =
∑

χ∈X (T)

dimC(Mχ )χ ,

where Mχ is the χ-weight space in M .
Let Ĥ2•

T (X ) be the completion of H2•
T (X ) with respect to the ideal

⊕

i>0 H2i
T (X ). The

equivariant Chern character provides a ring homomorphism

chX : KT(X )−→ Ĥ2•
T (X )

with the following properties. First, whenX is a point pt, we have

(2.2) chpt : KT(pt) =Z[X (T)] −→ Ĥ2•
T (pt) = Ŝ(t∗)

χ 7−→ exp(dχ ).

Next the Chern character commutes with pullback. More precisely, ifY is another variety
with a regular action of the same torus T and if ϕ :X →Y is a T-equivariant morphism,
then the following diagram commutes

(2.3)

KT(Y )
ϕ∗

//

chY

��

KT(X )

chX

��

Ĥ2•
T (Y )

ϕ̂∗
// Ĥ2•

T (X ).

Here ϕ∗ denotes both the pullback map in K-theory or in equivariant cohomology, and
ϕ̂∗ is the map induced after completion by the pullback map in equivariant cohomology.
In particular, by applying the above diagram to Y = pt and the structural morphism
X → pt, we may view chX as a morphism of algebras over KT(pt), with the KT(pt)-algebra
structure on Ĥ2•

T (X ) provided by the embedding (2.2).

2.C. Fixed points. — We denote by X T the (reduced) variety consisting of fixed points
of T in X . Let iX :X T ,−→X be the natural closed immersion. Since T acts trivially on
X

T, we have H•T(X
T) =H•T(pt)⊗H•(X T) as H•T(pt)-algebras. Recall that the T-action on X

is called equivariantly formal if the Leray-Serre spectral sequence

E
p q
2 =Hp (BT; Hq (X )) =⇒H

p+q
T (X )

for the fibration ET ×TX → BT degenerates at E2. We have the following standard result
on equivariant cohomology (see for instance [9, Proposition 2.1]):

Proposition 2.4. — Assume that H2i+1(X ) = 0 for all i . ThenX is equivariantly formal, and:

(a) There is an isomorphism of graded H•T(pt)-modules H•T(X )≃H•T(pt)⊗H•(X ). In particular

H2i+1
T (X ) = 0 for all i .

(b) The pullback map i ∗
X

: H•T(X )→H•T(X
T) is injective.

(c) Let m be the unique graded maximal ideal of H•T(pt). Then we have an isomorphism of
algebras H•(X )≃H•T(X )/mH•T(X ).
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In particular, this shows that Conjectures 1.5(1) and (3) imply Conjecture 1.5(2).

Example 2.5 (Blowing-up). — Let Y be an affine variety with a T-action and let C be a
T-stable closed subvariety (not necessarily reduced) of Y . LetX be the blowing-up of Y
along C . Write π :X → Y for the natural morphism, and we equip X with the unique
T-action such that π is equivariant. We assume thatX T is finite. We write

H2•
T (X

T) =
⊕

x∈X T

S(t∗)ex ,

where ex ∈ H0
T(X

T) is the primitive idempotent associated with x (i.e., the fundamental
class of x ).

Then D = π∗(C ) is a T-stable effective Cartier divisor, and we denote by [D ] the class
in KT(X ) of its associated line bundle (which is T-equivariant). We denote by ch1

X
([D ]) ∈

H2
T(X ) its first T-equivariant Chern class. We want to compute i ∗

X
(ch1

T(D)).
First, let I be the ideal of C[Y ] associated withC . As it is T-stable, we can find a family

of T-homogeneous generators (ai )1 ¶ i ¶ k of I . We denote by λi ∈ X (T) the T-weight of
ai . The choice of this family of generators induces a T-equivariant closed immersion
X ,→Y ×Pk−1(C). We denote by X i the affine chart corresponding to “ai 6= 0”. If x ∈X T,
we denote by i(x ) ∈ {1, 2, . . . , k} an element such that x ∈X i(x ). Then

(2.6) i ∗
X
(ch1

T(D)) =−ħh
∑

x∈DT

(dλi(x ))ex .

Indeed, we just need to compute the local equation of D around x ∈X T, and this can be
done in X i(x ). But D ∩X i is principal for all i , defined by

D ∩X i = {(y ,ξ) ∈Y ×Pk−1(C) | (y ,ξ)∈X i and ai (y ) = 0}.

So D ∩X i is defined by a T-homogeneous equation of degree λi ∈ X (T), and so (2.6)
follows. �

3. Localization and Calogero-Moser spaces

In this section, we apply the previous discussions to X = Zc and T = C×. Denote by
q :C×→C× the identity map. Then X (C×) = qZ, and we have

KC× (pt) =Z[q , q−1], H2•
C×
(pt) =C[ħh ],

with ħh = cq , following the notation of Section 2.A. So Ĥ2•
C×
(pt) =C[[ħh ]] and the Chern map

in this case is given by

chpt :Z[q , q−1] ,→C[[ħh ]], q 7→ exp(ħh ).

Note also that a finite C×-module is nothing but a finite dimensional Z-graded vector
space M =
⊕

i∈ZMi such that C× acts on Mi by the character q i . The identification
KC× (pt) =Z[q , q−1] sends the class of M to its graded dimension (or Hilbert series):

dimgr(M ) =
∑

i∈Z

dimC(Mi )q
i ∈N[q , q−1].
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3.A. Fixed points. — For χ ∈ Irr(W ), we denote by ωχ : Z(CW ) → C the associated
morphism of algebras, i.e. ωχ (z ) = χ (z )/χ (1) is the scalar through which z acts on the
irreducible CW -module with the character χ . We denote by e W

χ the unique primitive
idempotent of Z(CW ) such that ωχ (e W

χ ) = 1. If E is a subset of Irr(W ), then we set
e W
E =
∑

χ∈E e W
χ .

Now, consider the algebra homomorphism

Ω
c
χ =ωχ ◦Ω

c : Zc −։C.

Its kernel is a maximal ideal of Zc : we denote by zχ the corresponding closed point in
Zc . It follows from [3, Lemma 10.2.3 and (14.2.2)] that zχ ∈Z

C×

c and that the map

(3.1) z : Irr(W ) −→ ZC
×

χ 7−→ zχ

is surjective. The fibers of this map are called the Calogero-Moser c -families. They were
first consider by Gordon [6] and Gordon-Martino [8]: see also for instance [3, §9.2]. Let
CMc (W ) be the set of Calogero-Moser c -families. For E ∈CMc (W ), we denote by zE ∈Z

C×

its image under the map z . On the other hand, by [3, (16.1.2)] we have

(3.2) Im(Ωc ) =
⊕

E∈CMc (W )

Ce W
E .

Hence we get an isomorphism of C-algebras

H2•(ZC
×

c )≃ Im(Ωc ), ezE
7→ e W
E ,

which extends to an isomorphism of C[ħh ]-algebras H2•
C×
(ZC

×

c ) ≃ C[ħh ]⊗ Im(Ωc ). For sim-
plification, we set ic = iZc

: ZC
×

c ,→ Z and, under the above identification, we view the
pullback map i ∗c as a morphism of algebras

i ∗c : H2•
C×
(Zc )−→C[ħh ]⊗ Im(Ωc ).

So, by Proposition 2.4, Conjecture 1.5 is implied by the following one:

Conjecture 3.3. — With the above notation, we have:

(1) H2i+1(Zc ) = 0 for all i .
(2) Im(i ∗c ) =ReesF (Im(Ωc )).

Remark 3.4. — Set
FH

i (Im(Ωc )) = {z ∈ Im(Ωc ) | ħh i z ∈ Im(i ∗c )}.

Then, by construction and Proposition 2.4,FH
• (Im(Ωc )) is the filtration of Im(Ωc ) satisfying

H2•
C×
(Zc )≃ Im(i ∗c ) =ReesFH (Im(Ωc ))

and H2•(Zc )≃ grFH (Im(Ωc )).

So showing Conjecture 3.3 is then equivalent to showing that the filtrations F•(Im(Ωc ))

and FH
• (Im(Ωc )) coincide.

Note also that, since Zc is an affine variety of dimension 2n , we have Hi (Zc ) = 0 for
i > 2n , so this shows that

(♭) Fn (Im(Ωc )) = Im(Ωc ) =FH
n (Im(Ωc )).
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On the other hand, since Zc is connected, we have

(♯) F0(Im(Ωc )) =FH
0 (Im(Ωc )) =C.

These two particular cases will be used below. �

The following result, based on the previous remark, can be viewed as a reduction step
for the proof of Conjecture 3.3:

Proposition 3.5. — Assume that H2i+1(Zc ) = 0 and

dimC(H
2i (Zc )) = dimC(Fi (Im(Ωc ))/Fi−1(Im(Ωc )))

for all i . Then Conjecture 3.3 holds if and only if ReesF (Im(Ωc ))⊂ Im(i ∗c ).

Proof. — Assume that H2i+1(Zc ) = 0 and

dimC(H
2i (Zc )) = dimC(Fi (Im(Ωc ))/Fi−1(Im(Ωc )))

for all i . We keep the notation of Remark 3.4. It then follows from this remark and the
hypothesis that

dimC(Fi (Im(Ωc ))/Fi−1(Im(Ωc ))) = dimC(H
2i (Zc )) = dim(FH

i (Im(Ωc ))/FH
i−1(Im(Ωc )))

for all i . So, by induction, we get that dimC(Fi (Im(Ωc ))) = dim(FH
i (Im(Ωc ))) for all i (by

the equality (♯) of Remark 3.4). This shows that ReesF (Im(Ωc )) = Im(i ∗c ) if and only if
ReesF (Im(Ωc ))⊂ Im(i ∗c ), as desired.

Example 3.6. — Assume in this example, and only in this example, that dimC(V ) = 1. It
is proved in [3, Theorem 18.5.8] that in this case H2i+1(Z c ) = 0 and

dimC(H
2i (Zc )) = dimC(Fi (Im(Ωc ))/Fi−1(Im(Ωc )))

for all i . Since Zc is affine of dimension 2, we have Hi (Zc ) = 0 if i 6∈ {0, 2}. So it follows
from the equalities (♭) and (♯) that Conjecture 3.3 holds in this case (this proves Proposi-
tion 1.6). �

3.B. Chern map. — If E is a Calogero-Moser family, we denote by mE ⊂ Zc the ideal of
functions vanishing at zE ∈Z

C×

c . We also set

Im(Ωc )Z =
⊕

E∈CMc (W )

Ze W
E .

We make the natural identification KC× (Z
C×

c ) =Z[q , q−1]⊗Z Im(Ωc )Z. Through these identi-
fications, the Chern map ch

ZC
×

c
just becomes the natural inclusion Z[q , q−1]⊗Z Im(Ωc )Z ,→

C[[ħh ]]⊗Im(Ωc ). Moreover, if P is a Z-graded finitely generated projective Zc -module, then
the commutativity of the diagram (2.3) just says that

(3.7) i ∗c (chZc
([P ])) =
∑

E∈CMc (W )

dimgr(P /mEP )e W
E ⊂C[[ħh ]]⊗ Im(Ωc ).
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4. Proof of Theorem A

Hypothesis and notation. We assume in this section, and only in this sec-
tion, that Zc is smooth.

If M =
⊕

i∈ZMi and N =
⊕

i∈ZNi are two finite-dimensional graded CW -modules, we
set

〈M , N 〉
gr
W =
∑

i , j∈Z

〈Mi , N j 〉W q i+ j ,

where 〈E , F 〉W = dimHomCW (E , F ) for any finite dimensional CW -modules E and F .
We extend this notation to the case where M or N is a graded virtual character (i.e. an
element of Z[q , q−1]⊗Z Z Irr(W )). Finally, we denote by C[V ]co(W ) the coinvariant algebra,
i.e. the quotient of the algebra C[V ] by the ideal generated by the elements f ∈ C[V ]W

such that f (0) = 0. Then C[V ]co(W ) is a graded CW -module, which is isomorphic to the
regular representation CW when one forgets the grading.

4.A. Localization in K-theory. — Recall from (1.2) that the smoothness of Z c implies
that Im(Ωc ) = Z(CW ), so that z : Irr(W )→ZC

×

c is bijective. Let e = e W
1 = (1/|W |)
∑

w∈W w .
The smoothness of Zc also implies that the functor

Hc -mod −→ Zc -mod

M 7−→ e M = e Hc ⊗Hc
M

is an equivalence of categories [4, Theorem 1.7]. If E is a finite dimensional Z-graded
CW -module, the Hc -module Hc ⊗CW E is finitely generated, Z-graded and projective.
Therefore, e Hc ⊗CW E is a finitely generated graded projective Zc -module, which can be
viewed as a C×-equivariant vector bundle on Zc . For simplification, we set

chc (E ) = i ∗c (chZc
(e Hc ⊗CW E )) ∈C[[ħh ]]⊗ Im(Ωc ).

Proposition 4.1. — Assume that Zc is smooth. Let E be a finite dimensional graded CW -
module. Then

chc (E ) =
∑

χ∈Irr(W )

〈χ ,C[V ]co(W )⊗ E 〉
gr
W

〈χ ,C[V ]co(W )〉
gr

W

e W
χ .

Proof. — As the formula is additive, we may, and we will, assume that E is an irreducible
CW -module, concentrated in degree 0.

Now, let χ ∈ Irr(W ): we denote by mχ the maximal ideal of Zc corresponding to the
fixed point zχ . We set p = mχ ∩ P: it does not depend on χ (it is the maximal ideal of
P = C[V /W × V ∗/W ] of functions which vanishes at (0, 0); see for instance [3, (14.2.2)]).
By (3.7),

chc (E ) =
∑

χ∈Irr(W )

dimgr((e Hc ⊗CW E )/mχ (e Hc ⊗CW E ))e W
χ .

Now, let Z̄c = Zc /pZc and H̄c =Hc /pHc . We set m̄χ =mχ/pZc . Then H̄c is a finite dimen-
sional C-algebra (called the restricted rational Cherednik algebra) and again the bimodule
e H̄c induces a Morita equivalence between H̄c and Z̄c . This implies that e H̄c /m̄χH̄c =
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(Z̄c /m̄χ )⊗Z̄c
e H̄c is a simple right H̄c -module (that will be denoted byLc (χ ): it is isomor-

phic to the shift by some rχ ∈ Z of the quotient of the baby Verma module denoted by
L(χ ) in [6]).

Since CW is semisimple, the CW -module E is flat, and so

(e Hc ⊗CW E )/mχ (e Hc ⊗CW E ) ≃ (e Hc /mχ (e Hc ))⊗CW E

≃ (e H̄c /m̄χ (e H̄c ))⊗CW E .

≃ Lc (χ )⊗CW E .

But the graded dimension ofLc (χ )⊗CW E is known wheneverZc is smooth and is given
by the expected formula (see [1, Lemma 3.3 and its proof]), up to a shift in grading:

chc (E ) =
∑

χ∈Irr(W )

q
r ′χ
〈χ ,C[V ]co(W )⊗ E 〉

gr

W

〈χ ,C[V ]co(W )〉
gr

W

e W
χ ,

where r ′χ ∈ Z does not depend on E . Now, if C denotes the trivial CW -module concen-
trated in degree 0, then chc (C) = 1, which shows that r ′χ = 0 for all χ , as desired.

Let KC× (CW ) denote the Grothendieck group of the category of finite dimensional
graded CW -modules. If E is a finite dimensional graded CW -module, we denote by
[E ] its class in KC× (CW ). We still denote by chc : KC× (CW ) → C[[ħh ]]⊗ Z(CW ) the map
defined by

chc ([E ]) = chc (E ).

Now, let W ′ be a parabolic subgroup of W and set V ′ = V W ′ and r = codimC(V
′). We

identify the dual V ′∗ of V ′ with V ∗W
′

and note that

(4.2) V ∗ = V ′∗⊕ (V ′)⊥.

We denote by ∧(V ′)⊥ the element of KC× (CW ′) defined by

∧(V ′)⊥ =
∑

i ¾ 0

(−1)i [ ∧i (V ′)⊥ ].

Recall also that there exists n algebraically independent homogeneous polynomials f1,. . . ,
fn in C[V ]W such that C[V ]W =C[ f1, . . . , fn ], and we denote by di the degree of fi .

Corollary 4.3. — Assume that Zc is smooth. Let E ′ be a finite dimensional graded CW ′-
module. Then

chc

�

IndW
W ′ (∧(V

′)⊥⊗ [E ′ ])
�

=
(1−q d1 ) · · · (1−q dn )

(1−q )n−r

∑

χ∈Irr(W )

〈χ , IndW
W ′ E

′〉
gr
W

〈χ ,C[V ]co(W )〉
gr
W

e W
χ .

Proof. — The group W ′ acts trivially on V ′ so it acts trivially on ∧i V ′∗ for all i . Therefore,

(1−q )n−r chc

�

IndW
W ′ (∧(V

′)⊥⊗ [E ′ ])
�

= chc (IndW
W ′

�

∧V ′∗⊗∧(V ′)⊥⊗ [E ′ ])
�

.

But ∧V ′∗⊗∧(V ′)⊥ =ResW
W ′ (∧V ∗) by (4.2), so, by Frobenius formula,

(1−q )n−r chc

�

IndW
W ′ (∧(V

′)⊥⊗ [E ′ ])
�

= chc

�

∧V ∗⊗ IndW
W ′ E

′
�

.
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So it follows from Proposition 4.1 that

(1−q )n−r chc

�

IndW
W ′ (∧(V

′)⊥⊗ [E ′ ])
�

=
∑

χ∈Irr(W )

1

〈χ ,C[V ]co(W )〉
gr
W

〈χ ,C[V ]co(W )⊗ (∧V ∗)⊗ IndW
W ′ (E

′)〉
gr

W e W
χ .

But, if w ∈ W , the Molien’s formula implies that the graded trace of w on C[V ]co(W ) is
equal to

(1−q d1 ) · · · (1−q dn )

det(1−w q )
,

while its graded trace on ∧V is equal to det(1−w−1q ). So the class of C[V ]co(W ) ⊗∧V ∗

is equal to (1− q d1 ) · · · (1 − q dn ) times the class of the trivial module, and the corollary
follows.

Proof of Theorem A. — Assume that Zc is smooth. This implies in particular that Conjec-
ture 1.5(1) and (2) hold (Etingof-Ginzburg Theorem 1.3), and so the hypotheses of Propo-
sition 3.5 are satisfied. Note also that Im(Ωc ) = Z(CW ) by (1.2). It is then sufficient to
prove that ħh iFi (Z(CW ))⊂ Im(i ∗c ) for all i .

Let us introduce some notation. If G is a finite group and H is a subgroup, we define a
C-linear map TrG

H : Z(CH )−→ Z(CG ) by

TrG
H (z ) =
∑

g∈[G /H ]

g z =
1

|H |

∑

g∈G

g z

(here, [G /H ] denotes a set of representatives of elements of G /H and g z = g z g −1). It is
easy to check that

(4.4) TrG
H (e

H
η ) =

η(1)

|H |

∑

γ∈Irr(G )

|G |

γ(1)
〈γ, IndG

H (η)〉G e G
γ

for all η ∈ Irr(H ). Also, if h ∈H and ΣH (h ) ∈ Z(CH ) denotes the sum of the conjugates of
h in H , then

(4.5) TrG
H (ΣH (h )) =

|CG (h )|

|CH (h )|
ΣG (h ),

where CG (h ) and CH (h ) denote the centralizers of h in G and H respectively. Let Pr (W )

denote the set of parabolic subgroups W ′ of W such that codimC(V
W ′ ) = r . It follows

from (4.5) that

(4.6) Fr (Z(CW )) =
∑

W ′∈Pr (W )

TrW
W ′ (Z(CW ′)).

Therefore, by Proposition 3.5, it is sufficient to prove that

(Æ) ħh r TrW
W ′ (e

W ′

χ ′ ) ∈ Im(i ∗c ) for all W ′ ∈Pr (W ) and all χ ′ ∈ Irr(W ′).

But it turns out that the coefficient of ħh r in
χ ′(1)

|W ′|
chc

�

IndW
W ′ (∧(V

′)⊥⊗χ ′)
�
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is equal, according to Corollary 4.3, to

(−1)r
χ ′(1)

|W ′|

∑

χ∈Irr(W )

|W | 〈χ , IndW
W ′ χ

′〉W

χ (1)
e W
χ .

Indeed, since q = exp(ħh ), this follows from the fact that the polynomial 〈χ ,C[V ]co(W )〉
gr
W

takes the value χ (1)whenever q = 1 (i.e. ħh = 0) and from the fact that

(1−q d1 ) · · · (1−q dn )

(1−q )n−r
≡ (−1)r d1 · · ·dnħh

r mod ħh r+1

and that |W | = d1 · · ·dn . Note that by definition χ ′(1)
|W ′| chc

�

IndW
W ′ (∧(V

′)⊥ ⊗ χ ′)
�

belongs to
C[[ħh ]]⊗C[ħh ] Im(i ∗c ), so each of its homogeneous components belong to Im(i ∗c ). By (4.4), this
proves that (Æ) holds, and the proof of Theorem A is complete.

5. Proof of Theorem B

Hypothesis and notation. We assume in this section, and only in this sec-
tion, that the symplectic quotient singularity Z0 = (V ×V ∗)/W admits a sym-
plectic resolution X →Z0.

Recall [11, Theorem 1.3(ii)] that the C×-action on Z0 lifts uniquely to X . As it is ex-
plained in Remark 1.4, the existence of a symplectic resolution of Z0 implies that all the
irreducible components of W are of type G (d , 1, n ) or G4. Since the proof of Theorem B
can be easily reduced to the irreducible case, we will separate the proof in two cases.

Proof of Theorem B for W =G (d , 1, n ). — Assume here that W = G (d , 1, n ). Let S1 be the
group of complex numbers of modulus 1. In this case, it follows from [7] that X is dif-
feomorphic to some smooth Zc , and that the diffeomorphism might be chosen to be
S1-equivariant. As the S1-equivariant cohomology is canonically isomorphic to the C×-
equivariant cohomology, this proves Theorem B in this case.

Proof of Theorem B for W =G4. — Assume here that W =G4. It is possible (probable?) that
again X is S1-diffeomorphic to some smooth Zc , but we are unable to prove it (it is only
known that they are diffeomorphic). So we will prove Theorem B in this case by brute
force computations.

We fix a primitive third root of unity ζ and we assume that V =C2 and that W = 〈s , t 〉,
where

s =

�

ζ 0

ζ2 1

�

and t =

�

1 −ζ2

0 ζ

�

.

By the work of Bellamy [2], there are only two symplectic resolutions of Z0 = (V ×V ∗)/W .
They have both been constructed by Lehn and Sorger [12]: one can be obtained from the
other by exchanging the role of V and V ∗, so we will only prove Theorem B for one of
them. Let us describe it.

Let H = V s and let H denote the image of H × V ∗ in Z0, with its reduced structure
of closed subvariety. We denote by β : Y → Z0 the blowing-up of Z0 along H and we
denote by α :X →Y the blowing-up of Y along its reduced singular locus S . Then [12]

π=β ◦α :X −→Z0
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is a symplectic resolution.
We now give more details, which all can be found in [12, §1]. First, C[Z0] is generated

by 8 homogeneous elements (zi )1 ¶ i ¶ 8 whose degrees are given by the following table:

(5.1)
z z1 z2 z3 z4 z5 z6 z7 z8

deg(z ) 0 4 −4 2 −2 −6 6 0

The defining ideal of H in C[Z0] is generated by 6 homogeneous elements (b j )1 ¶ j ¶ 6

whose degrees are given by the following table:

(5.2)
b b1 b2 b3 b4 b5 b6

deg(b ) 2 6 0 12 8 4

This defines a C×-equivariant closed immersion Y ,→ Z0 ×P5(C). We denote by Y i the
affine chart defined by “bi 6= 0”. The equations of the zero fiber β−1(0) given in [12,
§1] show that Y C

×
= {p2, p3, p4, p6}, where pi is the unique element of Y C

×

i . We use the
notation of Example 2.5. By (2.6) and (5.2), we have

(♣) i ∗
Y
(ch1
Y
([β ∗H ])) =−ħh (6ep2

+12ep4
+4ep6

).

Now, S is contained in Y 2 ∪Y 3, so α is an isomorphism in a neighborhood of p4 and p6.
So let q4 =α

−1(p4) and q6 =α
−1(p6). These are elements ofX C

×
.

On the other hand, Y 2 is a transversal A1-singularity, so the defining ideal of S ∩Y 2

in C[Y 2] is generated by three homogeneous elements a+, a◦ and a− (of degree 6, 0 and
−6, by [12, §1]), and it is easily checked that α−1(p2)

C× = {q+2 , q−2 } where q±2 is the unique
C×-fixed element in the affine chart defined by “a± 6= 0”.

Also, Y 3 is isomorphic to (h× h∗)/S3, where h is the diagonal Cartan subalgebra of
sl3(C) and S3 is the symmetric group on 3 letters, viewed as the Weyl group of sl3(C).
Let Hilb3(C

2) denote the Hilbert scheme of 3 points in C2, and let Hilb0
3(C

2) denote the
(reduced) closed subscheme defined as the Hilbert scheme of three points in C2 whose
sum is equal to (0, 0). By [10, Proposition 2.6],

(5.3) X3 ≃Hilb0
3(C

2).

It just might be noticed that the isomorphism Y 3 ≃ (h× h
∗)/S3 becomes C×-equivariant

if one “doubles the degrees” in (h× h∗)/S3, that is, if C× acts on h (respectively h∗) with
weight 2 (respectively −2). Recall that C×-fixed points in Hilb0

3(C
2) are parametrized by

partitions of 3: we denote by q+3 , q ◦3 and q−3 the fixed points in X3 corresponding respec-
tively to the partitions (3), (2, 1) and (1, 1, 1) of 3, so that

(5.4) X
C×

3 = {q+3 , q ◦3 , q−3 }.

Finally, we have

(5.5) X
C× = {q+2 , q−2 , q+3 , q ◦3 , q−3 , q4, q6}.

Also, π∗(H ) = α∗(β ∗(H )) is an effective Cartier divisor of X , and it follows from (♣) and
the commutativity of the diagram (2.3) that

(♦) i ∗
X
(ch1
X
([π∗H ])) =−ħh (6eq+2

+6eq−2
+12eq4

+4eq6
).
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We now wish to compute i ∗
X
(ch1
X
([α∗S ])). As the singular locus S is contained in

Y 2 ∪Y 3, and contains p2 and p3, there exists n+2 , n−2 , n+3 , n◦3 and n−3 in Z such that

i ∗
X
(ch1
X
([α∗S ])) =−ħh (n+2 eq+2

+n−2 eq−2
+n+3 eq+3

+n◦3eq ◦3
+n−3 eq−3

).

Since a+ and a− have degree 6 and −6, it follows from (2.6) that n+2 = 6 and n−2 =−6.
As we can exchange the roles of h and h∗ in the description of Y 3 and its singular locus

(because h ≃ h∗ as an S3-module), this shows that n−3 = −n+3 and n◦3 = −n◦3 . So n◦3 = 0 and
it remains to compute n+3 . So let U+ be the open subset of Hilb0

3(C
2) consisting of ideals J

of codimension 3 of C[x , y ] such that the classes of 1, x and x 2 form a basis of C[x , y ]/ J .
Then we have an isomorphism J+ :C4 ∼−→U+ given by

(a , b , c , d ) 7−→ J+(a , b , c , d ) = 〈x 3+a x + b , y − c x 2−d x −
2

3
a c 〉.

The form of the generators of the ideal J+(a , b , c , d ) is here to ensure that J+(a , b , c , d ) ∈

Hilb0
3(C

2). The fixed point q+3 is the unique one in U+. Through this identification, the
action of C× on C4 is given by

ξ · (a , b , c , d ) = (ξ4a ,ξ6b ,ξ−6c ,ξ−4d )

(remember that we must “double the degrees” of the usual action). The equation of α∗(S )
on this affine chart ≃ C4 can then be computed explicitly and is given by 4a 3 + 27b 2 = 0,
so is of degree 12. This shows that n+3 = 12. Finally,

(♥) i ∗
X
(ch1
X
([α∗S ])) =−ħh (6eq+2

−6eq−2
+12eq+3

−12eq−3
).

Let us now conclude. First, recall from [5, Theorem 1.2] that

(5.6)

¨

H2i+1(X ) = 0 for all i ,
H2•(X )≃ grF (Z(CW )).

By Proposition 2.4, we get

(♠) dimCH2i
C×
(X ) =







1 if i = 0,
3 if i = 1,
7 if i ¾ 2.

Now, W has seven irreducible characters 1, ǫ, ǫ2, χ , χǫ, χǫ2 and θ , where χ is the unique
irreducible character of degree 2 with rational values and θ is the unique one of degree
3. We denote by

Ψ : H2•
C×
(X C

×

)
∼
−→C[ħh ]⊗Z(CW )

the isomorphism of C[ħh ]-algebras such that

Ψ(eq4
) = e W

1 , Ψ(eq6
) = e W

θ , Ψ(eq+2
) = e W

χǫ , Ψ(eq−2
) = e W

χǫ2 ,

Ψ(eq+3
) = e W

ǫ2 , Ψ(eq ◦3
) = e W

χ and Ψ(eq−3
) = e W

ǫ .

By Proposition 2.4, H2•
C×
(X ) is isomorphic to its image by Ψ ◦ i ∗

X
in C[ħh ]⊗ Z(CW ). But,

by (♦) and (♥), and after investigation of the character table of W , this image contains

ħh (6e W
χǫ −6e W

χǫ2 +12e W
1 +4e W

θ ) = ħh (4+ΣW (s ) +ΣW (s
2))

and ħh (12e W
ǫ2 −12e W

ǫ +6eχǫ −6eχǫ2) = ħh ((1+2ζ)ΣW (s ) + (1+2ζ2)ΣW (s
2)).
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So it contains ħhΣW (s ) and ħhΣW (s
2). Also, by (♠) and Proposition 2.4, it also contains

ħh 2Z(CW ), so
Rees•F (Z(CW ))⊂ Im(Ψ ◦ i ∗

X
).

Using again (♠) and Proposition 2.4, a comparison of dimensions yields that

Rees•F (Z(CW )) = Im(Ψ ◦ i ∗
X
),

and the proof is complete.
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