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AN ASYMPOTIC CELL CATEGORY FOR CYCLIC GROUPS

by

CÉDRIC BONNAFÉ & RAPHAËL ROUQUIER

In [Ma], Malle has associated to any spetsial imprimitive complex reflec-
tion group W a set of unipotent characters (which is in natural bijection with
the set of unipotent characters of the associated finite reductive group when-
ever W is a Weyl group). In this generalization of Lusztig’s work, he also
obtained a partition of this set into families and, to each family, he associated
a Z-fusion datum: by a Z-fusion datum, we mean that we have all the ax-
ioms of a classical fusion datum (which will be called a Z+-fusion datum in
the present paper) except that the structure constants of the associated fusion
ring might be negative.

It is a classical problem to find a categorification of a Z+-fusion datum by
a tensor category with suitable extra-structures (pivot, twist). The aim of this
paper is to provide an ad hoc categorification of the Z-fusion datum associated
with the non-trivial family of the cyclic complex reflection group of order d :
it is provided by the stable category of the Drinfeld double of the Taft algebra
of dimension d 2. It must be said that we have no theoretical explanation for
this fact.
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1. The Drinfeld double of the Taft algebra

From now on, ⊗will denote the tensor product⊗C. We fix a natural number
d ¾ 2 as well as a primitive d -th root of unity ζ ∈ C×. We denote by µd =

〈ζ〉 the group of d -th roots of unity. If i ∈ Z/dZ and α is an element of a
group such that αd = 1, we will denote by αi the element αi ′ , where i ′ is any
representative of i .

If n ¾ 1 is a natural number and ξ ∈C, we set

(n )ξ = 1+ξ+ · · ·+ξn−1

and (n )!ξ =

n
∏

i=1

(i )ξ.

We also set (0)!ξ = 1.

1.A. The Taft algebra. — We denote by B the C-algebra admitting the fol-
lowing presentation:

• Generators: K , E .

• Relations:







K d = 1,

E d = 0,

K E = ζE K .

It follows from [Ka, Proposition IX.6.1] that:
(∆) There exists a unique morphism of algebras ∆ : B → B ⊗B such that

∆(K ) = K ⊗K and ∆(E ) = (1⊗ E ) + (E ⊗K ).

(ǫ) There exists a unique morphism of algebras ǫ : B →C such that

ǫ(K ) = 1 and ǫ(E ) = 0.

(S) There exists a unique anti-automorphism S of B such that

S (K ) = K −1 and S (E ) =−E K −1.

With ∆ as a coproduct, ǫ as a counit and S as an (invertible) antipode, B

becomes a Hopf algebra, called the Taft algebra [EGNO, Example 5.5.6]. It is
easily checked that

(1.1) B =
d−1
⊕

i , j=0

CK i E j =

d−1
⊕

i , j=0

CE i K j .
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1.B. Dual algebra. — Let K ∗ and E ∗ denote the elements of B ∗ such that

K ∗(E i K j ) =δi ,0ζ
j and E ∗(E i K j ) =δi ,1.

Recall that B ∗ is a Hopf algebra [Ka, Proposition III.3.3] and it follows from [Ka,
Lemma IX.6.3] that

(1.2) (E ∗i K ∗ j )(E i ′K j ′) =δi ,i ′ (i )!ζζ
j (i+ j ′).

We deduce easily that (E ∗i K ∗ j )0 ¶ i , j ¶ d−1 is a C-basis of B ∗.
We will give explicit formulas for the coproduct, the counit and the an-

tipode in the next subsection. We will in fact use the Hopf algebra (B ∗)cop,
which is the Hopf algebra whose underlying space is B ∗, whose product is
the same as in B ∗ and whose coproduct is opposite to the one in B ∗.

1.C. Drinfeld double. — We denote by D (B ) the Drinfeld quantum double
of B , as defined for instance in [Ka, Definition IX.4.1] or [EGNO, Defini-
tion 7.14.1]. Recall that D (B ) contains B and (B ∗)cop as Hopf subalgebras
and that the multiplication induces an isomorphism of vector spaces (B ∗)cop⊗

B
∼
−→D (B ). A presentation of D (B ), with generators E , E ∗, K , K ∗ is given for

instance in [Ka, Proposition IX.6.4]. We shall slightly modify it by setting

z = K ∗−1K and F = ζE ∗K ∗−1.

Then [Ka, Proposition IX.6.4] can we rewritten as follows:

Proposition 1.3. — The C-algebra D (B ) admits the following presentation:

• Generators: E , F , K , z ;

• Relations:





















K d = z d = 1,

E d = F d = 0,

[z , E ] = [z , F ] = [z , K ] = 0,

K E = ζE K ,

K F = ζ−1F K ,

[E , F ] = K − z K −1.

The next corollary follows from an easy induction argument:

Corollary 1.4. — If i ¾ 1, then

[E , F i ] = (i )ζF i−1(ζ1−i K − z K −1)

and [F, E i ] = (i )ζE i−1(ζ1−i z K −1−K ).
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The algebra D (B ) is endowed with a structure of Hopf algebra, where the
comultiplication, the counit and the antipode are still denoted by ∆, ǫ and S

respectively (as they extend the corresponding objects for B ). We have [Ka,
Proposition IX.6.2]:

(1.5)













∆(K ) = K ⊗K ,

∆(z ) = z ⊗ z ,

∆(E ) = (1⊗ E ) + (E ⊗K ),

∆(F ) = (F ⊗1) + (z K −1⊗ F ),













S (K ) = K −1,

S (z ) = z−1,

S (E ) =−E K −1,

S (F ) =−ζ−1F K z−1,

(1.6) ǫ(K ) = ǫ(z ) = 1 and ǫ(E ) = ǫ(F ) = 0.

1.D. Morphisms to C. — If ξ ∈ µd , we denote by ǫξ : D (B )→ C the unique
morphism of algebras such that

ǫξ(K ) = ξ, ǫξ(z ) = ξ
2 and ǫξ(E ) = ǫξ(F ) = 0.

It is easily checked that the ǫξ’s are the only morphisms of algebras D (B )→C.
Note that ǫ1 = ǫ is the counit.

1.E. Group-like elements. — It follows from (1.5) that K and z are group-
like, so that K i z j is group-like for all i , j ∈Z. The converse also holds (and is
certainly already well-known):

Lemma 1.7. — If g ∈ D (B ) is group-like, then there exist i , j ∈ Z such that g =

K i z j .

Proof. — Let g ∈D (B ) be a group-like element. Let us write

g =

d−1
∑

i , j ,k ,l=0

αi , j ,k ,l K i z j E k F l .

We denote by (k0, l0) the biggest pair (for the lexicographic order) such that
there exist i , j ∈ {0, 1, . . . , d − 1} such that αi , j ,k0,l0

6= 0. Then the coefficient of
K i z j E k0 F l0 ⊗K i z j E k0 F l0 in g ⊗ g is equal to α2

i , j ,k0,l0
, so it is different from 0.

But, if we compute the coefficient of K i z j E k0 F l0 ⊗K i z j E k0 F l0 in

g ⊗ g =∆(g ) =

d−1
∑

i , j ,k ,l=0

αi , j ,k ,l∆(K )
i
∆(z ) j∆(E )k∆(F )l

using the formulas (1.5), we see that it is equal to 0 if (k0, l0) 6= (0, 0). Therefore
(k0, l0) = (0, 0), and so g belongs to the linear span of the family (K i z j )i , j∈Z.
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Now the result follows from the linear independence of group-like elements.

1.F. Braiding. — For 0 ¶ i , j ¶ d −1, we set

βi , j =
E ∗i

d · (i )!ζ

d−1
∑

k=0

ζ−k (i+ j )K ∗k .

It follows from (1.2) that (βi , j )0 ¶ i , j ¶ d−1 is a dual basis to (E i K j )0 ¶ i , j ¶ d−1.
We then set

R =

d−1
∑

i , j=0

E i K j ⊗βi , j ∈D (B )⊗D (B ).

Then R is a universal R -matrix for D (B )which endows D (B )with a structure
of braided Hopf algebra [Ka, Theorem IX.4.4]). Using our generators E , F ,
K , z , we have:

(1.8) R =
1

d

d−1
∑

i , j ,k=0

ζ(i−k )(i+ j )−i (i+1)/2

(i )!ζ
E i K j ⊗ z−k F i K k .

1.G. Twist. — Let us define
τ : D (B )⊗D (B ) −→ D (B )⊗D (B )

a ⊗ b 7−→ b ⊗a .

Following [Ka, §VIII.4], we set

u =

d−1
∑

i , j=0

S (βi j )E
i K j ∈D (B ).

Recall that u is called the Drinfeld element of D (B ). It satisfies several proper-
ties (see for instance [Ka, Proposition VIII.4.5]). For instance, u is invertible
and we will recall only three equalities:

(1.9) ǫ(u ) = 1, ∆(u ) = (τ(R )R )−1(u ⊗u ) and S 2(b ) = u b u−1

for all b ∈D (B ). A straightforward computation shows that

(1.10) S 2(b ) = K b K −1

for all b ∈D (B ). We now set
θ = K −1u .

Then it follows from (1.9) and (1.10) that:
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Proposition 1.11. — The element θ is central and invertible in D (B ) and satisfies

ǫ(θ ) = 1 and ∆(θ ) = (τ(R )R )−1(θ ⊗θ ).

Let us give a formula for θ :

(1.12) θ =
1

d

d−1
∑

i , j ,k=0

(−1)i
ζ(i−k )(i+ j )−i

(i )!ζ
z k−i F i E i K i+ j−k−1.

Corollary 1.13. — S (θ ) = zθ .

Proof. — Let g = S (θ )θ−1. Since ∆◦S = τ◦ (S ⊗S )◦∆ and (S ⊗S )(R ) =R (see for
instance [Ka, Theorems III.3.4 and VIII.2.4], it follows from Proposition 1.11
that g is central and group-like. Hence, by Lemma 1.7, there exists l ∈Z such
that S (θ ) = θ z l . So, by (1.12), we have

(♯) S (θ )E d−1 = θ z l E d−1 =
1

d

d−1
∑

j ,k∈Z/dZ

ζ− j k z k+l K j−k−1E d−1.

Let us now compute S (θ )E d−1 by using directly (1.12). We get

S (θ )E d−1 = E d−1S (θ ) =
1

d

∑

j ,k∈Z/dZ

ζ− j k E d−1z−k K 1+k− j

=
1

d

∑

j ,k∈Z/dZ

ζ− j kζ1+k− j z−k K 1+k− j E d−1

=
1

d

∑

j ,k∈Z/dZ

ζ(1− j )(1+k )z−k K 1+k− j E d−1.

So, if we set j ′ = 1− j and k ′ =−1−k , we get

S (θ )E d−1 =
1

d

∑

j ′,k ′∈Z/dZ

ζ− j ′k ′z k ′+1K j ′−k ′−1E d−1.

Comparing with (♯), we get that z l = z .
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2. D (B )-modules

Most of the result of this section are due to Chen [Ch1] or Edrmann, Green,
Snashall and Taillefer [EGST1], [EGST2]. By a D (B )-module, we mean a fi-
nite dimensional left D (B )-module. We denote by D (B )-mod the category of
(finite dimensional left) D (B )-modules. If α1,. . . , αl−1 ∈C, we set

J +l (α1, . . . ,αl−1) =















0 α1 0 · · · 0
...

... ... . ..
...

...
... . .. 0

0 0 αl−1

0 · · · · · · · · · 0















and J −l (α1, . . . ,αl−1) =
t J +l (α1, . . . ,αl−1).

If M is a D (B )-module and b ∈D (B ), we denote by b |M the endomorphism of
M induced by b . For instance, E |M and F |M are nilpotent and K |M and z |M
are semisimple.

2.A. Simple modules. — If 1 ¶ l ¶ d and p ∈ Z/dZ, we denote by Ml ,p the

D (B )-module with C-basisM (l ,p ) = (e
(l ,p )

i )1 ¶ i ¶ l and such that the action of z ,
K , E and F in the basisM (l ,p ) are given by the following matrices:

z |Ml ,p
= ζ2p+l−1 IdMl ,p

,

K |Ml ,p
= ζp diag(ζl−1,ζl−2, . . . ,ζ, 1),

E |Ml ,p
= ζp J +l ((1)ζ(ζ

l−1−1), (2)ζ(ζ
l−2−1), . . . , (l −1)ζ(ζ−1)),

F |Ml ,p
= J −l (1, . . . , 1).

It is readily checked from the relations given in Proposition 1.3 that this de-
fines a D (B )-module of dimension l . The next result is proved in [Ch1, Theo-
rem 2.5].

Theorem 2.1 (Chen). — The map

{1, 2, . . . , d }×Z/dZ −→ Irr(D (B ))

(l , p ) 7−→ Ml ,p

is bijective.
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2.B. Blocks. — We denote by Λ(d ) the set Z/dZ × Z/dZ. Then Λ(d ) is in
canonical bijection with the set {1, 2, . . . , d } × Z/dZ, which parametrizes the
simple D (B )-modules. So if λ ∈Λ(d ), we will denote by Mλ the corresponding
simple D (B )-module. We also set (Z/dZ)# = (Z/dZ)\{0} and Λ#(d ) = (Z/dZ)#×
Z/dZ. Finally, let Λ0(d ) = {0}×Z/dZ be the complement of Λ#(d ) in Λ(d ).

Let

ι : Λ(d ) −→ Λ(d )

(l , p ) 7−→ (−l , p + l ).

Then ι2 = IdΛ(d ) and Λ0(d ) is the set of fixed points of ι. IfL is a ι-stable subset
of Λ(d ), we denote by [L /ι] a set of representatives of ι-orbits in L . The next
result is proved in [EGST1, Theorem 2.26].

Theorem 2.2 (Erdmann-Green-Snashall-Taillefer). — Let λ, λ′ ∈ Λ(d ). Then
Mλ and Mλ′ belong to the same block of D (B ) if and only if λ and λ′ are in the same
ι-orbit.

We have constructed in §1.G a central element, namely θ . Note that

(2.3) The element θ acts on Ml ,p by multiplication by ζ(p−1)(l+p−1).

Proof. — It is sufficient to compute the action of θ on e
(l ,p )
1 . Note that E i e

(l ,p )
1 =

0 as soon as i ¾ 1. Therefore, for computing θ e
(l ,p )
1 using the formula (1.12),

only the terms corresponding to i = 0 remain. Consequently,

ωl ,p (θ ) =
1

d

d−1
∑

j ,k=0

ζ− j kζ(2p+l−1)kζ(p+l−1)( j−k−1)

=
ζ1−l−p

d

d−1
∑

k=0

ζp k
�

d−1
∑

j=0

ζ(p+l−1−k ) j
�

The term inside the big parenthesis is equal to d if p+l −1−k ≡ 0 mod d , and
is equal to 0 otherwise. The result follows.
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2.C. Projective modules. — If λ ∈Λ(d ), we denote by Pλ an indecomposable
projective cover of Mλ. The next result is proved in [EGST1, Corollary 2.25].

Theorem 2.4 (Erdmann-Green-Snashall-Taillefer). — Let λ ∈Λ(d ). Then:

(a) If λ ∈ Λ#(d ), then dimC(Pλ) = 2d , Rad3(Pλ) = 0 and the Loewy structure of Pλ
is given by:

Pλ/Rad(Pλ) ≃ Mλ

Rad(Pλ)/Rad2(Pλ) ≃ Mι(λ)⊕Mι(λ)

Rad2(Pλ) ≃ Mλ

(b) Pd ,p =Md ,p has dimension d .

3. Tensor structure

We mainly refer here to the work of Erdmann, Green, Snashall and Taille-
fer [EGST1], [EGST2]. Since D (B ) is a finite dimensional Hopf algebra, the
category D (B )-mod inherits a structure of a tensor category. We will compute
here some tensor products between simple modules. For simplifying, we will
denote by Ml the simple module Ml ,0.

3.A. Invertible modules. — We denote by Vξ = Cvξ the one-dimensional
D (B )-module associated with the morphism ǫξ : D (B )→C defined in §1.D:

b vξ = ǫξ(b )vξ

for all b ∈D (B ). We have

(3.1) Vζp ≃M1,p .

An immediate computation using the comultiplication ∆ shows that

(3.2) Ml ,p ⊗Vζq ≃ Vζq ⊗Ml ,p ≃Ml ,p+q

as D (B )-modules. The Vξ’s are (up to isomorphism) the only invertible objets
in the tensor category D (B )-mod.
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3.B. Tensor product with M2. — For simplifying, we set ei = e
(2,0)
i for i ∈

{1, 2}, so that (e1, e2) is the standard basis of M2. The next result is a particular
case of [EGST1, Theorem 4.1].

Theorem 3.3 (Edrmann-Green-Snashall-Taillefer). — Let λ ∈Λ(d ) and let (l , p )

be a representative of λ in {1, 2, . . . , d }×Z/dZ. Then:

(a) If l ¶ d −1 (i.e. if λ ∈Λ#(d )), then M2⊗Ml ,p ≃Ml+1,p ⊕Ml−1,p+1.
(b) M2⊗Md ,p ≃ Pd−1,p .

4. Grothendieck rings

We denote by Gr(D (B )) the Grothendieck ring of the category of (left) D (B )-
modules.

4.A. Structure. — Since D (B ) is a braided Hopf algebra (with universal R -
matrix R ),

(4.1) The ring Gr(D (B )) is commutative.

If M is a D (B )-module, we denote by [M ] the class of M in Gr(D (B )). We set

mλ = [Mλ ], ml = [Ml ,0 ] and vξ = [Vξ ] ∈Gr(D (B )),

Recall that vζp =m1,p .Then it follows from (3.2) and Theorem 3.3 that

(4.2) vζq ml ,p =ml ,p+q and m2ml ,p =

¨

ml+1,p +ml−1,p+1 if l ¶ d −1,
2(md−1,p +m1,p−1) if l = d .

Proposition 4.3. — The Grothendieck ring Gr(D (B )) is generated by vζ and m2.

Proof. — We will prove by induction on l that ml ,p ∈ Z[vζ, m2]. Since m1,p =

(vζ)
p , this is true for l = 1. Since m2,p = (vζ)

p m2, this is also true for l = 2. Now
the induction proceeds easily by using (4.2).
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4.B. Some characters. — If b ∈D (B ) is group-like, then the map

Gr(D (B )) −→ C

[M ] 7−→ Tr(b |M )

is a morphism of rings. Here, Tr denotes the usual trace (not the quantum
trace) of an endomorphism of a finite dimensional vector space. Recall from
Lemma 1.7 that the only group-like elements of D (B ) are the K i z j , where
(i , j ) ∈Λ(d ). We set

χi , j : Gr(D (B )) −→ C

[M ] 7−→ Tr(K i z j |M ).

An easy computation yields

(4.4) χi , j (ml ,p ) = ζ
p i+(2p+l−1) j · (l )ζi .

Note that the χ ′i , j s are not necessarily distinct:

Lemma 4.5. — Let λ and λ′ be two elements of Λ(d ). Then χλ = χλ′ if and only if
λ and λ′ are in the same ι-orbit.

Proof. — Let us write λ = (i , j ) and λ′ = (i ′, j ′). The “if” part follows directly
from (4.4). Conversely, assume that χi , j = χi ′, j ′ . By applying these two char-
acters to vζ and m2, we get:

¨

ζi+2 j = ζi ′+2 j ′ ,

ζ j (1+ζi ) = ζ j ′(1+ζi ′ ).

So the result follows by applying exactly the same argument as in the proof
of Theorem 2.2.

4.C. Stable category. — As B is a Hopf algebra, it is Frobenius and so its
stable category B st (namely the quotient of B -mod by the full subcategory
B -proj consisting of projective objects) is triangulated. Similarly, the cate-
gory D (B )-stab is triangulated. Note also that a B -module (resp. a D (B )-
module) is projective if and only if it is injective. Since the tensor product
of a projective D (B )-module by any D (B )-module is still projective [EGNO,
Proposition 4.2.12], it inherits a structure of monoidal category (such that
the canonical functor D (B )-mod→ D (B )-stab is monoidal). In particular, its
Grothendieck group (as a triangulated category), which will be denoted by
Grst(D (B )), is a ring and the natural map

Gr(D (B )) −→ Grst(D (B ))

m 7−→ mst
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is a morphism of rings. If M is a D (B )-module, we denote by [M ]st its class
in Grst(D (B )).

Also, it follows Theorem 2.4 that

(4.6) m
st
d ,p = 0 and 2(mst

l ,p +m
st
d−l ,p+l ) = 0

if l ¶ d −1.

4.D. A further quotient. — We denote by D (B )-PROJ the full subcategory
of D (B )-mod whose objects are the D (B )-modules M such that Res

D (B )
B M is a

projective B -module. Since D (B ) is a free B -module (of rank d 2), D (B )-proj is
a full subcategory of D (B )-PROJ. We denote by D (B )-STAB the quotient of the
category D (B )-mod by the full subcategory D (B )-PROJ: it is also the quotient
of D (B )-stab by the image of D (B )-PROJ in D (B )-stab.

Lemma 4.7. — The image of D (B )-PROJ in D (B )-stab is a thick triangulated sub-
category. In particular, D (B )-STAB is triangulated.

Proof. — If M is a D (B )-module, we denote by πM : P (M ) ։ M (resp. iM :

M ,→ I (M )) a projective cover (resp. injective hull) of M . We just need to
prove the following facts:
(a) If M belongs to D (B )-PROJ, then Ker(πM ) and I (M )/ Im(iM ) also belong

to D (B )-PROJ.
(b) If M ⊕N belongs to D (B )-PROJ, then M and N also belong to D (B )-PROJ.
(c) If M and N belong to D (B )-PROJ and f : M →N is a morphism of D (B )-

modules, then the cone of f also belong to D (B )-PROJ.

(a) Assume that M belongs to D (B )-PROJ. Since M is a projective B -module,
there exists a morphism of B -modules f : M → P (M ) such that πM ◦ f = IdM .
In particular, P (M ) ≃ Ker(πM )⊕M , as a B -module. So Ker(πM ) is a projective
B -module.

On the other hand, I (M ) is a projective D (B )-module since D (B ) so it is a
projective B -module and so it is an injective B -module. So, again, I (M ) ≃

M ⊕ I (M )/ Im(iM ), so I (M )/ Im(iM ) is a projective B -module. This proves (a).

(b) is obvious.

(c) Let M and N belong to D (B )-PROJ and f : M → N be a morphism of
D (B )-modules. Let ∆f : M → I (M )⊕N , m 7→ (iM (m ), f (m )). Then the cone of
f is isomorphic in D (B )-stab to (I (M )⊕N )/ Im(∆f ). But ∆f is injective, M is
an injective B -module and so I (M ) ≃M ⊕ (I (M )⊕N )/ Im(∆f ) as a B -module,
which shows that (I (M )⊕N )/ Im(∆f ) is a projective B -module.
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Since D (B )-STAB is triangulated, we can define its Grothendieck group,
which will be denoted by GrST(D (B )). Also, if M belongs to D (B )-PROJ and N

is any D (B )-module, then M⊗N and N⊗M are projective as B -modules [EGNO,
Proposition 4.2.12], so D (B )-STAB inherits a structure of monoidal category,
compatible with the triangulated structure. This endows GrST(D (B )) with a
ring structure. The natural map Gr(D (B )) → GrST(D (B )) will be denoted by
m 7→mST : it is a morphism of rings. Of course, this morphism factors through
Grst(D (B )).

If λ ∈ Λ#(d ), then it follows from [EGST2, Property 1.4] that there exists a
D (B )-module P B

λ which is projective as a B -module and such that there is an
exact sequence

0−→Mι(λ) −→ P B
λ −→Mλ −→ 0.

It then follows that

(4.8) m
ST
λ +m

ST
ι(λ) = 0.

Also, we still have

(4.9) m
ST
d ,p = 0.

The next Theorem follows from (4.8), (4.9) and Proposition 4.3:

Theorem 4.10. — The ring GrST(D (B )) is generated by v
ST
ζ and m

ST
2 . Moreover,

GrST(D (B )) =
⊕

λ∈[Λ#(d )/ι]

Zm
ST
λ

and GrST(D (B )) is a free Z-module of rank d (d −1)/2.

Recall that Lemma 4.5 shows that, through the χi , j ’s, only d (d + 1)/2 dif-
ferent characters of the ring Gr(D (B )) have been defined. It is not clear if
CGr(D (B )) is semisimple in general but, for d = 2, it can be checked that it is
semisimple (of dimension 4), so that there is a fourth character Gr(D (B ))→C

which is not obtained through the χi , j ’s.
Now, a character χ : Gr(D (B ))→C factors through GrST(D (B )) if and only if

its kernel contains the mλ0
’s (where λ0 runs over Λ0(d )) and the mλ +mι(λ)’s

(where λ runs over Λ#(d )). This implies the following result:

Theorem 4.11. — The character χλ : Gr(D (B ))→ C factors through GrST(D (B )) if
and only if λ ∈ Λ#(d ). So the (χλ)λ∈[Λ#(d )/ι] are all the characters of GrST(D (B )) and

the C-algebra CGrST(D (B )) is semisimple.
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4.E. Complements. — If C is a monoidal category, we denote by Z(C ) its
Drinfeld center (see [Ka, §XIII.4]) and we denote by ForC : Z(C )→C the for-
getful functor.

It turns out that the category Z(B -mod) is naturally equivalent to D (B )-mod

and that, through this equivalence, the forgetful functor just becomes the re-
striction functor Res

D (B )
B . We will denote by can

D (B )
st : D (B )-mod→D (B )-stab,

canB
st : B -mod → B -stab and canST : D (B )-mod → D (B )-STAB the canonical

functors. Then the functor

canB
st ◦Res

D (B )
B : D (B )-mod−→ B -stab

factors through Z(B -stab) so that we get a commutative diagram of functors

D (B )-mod
Res

D (B )
B

//

F

��

B -mod

canB
st

��

Z(B -stab)
ForB -stab

// B -stab .

But any D (B )-module which is projective as a B -module is sent to the zero
object of Z(B -stab) throughF , so F factors through D (B )-PROJ and we get a
commutative diagram of functors

D (B )-mod
Res

D (B )
B

//

F

��

can
D (B )
ST

ww♦♦
♦♦
♦♦
♦♦
♦♦
♦

B -mod

canB
st

��

D (B )-PROJ

F ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

Z(B -stab)
ForB -stab

// B -stab .

Question. Is F : D (B )-PROJ→ Z(B -stab) an equivalence of categories?

5. Fusion datum

5.A. Quantum traces. — The element R ∈ D (B ) ⊗D (B ) defined in §1.F is
a universal R -matrix which endows D (B ) with a structure of braided Hopf
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algebra, the category D (B )-mod is braided as follows: if M and N are two
D (B )-modules, then the braiding cM ,N : M ⊗N

∼
−→N ⊗M is given by

cM ,N (m ⊗n ) = τ(R )(n ⊗m ).

Recall that τ : D (B )⊗D (B )
∼
−→ D (B )⊗D (B ) is given by τ(a ⊗ b ) = b ⊗ a . In

particular,

(5.1) cN ,M cM ,N M ⊗N
∼
−→M ⊗N is given by the action by τ(R )R .

For each i ∈Z, we have S 2(b ) = (z−i K )b (z−i K )−1 for all b ∈D (B ) and z−i K

is group-like, so the algebra D (B ) is pivotal with pivot z−i K . This endows the
tensor category D (B )-mod with a structure of pivotal category (see Section A)
whose associated traces Tr

(i )
+ and Tr

(i )
− are given as follows: if M is a D (B )-

module and f ∈ EndD (B )(M ), then

Tr(i )+ ( f ) = Tr(z−i K f ) and Tr(i )− ( f ) = Tr( f K −1z i ).

Recall that Tr denotes the “classical” trace for endomorphisms of a finite di-
mensional vector space. So the pivotal structure depends on the choice of i

(modulo d ). The corresponding twist is θi = z iθ , which endows D (B )-mod

with a structure of balanced braided category (depending on i ).

Hypothesis and notation. From now on, and until the end
of this paper, we assume that the Hopf algebra D (B ) is endowed
with the pivotal structure whose pivot is z−1K . The structure
of balanced braided category is given by θ1 = zθ and the asso-

ciated quantum traces Tr
(1)
± are denoted by Tr±.

If M is a D (B )-module, we set dim±(M ) = Tr±(IdM ).

We define
dim(D (B )) =

∑

M∈Irr D (B )

dim−(M )dim+(M ).

Then

(5.2) dim(D (B )) =
2d 2

(1−ζ)(1−ζ−1)
.

This follows easily from the fact that

(5.3) dim+Ml ,p = ζ
1−l−p (l )ζ and dim−Ml ,p = ζ

p+l−1(l )ζ−1 = ζp (l )ζ.
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5.B. Characters of Gr(D (B )) via the pivotal structure. — As in Section A,
these structures (braiding, pivot) allow to define characters of Gr(D (B )) asso-
ciated with (endo)simple modules. So, if λ ∈Λ(d ), then we set

s+Mλ
: Gr(D (B )) −→ C

[M ] 7−→ (IdMλ
⊗TrM

+
)(cM ,Mλ

cMλ,M )

and
s−Mλ

: Gr(D (B )) −→ C

[M ] 7−→ (IdMλ
⊗TrM
− )(cM ,Mλ

cMλ,M )

These are morphism of rings (see Proposition A.4). The main result of this
section is the following:

Theorem 5.4. — If λ ∈Λ(d ), then

s+Mλ
=χ−λ and s−Mλ

=χ(0,1)−λ.

Proof. — Write λ= (l , p ). For simplification, we set

γi , j ,k =
ζ(i−k )(i+ j )−i (i+1)/2

(i )!ζ
.

Then

τ(R )R =
1

d 2

d−1
∑

i ,i ′ , j , j ′,k ,k ′=0

γi , j ,kγi ′, j ′,k ′ζ
i (k ′− j ′)(z−k ′F i ′E i K k ′+ j )⊗ (z−k E i ′F i K j ′+k ).

We need to compute the endomorphism of Ml ,p equal to (IdMl ,p
⊗TrM

+
)(τ(R )R |Ml ,p⊗M ).

Since Ml ,p is simple, this endomorphism is the multiplication by a scalar ̟,

and so it is sufficient to compute the action on e
(l ,p )
1 ∈Ml ,p . Therefore, all the

terms (in the big sum giving τ(R )R ) corresponding to i 6= 0 disappear (be-
cause E e

(l ,p )
1 = 0). Also, since we are only interested in the coefficient on e

(l ,p )
1

of the result (because the coefficients on other vectors will be zero), all the
terms corresponding to i ′ 6= 0 also disappear. Therefore,

̟=
1

d 2

∑

j , j ′,k ,k ′∈Z/dZ

ζ−k j−k ′ j ′ (ζ2p+l−1)−k ′(ζp+l−1)k
′+ j

Tr(z−1K z−k K j ′+k |M ).

So it remains to compute the element

b =
1

d 2

∑

j , j ′,k ,k ′∈Z/dZ

ζ−k j−k ′ j ′(ζ2p+l−1)−k ′ (ζp+l−1)k
′+ j z−k−1K j ′+k+1
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of D (B ). But,

b =
1

d 2

∑

j ′,k∈Z/dZ

� ∑

j ,k ′∈Z/dZ

ζl (p+l−1−k )ζk ′(−p− j ′)
�

z−k−1K j ′+k+1.

So, only the terms corresponding to k = l +p −1 and j ′ =−p remain and so

b = z−l−p K l ,

as expected.
The other formula is obtained through a similar computation.

We denote by S± = (S±λ,λ′ )λ,λ′∈Λ(d ) the square matrix defined by

S
±
λ,λ′ = Tr±(cMλ′ ,Mλ

◦ cMλ,Mλ′
).

Similary, we define T± to be the diagonal matrix (whose rows and columns
are indexed by λ ∈Λ(d )) and whose λ-entry is

T
±
λ =ωλ(θ

±1
1 ).

Let us first give a formula for S±λ,λ′ and T±λ .

Corollary 5.5. — Let (l , p ), (l ′, p ′) ∈Λ(d ). Then

S
+
(l ,p ),(l ′,p ′) =

ζ

1−ζ
ζ−l l ′−l p ′−p l ′−2p p ′ (1−ζl l ′ ), T

+
(l ,p ) = ζ

p (p+l ),

S
−
(l ,p ),(l ′,p ′) =

ζ2p+l+2p ′+l ′−1

1−ζ
ζ−l l ′−l p ′−p l ′−2p p ′ (1−ζl l ′ ) and T

−
(l ,p ) = ζ

−p (p+l ).

Proof. — This follows immediately from (2.3), (5.3), (4.4) and Theorem 5.4.
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5.C. Fusion datum associated with D (B )-STAB. — Let E denote a set of rep-
resentatives of ι-orbits in {1, 2, . . . , d −1}×Z/dZ. We then define arbitrarily

dimST(D (B )) =
∑

(l ,p )∈E

dim−(Ml ,p )dim+(Ml ,p ).

We have no theoretical justification for this definition... Then

dimST(D (B )) =
1

2
dim(D (B )) =

d 2

(1−ζ)(1−ζ−1)
.

So dimST D (B ) is a positive real number and we denote by
Æ

dimST D (B ) its
positive square root. Since 1−ζ−1 = −ζ−1(1−ζ), there exists a unique square
root
p

−ζ of −ζ such that

q

dimST(D (B )) =
d
p

−ζ

1−ζ
.

We denote by SST = (Sλ,λ′ )λ,λ′∈E the square matrix defined by

S
ST
λ,λ′ =

S
+
λ,λ′
Æ

dimST(D (B ))
.

Then it follows from Corollary 5.5 that

(5.6) S
ST
(l ,p ),(l ′,p ′) =

p

−ζ

d
ζ−l l ′−l p ′−p l ′−2p p ′ (ζl l ′ −1).

6. Comparison with Malle Z-fusion datum

We refer to [Ma] and [Cu] for most of the material of this section. We de-
note by E (d ) the set of pairs (i , j ) of natural numbers such that 0 ¶ i < j ¶ d−1.

6.A. Set-up. — Let Y = {0, 1, . . . , d } and let π : Y → {0, 1} be the map defined
by

π(i ) =

¨

1 if i ∈ {0, 1},

0 if i ¾ 2.

We denote by Ψ(Y ,π) the set of maps f : Y → {0, 1, . . . , d − 1} such that f is
strictly increasing on π−1(0) = {2, 3, . . . , d } and strictly increasing on π−1(1) =

{0, 1}. Since f is injective on {2, 3, . . . , d }, there exists a unique element k( f ) ∈

{0, 1, . . . , d − 1} which does not belong to f ({2, 3, . . . , d }). Note that, since f
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is strictly increasing on {2, 3, . . ., d }, k( f ) determines the restriction of f to
{2, 3, . . . , d }. So the map

(6.1)
Ψ(Y ,π) −→ E (d )×{0, 1, . . ., d −1}

f 7−→ ( f (0), f (1), k( f ))

is bijective. For f ∈Ψ(Y ,π), we set

ǫ( f ) = (−1)|{(y ,y ′)∈Y ×Y | y<y ′ and f (y )< f (y ′)}|.

We denote by V =
⊕d−1

i=0 Cvi a vector space of dimension d endowed with
a basis (vi )0 ¶ i ¶ d−1 and we denote by S the square matrix (ζi j )0 ¶ i , j ¶ d−1,
which will be viewed as an automorphism of V . Note that S is the character
stable of the cyclic group µd . We setδ(d ) = (−1)d (d−1)/2 det(S ) =

∏

0 ¶ i< j ¶ d−1(ζ
i−

ζ j ). Recall that
δ(d )2 = (−1)(d−1)(d−2)/2d d .

If f ∈Ψ(Y ,π), let

vf = (v f (0) ∧ v f (1))⊗ (v f (2) ∧ v f (3) ∧ · · · ∧ v f (d )) ∈
�∧2

V
�

⊗
�∧d−1

V
�

.

Then (vf ) f ∈Ψ(Y ,π) is a C-basis of
�∧2

V
�

⊗
�∧d−1

V
�

. If f ′ ∈Ψ(Y ,π), we write
��∧2
S
�

⊗
�∧d−1

S
��

(vf ′ ) =
∑

f ∈Ψ(Y ,π)

S f , f ′vf .

In other words, (S f , f ′ ) f , f ′∈Ψ(Y ,π) is the matrix of the automorphism
�∧2
S
�

⊗
�∧d−1

S
�

of
�∧2

V
�

⊗
�∧d−1

V
�

in the basis (vf ) f ∈Ψ(Y ,π).

Lemma 6.2. — Let f , f ′ ∈Ψ(Y ,π). We define

i = f (0), j = f (1), k = k( f ),

i ′ = f ′(0), j ′ = f ′(1), k ′ = k( f ′).

Then

S f , f ′ = (−1)k+k ′ δ(d )

d
ζ−k k ′(ζi i ′+ j j ′ −ζi j ′+ j i ′ ).

Proof. — The computation of the action of
∧2
S is easy, and gives the term

ζi i ′+ j j ′ − ζi j ′+ j i ′ . So it remains to show that the determinant of the matrix
S (k , k ′) obtained from S by removing the k -th row and the k ′-th column is
equal to (−1)k+k ′ζ−k k ′δ(d )/d . For this, let S ′(k ) denote the matrix whose k -
th row is equal to (1, t , t 2, . . . , t d−1) (where t is an indeterminate) and whose
other rows coincide with those of S . Then (−1)k+k ′ det(S (k , k ′)) is equal to
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the coefficient of t k in the polynomial det(S ′(k )). This is a Vandermonde
determinant and

det(S ′(k )) =
∏

0 ¶ i< j ¶ d−1
i 6=k , j 6=k

(ζ j −ζi ) ·

k−1
∏

i=0

(t −ζi ) ·

d−1
∏

i=k+1

(ζi − t )

= δ(d )
d−1
∏

i=0
i 6=k

(t −ζi )

(ζk −ζi )
.

But
d−1
∏

i=0
i 6=k

(t −ζi ) =
t d −1

t −ζk
=

d−1
∑

i=0

t iζ(d−1−i )k .

Therefore,

det(S (k , k ′)) = (−1)k+k ′δ(d )
ζ(d−1−k ′)k

dζ(d−1)k
= (−1)k+k ′ δ(d )

d
ζ−k k ′ ,

as desired.

6.B. Malle Z-fusion datum. — Let

Ψ
#(Y ,π) = { f ∈Ψ(Y ,π) |

∑

y∈Y

f (y )≡
d (d −1)

2
mod d }

and, if f ∈Ψ#(Y ,π), we define

Fr( f ) = ζd (1−d 2)
∗

∏

y ∈Y

ζ−6( f (y )2+d f (y ))
∗ ,

where ζ∗ is a primitive 12d -th root of unity such that ζ12
∗ = ζ.

We denote by T diagonal matrix (whose rows and column are indexed by
Ψ

#(Y ,π)) equal to diag(Fr( f )) f ∈Ψ#(Y ,π). We denote by S = (Sf ,g ) f ,g∈Ψ#(Y ,π) the
square matrix defined by

Sf ,g =
(−1)d−1

δ(d )
ǫ( f )ǫ(g ) S f ,g .

Note that Sf , f0,1
6= 0 for all f ∈Ψ#(Y ,π) (see Lemma 6.2).

Proposition 6.3 (Malle [Ma]). — With the previous notation, we have:

(a) S4 = (ST)3 = [S2,T] = 1.
(b) t
S= S and t

S S= 1.
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(c) For all f , g , h ∈Ψ#(Y ,π), the number

N h
f ,g =
∑

i∈Ψ#(Y ,π)

Si , f Si ,g Si ,h

Si , f0,1

belongs to Z.

The pair (S,T) is called the Malle Z-fusion datum.

6.C. Comparison. — We wish to compare the Z-fusion datum (S,T)with the
ones obtained from the tensor categories D (B )-mod and D (B )-stab. For this,
we will use the bijection (6.1) to characterize elements of Ψ#(Y ,π) (here, if
k ∈Z, then k res denotes the unique element in {0, 1, . . . , d −1} such that k ≡ k res

mod d ):

Lemma 6.4. — Let f ∈ Ψ(Y ,π). Then f ∈ Ψ#(Y ,π) if and only if k( f ) = ( f (0) +

f (1))res. Consequently, the map

Ψ
#(Y ,π) −→ E (d )

f 7−→ ( f (0), f (1))

is bijective

Proof. — We have
∑

y ∈Y

f (y ) = f (0) + f (1) +
d (d −1)

2
−k( f )

and the result follows.

If (i , j ) ∈ Λ(d ), we denote by fi , j the unique element of Ψ#(Y ,π) such that
fi , j (0) = i and fi , j (1) = j . We have

(6.5) Fr( fi , j ) = ζ
i j

and, if (i , j ), (i ′, j ′) ∈Λ(d ), then

(6.6) Sfi , j , fi ′, j ′
=
(−1)(i+ j )res+(i ′+ j ′)res

d
ǫ( fi , j )ǫ( fi ′, j ′)(ζ

−i j ′− j i ′ −ζ−i i ′− j j ′).
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Proof. — The second equality follows immediately from Lemmas 6.2 and 6.4.
Let us prove the first one. By definition, Fr( fi , j ) = ζ

α
∗ , where

α= d (1−d 2)−6
∑

y∈Y

( fi , j (y )
2+d fi , j (y )).

The construction of fi , j shows that

α= d (1−d 2)−6(i 2+d i )−6( j 2 +d j )−6

d−1
∑

k=0

(k 2+d k )+6(((i + j )res)2+d (i + j )res).

Write i + j = (i + j )res+ηd , with η ∈ {0, 1}. Then η2 =η and so

(i + j )2+d (i + j ) = ((i + j )res)2+d (i + j )res+2ηd (i + j ) +2ηd 2

≡ ((i + j )res)2+d (i + j )res mod 2d .

Therefore,

α ≡ 12i j +d (1−d 2)−6

d−1
∑

k=0

(k 2+d k ) mod 12d

≡ 12i j mod 12d .

So Fr( fi , j ) = ζ
12i j
∗ = ζi j .

Let
ϕ : E (d ) −→ Λ

#(d )

(i , j ) 7−→ ( j − i , i ).

The π(E (d )) is a set of representatives of ι-orbits in Λ#(d ) and the pairs of ma-
trices (SST ,TST) and (S,T) are related by the following equality (which follows
immediately from Corollary 5.5, (6.5) and (6.6)):

(6.7) Sfi , j , fi ′, j ′
=
p

−ζ SST
ϕ(i , j ),ϕ(i ′, j ′) and Tfi , j

=TST
ϕ(i , j ).

Therefore:

Theorem 6.8. — Malle Z-fusion datum (S,T) can be categorified by the monoidal
category D (B )-STAB, endowed with the pivotal structure induced by the pivot z−1K

and the balanced structure induced by zθ .

Remark 6.9. — M. Broué, G. Malle & J. Michel have associated to a class of
exceptional reflection groups (the spetsial ones) a set of “unipotent characters”
and a partition of these unipotent characters into families. To each family,
they have also associated a Z-fusion datum (S , T ). It turns out that some of
these Z-fusion data can by categorified by Hopf quotients of the algebra D (B )

(this is investigated by A. Lacabanne in his Ph.D. Thesis). �
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A. Appendix. Recollection of S -matrices

We follow closely [EGNO, Chapters 4 and 8].
Let C be a tensor category over C, as defined in [EGNO, Definition 4.1.1]:
C is a locally finite C-linear rigid monoidal category (whose unit object is de-
noted by 1) such that the bifunctor ⊗ :C ×C →C is C-bilinear on morphisms
and EndC (1) = C. If X is an object in C , its left (respectively right) dual is
denoted by X ∗ (respectively ∗X ) and we denote by

coevX : 1−→ X ⊗X ∗ and evX : X ∗ ⊗X −→ 1

the coevealuation and evaluation morphisms respectively.
We assume that C is braided, namely that it is endowed with a bifunctorial

family of isomorphisms cX ,Y : X ⊗ Y
∼
−→ Y ⊗X such that

(A.1) cX ,Y ⊗Y ′ = (IdY ⊗cX ,Y ′ ) ◦ (cX ,Y ⊗ IdY ′ )

and

(A.2) cX⊗X ′,Y = (cX ,Y ⊗ IdX ′ ) ◦ (IdX ⊗cX ′,Y ).

for all objects X , X ′, Y and Y ′ in C (we have omitted the associativity con-
straints).

Finally, we also assume that C is pivotal [EGNO, Definition 4.7.8], i.e. that
it is equipped with a family of functorial isomorphisms aX : X → X ∗∗ (for X

running over the objects of C ) such that aX⊗Y = aX ⊗aY . If f ∈ EndC (X ), the
pivotal structure allows to define two traces:

Tr+( f ) = evX ∗ ◦(aX f ⊗ IdX ∗ ) ◦ coevX ∈ EndC (1) =C

and Tr−( f ) = evX ◦(IdX ∗⊗ f a−1
X ) ◦ coevX ∗ ∈ EndC (1) =C.

We will sometimes write TrX
+
( f ) or TrX

− ( f ) for Tr+( f ) and Tr−( f ). We define
two dimensions

dim+(X ) = Tr+(IdX ) and dim−(X ) = Tr−(IdX ).

To summarize, we will work under the following hypothesis:

Hypothesis and notation. We fix in this section a braided
pivotal tensor category C as above. We denote by Gr(C ) its
Grothendieck ring. If X is an object in C , we denote by [X ] its
class in Gr(C ). The set of isomorphism classes of simple objects
in C will be denoted by Irr(C ). If X ∈ Irr(C ) and Y is any
object in C , we denote by [Y : X ] the multiplicity of X in a
Jordan-Hölder series of Y .
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A.A. S -matrices. — If X , Y are objects in C , we set

s+X ,Y = (IdX ⊗TrY
+
)(cY ,X cX ,Y ) ∈ EndC (X ).

and s−X ,Y = (IdX ⊗TrY
− )(cY ,X cX ,Y ) ∈ EndC (X ).

It is clear that they induce two morphisms of abelian groups

s+X : Gr(C ) −→ EndC (X )

[Y ] 7−→ s+X ,Y

and
s−X : Gr(C ) −→ EndC (X )

[Y ] 7−→ s−X ,Y .

Definition A.3. — An object X in C is said endominimal if EndC (X ) =C.

For instance, a simple object is endominimal (and 1 is also endominimal,
but 1 is simple in a tensor category [EGNO, Theorem 4.3.1]). Note also that
an endominimal module is indecomposable. So ifC is moreover semisimple,
then an object is endominimal if and only if it is simple.

If X is endominimal, then we will view s+X ,Y and s−X ,Y as elements of C =
EndC (X ).

Proposition A.4. — If X is endominimal, then s+X : Gr(C )→ C and s−X : Gr(C )→

C are morphisms of rings.

Proof. — Assume that X is endominimal. We will only prove the result for
s+X , which amounts to show that

(∗) s+X ,Y ⊗Y ′ = s+X ,Y s+X ,Y ′ .

First, note that the following equality

cY ⊗Y ′,X cX ,Y ⊗Y ′ = (cY ,X ⊗ IdY ′ ) ◦ (IdY ⊗cY ′,X cX ,Y ′ ) ◦ (cX ,Y ⊗ IdY ′ )

holds by (A.1) and (A.2). Taking IdX ⊗ IdY ⊗TrY ′

+
on the right-hand side, one

gets s+X ,Y ′cY ,X cX ,Y ∈ EndC (X ⊗Y ) (because X is endominimal). Applying now
IdX ⊗TrY

+
, one get s+X ,Y ′ s

+
X ,Y IdX . Since

(IdX ⊗TrY
+ ) ◦ (IdX ⊗ IdY ⊗TrY ′

+ ) = IdX ⊗TrY ⊗Y ′

+ ,

this proves (∗).

Proposition A.5. — Let X be endominimal and let X ′ be an endominimal subquo-
tient of X . Then

s+X = s+X ′ and s−X = s−X ′ .
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Proof. — This is just because the endomorphism (IdX ⊗TrY
+ )(cY ,X cX ,Y ) of X

is a multiplication by a scalar, and this scalar can be computed on any non-
trivial subquotient of X .

Corollary A.6. — Let X and X ′ be two endominimal objects in C belonging to the
same block. Then

s+X = s+X ′ and s−X = s−X ′ .

Proof. — By Proposition A.5, we may asume that X and X ′ are simple. We
may also assume that X is not isomorphic to X ′ and that Ext1

C (X , X ′) = 0. So
let X ∈C be such that there exists a non-split exact sequence

0−→ X ′ −→ X−→ X −→ 0.

Since X 6≃ X ′, we have EndC (X) =C and so X is endominimal. Then it follows
from Proposition A.5 that

s+
X
= s+X = s+X ′ and s−

X
= s−X = s−X ′ ,

as desired.
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