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INTRODUCTION

Reconstruction of Lie-theoretic structures from Weyl groups and extension to

complex reflection groups

A number of Lie-theoretic questions have their answer in terms of the associ-
ated Weyl group. Our work is part of a program to reconstruct combinatorial and
categorical structures arising in Lie-theoretic representation theory from rational
Cherednik algebras. Such algebras are associated by Etingof and Ginzburg to more
general complex reflection groups, and an aspect of the program is to generalize
those combinatorial and categorical structures to complex reflection groups, that
will not arise from Lie theory in general.

To be more precise, consider a semisimple complex Lie algebra g and let W be
its Weyl group. Consider also a reductive algebraic group G over Z, with g the Lie
algebra of G(C). Consider the following:

(i) (Parabolic) Blocks of (deformed) category O for g, blocks of categories of Harish-
Chandra bimodules.

(ii) The set of unipotent characters of G(Fq ), their generic degrees, Lusztig’s Fourier
transform matrices.

(iii) Unipotent blocks of modular representations of G(Fq ) over a field of character-
istic prime to q .

(iv) The Hecke algebra of W .
(v) Lattices in the Hecke algebra arising from the Kazhdan-Lusztig basis, Lusztig’s

asymptotic algebra J .
(vi) Kazhdan-Lusztig cells of W and left cell representations, families of characters

of W .
(vii) Lusztig’s modular categories associated to two-sided cells.

It is known or conjectured that the structures above depend only on W , viewed as
a reflection group. One can hope that (possibly derived) versions of those structures
still make sense for W a complex reflection group.

Consider the case where W a real reflection group. A solution to (i) is provided
by Soergel’s bimodules [Soe]. A solution to (ii) was found [BrMa, Lus3, Mal1]. The
combinatorial theory in (v,vi) extends (partly conjecturally) to that setting. Cate-
gories as in (vii) were constructed by Lusztig when W is a dihedral group [Lus3].
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The structures above might make sense for arbitrary ("unequal") parameters, and
this is already an open problem for W a Weyl group. A partly conjectural theory
for (v,vi) has been developed by Lusztig [Lus4], who is developing an interpretation
via character sheaves on disconnected groups [Lus5].

Hecke algebras are a starting point: they have a topological definition that makes
sense for complex reflection groups [BrMaRo], providing a (conjectural) solution to
(iv). The Hecke algebras are (conjecturally) deformations of ZW over the space of
class functions on W supported on reflections.

For certain complex reflection groups ("spetsial"), a combinatorial set (a "spets")
has been associated by Broué, Malle and Michel, that plays the role of unipotent
characters, and providing an answer to (ii) [Mal2, BrMaMi1, BrMaMi2]. Generic
degrees are associated, building on Fourier transforms generalizing Lusztig’s con-
structions for Weyl groups. There are generalized induction and restriction func-
tors, and a d -Harish-Chandra theory.

When W is a cyclic group and for equal parameters, a solution to (vii) has been
constructed in [BoRou]. It is a derived version of a modular category. It gives rise
to the Fourier transform defined by Malle [Mal2].

In this book, we provide a conjectural extension of (vi) to complex reflection
groups.

Etingof-Ginzburg’s rational Cherednik algebras and Calogero-Moser spaces

Consider a non-trivial finite group W acting on a finite-dimensional complex vec-
tor space V and let V reg the complement of the ramification locus of the quotient
map V → V /W . Assume W is a reflection group, i.e., W is generated by its set of
reflections Ref(W ) (equivalently: V /W is smooth; equivalently: V /W is an affine
space). The quotient variety (V ×V ∗)/∆W by the diagonal action of W is singular.
It is a ramified covering of V /W ×V ∗/W .

Etingof and Ginzburg have constructed a deformation Υ :Z →C ×V /W ×V ∗/W

of this covering [EtGi]. Here, C is a vector space with basis the quotient of Ref(W )

by the conjugacy action of W . The variety Z is the Calogero-Moser space. The
original covering corresponds to the point 0 ∈C .

Etingof and Ginzburg define Z as the spectrum of the center of the rational
Cherednik H associated with W at t = 0. It is a remarkable feature of their work that
those important but complicated Calogero-Moser spaces have an explicit descrip-
tion based on non-commutative algebra. We will now explain their constructions.

The rational Cherednik algebra eH associated to W is a flat deformation defined by
generators and relations of the algebra C[V ×V ∗]⋊W over the space of parameters
(c , t ) ∈ eC = C ×A1. Its specialization at (c = 0, t = 1) is the crossed product of the
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Weyl algebra of V by W . The Cherednik algebra has a triangular decomposition
eH=C[V ]⊗C[ eC ]W ⊗C[V ∗]. Equivalently, it satisfies a PBW Theorem. The algebra eH
has a faithful representation by Dunkl operators on C[ eC ×V reg].

Consider the algebra H obtained by specializing eH at t = 0 and let Z be its center.
It contains C[C ] ⊗C[V ]W ⊗C[V ∗]W as a subalgebra. The Calogero-Moser variety
is defined as Z = Spec Z . The Satake Theorem asserts that multiplication by the
averaging idempotent e = 1

|W |
∑

w∈W w defines an isomorphism of algebras Z
∼−→

e He . As a consequence, the morphism Υ : Z → P = C × V /W × V ∗/W is a flat
deformation of (V ×V ∗)/∆W →V /W ×V ∗/W over C .

Galois closure and ramification

The triangular decomposition of the Cherednik algebra at t = 1 leads to a con-
struction of representation categories similar to that of enveloping algebras of com-
plex semisimple Lie algebras.

The covering Υ , of degree |W |, is not Galois (unless W = (Z/2)n ). Our work is a
study of a Galois closureR of this covering and of the ramification above the closed
subvarieties 0×0, 0×V ∗/W and V /W ×0 of V /W ×V ∗/W .

Let G be the Galois group of R → P . At 0 ∈C , a Galois closure of the covering
(V ×V ∗)/∆W →V /W ×V ∗/W is given by (V ×V ∗)/∆Z (W ). This leads to a realization
of G as a group of permutations of W .

This can be reformulated in terms of representations of H: the semisimple C(P )-
algebraC(P )⊗C[P ]H is not split andC(R ) is a splitting field. The simpleC(R )⊗C[P ]H-
modules are in bijection with W . Our work can be viewed as the study of the
partition of these modules into blocks corresponding to a given prime ideal ofC[R ].

Calogero-Moser cells

Let X be an irreducible closed subvariety ofR . We define the X -cells of W as the
orbits of the inertia group of X . Given a parameter c ∈C , we study the two-sided
c -cells, defined for X an irreducible component of the inverse image of X̄ = c ×0×0.
We also study the left c -cells (where X̄ = c ×V /W × 0) and the right c -cells (where
X̄ = c ×0×V /W ).

When W is a Coxeter group, we conjecture that the c -cells coincide with the
Kazhdan-Lusztig cells, defined by Kazhdan-Lusztig [KaLu] and Lusztig [Lus1],
[Lus3]. This depends on the choice of an appropriate X in a G -orbit.

We analyze in detail the case where W is cyclic (and dim V = 1): this is the only
case where we have a complete description of the objects studied in this book. We
also provide a detailed study of the case of a Weyl group W of type B2: the Galois
group is a Weyl group of type D4 and we show that the Calogero-Moser cells co-
incide with the Kazhdan-Lusztig cells. Our approach for B2 is based on a detailed
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study of Z and of the ramification of the covering, without constructing explicitly
the varietyR .

Etingof and Ginzburg have introduced a deformation of the Euler vector field.
We show that G is the Galois group of its minimal polynomial. This element plays
an important role in the study of ramification, but is not enough to separate cells in
general.

Families and cell representations

We construct a bijection between the set of two-sided c -cells and the set of blocks
of the restricted rational Cherednik algebra H̄c (the specialization of H at (c , 0, 0) ∈
C ×V /W ×V ∗/W =P ). This latter set is in bijection with Υ −1(c , 0, 0). Given a simple
CW -module E , there is an indecomposable representation of Verma type (a “baby-
Verma” module) ∆̄c (E ) of H̄ with a unique simple quotient L c (E ) [Gor1]. The par-
tition into blocks of those modules gives a partition of Irr(W ) into Calogero-Moser

families, which are conjecturally related to the families of the Hecke algebra of W (cf
[Gor2, GoMa, Bel5, Mar1, Mar2]). We show that, in a given Calogero-Moser fam-
ily, the matrix of multiplicities [∆̄c (E ) : L c (F )] has rank 1, a property conjectured by
Ulrich Thiel. Families satisfy a semi-continuity property with respected to special-
ization of the parameter. We show that families are minimal subsets that are unions
of families for a generic parameter and on whose Verma modules the Euler element
takes constant values. More precisely, this second statement is related to a set of
hyperplanes of C where the families change. Those hyperplanes are related to the
affine hyperplanes where the category O [GGOR] for the specialization at t = 1 of
H is not semisimple. These are, in turn, related to the components of the locus of
parameters where the Hecke algebra of W is not semisimple.

We introduce a notion of simple cell module associated with a left cell. We con-
jecture that the multiplicity of such a simple module in a Verma module is the same
as the multiplicity of E in the cell representation of Kazhdan-Lusztig, when W

is a Coxeter group. We study two-sided cells associated with a smooth point of
Υ
−1(c , 0, 0): in that case, Gordon has shown that the corresponding block contains a

unique Verma module. We show that the multiplicity of any simple cell module in
that Verma module is 1 (for a left cell contained in the given two-sided cell).

There is a unique irreducible representation of W with minimal b-invariant in
each Calogero-Moser family. In Lusztig’s theory, this is a characterization of special
representations (case of equal parameters). We show that in each left cell repre-
sentation there is also a unique irreducible representation of W with minimal b -
invariant, and this can change inside a family. The corresponding result has been
proved recently (case by case) in the setting of Lusztig’s theory by the first author
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[Bon4]. It is an instance of the Calogero-Moser theory shedding some light on the
Kazhdan-Lusztig and Lusztig theory.

Description of the chapters

We review in Chapter 2 the basic theory of complex reflection groups: invariant
theory, rationality of representations, fake degrees. We close that chapter with the
particular case of real reflection groups endowed with the choice of a real chamber,
i.e., finite Coxeter groups. All along the book, we devote special sections to the case
of Coxeter groups when particular features arise in their case.

Chapters 3 and 4 are devoted to the basic structure theory of rational Cherednik
algebras, following Etingof and Ginzburg [EtGi]. The definition of generic Chered-
nik algebras is given in Chapter 3, followed by the fundamental PBW Decompo-
sition Theorem. We introduce the polynomial representation via Dunkl operators
and prove its faithfulness. We introduce next the spherical algebra and prove some
basic properties, including the double endomorphism Theorem. We also introduce
the Euler element and gradings, filtrations, and automorphisms.

Chapter 4 is devoted to the Cherednik algebra at t = 0. An important result is the
Satake isomorphism between the center of the Cherednik algebra and the spherical
subalgebra. We discuss localizations and cases of Morita equivalence between the
Cherednik algebra and its spherical subalgebra. We provide some complements:
filtrations, symmetrizing form and Hilbert series.

Our original work starts in Part II: it deals with the covering Υ and its ramifica-
tion.

We introduce in Chapter 5 some of our basic objects of study, namely the Galois
closure of the covering Υ and its Galois group. At parameter 0, the corresponding
data is very easily described, and its embedding in the family depends on a choice.
We explain this in §5.1.B, and show that this allows an identification of the generic
fiber of Υ with W . We show in §5.1.D that the extension L/K is generated by the
Euler element, and that the corresponding result at the level of rings is true if and
only if W is generated by a single reflection. We discuss in §5.2 the decomposition
of the M-algebra MH as a product of matrix algebras over M. In other parts of §5, we
discuss gradings and automorphisms, and construct an order 2 element of G when
all reflections of W have order 2 and − IdV ∈W . The last part §5.7 is a geometrical
translation of the previous constructions.

We introduce Calogero-Moser cells in Chapter 6. They are defined in §6.1 as or-
bits of inertia groups on W and shown in §6.2 to coincide with blocks of the Chered-
nik algebra. We study next the ramification locus and smoothness. We give two
more equivalent definitions of Calogero-Moser cells: via irreducible components of
the base change by Υ of the Galois cover (§6.5) and via lifting of paths (§6.6).
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Part III is the heart of the book. It discusses Calogero-Moser cells associated with
the ramification at {0} × {0}, V /W × {0} and {0} ×V ∗/W , and relations with repre-
sentations of the Cherednik algebras, as well as (conjectural) relations with Hecke
algebras.

We start in Chapter 7 with a discussion of graded representations of Cherednik
algebras. They form a highest weight category (in the sense of Appendix §F). We
discuss the standard objects, the Verma modules, and the Euler action on them.

Chapter 8 is devoted to Hecke algebras. We recall in §8.1 the definition of Hecke
algebras of complex reflection groups and some of its basic (partly conjectural)
properties. We introduce a "cyclotomic" version, where the Hecke parameters are
powers of a fixed indeterminate. We explain in §8.3 the construction of the Knizhnik-
Zamolodchikov functor [GGOR] realizing the category of representations of the
Hecke algebra as a quotient of a (non-graded) category O for the Cherednik algebra
at t = 1. Thanks to the double endomorphism Theorem, the semisimplicity of the
Hecke algebra is equivalent to that of the category O . We present in §8.4 Malle’s
splitting result for irreducible representations of Hecke algebras and we consider
central characters. We discuss in §8.5 the notion of Hecke families. We finish in §8.6
with a brief exposition of the theory of Kazhdan-Lusztig cells of elements of W and
of families of characters of W and c -cellular characters.

Chapter 9 is devoted to the representation theory of restricted Cherednik algebras
and to Calogero-Moser families. We recall in §9.1 and §9.2 some basic results of
Gordon [Gor1] on representations of restricted Cherednik algebras and Calogero-
Moser families. Graded representations give rise to a highest weight category, as
noticed by Bellamy and Thiel [BelTh], and we follow that approach. We show
in §9.4 the existence of a unique representation with minimal b-invariant in each
family and generalize results of [Gor1] on graded dimensions. We discuss in §9.6
the relation between the geometry of Calogero-Moser at Υ −1(0) and the Calogero-
Moser families. The final section §9.7 relates Calogero-Moser families with blocks
of category O at t = 1 and with blocks of Hecke algebras.

In Chapter 10, we get back to the Galois cover and study two-sided cells. We
construct a bijection between the set of two-sided cells and the set of families.

We continue in Chapter 11 with the study of left (and right) cells and we define
Calogero-Moser cellular characters. We analyze in §11.2 the choices involved in the
definition of left cells, using Verma modules. We study the relevant decomposi-
tion groups, and we reinterpret left cells as blocks of a suitable specialization of the
Cherednik algebra. We finish in §11.4 with basic properties relating cellular charac-
ters and left cells and we give an alternative definition of cellular characters as the
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socle of the restriction of a projective module. We also show that a cellular character
involves a unique irreducible representation with minimal b-invariant.

Chapter 12 brings decomposition matrices in the study of cells. We show in §12.4
that the decomposition matrix of baby Verma modules in a block has rank 1, as
conjectured by Thiel. In §12.5, we prove that cellular characters are sums with non-
negative coefficients of characters of projective modules of the Hecke algebra over
appropriate base rings.

Chapter 13 shows, following a suggestion of Etingof, that cells can be interpreted
in terms of spectra of certain Gaudin-type operators. This provides a topological
approach to cells and cellular characters.

We analyze in Chapter 14 the cells associated to a smooth point of a Calogero-
Moser space in Υ −1(0). This is based on the use of the C×-action and the resulting
attracting sets. We show first, without smoothness assumptions, that irreducible
components of attracting sets parametrize the cellular characters.

The next two chapters are devoted to conjectures. Chapter 15 discusses the mo-
tivation of this book, namely the expected relation between Calogero-Moser cells
and Kazhdan-Lusztig cells when W is a Coxeter group. We start in §15.1 with Mar-
tino’s conjecture that Calogero-Moser families are unions of Hecke families. §15.2
and §15.3 state and discuss our main conjecture. We give some cases where the con-
jecture on cellular characters does hold and give some evidence for the conjecture
on cells.

Chapter 16 gives a conjecture on the cohomology ring and the C×-equivariant
cohomology ring of Calogero-Moser spaces, extending the description of Etingof-
Ginzburg in the smooth case. We also conjecture that irreducible components of
the fixed points of finite order automorphisms on the Calogero-Moser space are
Calogero-Moser spaces for reflection subquotients.

Part IV is based on the study of particular cases. Chapter 17 presents the theory
for the parameter c = 0.

Chapter 18 is devoted to the case of V of dimension 1. We give a description
of the objects introduced earlier, in particular the Galois closure R . We show that
generic decomposition groups can be very complicated, for particular values of the
parameter.

Chapter 19 analyzes the case of W a finite Coxeter group of type B2. We deter-
mine in §19.3 the ring of diagonal invariants and the minimal polynomial of the
Euler element. We continue in §19.4 with the determination of the corresponding
deformed objects. The Calogero-Moser families are then easily found. We move
next to the determination of the Galois group G . Section §19.7 is the more compli-
cated study of ramification and the determination of the Calogero-Moser cells. We
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finish in §19.8 with a discussion of fixed points of the action of groups of roots of
unity, confirming Conjecture FIX.

We have gathered in six Appendices some general algebraic considerations, few
of which are original.

Appendix A is a brief exposition of filtered modules and filtered algebras. We an-
alyze in particular properties of an algebra with a filtration that are consequences
of the corresponding properties for the associated graded algebra. We discuss sym-
metric algebras in §A.4.

Appendix B gathers some basic facts on ramification theory for commutative
rings around decomposition and inertia groups. We recollect some properties of
Galois groups and discriminants, and close the chapter with a topological version
of the ramification theory and its connection with the commutative rings theory.

Appendix C is a discussion of some aspects of the theory of graded rings. We
consider general rings in §C.1. We next discuss in §C.2 gradings in the setting of
commutative ring extensions. We finally consider gradings and invariants rings in
§C.3.

We present in Appendix D some results on blocks and base change for algebras
finite and free over a base. We discuss in particular central characters and idempo-
tents, and the locus where the block decomposition changes.

Appendix E deals with finite group actions on rings (commutative or not), and
compare the cross-product algebra and the invariant ring. We consider in particular
the module categories and the centers.

Appendix F provides a generalized theory of highest weight categories over com-
mutative rings. We discuss in particular base change (§F.1.E), Grothendieck groups
(§F.1.F and §F.1.G), decomposition maps (§F.1.H) and blocks (§F.1.I). A particular
class of highest weight categories arises from graded algebras with a triangular de-
composition (§F.2), generalizing [GGOR] to non-inner gradings.

Before the index of notations, we have included in "Prime ideals and geometry"
some diagrams summarizing the commutative algebra and geometry studied in
this book.

We would like to thank G. Bellamy, P. Etingof, I. Gordon, M. Martino and U. Thiel
for their help and their suggestions.

Gunter Malle has suggested many improvements on a preliminary version of this
book, and has provided very valuable help with Galois theory questions: we thank
him for all of this.
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Commentary. — This book contains an earlier version of our work [BoRou1]. The
structure of the text has changed and the presentation of classical results on Chered-
nik algebras is now mostly self-contained. There are a number of new results (see
for instance Chapters 7 and 9) based on appropriate highest weight category con-
siderations (Appendix F is new), and a new topological approach (Chapter 13 on
Gaudin algebras in particular).





PART I

REFLECTION GROUPS AND
CHEREDNIK ALGEBRAS





CHAPTER 1

NOTATIONS

1.1. Integers

We put N=Z¾ 0.

1.2. Modules

Let A be a ring. Given L a subset of A, we denote by < L > the two-sided ideal
of A generated by L . Given M an A-module, we denote by Rad(M ) the intersection
of the maximal proper A-submodules of M . We denote by A-Mod the category
of A-modules and by A-mod the category of finitely generated A-modules and we
put G0(A) = K0(A-mod), where K0(C ) denotes the Grothendieck group of an exact
category C . We denote by A-proj the category of finitely generated projective A-
modules. Given A an abelian category, we denote by Proj(A ) its full subcategory
of projective objects.

Given M ∈ A-mod, we denote by [M ]A (or simply [M ]) its class in G0(A).

We denote by Irr(A) the set of isomorphism classes of simple A-modules. As-
sume A is a finite-dimensional algebra over the field k. We have an isomorphism
Z Irr(A)

∼−→ G0(A), M 7→ [M ]. If A is semisimple, we have a bilinear form 〈−,−〉A on
G0(A) given by 〈[M ], [N ]〉 = dimk HomA(M , N ). When A is split semisimple, Irr(A)

provides an orthonormal basis.

Let W be a finite group and assume k is a field. We denote by Irrk(W ) (or simply
by Irr(W )) the set of irreducible characters of W over k. When |W | ∈ k×, there is a
bijection Irrk(W )

∼−→ Irr(kW ), χ 7→ Eχ . The group Hom(W , k×) of linear characters of
W with values in k is denoted by W ∧k (or W ∧) . We have an embedding W ∧ ⊂ Irr(W ),
and equality holds if and only if W is abelian and k contains all e -th roots of unity,
where e is the exponent of W .
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1.3. Gradings

1.3.A. Let k be a ring and X a set. We denote by kX = k(X ) the free k-module with
basis X . We sometimes denote elements of kX as formal sums:

∑
x∈X αx x , where

αx ∈ k.

1.3.B. Let Γ be a monoid. We denote by kΓ (or k[Γ ]) the monoid algebra of Γ over k.
Its basis of elements of Γ is denoted by {t γ}γ∈Γ .

A Γ -graded k-module is a k-module L with a decomposition L =
⊕
γ∈Γ Lγ (that is

the same as a comodule over the coalgebra kΓ ). Given γ0 ∈ Γ , we denote by L〈γ0〉
the Γ -graded k-module given by (L〈γ0〉)γ = Lγγ0

. We denote by k-freeΓ the additive
category of Γ -graded k-modules L such that Lγ is a free k-module of finite rank for
all γ ∈ Γ . Given L ∈ k-freeΓ , we put

dimΓ

k
(L ) =
∑

γ∈Γ
rankk(Lγ)t

γ ∈ZΓ .

We have defined an isomorphism of abelian groups dimΓ

k
: K0(k-freeΓ )

∼−→ ZΓ . This
construction provides a bijection from the set of isomorphism classes of objects of
k-freeΓ to NΓ . Given P =

∑
γ∈Γ pγt γ with pγ ∈N, we define the Γ -graded k-module kP

by (kP )γ = kpγ . We have dimΓ

k
(kP ) = P .

We say that a subset E of a Γ -graded module L is homogeneous if every element of
E is a sum of elements in E ∩ Lγ for various elements γ ∈ Γ .

1.3.C. A graded k-module L is a Z-graded k-module. We put L+ =
⊕

i>0 L i . If L i = 0

for i ≪ 0 (for example, if L is N-graded), then dimZ
k
(L ) is an element of the ring of

Laurent power series Z((t)): this is the Hilbert series of L . Similarly, if L i = 0 for
i ≫ 0, then dimZ

k
(L ) ∈Z((t−1)).

When L has finite rank over k, we define the weight sequence of L as the unique
sequence of integers r1 ¶ · · ·¶ rm such that dimZ

k
(L ) = t r1 + · · ·+ t rm .

A bigraded k-module L is a (Z×Z)-graded k-module. We put t= t (1,0) and u = t (0,1),
so that dimZ×Z

k
(L ) =
∑

i , j dimk(L i , j )t
i u j for L ∈ k-freeZ×Z. When L is (N×N)-graded,

we have dimN×N
k
(L ) ∈Z[[t, u]].

When A is a graded ring and M is a finitely generated graded A-module, we
denote by [M ]gr

A (or simply [M ]gr) its class in the Grothendieck group of the category
A-modgr of finitely generated graded A-modules. Note that K0(A-modgr) is a Z[t±1]-
module, with t[M ]gr = [M 〈−1〉]gr.

1.3.D. Assume k is a commutative ring. There is a tensor product of Γ -graded k-
modules given by (L⊗k L ′)γ =

⊕
γ′γ′′=γ Lγ′⊗k Lγ′′ . When the fibers of the multiplication

map Γ × Γ → Γ are finite, the multiplication in Γ provides ZΓ with a ring structure,
the tensor product preserves k-freeΓ , and dimΓ

k
(L ⊗k L ′) = dimΓ

k
(L )dimΓ

k
(L ′).
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A Γ -graded k-algebra is a k-algebra A with a Γ -grading such that Aγ ·Aγ′ ⊂ Aγγ′ .





CHAPTER 2

REFLECTION GROUPS

All along this book, we consider a fixed characteristic 0 field k, a
finite-dimensional k-vector space V of dimension n and a finite sub-
group W of GLk(V ). We will write ⊗ for ⊗k. We denote by

Ref(W ) = {s ∈W | dimk Im(s − IdV ) = 1}
the set of reflections of W . We assume that W is generated by
Ref(W ).

2.1. Determinant, roots, coroots

We denote by ǫ the determinant representation of W

ǫ : W −→ k×

w 7−→ detV (w ).

We have a perfect pairing between V and its dual V ∗

〈, 〉 : V ×V ∗ −→ k.

Given s ∈ Ref(W ), we choose αs ∈V ∗ and α∨
s
∈V such that

Ker(s − IdV ) =Kerαs and Im(s − IdV ) = kα∨
s

or equivalently

Ker(s − IdV ∗ ) =Kerα∨
s

and Im(s − IdV ∗ ) = kαs .

Note that, since k has characteristic 0, all elements of Ref(W ) are diagonalizable,
hence

(2.1.1) 〈α∨
s
,αs 〉 6= 0.

Given x ∈V ∗ and y ∈V we have

(2.1.2) s (y ) = y − (1− ǫ(s )) 〈y ,αs 〉
〈α∨

s
,αs 〉

α∨
s
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and

(2.1.3) s (x ) = x − (1− ǫ(s )−1)
〈α∨

s
, x 〉

〈α∨
s
,αs 〉

αs .

2.2. Invariants

We denote by k[V ] = S (V ∗) (respectively k[V ∗] = S (V )) the symmetric algebra of
V ∗ (respectively V ). We identify it with the algebra of polynomial functions on
V (respectively V ∗). The action of W on V induces an action by algebra automor-
phisms on k[V ] and k[V ∗] and we will consider the graded subalgebras of invariants
k[V ]W and k[V ∗]W . The coinvariant algebras k[V ]co(W ) and k[V ∗]co(W ) are the graded
finite-dimensional k-algebras

k[V ]co(W ) = k[V ]/ < k[V ]W
+
> and k[V ∗]co(W ) = k[V ∗]/ < k[V ∗]W

+
> .

Shephard-Todd-Chevalley’s Theorem asserts that the property of W to be generated
by reflections is equivalent to structural properties of k[V ]W . We provide here a ver-
sion augmented with quantitative properties (see for example [Bro2, Theorem 4.1]).
We state a version with k[V ], while the same statements hold with V replaced by
V ∗.

Let us define the sequence d1 ¶ · · ·¶ dn of degrees of W as the weight sequence of
< k[V ]W

+
> / < k[V ]W

+
>2 (cf §1.3.C).

Theorem 2.2.1 (Shephard-Todd, Chevalley). — (a) The algebra k [V ]W is a polyno-

mial algebra generated by homogeneous elements of degrees d1, . . . , dn . We have

|W |= d1 · · ·dn and |Ref(W )|=
n∑

i=1

(di −1).

(b) The (k[V ]W [W ])-module k[V ] is free of rank 1.

(c) The kW -module k[V ]co(W ) is free of rank 1. So, dimk k[V ]co(W ) = |W |.

Remark 2.2.2. — Note that when k = C, there is a skew-linear isomorphism be-
tween the representations V and V ∗ of W , hence the sequence of degrees for the
action of W on V is the same as the one for the action of W on V ∗. In general, note
that the representation V of W can be defined over a finite extension of Q, which
can be embedded in C: so, the equality of degrees for the actions on V and V ∗ holds
for any k.

This equality can also be deduced from Molien’s formula [Bro2, Lemma 3.28]. �
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Let N = |Ref(W )|. Since dimZ
k
(k[V ]co(W )) =
∏n

i=1
1−tdi

1−t , we deduce that dimk k[V ]
co(W )
N =

1. A generator is given by the image of
∏

s∈Ref(W )αs : this provides an isomorphism
h : k[V ]

co(W )
N

∼−→ k.
The composition

k[V ]N ⊗k[V ]W
mult−→ k[V ]

can−→ k[V ]/(k[V ]W k[V ]<N )

factors through an isomorphism g : k[V ]
co(W )
N ⊗ k[V ]W

∼−→ k[V ]/(k[V ]W k[V ]<N ). We
denote by pN the composition

pN : k[V ]
can−→ k[V ]/(k[V ]W k[V ]<N )

g −1

−→ k[V ]
co(W )
N ⊗k[V ]W

h⊗Id−−→
∼

k[V ]W .

We refer to §A.4 for basic facts on symmetric algebras.

Proposition 2.2.3. — pN is a symmetrizing form for the k[V ]W -algebra k[V ].

Proof. — We need to show that the morphism of graded k[V ]W -modules

p̂N : k[V ]→Homk[V ]W (k[V ], k[V ]W ), a 7→ (b 7→ pN (a b ))

is an isomorphism. By the graded Nakayama lemma, it is enough to do so after ap-

plying −⊗k[V ]W k. We have p̂N ⊗k[V ]W k= ˆ̄pN , where p̄N : k[V ]co(W )→ k[V ]
co(W )
N

h−→
∼

k is the
projection onto the homogeneous component of degree N . This is a symmetrizing
form for k[V ]co(W ) [Bro2, Theorem 4.25], hence ˆ̄pN is an isomorphism.

Note that the same statements hold for V replaced by V ∗.

2.3. Hyperplanes and parabolic subgroups

Notation. We fix an embedding of the group of roots of unity of k

in Q/Z. When the class of 1
e is in the image of this embedding, we

denote by ζe the corresponding element of k.

We denote byA the set of reflecting hyperplanes of W :

A = {Ker(s − IdV ) | s ∈ Ref(W )}.

There is a surjective W -equivariant map Ref(W )→A , s 7→ Ker(s − IdV ). Given X a
subset of V , we denote by WX the pointwise stabilizer of X :

WX = {w ∈W | ∀ x ∈ X , w (x ) = x }.
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Given H ∈ A , we denote by eH the order of the cyclic subgroup WH of W . We
denote by sH the generator of WH with determinant ζeH

. This is a reflection with
hyperplane H . We have

Ref(W ) = {s j

H | H ∈A and 1 ¶ j ¶ eH −1}.
The following lemma is clear.

Lemma 2.3.1. — s
j

H and s
j ′

H ′ are conjugate in W if and only if H and H ′ are in the same

W -orbit and j = j ′.

Given ℵ a W -orbit of hyperplanes of A , we denote by eℵ the common value of
the eH for H ∈ ℵ. Lemma 2.3.1 provides a bijection from Ref(W )/W to the set ℵ of
pairs (ℵ, j )where ℵ ∈A /W and 1 ¶ j ¶ eℵ−1.

We denote by ℵ◦ the set of pairs (ℵ, j ) with ℵ ∈A /W and 0 ¶ j ¶ eℵ−1.

Let V reg = {v ∈ V | StabW (v ) = 1}. Define the discriminant δ =
∏

H ∈A α
eH

H ∈ k[V ]W .
The following result shows that points outside reflecting hyperplanes have trivial
stabilizers [Bro2, Theorem 4.7].

Theorem 2.3.2 (Steinberg). — Given X ⊂ V , the group WX is generated by its reflections.

As a consequence, V reg =V \
⋃

H∈A H and k[V reg] = k [V ][δ−1].

2.4. Irreducible characters

The rationality property of the reflection representation of W is classical.

Proposition 2.4.1. — Let k′ be a subfield of k containing the traces of the elements of W

acting on V . Then there exists a k′W -submodule V ′ of V such that V = k⊗k′ V
′.

Proof. — Assume first V is irreducible. Let V ′′ be a simple k′W -module such that
k⊗k′ V ′′ ≃ V ⊕m for some integer m ¾ 1. Let s ∈ Ref(W ). Since s has only one non-
trivial eigenvalue on V , it also has only one non-trivial eigenvalue on V ′′. Let
L be the eigenspace of s acting on V ′′ for the non-trivial eigenvalue. This is an
m-dimensional k′-subspace of V ′′, stable under the action of the division algebra
Endk′W (V

′′). Since that division algebra has dimension m2 over k′ and has a module
L that has dimension m over k′, we deduce that m = 1. The proposition follows by
taking for V ′ the image of V ′′ by an isomorphism k⊗k′ V

′′ ∼−→V .
Assume now V is arbitrary. Let V = V W ⊕⊕l

i=1
Vi be a decomposition of the kW -

module V , where Vi is irreducible for 1 ¶ i ¶ l . Let Wj be the subgroup of W of
elements acting trivially on

⊕
i 6= j Vi . The group Wj is a reflection group on Vj . The
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discussion above shows there is a k′Wj -submodule V ′
j

of Vj such that Vj = k⊗k′ V ′
j
.

Let V ′′ be a k′-submodule of V W such that V W = k⊗k′ V
′′. Let V ′ =V ′′⊕⊕l

j=1
V ′

j
. We

have W =
∏l

i=1
Wj and V = k⊗k′ V

′: this proves the proposition.

The following rationality property of all representations of complex reflection
groups is proven using the classification of those groups [Ben, Bes].

Theorem 2.4.2 (Benard, Bessis). — Let k′ be a subfield of k containing the traces of the

elements of W acting on V . Then the algebra k′W is split semisimple. In particular, kW is

split semisimple.

2.5. Hilbert series

2.5.A. Invariants. — The algebra k[V × V ∗] = k[V ]⊗ k[V ∗] admits a standard bi-
grading, by giving to the elements of V ∗ ⊂ k[V ] the bidegree (0, 1) and to those of
V ⊂ k[V ∗] the bidegree (1, 0). We clearly have

(2.5.1) dimZ×Z
k
(k[V ×V ∗]) =

1

(1− t)n (1−u)n
.

Using the notation of Theorem 2.2.1(a), we get also easily that

(2.5.2) dimZ×Z
k
(k[V ×V ∗]W ×W ) =

n∏

i=1

1

(1− tdi )(1−udi )
.

On the other hand, the bigraded Hilbert series of the diagonal invariant algebra
k[V ×V ∗]∆W is given by a formula à la Molien

(2.5.3) dimZ×Z
k
(k[V ×V ∗]∆W ) =

1

|W |
∑

w∈W

1

det(1−w t) det(1−w −1u)
,

whose proof is obtained word by word from the proof of the usual Molien formula.

2.5.B. Fake degrees. — We identify K0(kW -modgr) with G0(kW )[t, t−1]: given M =⊕
i∈ZMi a finite dimensional Z-graded kW -module, we make the identification

[M ]
gr

kW =
∑

i∈Z
[Mi ]kW ti .

It is clear that [M ]kW is the evaluation at 1 of [M ]gr

kW and that [M 〈n〉 ]gr

kW = t−n [M ]
gr

kW .
If M is a bigraded kW -module, we define similarly [M ]Z×Z

kW
: it is an element of

K0(kW )[t, u, t−1, u−1].
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Let (fχ (t))χ∈Irr(W ) denote the unique family of elements of N[t] such that

(2.5.4) [k [V ∗]co(W ) ]
Z×Z
kW
=
∑

χ∈Irr(W )

fχ (t) χ .

Definition 2.5.5. — The polynomial fχ (t) is called the fake degree of χ . Its t-valuation is

denoted by bχ and is called the b-invariant of χ .

The fake degree of χ satisfies

(2.5.6) fχ (1) =χ(1).

Note that

(2.5.7) [k[V ]co(W ) ]
Z×Z
kW
=
∑

χ∈Irr(W )

fχ (u) χ
∗,

(here, χ∗ denotes the dual character of χ , that is, χ∗(w ) = χ(w −1)). Note also that, if
1W denotes the trivial character of W , then

[k[V ∗]co(W ) ]
Z×Z
kW
≡ 1W mod tK0(kW )[t]

and [k[V ]co(W ) ]
Z×Z
kW
≡ 1W mod uK0(kW )[u].

We deduce:

Lemma 2.5.8. — The elements [k[V ]co(W ) ]
Z×Z
kW

and [k[V ∗]co(W ) ]
Z×Z
kW

are not zero divisors in

K0(kW )[t, u, t−1, u−1].

Remark 2.5.9. — Note that

[k[V ]co(W ) ]kW = [k[V
∗]co(W ) ]kW = [kW ]kW =

∑

χ∈Irr(W )

χ(1)χ

is a zero divisor in K0(kW ) (as soon as W 6= 1). �

We can now give another formula for the Hilbert series dimZ×Z
k
(k[V ×V ∗]∆W ):

Proposition 2.5.10. — dimZ×Z
k
(k[V ×V ∗]W ) =

1∏n

i=1
(1− tdi )(1−udi )

∑

χ∈Irr(W )

fχ (t) fχ (u).
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Proof. — LetH be a W -stable graded complement to < k[V ]W
+
> in k[V ]. Since k[V ]

is a free k[V ]W -module, we have isomorphisms of graded k[W ]-modules

k[V ]≃ k[V ]W ⊗H and k[V ]co(W ) ≃H .

Similarly, if H ′ is a W -stable graded complement of < k[V ∗]W
+
> in k[V ∗], then we

have isomorphisms of graded k[W ]-modules

k[V ∗]≃ k[V ∗]W ⊗H ′ and k[V ∗]co(W ) ≃H ′.

In other words, we have isomorphisms of graded k[W ]-modules

k[V ]≃ k[V ]W ⊗k[V ]co(W ) and k[V ∗]≃ k[V ∗]W ⊗k[V ∗]co(W ).

We deduce an isomorphism of bigraded k-vector spaces

(k[V ]⊗k[V ∗])∆W ≃ (k[V ]W ⊗k[V ∗]W )⊗ (k[V ]co(W )⊗k[V ∗]co(W ))∆W .

By (2.5.4) and (2.5.7), we have

dimZ×Z
k
(k[V ]co(W )⊗k[V ∗]co(W ))∆W =

∑

χ ,ψ∈Irr(W )

fχ (t)fψ(u)〈χψ∗, 1W 〉W .

So the formula follows from the fact that 〈χψ∗, 1W 〉= 〈χ ,ψ〉W .

To conclude this section, we gather in a same formula Molien’s Formula (2.5.3)
and Proposition 2.5.10:

dimZ×Z
k
(k[V ×V ∗]∆W ) =

1

|W |
∑

w∈W

1

det(1−w t) det(1−w −1u)

=
1∏n

i=1
(1− tdi )(1−udi )

∑

χ∈Irr(W )

fχ (t) fχ (u).

2.6. Coxeter groups

Let us recall the following classical equivalences:

Proposition 2.6.1. — The following assertions are equivalent:

(1) There exists a subset S of Ref(W ) such that (W ,S ) is a Coxeter system.

(2) V ≃V ∗ as kW -modules.

(3) There exists a W -invariant non-degenerate symmetric bilinear form V ×V → k.

(4) There exists a subfield kR of k and a W -stable kR-vector subspace VkR
of V such that

V = k⊗kR
VkR

and kR embeds as a subfield of R.
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Whenever one (or all the) assertion(s) of Proposition 2.6.1 is (are) satisfied, we say
that W is a Coxeter group. In this case, the text will be followed by a gray line on the
left, as below.

Assumption, choice. From now on, and until the end of §2.6, we
assume that W is a Coxeter group. We fix a subfield kR of k that
embeds as a subfield of R and a W -stable kR-vector subspace VkR

of
V such that V = k⊗kR

VkR
. We also fix a connected component CR of

{v ∈R⊗kR
VkR
|StabW (v ) = 1}. We denote by S the set of s ∈ Ref(W )

such that CR ∩ kerR⊗kR
VkR
(s − 1) has real codimension 1 in CR. So,

(W ,S ) is a Coxeter system. This notation will be used all along this
book, provided that W is a Coxeter group.

The following is a particular case of Theorem 2.4.2.

Theorem 2.6.2. — The kR-algebra kRW is split. In particular, the characters of W are real

valued, that is, χ =χ∗ for all character χ of W .

Recall also the following.

Lemma 2.6.3. — If s ∈ Ref(W ), then s has order 2 and ǫ(s ) =−1.

Corollary 2.6.4. — The map Ref(W )→A , s 7→Ker(s−IdV ) is bijective and W -equivariant.

In particular, |A |= |Ref(W )|=
∑n

i=1
(di −1) and |A /W |= |Ref(W )/W |.

Let ℓ : W → N denote the length function with respect to S : given w ∈ W , the
integer ℓ(w ) is minimal such that w is a product of ℓ(w ) elements of S . When w =

s1s2 · · ·sl with si ∈ S and l = ℓ(w ), we say that w = s1s2 · · ·sl is a reduced decomposition

of w . We denote by w0 the longest element of W : we have ℓ(w0) = |Ref(W )|= |A |.

Remark 2.6.5. — If − IdV ∈ W , then w0 = − IdV . Conversely, if w0 is central and
V W = 0, then w0 =− IdV . �



CHAPTER 3

GENERIC CHEREDNIK ALGEBRAS

Let C be the k-vector space of maps c : Ref(W )→ k, s 7→ cs that are constant on
conjugacy classes: this is the space of parameters, which we identify with the space of
maps Ref(W )/W → k.

Given s ∈ Ref(W ) (or s ∈ Ref(W )/W ), we denote by Cs the linear form on C given
by evaluation at s . The algebra k[C ] of polynomial functions on C is the algebra of
polynomials on the set of indeterminates (Cs )s∈Ref(W )/W :

k[C ] = k[(Cs )s∈Ref(W )/W ].

We denote by eC the k-vector space k×C and we introduce T : eC → k, (t , c ) 7→ t . We
have T ∈ eC ∗ and

k[ eC ] = k[T , (Cs )s∈Ref(W )/W ].

We will use in this chapter results from Appendices A and E.

3.1. Structure

3.1.A. Symplectic action. — We consider here the action of W on V ⊕V ∗.

Lemma E.1.1 and Proposition E.2.2 give the following result.

Proposition 3.1.1. — We have Z (k[V ⊕V ∗]⋊W ) = k[V ⊕ V ∗]W = k[(V ⊕ V ∗)/W ] and

there is an isomorphism

Z (k[V ⊕V ∗]⋊W )
∼−→ e (k[V ⊕V ∗]⋊W )e , z 7→ z e .

The action by left multiplication gives an isomorphism

k[V ⊕V ∗]⋊W
∼−→ Endk[(V ⊕V ∗)/W ]opp

�
(k[V ⊕V ∗]⋊W )e

�opp
.
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3.1.B. Definition. — The generic rational Cherednik algebra (or simply the generic

Cherednik algebra) is the k[ eC ]-algebra eH defined as the quotient of k[ eC ]⊗
�
Tk(V ⊕

V ∗)⋊W
�

by the following relations (here, Tk(V ⊕V ∗) is the tensor algebra of V ⊕V ∗):

(3.1.2)





[x , x ′] = [y , y ′] = 0,

[y , x ] = T 〈y , x 〉+
∑

s∈Ref(W )

(ǫ(s )−1) Cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

s ,

for x , x ′ ∈V ∗ and y , y ′ ∈V .

Remark 3.1.3. — Thanks to (2.1.2), the second relation is equivalent to

(3.1.4) [y , x ] = T 〈y , x 〉+
∑

s∈Ref(W )

Cs 〈s (y )− y , x 〉 s

and to

[y , x ] = T 〈y , x 〉+
∑

s∈Ref(W )

Cs 〈y , s−1(x )− x 〉. s

This avoids the use of αs and α∨
s
. �

3.1.C. PBW Decomposition. — Given the relations (3.1.2), the following asser-
tions are clear:

• There is a unique morphism of k-algebras k[V ]→ eH sending y ∈V ∗ to the class
of y ∈ Tk(V ⊕V ∗)⋊W in eH.
• There is a unique morphism of k-algebras k[V ∗]→ eH sending x ∈ V to the class

of x ∈ Tk(V ⊕V ∗)⋊W in eH.
• There is a unique morphism of k-algebras kW → eH sending w ∈W to the class

of w ∈ Tk(V ⊕V ∗)⋊W in eH.
• The k-linear map k[ eC ]⊗ k[V ]⊗ kW ⊗ k[V ∗] −→ eH induced by the three mor-

phisms defined above and the multiplication map is surjective. Note that it is
k[ eC ]-linear.

The last statement is strengthened by the following fundamental result [EtGi, The-
orem 1.3], for which we will provide a proof in Theorem 3.1.11.

Theorem 3.1.5 (Etingof-Ginzburg). — The multiplication map k[ eC ]⊗k[V ]⊗kW ⊗k[V ∗]−→
eH is an isomorphism of k[ eC ]-modules.
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3.1.D. Specialization. — Given (t , c ) ∈ eC , we denote by eCt ,c the maximal ideal of
k[ eC ] given by eCt ,c = { f ∈ k[ eC ] | f (t , c ) = 0}: this is the ideal generated by T − t and
(Cs − cs )s∈Ref(W )/W . We put

eHt ,c = k[ eC ]/eCt ,c ⊗k[ eC ] eH= eH/eCt ,c
eH.

The k-algebra eHt ,c is the quotient of Tk(V ⊕V ∗)⋊W by the ideal generated by the
following relations:

(3.1.6)





[x , x ′] = [y , y ′] = 0,

[y , x ] = t 〈y , x 〉+
∑

s∈Ref(W )

(ǫ(s )−1) cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

s ,

for x , x ′ ∈V ∗ and y , y ′ ∈V .

Example 3.1.7. — We have eH0,0 = k[V ⊕V ∗]⋊W and eHT ,0 =DT (V )⋊W (see §A.5). �

More generally, given eC a prime ideal of k[ eC ], we put eH(eC) = eH/eCeH.

3.1.E. Filtration. — We endow the k[ eC ]-algebra eH with the filtration defined as
follows:

• eH¶ −1 = 0

• eH¶ 0 is the k[ eC ]-subalgebra generated by V ∗ and W

• eH¶ 1 = eH¶ 0V + eH¶ 0.
• eH¶ i = (eH¶ 1)i for i ¾ 2.

Specializing at (t , c ) ∈ eC , we have an induced filtration of eHt ,c .

The canonical maps k[ eC ]⊗k[V ]⋊W → (gr eH)0 and V → (gr eH)1 induce a surjective
morphism of algebras ρ : k[ eC ]⊗k[V ⊕V ∗]⋊W ։ gr eH.

3.1.F. Localization at V reg. — Recall that

V reg =V \
⋃

H ∈A
H = {v ∈V | StabG (v ) = 1} and k[V reg] = k [V ][δ−1].

We put eHreg = eH[δ−1], the non-commutative localization of eH obtained by adding a
two-sided inverse to the image of δ. Note that the filtration of eH induces a filtration
of eHreg, with (eHreg)¶ i = eH¶ i [δ−1].

Note that multiplication induces an isomorphism of k-vector spaces k[V reg] ⊗
k[V ∗]

∼−→D(V reg) =D(V )[δ−1] (cf Appendix §A.5).

Lemma 3.1.8. — We have:
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(a) There is a Morita equivalence between k[V reg×V ∗]⋊W and k[V reg×V ∗]W given by

the bimodule k[V reg×V ∗].

(b) There is a Morita equivalence betweenD(V reg)⋊W and D(V reg)W =D(V reg/W ) given

by the bimodule D(V reg).

(c) The action of D(V reg)⋊W on k[V reg] is faithful.

Proof. — (a) follows from Corollary E.2.1.
(b) becomes (a) after taking associated graded, hence (b) follows from Lemmas A.3.4

and E.1.1.
(c) It follows from (b) that every two-sided ideal of D(V reg)⋊W is generated by

its intersection with D(V reg)W . Since D(V reg) acts faithfully on k[V reg] (cf §A.5), we
deduce that the kernel of the action of D(V reg)⋊W vanishes.

3.1.G. Polynomial representation and Dunkl operators. — Given y ∈ V , we de-
fine Dy , a k[ eC ]-linear endomorphism of k[ eC ]⊗k[V reg] by

Dy = T ∂y −
∑

s∈Ref(W )

ǫ(s )Cs 〈y ,αs 〉α−1
s

s .

Note that Dy ∈ k[C ]⊗DT (V
reg)⋊W ⊂ k[ eC ]⊗D(V reg)⋊W .

Remark 3.1.9. — The Dunkl operators are traditionally defined as

T ∂y −
∑

s∈Ref(W )

ǫ(s )Cs 〈y ,αs 〉α−1
s
(s −1).

With this definition they preserve k[ eC ]⊗k[V ]. The results and proofs in this section
apply also to those operators. �

Proposition 3.1.10. — There is a unique structure of eH-module on k[ eC ]⊗k[V reg] where

k[ eC ]⊗ k[V reg] acts by multiplication, W acts through its natural action on V and y ∈ V

acts by Dy .

Proof. — The following argument is due to Etingof. Let y ∈V and x ∈ V ∗. We have

[α−1
s

s , x ] = (ǫ(s )−1 −1)
〈α∨

s
, x 〉

〈α∨
s
,αs 〉

s ,

hence

[Dy , x ] = T 〈y , x 〉+
∑

s

(ǫ(s )−1)Cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

s .

Given w ∈W , we have w Dy w −1 =Dw (y ).
Consider y ′ ∈ V . We have

[[Dy , Dy ′], x ] = [[Dy , x ], Dy ′ ]− [[Dy ′ , x ], Dy ]
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and

[[Dy , x ], Dy ′ ] =
∑

s

(ǫ(s )−1)Cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

[s , Dy ′]

=
∑

s

(ǫ(s )−1)2Cs

〈y ,αs 〉 · 〈y ′,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉2

Dα∨s s

= [[Dy ′ , x ], Dy ].

We deduce that [[Dy , Dy ′], x ] = 0 for all x ∈ V ∗. On the other hand, [Dy , Dy ′] acts by
zero on 1 ∈ k[ eC ]⊗ k[V reg], hence [Dy , Dy ′] acts by zero on k[ eC ]⊗ k[V reg]. It follows
from Lemma 3.1.8(c) that [Dy , Dy ′] = 0. The proposition follows.

Proposition 3.1.10 provides a morphism of k[ eC ]-algebras Θ : eH→ k[C ]⊗DT (V
reg).

We denote by Θreg : eHreg→ k[C ]⊗DT (V
reg) its extension to eHreg.

Theorem 3.1.11. — We have the following statements:

(a) The morphism Θ is injective, hence the polynomial representation of eH is faithful.

(b) The multiplication map is an isomorphism k[ eC ]⊗k[V ]⊗k[V ∗]⊗kW
∼−→ eH.

(c) We have an isomorphism of algebras ρ : k[ eC ]⊗k[V ⊕V ∗]⋊W
∼−→ gr eH.

(d) The morphism Θreg is an isomorphism eHreg ∼−→ k[C ]⊗DT (V
reg)⋊W .

(e) Given c a prime ideal of k[ eC ], the morphism (k[ eC ]/c)⊗k[ eC ]Θ is injective. If T 6∈c, then

the polynomial representation of eH(c) is faithful and Z (eH(c)) = k[ eC ]/c.

Proof. — Let η be the composition

η : k[ eC ]⊗k[V reg]⊗k[V ∗]⊗kW
mult−−→ eHreg Θ

reg

−→DT (V
reg)⋊W .

Note that gr η is an isomorphism, since it is equal to the graded map associated to
the multiplication isomorphism

k[ eC ]⊗k[V reg]⊗k[V ∗]⊗kW
∼−→ k[ eC ]⊗DT (V

reg)⋊W .

We deduce that η is an isomorphism (Lemma A.3.1). Since the multiplication map
is surjective, it follows that it is an isomorphism and Θreg is an isomorphism as well.
We deduce also that ρ is injective, hence it is an isomorphism.

Since k[T ]⊗k[V reg] is a faithful representation of DT (V
reg)⋊W (Lemma 3.1.8), we

deduce that the polynomial representation induces an injective map

k[C ]⊗DT (V
reg)⋊W ,→ k[ eC ]⊗Endk(k[V

reg]).
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There is a commutative diagram

k[ eC ]⊗k[V ]⊗k[V ∗]⊗kW
� _

��

mult // // eH pol. rep.
//

can
��

k[ eC ]⊗Endk(k[V
reg])

k[ eC ]⊗k[V reg]⊗k[V ∗]⊗kW

η

∼
44mult

// // eHreg

Θ
reg

// k[C ]⊗DT (V
reg)⋊W

pol. rep.

OO

It follows that the multiplication

k[ eC ]⊗k[V ]⊗k[V ∗]⊗kW → eH
is an isomorphism and the polynomial representation of eH is faithful.

Consider now c a prime ideal of eC and let A = k[ eC ]/c. There is a commutative
diagram

A⊗k[V ]⊗k[V ∗]⊗kW
� _

��

mult // // eH(c) pol. rep.
//

can
��

A⊗Endk(k[V
reg])

A⊗k[V reg]⊗k[V ∗]⊗kW

η

∼
33mult

∼ // eHreg(c)
Θ

reg

∼ // A⊗k[ eC ] (k[C ]⊗DT (V
reg))⋊W

pol. rep.

OO

We deduce as above that (k[ eC ]/c)⊗k[ eC ] Θ is injective. Assume now T 6∈c. Then the
polynomial representation of A⊗k[ eC ] (k[C ]⊗DT (V

reg))⋊W is faithful, hence the poly-
nomial representation of eH(c) is faithful as well. Since Z (D(V reg)) = k, we deduce
that Z (A⊗k[ eC ] (k[C ]⊗DT (V

reg))⋊W ) = A, hence Z (eH(c)) = k[ eC ]/c.
Corollary 3.1.12. — Given f ∈ k[V ], we have

[y , f ] = T ∂y (f )−
∑

s∈Ref(W )

ǫ(s )Cs 〈y ,αs 〉
s (f )− f

αs

s .

Proof. — The result follows from Proposition 3.1.10 and Theorem 3.1.11. Note that
the corollary can also be proven directly by induction on the degree of f .

3.1.H. Hyperplanes and parameters. — Let K be the k-vector space of maps k :

ℵ◦ → k such that for all ℵ ∈ A /W , we have
∑eℵ−1

j=0
kℵ, j = 0. Let (Kℵ, j )(ℵ, j )∈ℵ◦ be the

canonical basis of kℵ
◦
. We put KH , j = Kℵ, j , where ℵ is the W -orbit of H .

There is an isomorphism of k-vector spaces

C ∗
∼−→K ∗, CsH i

7→
eH−1∑

j=0

ζi ( j−1)
eH

KH , j .
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The surjectivity is a consequence of the invertibility of the Vandermonde determi-
nant. We denote the dual of that isomorphism by κ :K

∼−→C . We will often identify
C and K via the isomorphism κ. Note that the canonical bases of C and K pro-
vide them withQ-forms (and Z-forms). Unless all reflections of W have order 2, the
isomorphism κ is not compatible with the Q-forms.

Note that
∑

w∈WH

ǫ(w )Cw w = eH

eH−1∑

j=0

ǫH , j KH , j

where ǫH ,i = e −1
H

∑
w∈WH

ǫ(w )i w and

(3.1.13)
∑

s∈Ref(W )

ǫ(s ) Cs =
∑

H ∈A
eH KH ,0 =−
∑

H∈A

eH−1∑

i=1

eH KH ,i .

Given H ∈ A , denote by αH ∈ V ∗ a linear form such that H = Ker(αH ) and let
α∨

H
∈V such that V =H ⊕kα∨

H
and kα∨

H
is stable under WH . Via κ, we can view eH as

a k[K ]-algebra and the second relation in (3.1.2) becomes

(3.1.14) [y , x ] = T 〈y , x 〉+
∑

H∈A

eH−1∑

i=0

eH (KH ,i −KH ,i+1)
〈y ,αH 〉 · 〈α∨H , x 〉
〈α∨H ,αH 〉

ǫH ,i

for x ∈V ∗ and y ∈V , where KH ,eH
= KH ,0.

Given y ∈V , we have

Θ(y ) = ∂y −
∑

H ∈A

eH−1∑

i=0

〈y ,αH 〉
αH

eH KH ,iǫH ,i .

COMMENT - Our convention for the definition of Cherednik algebras differs from
that of [GGOR, §3.1]: we have added a coefficient ǫ(s )− 1 in front of the term Cs .
On the other hand, our convention is the same as [EtGi, §1.15], with cs = cαs

(when
W is a Coxeter group). Note that the kH ,i ’s from [GGOR] are related to the KH ,i ’s
above by the relation kH ,i = KH ,0−KH ,i . �

Remark 3.1.15. — The endomorphism Kℵ, j 7→ Kℵ, j − 1
eH

∑eℵ−1

j ′=0
Kℵ, j ′ of kℵ

◦
induces an

injection K ∗ ,→ kℵ
◦
. The dual map sec : kℵ

◦
։K provides a section to the inclusion

ofK in kℵ
◦
. It is defined over Q. �
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3.2. Gradings

The algebra eH admits a natural (N×N)-grading, thanks to which we can associate,
to each morphism of monoids N ×N → Z (or N ×N → N), a Z-grading (or an N-
grading).

We endow the extended tensor algebra k[ eC ]⊗
�
Tk(V ⊕V ∗)⋊W

�
with an (N×N)-

grading by giving to the elements of V the bidegree (1, 0), to the elements of V ∗

the bidegree (0, 1), to the elements of eC ∗ the bidegree (1, 1) and to those of W the
bidegree (0, 0). The relations (3.1.2) are homogeneous. Hence, eH inherits an (N ×
N)-grading whose homogeneous component of bidegree (i , j ) will be denoted by
eHN×N[i , j ]. We have

eH=
⊕

(i , j )∈N×N
eHN×N[i , j ] and eHN×N[0, 0] = kW .

Note that all homogeneous components have finite dimension over k.

If ϕ : N×N→ Z is a morphism of monoids, then eH inherits a Z-grading whose
homogeneous component of degree i will be denoted by eHϕ[i ]:

eHϕ[i ] =
⊕

ϕ(a ,b )=i

eHN×N[a , b ].

In this grading, the elements of V have degree ϕ(1, 0), the elements of V ∗ have
degree ϕ(0, 1), the elements of eC ∗ have degree ϕ(1, 1) and those of W have degree 0.

Example 3.2.1 (Z-grading). — The morphism of monoids N×N→ Z, (i , j ) 7→ j − i

induces a Z-grading on eH for which the elements of V have degree −1, the elements
of V ∗ have degree 1 and the elements of eC ∗ and W have degree 0. We denote by
eHZ[i ] the homogeneous component of degree i . Then

eH=
⊕
i∈Z
eHZ[i ].

By specialization at (t , c ) ∈ eC , the algebra eHt ,c inherits a Z-grading whose homoge-
neous component of degree i will be denoted by eHZ

t ,c
[i ].

Let wz be a generator of W ∩Z (GLk(V )) and let z be its order. We have wz = ζ
−1 IdV

for some root of unity ζ of order z of k. When k is a subfield of C, we take wz =

e 2iπ/z IdV . Note that z = gcd(d1, . . . , dn ) (cf Theorem 2.2.1). Given h ∈ eHZ[i ], we have
wz h w −1

z
= ζi h . So, the (Z/dZ)-grading on eH deduced from the Z-grading is given

by an inner automorphism of eH. �
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Example 3.2.2 (N-grading). — The morphism of monoids N×N→ N, (i , j ) 7→ i + j

induces an N-grading on eH for which the elements of V or V ∗ have degree 1, the
elements of eC ∗ have degree 2 and the elements of W have degree 0. We denote by
eHN[i ] the homogeneous component of degree i . Then

eH=
⊕
i∈N
eHN[i ] and eHN[0] = kW .

Note that dimk
eHN[i ]<∞ for all i . This grading is not inherited after specialization

at (t , c ) ∈ eC , except whenever (t , c ) = (0, 0): we retrieve the usual N-grading on
eH0,0 = k[V ×V ∗]⋊W (see Example 3.1.7). �

3.3. Euler element

Let (x1, . . . , xn ) be a k-basis of V ∗ and let (y1, . . . , yn ) be its dual basis. We define the
generic Euler element of eH

feu= −nT +

n∑

i=1

yi xi +
∑

s∈Ref(W )

Cs s ∈ eH.

Note that

feu=

n∑

i=1

xi yi +
∑

s∈Ref(W )

ǫ(s )Cs s =

n∑

i=1

xi yi +
∑

H∈A

eH−1∑

j=0

eH KH , jǫH , j .

It is easy to check that feu does not depend on the choice of the basis (x1, . . . , xn ) of
V ∗. Note that

(3.3.1) feu∈ eHN×N[1, 1].

We have

Θ(feu) = T

n∑

i=1

yi xi

Thanks to Theorem 3.1.11, we deduce the following result [GGOR, §3.1(4)].

Proposition 3.3.2. — If x ∈V ∗, y ∈V and w ∈W , then

[feu, x ] = T x , [feu, y ] =−T y and [feu, w ] = 0.

In [GGOR], the Euler element plays a fundamental role in the study of the cate-
gory O associated with eH1,c . We will see in this book the role it plays in the theory
of Calogero-Moser cells.

Proposition 3.3.3. — If h ∈ eHZ[i ], then [feu, h ] = i T h .
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3.4. Spherical algebra

Notation. All along this book, we denote by e the primitive central
idempotent of kW defined by

e =
1

|W |
∑

w∈W

w .

The k[ eC ]-algebra e eHe will be called the generic spherical algebra.

By specializing at (t , c ), and since e eHe is a direct summand of the k[ eC ]-module
eH, we get

(3.4.1) e eHt ,c e = (k[ eC ]/eCt ,c )⊗k[ eC ] e eHe .

Since e has degree 0, the filtration of eH induces a filtration of the generic spherical
algebra given by (e eHe )¶ i = e (eH¶ i )e . It follows from Theorem 3.1.11 that

(3.4.2) gr(e eHe ) = e gr(eH)e ≃ k[ eC ]⊗k[V ×V ∗]∆W .

Theorem 3.4.3 (Etingof-Ginzburg). — Let eC be a prime ideal of k[ eC ].
(a) The algebra e eH(eC)e is a finitely generated k-algebra without zero divisors.

(b) eH(eC)e is a finitely generated right e eH(eC)e -module.

(c) Left multiplication of eH(eC) on the projective module eH(eC)e induces an isomorphism
eH(eC) ∼−→ End(e eH(eC)e )opp(eH(eC)e )opp.

(d) There is an isomorphism of algebras Z (eH(eC)) ∼−→Z (e eH(eC)e ), z 7→ z e .

Proof. — The assertion (a) follows from Lemmas A.3.2 and A.2.1. The assertion (b)
follows from Lemma A.3.2.

Let α : eH(eC) → End(e eH(eC)e )opp(eH(eC)e )opp be the morphism of the theorem. Lemma
A.3.3 provides an injective morphism

β : gr End(e eH(eC)e )opp (eH(eC)e )opp ,→ Endgr (e eH(eC)e )opp(gr eH(eC)e )opp.

The composition

gr eH(eC) grα−→ gr End(e eH(eC)e )opp(eH(eC)e )opp β−→ Endgr (e eH(eC)e )opp(gr eH(eC)e )opp

is given by the left multiplication action. Via the isomorphism ρ (Theorem 3.1.11),
it corresponds to the morphism given by left multiplication

γ : k[ eC ]⊗k[V ⊕V ∗]⋊W → Endk[ eC ]⊗(e (k[V ⊕V ∗]⋊W )e )opp(k[ eC ]⊗ (k[V ⊕V ∗]⋊W )e )opp.

Since the codimension of (V ×(V ∗\(V ∗)reg))∪((V \V reg)×V ∗) in V ×V ∗ is ¾ 2, it follows
from Proposition E.2.2 that γ is an isomorphism. So, grα is an isomorphism, hence
α is an isomorphism by Lemma A.3.1.
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The assertion (d) follows from (c) by Lemma E.1.4.

Remark 3.4.4. — It can actually be shown [EtGi, Theorem 1.5] that if k[ eC ]/eC is
Gorenstein (respectively Cohen-Macaulay), then so is the algebra e eH(eC)e as well
as the right e eH(eC)e -module eH(eC)e . �

3.5. Some automorphisms of eH

Let Autk-alg(eH) denote the group of automorphisms of the k-algebra eH.

3.5.A. Bigrading. — The bigrading on eH can be seen as an action of the algebraic
group k××k× on eH. Indeed, if (ξ,ξ′) ∈ k××k×, we define the automorphism bigrξ,ξ′

of eH by the following formula:

∀ (i , j )∈N×N, ∀ h ∈ eHN×N[i , j ], bigrξ,ξ′(h ) = ξ
iξ′ j h .

Then

(3.5.1) bigr : k××k× −→Autk-alg(eH)
is a morphism of groups. Concretely,





∀ y ∈ V , bigrξ,ξ′(y ) = ξy ,

∀ x ∈V ∗, bigrξ,ξ′(x ) = ξ
′x ,

∀ C ∈ eC ∗, bigrξ,ξ′(C ) = ξξ
′C ,

∀ w ∈W , bigrξ,ξ′(w ) =w .

After specialization, for all ξ ∈ k× and all (t , c ) ∈ eC , the action of (ξ, 1) induces an
isomorphism of k-algebras

(3.5.2) eHt ,c

∼−→ eHξt ,ξc .

3.5.B. Linear characters. — Let γ : W −→ k× be a linear character. It provides an
automorphism of C by multiplication: given c ∈ C , we define γ · c as the map
Ref(W )→ k, s 7→ γ(s )cs . This induces an automorphism γC : k[C ]→ k[C ], f 7→ (c 7→
f (γ−1 · c )) sending Cs on γ(s )−1Cs . It extends to an automorphism γ eC of k[ eC ] by
setting γ eC (T ) = T .

On the other hand, γ induces also an automorphism of the group algebra kW

given by W ∋ w 7→ γ(w )w . Hence, γ induces an automorphism of the k[ eC ]-algebra
k[ eC ]⊗
�
Tk(V ⊕V ∗)⋊W

�
acting trivially on V and V ∗: it will be denoted by γT. Of

course,
(γγ′)T = γTγ

′
T

.
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Since the relations (3.1.2) are stable by the action of γT, it follows that γT induces an
automorphism γ∗ of the k-algebra eH. The map

(3.5.3) W ∧ −→ Autk-alg(eH)
γ 7−→ γ∗

is an injective morphism of groups. Given (t , c ) ∈ eC and γ ∈W ∧, then γ∗ induces an
isomorphism of k-algebras

(3.5.4) eHt ,c

∼−→ eHt ,γ·c .

3.5.C. Normalizer. — LetN denote the normalizer in GLk(V ) of W . Then:

• N acts naturally on V and V ∗;
• N acts on W by conjugacy;
• The action of N on W stabilizes Ref(W ) and so N acts on C : if g ∈ N and

c ∈C , then g c : Ref(W )→ k, s 7→ cg −1 s g .
• The action of N on C induces an action of N on C ∗ (and so on k[C ]) such

that, if g ∈N and s ∈Ref(W ), then g Cs =Cg s g −1 .
• N acts trivially on T .

Consequently, N acts on the k[ eC ]-algebra k[ eC ]⊗
�
Tk(V ⊕ V ∗)⋊W

�
and it is easily

checked, thanks to the relations (3.1.2), that this action induces an action on eH: if
g ∈N and h ∈ eH, we denote by g h the image of h under the action of g . By special-
ization at (t , c ) ∈ eC , an element g ∈N induces an isomorphism of k-algebras

(3.5.5) eHt ,c

∼−→ eHt ,g c .

Example 3.5.6. — If ξ ∈ k×, then we can see ξ as an automorphism of V (by scalar
multiplication) normalizing (and even centralizing) W . We then recover the auto-
morphism of eH inducing theZ-grading (up to a sign): if h ∈ eH, then ξh = bigrξ,ξ−1(h ). �

3.5.D. Compatibilities. — The automorphisms induced by k× × k× and those in-
duced by W ∧ commute. On the other hand, the groupN acts on the group W ∧ and
on the k-algebra eH. This induces an action of W ∧⋊N on eH preserving the bigrad-
ing, that is, commuting with the action of k× × k×. Given γ ∈ W ∧ and g ∈ N , we
will denote by γ⋊g the corresponding element of W ∧⋊N . We have a morphism of
groups

k××k×× (W ∧⋊N ) −→ Autk-alg(eH)
(ξ,ξ′,γ⋊ g ) 7−→ (h 7→ bigrξ,ξ′ ◦γ∗(g h )).

Given τ= (ξ,ξ′,γ⋊ g )∈ k××k×× (W ∧⋊N ) and h ∈ eH, we set
τh = bigrξ,ξ′

�
γ∗(

g h )
�
.
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The following lemma is immediate.

Lemma 3.5.7. — Let τ= (ξ,ξ′,γ⋊ g )∈ k××k×× (W ∧⋊N ). Then:

(a) τ stabilizes the subalgebras k[ eC ], k[V ], k[V ∗] and kW .

(b) τ preserves the bigrading.

(c) τfeu= ξξ′feu.

(d) τe = e if and only if γ= 1.

3.6. Special features of Coxeter groups

Assumption. In this section 3.6, we assume that W is a Coxeter
group, and we use the notation of §2.6.

By Proposition 2.6.1, there exists a non-degenerate symmetric bilinear W -invariant
form β : V ×V → k. We denote by σ : V

∼−→V ∗ the isomorphism induced by β : if y ,
y ′ ∈ V , then

〈y ,σ(y ′)〉=β (y , y ′).

The W -invariance of β implies that σ is an isomorphism of kW -modules and the
symmetry of β implies that

(3.6.1) 〈y , x 〉= 〈σ−1(x ),σ(y )〉
for all x ∈V ∗ and y ∈V . We denote byσT : Tk(V ⊕V ∗)→ Tk(V ⊕V ∗) the automorphism
of algebras induced by the automorphism of the vector space V ⊕ V ∗ defined by
(y , x ) 7→ (−σ−1(x ),σ(y )). It is W -invariant, hence extends to an automorphism of
Tk(V ⊕V ∗)⋊W , with trivial action on W . By extension of scalars, we get another
automorphism, still denoted byσT, of k[ eC ]⊗(Tk(V ⊕V ∗)⋊W ). It is easy to check that
σT induces an automorphism σeH of eH. We have proven the following proposition.

Proposition 3.6.2. — There exists a unique automorphism σeH of eH such that




σeH(y ) =σ(y ) if y ∈V ,

σeH(x ) =−σ−1(x ) if x ∈V ∗,

σeH(w ) =w if w ∈W ,

σeH(C ) = C if C ∈ eC ∗.

Proposition 3.6.3. — The following hold:

(a) σeH stabilizes the subalgebras k[ eC ] and kW and exchanges the subalgebras k[V ] and

k[V ∗].
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(b) If h ∈ eHN×N[i , j ], then σeH(h ) ∈ eHN×N[ j , i ].

(c) If h ∈ eHN[i ] (respectively h ∈ eHZ[i ]), then σeH(h ) ∈ eHN[i ] (respectively σeH(h ) ∈
eHZ[−i ]).

(d) σeH commutes with the action of W ∧ on eH.

(e) If (t , c ) ∈ eC , then σeH induces an automorphism of eHt ,c , still denoted by σeH (or σeHt ,c

if necessary).

(f) σeH(feu) =−nT −feu.

Remark 3.6.4 (Action of GL2(k)). — Let ρ =
�

a b

c d

�
∈GL2(k). The k-linear map

V ⊕V ∗ −→ V ⊕V ∗

y ⊕ x 7−→ a y + bσ−1(x )⊕ cσ(y )+d x

is an automorphism of the kW -module V ⊕V ∗. It extends to an automorphism of
the k-algebra Tk(V ⊕V ∗)⋊W and to an automorphism ρT of k[ eC ]⊗ (Tk(V ⊕V ∗)⋊W )

by ρT(C ) = det(ρ)C for C ∈ eC ∗.
It is easy to check that ρT induces an automorphism ρeH of eH. Moreover, (ρρ′)eH =

ρeH ◦ρ′eH for all ρ, ρ′ ∈ GL2(k). So, we obtain an action of GL2(k) on eH. This action
preserves the N-grading eHN.

Finally, note that, for ρ =
�

0 −1

1 0

�
, we have ρeH = σeH and, if ρ =

�
ξ 0

0 ξ′

�
, then

ρeH = bigrξ,ξ′. Hence we have extended the action of k××k×× (W ∧⋊N ) to an action
of GL2(k)× (W ∧⋊N ). �



CHAPTER 4

CHEREDNIK ALGEBRAS AT t = 0

Notation. We put H = eH/T eH. The k-algebra H is called the
Cherednik algebra at t = 0.

4.1. Generalities

We gather here those properties that are immediate consequences of results dis-
cussed in Chapter 3. We also introduce some notations.

Let us rewrite the defining relations (3.1.2). The algebra H is the k[C ]-algebra
quotient of k[C ]⊗

�
Tk(V ⊕V ∗)⋊W

�
by the ideal generated by the following relations:

(4.1.1)





[x , x ′] = [y , y ′] = 0,

[y , x ] =
∑

s∈Ref(W )

(ǫ(s )−1) Cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

s ,

for x , x ′ ∈V ∗ and y , y ′ ∈V .

The PBW-decomposition (Theorem 3.1.5) takes the following form.

Theorem 4.1.2 (Etingof-Ginzburg). — The multiplication map gives an isomorphism of

k[C ]-modules

k[C ]⊗k[V ]⊗kW ⊗k[V ∗]
∼−→H.

Given c ∈ C , we denote by Cc the maximal ideal of k[C ] defined by Cc = { f ∈
k[C ] | f (c ) = 0}: it is the ideal generated by (Cs − cs )s∈Ref(W )/W . We set

Hc = (k[C ]/Cc )⊗k[C ]H=H/Cc H= eH0,c .
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The k-algebra Hc is the quotient of the k-algebra Tk(V ⊕V ∗)⋊W by the ideal gener-
ated by the following relations:

(4.1.3)





[x , x ′] = [y , y ′] = 0,

[y , x ] =
∑

s∈Ref(W )

(ǫ(s )−1) cs

〈y ,αs 〉 · 〈α∨s , x 〉
〈α∨

s
,αs 〉

s ,

for x , x ′ ∈V ∗ and y , y ′ ∈V .
Since T is bi-homogeneous, the k-algebra H inherits all the gradings, filtrations

of the algebra eH: we will use the obvious notation HN×N[i , j ], HN[i ], HZ[i ] and H¶ i

for the constructions obtained by quotient from eH. We will denote by eu the image
of feu in H. This is the generic Euler element of H. Note that

(4.1.4) eu ∈HN×N[1, 1]⊂HZ[0]

The ideal generated by T is also stable by the action of k× × k× × (W ∧ ⋊N ), so H

inherits an action of k××k×× (W ∧⋊N ). The action of τ ∈ k××k×× (W ∧⋊N ) on h ∈H

is still denoted by τh . The following lemma is immediate from Lemma 3.5.7:

Lemma 4.1.5. — Let τ= (ξ,ξ′,γ⋊ g )∈ k××k×× (W ∧⋊N ). Then:

(a) τ stabilizes the subalgebras k[C ], k[V ], k[V ∗] and kW .

(b) τ stabilizes the bigrading.

(c) τeu= ξξ′ eu.

Theorem 3.4.3 implies the following result on the spherical algebra.

Theorem 4.1.6 (Etingof-Ginzburg). — Let C be a prime ideal of k[C ] and let H(C) =

H/CH. Then:

(a) The algebra e H(C)e is a finitely generated k-algebra without zero divisors.

(b) Left multiplication of H(C) on the projective module H(C)e induces an isomorphism

H(C)
∼−→ End(e H(C)e )opp(H(C)e )opp.

Let Hreg = k[C ]⊗k[ eC ] eHreg. Theorem 3.1.11 becomes the following result.

Theorem 4.1.7 (Etingof-Ginzburg). — There exists a unique isomorphism of k[C ]-algebras

Θ : Hreg ∼−→ k[C ]⊗ (k[V reg×V ∗]⋊W )

such that 



Θ(w ) =w for w ∈W ,

Θ(y ) = y −
∑

s∈Ref(W )

ǫ(s )Cs

〈y ,αs 〉
αs

s for y ∈ V ,

Θ(x ) = x for x ∈ V ∗.
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Given C a prime ideal of k[C ], the restriction of (k[C ]/C)⊗k[C ] Θ to (k[C ]/C)⊗k[C ]H is

injective.

4.2. Center

Notation. All along this book, we denote by Z = Z(H) the center of
H. Given c ∈C , we set Zc = Z /Cc Z . Let P denote the k[C ]-algebra
obtained by tensor product of algebras P = k[C ]⊗k[V ]W ⊗k[V ∗]W .
We identify P with a k[C ]-submodule of H via Theorem 4.1.2.

4.2.A. A subalgebra of Z . — The first fundamental result about the center Z of H

is the next one [EtGi, Proposition 4.15] (we follow [Gor1, Proposition 3.6] for the
proof).

Lemma 4.2.1. — P is a subalgebra of Z stable under the action of k××k×× (W ∧⋊N ). In

particular, it is (N×N)-graded.

Proof. — The subalgebra k[V ]W is central in H by Corollary 3.1.12. Dually, k[V ∗]W

is central as well. The stability property is clear.

Corollary 4.2.2. — The PBW-decomposition is an isomorphism of P -modules. In partic-

ular, we have isomorphisms of P -modules:

(a) H≃ k[C ]⊗k[V ]⊗kW ⊗k[V ∗].

(b) He ≃ k[C ]⊗k[V ]⊗k[V ∗].

(c) e He ≃ k[C ]⊗k[V ×V ∗]∆W .

Hence, H (respectively He , respectively e He ) is a free P -module of rank |W |3 (respectively

|W |2, respectively |W |).

The principal theme of this book is to study the algebra H, viewing it as a P -
algebra: given p is a prime ideal of P , we will be interested in the finite dimensional
kP (p)-algebra kP (p)⊗P H (splitting, simple modules, blocks, standard modules, de-
composition matrix...). Here, kP (p) is the fraction field of P /p, cf Appendix B.

Remark 4.2.3. — Let (bi )1 ¶ i ¶ |W | be a k[V ]W -basis of k[V ] and let (b ∗
i
)1 ¶ i ¶ |W | be a

k[V ∗]W -basis of k[V ∗]. Corollary 4.2.2 shows that (bi w b ∗
j
)1 ¶ i , j ¶ |W |

w∈W

is a P -basis of H

and that (bi b ∗
j
e )1 ¶ i , j ¶ |W | is a P -basis of He . �
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Set
P• = k[V ]W ⊗k[V ∗]W .

If c ∈C , then
P• ≃ k[C ]/Cc ⊗k[C ] P = P /Cc P.

We deduce from Corollary 4.2.2 the next result:

Corollary 4.2.4. — We have isomorphisms of P•-modules:

(a) Hc ≃ k[V ]⊗kW ⊗k[V ∗].

(b) Hc e ≃ k[V ]⊗k[V ∗].

(c) e Hc e ≃ k[V ×V ∗]∆W .

In particular, Hc (respectively Hc e , respectively e Hc e ) is a free P•-module of rank |W |3
(respectively |W |2, respectively |W |).

4.2.B. Satake isomorphism. — It follows from Proposition 3.3.2 that

(4.2.5) eu∈ Z .

Given c ∈C , we denote by euc the image of eu in Hc .

The next structural theorem is a cornerstone of the representation theory of H.

Theorem 4.2.6 (Etingof-Ginzburg). — The morphism of algebras Z −→ e He , z 7→ z e

is an isomorphism of (N×N)-graded algebras. In particular, e He is commutative.

Proof. — Recall (Theorem 3.4.3) that the map πe : Z(H) → Z(e He ), z 7→ z e is an
isomorphism of algebras. Theorem 4.1.7 shows that Θ(e He ) = k[C ]⊗(e k[V reg×V ∗]W )

and Θ is injective, hence e He is commutative. The theorem follows.

Corollary 4.2.7. — Let C be a prime ideal of k[C ]. Let Z (C) = Z /CZ and P (C) = P /CP .

We have:

(a) Z (C) = Z(H(C)).

(b) The map Z (C)→ e H(C)e , z 7→ z e is an isomorphism.

(c) EndH(C)(H(C)e ) = Z (C) and EndZ (C)(H(C)e ) =H(C).

(d) H(C) = Z (C)⊕ e H(C)(1− e )⊕ (1− e )H(C)e ⊕ (1− e )H(C)(1− e ). In particular, Z (C) is

a direct summand of the Z (C)-module H(C).

(e) Z (C) is a free P (C)-module of rank |W |.
(f) If k[C ]/C is integrally closed, then Z (C) is an integrally closed domain.
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Proof. — Assertion (b) follows from Theorem 4.2.6. We deduce now (c) from Theo-
rem 4.1.6 and (e) from Corollary 4.2.2. We deduce also that Z (C)(1− e )∩Z (C) = 0. It
follows also that e H(C)e = Z (C)e , hence e H(C)e ⊂ Z (C)+H(C)(1− e ). The decomposi-
tion H(C) = e H(C)e ⊕ e H(C)(1− e )⊕ (1− e )H(C)e ⊕ (1− e )H(C)(1− e ) implies (d).

The canonical map Z (H(C))→ e H(C)e , z 7→ z e is injective since H(C) acts faithfully
on H(C)e by (c). Since Z (C) is a direct summand of H(C) contained in Z (H(C)), the
assertion (a) follows from (b).

The fact that Z (C) ≃ e H(C)e is an integrally domain closed follows from the fact
that gr (e H(C)e ) ≃ (k[C ]/C) ⊗ k[V × V ∗]∆W is an integrally closed domain (Lemma
A.2.2).

Example 4.2.8. — Recall (Example 3.1.7) that H0 = k[V ⊕V ∗]⋊W . It follows from
Proposition 3.1.1 and Corollary 4.2.7 (a) that Z0 = k[V ⊕V ∗]W = k[(V ⊕V ∗)/W ]. �

4.2.C. Morphism to the center of k[C ]W . — Let pbw : k[C ]⊗k[V ]⊗kW ⊗k[V ∗]
∼−→H

denote the isomorphism given by the PBW-decomposition (see Theorem 4.1.2) and
let ev0,0 : k[C ]⊗k[V ]⊗kW ⊗k[V ∗]→ k[C ]W denote the k[C ]-linear map defined by

ev0,0(a ⊗ f ⊗w ⊗ g ) = f (0)g (0)a w .

We then set
Ω

H = ev0,0 ◦pbw−1 : H−→ k[C ]W .

It is clearly a W -equivariant morphism of bigraded k[C ]-modules but it is not a
morphism of algebras (except if W = 1). Nevertheless, we have the following result:

Proposition 4.2.9. — If z ∈ Z and h ∈H, then ΩH(z ) ∈ Z(k[C ]W ) and

Ω
H(z h ) =ΩH(z )ΩH(h ).

Proof. — First, the fact that ΩH(z ) ∈ Z(k[C ]W ) follows from the W -equivariance of
Ω

H. Now, write pbw−1
(z ) =
∑

i∈I ai ⊗ fi ⊗wi ⊗g i and pbw−1
(h ) =
∑

j∈J a ′
j
⊗ f ′

j
⊗w ′

j
⊗g ′

j
.

We have
z h =
∑

j∈J

z a ′
j
f ′

j
w ′

j
g ′

j
=
∑

j∈J

a ′
j
f ′

j
z w ′

j
g ′

j

hence
pbw−1

(z h ) =
∑

i∈I
j∈J

ai a ′
j
⊗ fi f ′

j
⊗wi w ′

j
⊗ w ′−1

j g i g ′
j
.

This proves that ΩH(z h ) =ΩH(z )ΩH(h ).
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Let Ω : Z → Z(k[C ]W ) denote the restriction of ΩH to Z . Since Ω respects the
bigrading and so respects the Z-grading, we have

(4.2.10) Ω(z ) = 0

if z ∈ Z is Z-homogeneous of non-zero Z-degree.

Corollary 4.2.11. — The mapΩ : Z → Z(K[C ]W ) is a morphism of bigraded k[C ]-algebras.

If C is a prime ideal of k[C ] (resp. if c ∈ C ), the map Ω induces a morphism of
Z-graded algebras ΩC : Z (C)→ (k[C ]/C)⊗Z(kW ) (resp. ΩC : Zc → Z(kW )).

Remark 4.2.12. — By exchanging the roles of V and V ∗, one gets an isomorphism
pbw∗ : k[C ]⊗k[V ∗]⊗kW ⊗k[V ]→H coming from the PBW-decomposition and a map
ev∗

0,0
: k[C ]⊗ k[V ∗]⊗ kW ⊗ k[V ]→ k[C ]W obtained by evaluating at (0, 0) ∈ V ∗ ×V .

One then gets another morphism of bigraded k[C ]-algebras

Ω
∗ : Z −→ Z(k[C ]W ).

It turns out that Ω 6= Ω∗. Indeed, if we still denote by ǫ the automorphism of the
k[C ]-algebra k[C ]W given by w 7→ ǫ(w )w , then it follows from Section 3.3 that

Ω(eu) =
∑

s∈Ref(W )

ǫ(s )Cs s = ǫΩ∗(eu).

We will see in Corollary 9.5.7 that

Ω(z ) = ǫΩ∗(z )

for all z ∈ Z . �

4.3. Localization

4.3.A. Localization on V reg. — Recall that

V reg = V \
⋃

H∈A
H = {v ∈ V | StabW (v ) = 1}.

Set P reg = k[C ]⊗k[V reg]W×k[V ∗]W and Z reg = P reg⊗P Z , so that Hreg = P reg⊗P H= Z reg⊗Z

H. Given s ∈ Ref(W ), let αW
s
=
∏

w∈W w (αs ) ∈ P , . The algebra P reg (respectively Z reg)
is the localization of P (respectively Z ) at the multiplicative subset (αW

s
)s∈Ref(W ). As

a consequence,

(4.3.1) αs is invertible in Hreg.

Corollary 4.3.2. — Θ restricts to an isomorphism of k[C ]-algebras Z reg ∼−→ k[C ]⊗k[V reg×
V ∗]W . In particular, Z reg is regular.
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Proof. — The first statement follows from the comparison between the centers of
Hreg and k[V reg ×V ∗]⋊W (Theorem 4.1.7). The second statement follows from the
fact that W acts freely on V reg×V ∗.

Given c ∈ C , let Z reg
c

denote the localization of Zc at P reg
• = k[V reg]W ⊗ k[V ∗]W .

Corollary 4.3.2 shows that

(4.3.3) Z reg
c
≃ k[V reg×V ∗]W is a regular ring.

4.3.B. Morita equivalences. — While Z and H are only related by a double en-
domorphism theorem, after restricting to a smooth open subset of Z , they become
Morita equivalent.

Proposition 4.3.4. — Let U be a multiplicative subset of Z such that Z [U −1] is regular.

Then H[U −1]e induces a Morita equivalence between the algebras H[U −1] and Z [U −1].

Proof. — Let m be a maximal ideal of Z such that Zm is regular. Let i be maximal
such that TorZ

i
(He , Z /m) 6= 0. Given any finite length Z -module L with support m,

we have TorZ
i
(He , L ) 6= 0.

Let n= P ∩m. We have TorZ
∗ (He , Z /nZ )≃ TorZ

∗ (He , Z ⊗P P /n)≃ TorP
∗ (He , P /n) since

Z is a free P -module (Corollary 4.2.7). Since He is a free P -module (Corollary 4.2.2),
it follows that TorZ

>0
(He , Z /nZ ) = 0, hence TorZ

>0
(He , (Z /nZ )m) = 0. We deduce that

i = 0, hence (He )m is a free Zm-module.
We have shown that H[U −1]e is a projective Z [U −1]-module. The Morita equiva-

lence follows from Corollary 4.2.7.

Corollary 4.3.5. — The (Hreg, Z reg)-bimodule Hrege induces a Morita equivalence between

Hreg and Z reg.

Proof. — This follows from Proposition 4.3.4 and Corollary 4.3.2.

4.3.C. Fraction field. — Let K denote the fraction field of P and let KZ = K⊗P Z .
Since Z is a domain and is integral over P , it follows that

(4.3.6) KZ is the fraction field of Z .

In particular, KZ is a regular ring.

Theorem 4.3.7. — The K-algebras KH and KZ are Morita equivalent, the Morita equiva-

lence being induced by KHe . More precisely,

KH≃Mat|W |(KZ ).
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Proof. — Proposition 4.3.4 shows the Morita equivalence. Recall that He is a free
P -module of rank |W |2 and Z is a free P -module of rank |W | (Corollary 4.2.2). It
follows that KHe is a KZ -vector space of dimension |W |, whence the result.

4.4. Complements

4.4.A. Poisson structure. — The PBW-decomposition induces an isomorphism of
k-vector spaces k[T ]⊗H

∼−→ eH. Given h ∈H, let h̃ denote the image of 1⊗h ∈ k[T ]⊗H

in eH through this isomorphism. If z , z ′ ∈ Z , then [z , z ′] = 0, hence [z̃ , z̃ ′] ∈ T eH. We
denote by {z , z ′} the image of [z̃ , z̃ ′]/T ∈ eH in H = eH/T eH. It is easily checked that
{z , z ′} ∈ Z and that

(4.4.1) {−,−} : Z ×Z −→ Z

is a k[C ]-linear Poisson bracket. Given c ∈C , it induces a Poisson bracket

(4.4.2) {−,−} : Zc ×Zc −→Zc .

4.4.B. Additional filtrations. — Define a P -algebra filtration of H by

H´−1 = 0, H´0 = P [W ], H´1 =H´0+H´0V +H´0V ∗ and H´i =H´1H´i−1 for i ¾ 2.

Note that H´2N−1 6=H and H´2N =H.
Let V ′ be the kW -stable complement to V W in V . We have an injection of P -

modules P ⊗ (V ′∗⊕V ′)⊗k[W ] ,→H´1. It extends to a morphism of graded P -algebras

f : P ⊗ (k[V ′]co(W )⊗k[V ′∗]co(W ))⋊W → gr´H

where P and W are in degree 0 and V ′∗ and V ′ are in degree 1.

Proposition 4.4.3. — The morphism f is an isomorphism of graded P -algebras.

Proof. — This follows from the PBW decomposition (Corollary 4.2.2).

Let us define Ḣ = eH⊗k[T ]

�
k[T ]/(T − 1)
�
, an algebra over k[ eC ]/(T − 1) (we identify

that ring with k[C ]). We define a k-algebra filtration of Ḣ

ḢÅ−1 = 0, ḢÅ0 = k[V ]⋊W , ḢÅ1 = ḢÅ0V + ḢÅ0C ∗+ ḢÅ0

and ḢÅi = (ḢÅ1)i for i ¾ 2.

The canonical maps k[V ]⋊W → (grÅḢ)0 and V ⊕C ∗→ (grÅḢ)1 induce a morphism
of N-graded algebras g : H→ grÅḢ

The PBW decomposition (Theorem 3.1.5) shows the following result.

Proposition 4.4.4. — The morphism g is an isomorphism.
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Note that this proposition shows that eH is the Rees algebra of Ḣ for this filtration.

4.4.C. Symmetrizing form. — Recall (Proposition 2.2.3) that we have symmetriz-
ing forms pN : k[V ]→ k[V ]W and p ∗

N
: k[V ∗]→ k[V ∗]W .

We define a P -linear map

τH : H= k[C ]⊗k[V ]⊗kW ⊗k[V ∗]−→ P

a ⊗ b ⊗w ⊗ c 7−→ aδ1w pN (b )p
∗
N
(c ).

Theorem 4.4.5 ([BrGoSt, Theorem 4.4]). — The form τH is symmetrizing for the P -algebra

H.

Proof. — We have an isomorphism

(gr´H)2N ∼−→ P

k[C ]⊗k[V ]⊗kW ⊗k[V ∗] ∋ a ⊗ b ⊗w ⊗ c 7−→ pN (b )⊗a w ⊗p ∗
N
(c )

Via the isomorphism of Proposition 4.4.3, the P -linear form on gr´H induced by τH

is given by

P ⊗ (k[V ]W ⊗k[V ∗]W )⋊W ∋ a ⊗ (b ⊗ c )⊗w 7→ aδ1w 〈pN (b ), pN (c )〉.
It follows from Lemma A.4.1 that this is a symmetrizing form.

Let L =V ′⊕V ′∗. We have S N+1(V ′)⊂ S (V ′)co(W )
>0 ·S ¶ N−1(V ′) (and similarly with V ′∗),

hence

L 2N+1 ⊂ (S N+1(V ′)⊗S N (V ′∗))+ (S N (V ′)⊗S N+1(V ′∗))+H´2N−1 ⊂H´2N−1.

It follows from Lemma A.4.2 that τH is a trace. We deduce from Proposition A.4.3
that τH is symmetrizing.

Remark 4.4.6. — Note that while the identification k[V ]
co(W )
N

∼−→ k is not canonical,
there is a canonical choice of isomorphism k[V ]

co(W )
N ⊗k k[V ∗]co(W )

N

∼−→ k obtained by
requiring 〈α∨

s
,αs 〉= 1 for all s ∈Ref(W ). This provides a canonical choice for τH. �

We denote by casH ∈ Z the central Casimir element of H (cf §A.4).

4.4.D. Hilbert series. — We compute here the bigraded Hilbert series of H, P , Z

and e He . First of all, note that

dimZ×Z
k
(k[C ]) =

1

(1− tu)|Ref(W )/W | ,

so that it becomes easy to deduce the Hilbert series for H, using the PBW-decomposition:

(4.4.7) dimZ×Z
k
(H) =

|W |
(1− t)n (1−u)n (1− tu)|Ref(W )/W | .
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On the other hand, using the notation of Theorem 2.2.1, we get, thanks to (2.5.2),

(4.4.8) dimZ×Z
k
(P ) =

1

(1− tu)|Ref(W )/W |
n∏

i=1

(1− tdi )(1−udi )

.

Finally, note that the PBW-decomposition is a W -equivariant isomorphism of bi-
graded k[C ]-modules, from which we deduce that He ≃ k[C ]⊗ k[V ]⊗ k[V ∗] as bi-
graded kW -modules. So

(4.4.9) the bigraded k-vector spaces Z and k[C ]⊗k[V ×V ∗]∆W are isomorphic.

We deduce that dimZ×Z
k
(Z ) = dimZ×Z

k
(k[C ]) · dimZ×Z

k
(k[V × V ∗]∆W ). By (2.5.3) and

Proposition 2.5.10, we get

(4.4.10) dimZ×Z
k
(Z ) =

1

|W | (1− tu)|Ref(W )/W |

∑

w∈W

1

det(1−w t) det(1−w −1u)

and

(4.4.11) dimZ×Z
k
(Z ) =

∑

χ∈Irr(W )

fχ (t) fχ (u)

(1− tu)|Ref(W )/W |
n∏

i=1

(1− tdi )(1−udi )

.

Example 4.4.12. — Assume here that n = dimk(V ) = 1 and let d = |W |. Let y ∈ V \{0}
and x ∈ V ∗ with 〈y , x 〉= 1. Then P• = k[x d , y d ], eu0 = x y and it is easily checked that
Z0 = k[x d , y d , x y ], that is, Z0 = P•[eu0]. We will prove here that

Z = P [eu].

Indeed, Irr(W ) = {ǫi | 0 ¶ i ¶ d − 1} and fǫi (t) = ti for 0 ¶ i ¶ d − 1. Consequently,
(4.4.11) implies that

dimZ×Z
k
(Z ) =

1+ (tu)+ · · ·+ (tu)d−1

(1− tu)d−1 (1− td ) (1−ud )

whereas, since P [eu] = P ⊕P eu⊕ · · ·⊕P eud−1 by Proposition 5.1.19, we have

dimZ×Z
k
(P [eu]) =

1+ (tu)+ · · ·+ (tu)d−1

(1− tu)d−1 (1− td ) (1−ud )
.

Hence, dimZ×Z
k
(P [eu]) = dimZ×Z

k
(Z ), so Z = P [eu]. �

In fact, it almost never happens that Z = P [eu], cf Proposition 5.1.24.
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4.5. Special features of Coxeter groups

Assumption. In this section §4.5, we assume that W is a Coxeter
group, and we use the notation of §2.6.

In relation with the aspects studied in this chapter, one of the features of the
situation is that the algebra H admits another automorphism σH, induced by the
isomorphism of W -modules σ : V

∼−→ V ∗. It is the reduction modulo T of the auto-
morphism σeH de eH defined in §3.6. Propositions 3.6.2 and 3.6.3 now become:

Proposition 4.5.1. — There exists a unique automorphism σH of H such that




σH(y ) =σ(y ) if y ∈V ,

σH(x ) =−σ−1(x ) if x ∈V ∗,

σH(w ) =w if w ∈W ,

σH(C ) = C if C ∈C ∗.

Proposition 4.5.2. — We have the following statements:

(a) σH stabilizes the subalgebras k[C ] and kW and exchanges the subalgebras k[V ] and

k[V ∗].

(b) Given h ∈HN×N[i , j ], we have σH(h ) ∈HN×N[ j , i ].

(c) Given h ∈ HN[i ] (respectively h ∈ HZ[i ]), we have σH(h ) ∈ HN[i ] (respectively h ∈
HZ[−i ]).

(d) σH commutes with the action of W ∧ on H.

(e) Given c ∈C , then σH induces an automorphism of Hc , still denoted by σH (or σHc
if

necessary).

(f) σH(eu) =−eu.

Similarly, there exists an action of GL2(k) on H, which is obtained by reduction
modulo T of the action on eH defined in Remark 3.6.4.





PART II

THE EXTENSION Z /P



Important notation. All along this book, we fix a copy Q of the

P -algebra Z , as well as an isomorphism of P -algebras cop : Z
∼−→Q .

This means that P will be seen as a k-subalgebra of both Z and Q ,
but that Z and Q will be considered as different.

We then denote K = Frac(P ) and L = Frac(Q ) and we fix a
Galois closure M of the extension L/K. Set G = Gal(M/K) and
H = Gal(M/L). We denote by R the integral closure of P in M. We
then have P ⊂Q ⊂ R and, by Corollary 4.2.7, Q = R H and P = R G .
We will use the results of Appendix B.

Recall that KZ =K⊗P Z is the fraction field of Z (see (4.3.6)). We

still denote by cop : Frac(Z )
∼−→ L the extension of cop to the frac-

tion fields.
Let Z N×N, Z N and Z Z denote respectively the (N ×N)-grading,

the N-grading, the Z-grading induced by corresponding one of eH
(see §3.2, and the examples 3.2.2 et 3.2.1). Through the isomorphism
cop, we obtain gradings QN×N, QN and QZ on Q .

This Galois extension is the main object studied in this book: we shall be par-
ticularly interested in the inertia groups of prime ideals of R , and their links with
the representation theory of H. Throughout this part, we will use the results of
the Appendices B and C, which deal with generality about Galois theory, integral
extensions and gradings.



CHAPTER 5

GALOIS THEORY

5.1. Action of G on the set W

Since Q is a free P -module of rank |W |, the field extension L/K has degree |W |:
(5.1.1) [L : K] = |W |.
Recall that the fact that M is a Galois closure of L/K implies that

(5.1.2)
⋂
g∈G

g H = 1.

It follows from (5.1.1) that

(5.1.3) |G /H |= |W |.
This equality establishes a first link between the pair (G , H ) and the group W . We
will now construct, using Galois theory, a bijection (depending on some choices)
between G /H and W .

5.1.A. Specialization. — We fix here c ∈C . Recall that Cc is the maximal ideal of
k[C ]whose elements are maps which vanish at c . We set

pc = Cc P and qc =Cc Q = pcQ .

Since P• = P /pc ≃ k[V ]W ⊗k[V ∗]W and Qc =Q/qc are domains (see Corollary 4.2.7(f)),
we deduce that pc and qc are prime ideals of P and Q respectively. Fix a prime
ideal rc of R lying over pc and let Rc = R/rc . Now, let Dc (respectively Ic ) be the
decomposition (respectively inertia) group G D

rc
(respectively G I

rc
). Let

Kc = Frac(P•), Lc = Frac(Qc ) and Mc = Frac(Rc ).

In other words, Kc = kP (pc ), Lc = kQ (qc ) and Mc = kR (rc ).

Remark 5.1.4. — Here, the choice of the ideal rc is relevant. We will meet such
issues all along this book. �
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Since qc = pcQ is a prime ideal, we get that Υ −1(pc ) contains only one element
(here, qc ), so it follows from Proposition B.3.5 that

(5.1.5) G =H ·Dc =Dc ·H .

We also obtain that Q is unramified at P at qc (by definition). Theorem B.2.6 implies
that Ic ⊂ H . Since Ic is normal in Dc , we deduce from (5.1.2) and (5.1.5) that Ic ⊂⋂

d∈Dc

d H =
⋂

g∈G
g H = 1, so that

(5.1.6) Ic = 1.

It follows now from Proposition B.3.10 that

(5.1.7) Mc is the Galois closure of the extension Lc /Kc .

Finally, by (5.1.6) and Theorem B.2.4, we get

(5.1.8) Gal(Mc /Kc ) =Dc and Gal(Mc /Lc ) =Dc ∩H .

We denote by copc : Zc → Qc the specialization of cop at c and we still denote by
copc : Frac(Zc )→ Lc the extension of copc to the fraction fields.

Remark 5.1.9. — In §5.1.B, we will study the particular case where c = 0, and obtain
an explicit description of D0. However, obtaining an explicit description of Dc in
general seems to be very difficult, as it will be shown by the examples treated in
chapter 18 (case dimk(V ) = 1), see §18.5.C. �

5.1.B. Specialization at 0. — Recall that P0 = P• = k[V ]W ⊗ k[V ∗]W and Q0 ≃ Z0 =

Z(H0) ≃ k[V ×V ∗]∆W , where ∆ : W →W ×W , w 7→ (w , w ) is the diagonal morphism.
So,

K0 = k(V ×V ∗)W ×W and L0 = k(V ×V ∗)∆W ,

On the other hand, the extension k(V ×V ∗)/K0 is Galois with group W ×W , whereas
the extension k(V × V ∗)/L0 is Galois with group ∆W . Since ∆Z(W ) is the biggest
normal subgroup of W ×W contained in ∆W , it follows from (5.1.7) that

M0 ≃ k(V ×V ∗)∆Z(W ).
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Fundamental choice. We fix once and for all a prime ideal r0 of R

lying over q0 = C0Q as well as a field isomorphism

iso0 : k(V ×V ∗)∆Z(W ) ∼−→M0

whose restriction to k(V × V ∗)∆W is the canonical isomorphism

k(V × V ∗)∆W ∼−→ Frac(Z0)
∼−→ L0. Here, the isomorphism

Frac(Z0)
∼−→ L0 is cop0.

Convention. The action of the group W × W on the field
k(V ×V ∗) is as follows: V ×V ∗ will be seen as a vector subspace of
k(V ×V ∗) which generates this field, and the action of (w1, w2) sends
(y , x ) ∈V ×V ∗ to (w1(y ), w2(x )).

Remark 5.1.10. — The action of W ×W on k(V ×V ∗) described above is not the one
obtained by first making W ×W act on the variety V ×V ∗ and then making it act
on the function field k(V ×V ∗) by precomposition: one is deduced from the other
thanks to the isomorphism W ×W

∼−→W ×W , (w1, w2) 7→ (w2, w1). Nevertheless, this
slight difference is important (see Remark 19.7.25). �

These choices being made, we get a canonical isomorphism Gal(M0/K0)
∼−→ (W ×

W )/∆Z(W ), which induces a canonical isomorphism Gal(M0/L0)
∼−→ ∆W /∆Z(W ).

Since D0 =Gal(M0/K0) by (5.1.8), we obtain a group morphism

ι : W ×W −→G

satisfying the following properties:

Proposition 5.1.11. — (a) Ker ι =∆Z(W ).

(b) Im ι =D0.

(c) ι−1(H ) =∆W .

Using now (5.1.5), Proposition 5.1.11 provides a bijection

(5.1.12) (W ×W )/∆W
∼←→G /H .

Of course, one can build a bijection between (W ×W )/∆W and W using left or right
projection. We fix a choice:

Identification. The morphism W →W ×W , w 7→ (w , 1) composed
with the morphism ι : W ×W →G is injective, and we will identify
W with its image in G .
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More concretely, w ∈W ⊂G is the unique automorphism of the P -algebra R such
that

(5.1.13)
�
w (r ) mod r0

�
= (w , 1)
�
r mod r0

�
in k(V ×V ∗)∆Z(W )

for all r ∈R . Hence, by (5.1.12),

(5.1.14) G =H ·W =W ·H and H ∩W = 1.

Corollary 5.1.15. — Given c ∈C , the natural map Dc →G /H
∼→W induces a bijection

Dc /(Dc ∩H )
∼−→W .

Proof. — This follows from (5.1.5) and (5.1.14).

5.1.C. Action of G on W . — Let SW denote the permutation group of the set W .
We identify the group SW \{1} of permutations of the set W \ {1} with the stabilizer
of 1 in SW . The identification G /H

∼←→W and the action of G by left translations
on G /H identify G with a subgroup of SW . Summarizing, we have

(5.1.16) G ⊆SW and H =G ∩SW \{1}.

Given g ∈ G and w ∈ W , we denote by g (w ) the unique element of W such that
g ι(w , 1)H = ι(g (w ), 1)H . Through this identification of G as a subgroup of SW , the
map ι : W ×W →G is described as follows. Given (w1, w2) ∈W ×W and w ∈W , then

(5.1.17) ι(w1, w2)(w ) =w1w w −1
2

.

This is the action W ×W on the set W by left and right translation. Since ∆W is the
stabilizer of 1 ∈W for this action, we get

(5.1.18) ι(∆W ) = ι(W ×W )∩SW \{1}.

This is of course compatible with Proposition 5.1.11(c) and (5.1.16).
Finally, the choice of the embedding of W in G through w 7→ ι(w , 1) amounts to

identify W with a subgroup of SW through the action on itself by left translation.

5.1.D. Euler element and Galois group. — Let eu= cop(eu) ∈Q .

Proposition 5.1.19. — The minimal polynomial of eu over P has degree |W |. Its special-

ization at c is the minimal polynomial of euc over P•.

We have L=K[eu].
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Proof. — Since H0 = k[V ⊕V ∗]⋊W , we have Z(H0) = k[V ×V ∗]∆W and P• = k[V /W ×
V ∗/W ] ⊂ Z0. Moreover, it follows from Theorem 2.2.1 that Z0 is a free P•-module
of rank |W |. On the other hand, eu0 =

∑n
i=1

xi yi (using the notation of §3.3). It
corresponds to IdV via the canonical isomorphism V ⊗ V ∗ ∼−→ Endk(V ). Since W

acts faithfully on V , it follows that the different elements of W define different
elements of Endk(V ). Consequently, the orbit of eu0 under the action of W ×W has
|W | elements. We deduce that the minimal polynomial of eu0 over P• has degree
|W |. As a consequence, the field k(V × V ∗)∆W is generated by eu0 over k(V /W ×
V ∗/W )

Let Feu(t) ∈ P [t] be the minimal polynomial of eu over P . Since Z is a free P -
module of rank |W | (Corollary 4.2.7), we have deg Feu ¶ |W |. Since the specialization
eu0 has a minimal polynomial over P0 of degree |W |, it follows that deg Feu = |W |.

Denote by c the prime ideal of k[C ] corresponding to the line kc . Let F be the
minimal polynomial over P ⊗k[C ] k[C ]/c of the image of eu in the integrally closed
domain Z ⊗k[C ] k[C ]/c (Corollary 4.2.7). We have deg F ¶ |W |. Since eu0 has a min-
imal polynomial of degree |W |, it follows that deg F ¾ |W |, hence deg F = |W |, so F

is the specialization of Feu.
The Euler element is homogeneous for the Z-grading of Example 3.2.2 (cf Lemma

4.1.5). It follows from Lemma C.2.11 that the specialization of F (hence of Feu) is the
minimal polynomial of euc over P•.

The last assertion follows from (5.1.1).

The computation of the Galois group G =Gal(M/K) is now equivalent to the com-
putation of the Galois group of the minimal polynomial of eu (or eu). Classical
methods (reduction modulo a prime ideal, see for instance § B.5) will be useful in
small examples.

Let us come back to the computation of the embedding W ,−→ G ⊆ SW . Given
w ∈W , let euw =w (eu) ∈M. Recall (see (5.1.16)) that if g ∈G and w ∈W , then g (w )

is defined by the equality g (w )H = g w H . Since H acts trivially on eu, we deduce
that

(5.1.20) g (euw ) = eug (w )

and so, given (w1, w2) ∈W ×W , we have

(5.1.21) ι(w1, w2)(euw ) = euw1w w −1
2

.

This extends the equality

(5.1.22) w1(euw ) = euw1w

which is an immediate consequence of the definition of euw . In particular, by (5.1.14),

(5.1.23) the minimal polynomial of eu over P is
∏

w∈W

(t− euw ).
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Note also that, using (5.1.13) and the convention used for the action of W ×W on
k(V ×V ∗), we obtain

iso−1
0
(euw mod r0) =

n∑

i=1

w (yi )xi ∈ k[V ×V ∗]∆Z(W ).

The following proposition will not be used in the rest of the book.

Proposition 5.1.24. — We have Z = P [eu] if and only if W is generated by a single re-

flection.

Proof. — If W is generated by a single reflection, then an immediate argument al-
lows to reduce to the case where dimk V = 1. In this case, Example 4.4.12 shows that
Z = P [eu].

Conversely, if Z = P [eu], then

Z =

|W |−1⊕
j=0

P eu j

since the minimal polynomial of eu over P has degree |W | (by Proposition 5.1.19).
We deduce, using (4.4.8), that

dimZ×Z
k
(Z ) =

|W |−1∑

j=0

(tu) j

(1− tu)|Ref(W )/W |
n∏

i=1

(1− tdi )(1−udi )

.

It then follows from (4.4.10) that

1

|W |
∑

w∈W

(1− t)n

det(1−w t) det(1−w −1u)
=

|W |−1∑

j=0

(tu) j

n∏

i=1

(1+ t+ · · ·+ tdi−1)(1−udi )

.

By specializing t 7→ 1 in this equality, the left-hand side contributes only whenever
w = 1. Since |W |= d1 · · ·dn by Theorem 2.2.1(a), we obtain

1

(1−u)n
=

|W |−1∑

j=0

u j

n∏

i=1

(1−udi )

.
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In other words,
n∏

i=1

(1+u+ · · ·+udi−1) =

|W |−1∑

j=0

u j .

By comparison of the degrees, we get

|W | −1=

n∑

i=1

(di −1).

But, again by Theorem 2.2.1(a), we have |Ref(W )|=
∑n

i=1
(di −1), which shows that

Ref(W ) =W \ {1}.
Therefore, if w , w ′ ∈ W , then w w ′w −1w ′−1 has determinant 1, so it cannot be a
reflection. So w w ′ =w ′w and W is abelian, hence diagonalizable. The proposition
follows.

5.2. Splitting the algebra KH

Recall that Theorem 4.3.7 shows the existence of an isomorphism

KH≃Mat|W |(KZ ).

Recall also that KZ is the fraction field of Z (see (4.3.6)) and that cop : KZ
∼−→ L

denotes the extension of cop : Z
∼−→ Q . The K-algebra KH is semisimple, but not

K-split in general.
Given g ∈G , the morphism KZ →M, z 7→ g (cop(z )) obtained by restriction of g to

L (through the isomorphism cop) is K-linear and it extends uniquely to a morphism
of M-algebras

gZ : M⊗K KZ −→ M

m ⊗K z 7−→ mg (cop(z )).

Of course, gZ = (g h )Z for all h ∈H and it is a classical fact (see the Proposition B.3.12)
that

(gZ )g H ∈G /H : M⊗K KZ −→
∏

g H ∈G /H

M

is an isomorphism of M-algebras. Taking (5.1.14) into account, this can be rewritten
as follows: there is an isomorphism of M-algebras

(5.2.1) M⊗K KZ
∼−→
∏

w∈W M

x 7−→ (wZ (x ))w∈W

.

So, the M-algebra M⊗K KZ is semisimple and split, and its simple representations
are the wZ , for w ∈W .

Theorem 4.3.7 provides a Morita equivalence between M⊗K KZ and MH. We will
denote by Lw the simple MH-module corresponding to wZ .
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Fix an ordered KZ -basis B of KHe (recall that |B| = |W |). This choices provides
an isomorphism of K-algebras

ρB : KH
∼−→Mat|W |(KZ ).

Now, given w ∈W , let ρB
w

denote the morphism of M-algebras MH −→ Mat|W |(M)

defined by
ρB

w
(m ⊗P h ) =m ·w (cop(ρB (h )))

for all m ∈ M and h ∈ H. Then ρB
w

is an irreducible representation of MH corre-
sponding to the simple module Lw .

Let Irr(MH) denote the set of isomorphism classes of simple MH-modules. We
have a bijection

(5.2.2) W
∼−→ Irr MH

w 7−→ Lw

and an isomorphism of M-algebras

(5.2.3)
∏

w∈W

ρB
w

: MH
∼−→
∏

w∈W

Mat|W |(M).

In particular,

(5.2.4) the M-algebra MH is split semisimple.

Moreover, the bijection (5.2.2) allows us to identify its Grothendieck group K0(MH)

with the Z-module ZW :

(5.2.5) K0(MH)
∼−→ZW , [Lw ] 7→w .

Since the M-algebra MH is split semisimple, it follows from [GePf, Theorem 7.2.6
and Proposition 7.3.9] that there exists a unique family (schw )w∈W of elements of R

such that
τMH =
∑

w∈W

carw

schw

,

where carw : MH→M denotes the character of the simple MH-module Lw and τMH :

MH→M denotes the extension of the symmetrizing form τH : H→ P . The element
schw of R is called the Schur element associated with the simple module Lw . By
[GePf, Theorem 7.2.1], |W |·schw is equal to the scalar by which the Casimir element
casH ∈ Z (defined in § 4.4.C) acts on the simple module Lw . Therefore,

(5.2.6) schw = |W |−1 ·w (cop(casH)).

Remark 5.2.7. — In the general theory of symmetric algebras, the Schur element
schw is an important invariant, which can be useful to determine the blocks of a
reduction of R H modulo some prime ideal of R . Here, the formula (5.2.6) shows
that this computation is equivalent to the resolution of the following two problems:
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(1) Compute the Casimir element casH.
(2) Understand the action of W (or G ) on the image of casH in Q ⊂ R .

If Problem (1) seems doable (and its solution would be interesting as it would pro-
vide, after the Euler element, a new element of the center Z of H), it seems however
more difficult to attack Problem (2), as the computation of the ring R (and even of
the Galois group G ) is for the moment out of reach. �

5.3. Grading on R

Proposition 5.3.1. — There exists a unique (N×N)-grading on R extending the one of Q .

The Galois group G stabilizes this (N×N)-grading.

Proof. — The proposition is a consequence of Propositions C.2.8 and C.2.4 and of
Proposition C.2.1 and Corollary C.2.2.

Let R =
⊕
(i , j )∈N×NRN×N[i , j ] denote the (N ×N)-grading extending the one of Q .

Similarly, R =
⊕

i∈NRN[i ] (respectively R =
⊕

i∈ZRZ[i ]) will denote the N-grading
(respectively Z-grading) extending the one of Q : in other words,

RN[i ] =
⊕

i1+i2=i

RN×N[i1, i2] and RZ[i ] =
⊕

i1+i2=i

RN×N[i1, i2].

Corollary C.2.10 provides the following stability result.

Corollary 5.3.2. — The prime ideal r0 of R chosen in § 5.1.B is bi-homogeneous (in par-

ticular, it is homogeneous).

Corollary 5.3.3. — We have RN×N[0, 0] = k.

Proof. — By Corollary 5.3.2, we have r0 ⊂ R+. Consequently, RN×N[0, 0] is isomor-
phic to the homogeneous component of bidegree (0, 0) of R/r0. Since kR (r0) ≃ k(V ×
V ∗)∆Z(W ) and R/r0 is integral over Q0 = k[V × V ∗]∆W , it follows that R/r0 ⊂ k[V ×
V ∗]∆Z(W ), and this inclusion preserves the bigrading, by the uniqueness of the bi-
grading on R/r0 extending the one of Q0 = k[V × V ∗]∆W (Proposition C.2.1). This
shows the result.

Denote by R+ the unique maximal bi-homogeneous ideal of R .

Corollary 5.3.4. — Let D+ (respectively I+) be the decomposition (respectively inertia)

group of R+ in G . Then D+ = I+ =G .
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Proof. — Let p+ =R+∩P . Then kR (R+)/kP (p+) is a Galois extension with Galois group
D+/I+ (see Theorem B.2.4). By Corollary 5.3.3, kR (R+) = k= kP (p+), so D+/I+ = 1. Note
finally that D+ =G by Proposition 5.3.1.

5.4. Action on R of natural automorphisms of H

The previous Section 5.3 was concerned with the extension to R of the automor-
phisms of Q induced by k× × k×. In Section 3.5, we have introduced an action of
W ∧ ⋊N on H which stabilizes Z (of course), P , but also p0 and so p0Z : this action
can be transferred to Q ≃ Z and still stabilizes q0 = p0Q . We will show how to extend
this action to R , and we will derive some consequences about the Galois group. For
this, we will work in a more general framework:

Assumption. In this section 5.4, we fix a group G acting both on Z

and k[V ×V ∗] and satisfying the following properties:

(1) G stabilizes P and p0.
(2) The action of G on k[V ×V ∗] normalizes the action of W ×W

and the one of ∆W .

(3) The canonical isomorphism of k-algebras Z0

∼−→ k[V ×V ∗]∆W

is G -equivariant.

The action of G on Z induces, through the isomorphism cop, an action of G on
Q . If τ ∈G , we denote by τ◦ the automorphism of k[V ×V ∗] induced by τ: by (2), τ◦

stabilizes k[V ×V ∗]∆Z(W ), k[V ×V ∗]∆W and k[V ×V ∗]W ×W .

Proposition 5.4.1. — If τ ∈G , then there exists a unique extension τ̃ of τ to R satisfying

the following two properties:

(1) τ̃(r0) = r0;

(2) The automorphism of R/r0 induced by τ̃ is equal to τ◦, via the identification iso0 :

k(V ×V ∗)∆Z(W ) ∼−→M0 of §5.1.B.

Proof. — Let us start by showing the existence. First of all, M being a Galois closure
of the extension L/K, there exists an extension τM of τ to M. Since R is the integral
closure of Q in M, it follows that τM stabilizes R . Moreover, since τ(q0) = q0, there
exists h ∈H such that τM(r0) = h (r0). Let τ̃M = h−1 ◦τM. Then

τ̃M(r0) = r0 and (τ̃M)|L =τ.

Let τ̃M,0 denote the automorphism of R/r0 induced by τ̃M.
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By construction, the restriction of τ̃M,0 to Q/q0 is equal to the restriction of iso0 ◦
τ◦ ◦ iso−1

0
. Hence, there exists d ∈D0∩H such that τ̃M,0 = d ◦ (iso0 ◦τ0 ◦ iso−1

0
). We then

set τ̃= d −1 ◦ τ̃M: it is clear that τ̃ satisfies (1) and (2).

Let us now show the uniqueness. Let τ̃1 be another extension of τ to R satisfying
(1) and (2) and letσ = τ̃−1τ̃1. We haveσ ∈G and, by (1), σ stabilizes r0, henceσ ∈D0.
Moreover, by (2), σ induces the identity on R/r0, hence σ ∈ I0 = 1 (cf (5.1.6)), and so
τ̃= τ̃1.

The existence and the uniqueness statements of Proposition 5.4.1 have the fol-
lowing consequences.

Corollary 5.4.2. — The action of G on Q extends uniquely to an action of G on R , which

stabilizes r0 and is compatible with the isomorphism iso0.

In this book, we will denote again by τ the extension τ̃ of τ defined in Proposi-
tion 5.4.1. Since G stabilizes P , Q , p0, q0 = p0Q and r0, we deduce the following.

Corollary 5.4.3. — The action of G on R normalizes G , H , D0 = ι(W ×W ) and D0∩H =

ι(∆W ) =W /Z(W ).

From Corollary 5.4.3, we deduce that G acts on the set G /H ≃W and that

(5.4.4) the image of G in SW normalizes G .

Example 5.4.5. — The group G = k××k×× (W ∧⋊N ) acts on H and stabilizes P and
p0; by the same formulas, it acts on k[V ×V ∗] and normalizes W ×W and ∆W (in
fact, k××k××Hom(W , k×) commutes with W ×W and only N acts non-trivially on
W ×W ).

It follows from the previous results that the action of k× × k× × (W ∧ ⋊N ) on Q

extends uniquely to an action on R which stabilizes r0 and is compatible with the
isomorphism iso0. By the uniqueness statement, the extension of the action of k××
k××W ∧ to R commutes with the action of G whereas the one of N is such that the
morphism G ,−→SW isN -equivariant.

Finally, still by the uniqueness statement, the extension of the action of the sub-
group k××k× corresponds to the extension to R of the (N×N)-grading described in
Proposition 5.3.1. �
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5.5. A particular situation: reflections of order 2

Assumption and notation. In this section 5.5, we assume that
all the reflections of W have order 2 and that − IdV ∈ W . We set
w0 =− IdV and τ0 = (−1, 1,ǫ)∈ k××k××W ∧.

By construction, the restriction of τ0 to k[C ] is equal to the identity. Since − IdV ∈
W , the restriction of τ0 to k[V ]W is equal to the identity. Similarly, the restriction of
τ0 to k[V ∗]W is also equal to the identity. Consequently,

(5.5.1) ∀ p ∈ P, τ0(p ) = p .

Recall that τ0 denotes also the automorphism of R defined by Proposition 5.4.1.
By definition of the Galois group, we have τ0 ∈ G . More precisely, we have the
following description.

Proposition 5.5.2. — Assume that all the reflections of W have order 2 and that w0 =

− IdV ∈W . Then τ0 is a central element of G . Its action on W is given by τ0(w ) = w0w

(which means that τ0 = w0 = ι(w0, 1), through the canonical embedding W ,−→ G ) and,

through the embedding G ,−→SW , we have

G ⊂ {σ ∈SW | ∀ w ∈W , σ(w0w ) =w0σ(w )}.
Moreover, given w ∈W , we have

τ0(euw ) =−euw = euw0w .

Proof. — By Lemma 3.5.7(c), we have τ0(eu) = −eu. Moreover, by Example 5.4.5,
the action of τ0 on R commutes with the action of G . Therefore, if w ∈ W , then
τ0(euw ) =−euw .

On the other hand, there exists w1 ∈W such that τ0(eu) = euw1
. As −eu0 =w0(eu0),

it follows from the characterization of the action of W on L that τ0(eu) = euw0
=−eu.

Since w0 is central in W , we have w0(euw ) = euw0 w = euw w0
= w (euw0

) = −euw . So
τ0 =w0 because M=K[(euw )w∈W ].

Now, the fact that G ⊂ {σ ∈ SW | ∀ w ∈W , σ(w0w ) = w0σ(w )} follows from the
fact that τ0 =w0 commutes with the action of G .

Notice that w0w =−w and so the inclusion of Proposition 5.5.2 can be rewritten

(5.5.3) G ⊂ {σ ∈SW | ∀ w ∈W , σ(−w ) =−σ(w )}.
Viewed like this, it shows that, under the assumption of this section, G is contained
in a Weyl group of type B|W |/2.
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5.6. Special features of Coxeter groups

Assumption. In this section 5.6, we assume that W is a Coxeter
group, and we use the notation of §2.6.

Recall (Proposition 4.5.1) that the algebra H admits another automorphism σH

stabilizing P .

Proposition 5.6.1. — The automorphism σH of Q extends uniquely to an automorphism

σH of R . Given g ∈G ⊂SW and w ∈W , we have (σHg )(w ) = g (w −1)−1.

Proof. — Note thatσH induces an automorphism of k[V ×V ∗]which normalizes W ×
W and∆W . More precisely, consider σ2 : V ⊕V ∗ ∼−→ V ⊕V ∗, (y , x ) 7−→ (−σ−1(x ),σ(y ))

We have

(5.6.2) σ2(w , w ′)σ−1
2
= (w ′, w )

for all (w , w ′) ∈W ×W . By Proposition 5.4.1, σH extends uniquely to an automor-
phism of R which stabilizes r0 and which is compatible with iso0. Since σH normal-
izes G and its subgroup ι(W ×W ) (see (5.4.4)), it follows from (5.6.2) that its action
on the elements of W ⊂G satisfies

(5.6.3) σHw H =w −1H and H σHw =H w −1

for all w ∈W . The proposition follows now from (5.4.4).

Remark 5.6.4. — Note that if W 6= 1, then the action of GL2(k) on H doesn’t induce
an action on R , since GL2(k) doesn’t normalize W ×W . �

5.7. Geometry

5.7.A. Extension Z /P . — The k-algebras P , Z , P• and Zc being of finite type, we
can associate with them algebraic k-varieties that will be denoted by P , Z , P• and
Z c respectively. Notice that

P =C ×V /W ×V ∗/W and P• =V /W ×V ∗/W

and that Z 0 = (V ×V ∗)/W .

It follows from Corollary 4.2.7(f) that

(5.7.1) the varieties Z and Z c are irreducible and normal.
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Since all the algebraic statements of the previous chapters do not depend on the
base field, the statement (5.7.1) can be understood as a “geometric” statement. The
inclusions P ⊂ Z and P• ⊂ Zc induce morphisms of varieties

Υ :Z −→P =C ×V /W ×V ∗/W

and Υc :Z c −→P• =V /W ×V ∗/W .

The surjective maps P → P /Cc P ≃ P• and Z → Zc induce closed immersions jc :

Z c ,−→ Z and ic : P• ,−→ P , p 7→ (c , p ). Moreover, the canonical injective map
k[C ] ,−→ P induces the canonical projection π :P →C and, in the diagram

(5.7.2)

Z c
� �

jc //

Υc

��

Z

Υ

��
V /W ×V ∗/W P•

� �
ic //

��

P

π

��

C ×V /W ×V ∗/W

{c } � � // C =ARef(W )/W ,

all the squares are cartesian. Note also that, by Corollary 4.2.7,

(5.7.3) the morphisms Υ and Υc are finite and flat.

Moreover,

(5.7.4) π is smooth,

since V /W ×V ∗/W smooth.

Example 5.7.5. — We have Z 0 = (V × V ∗)/W and Υ0 : (V × V ∗)/W = Z 0 → P • =
V /W ×V ∗/W is the canonical morphism. �

Let Z reg denote the open subset Spec(Z reg) of Z . Corollary 4.3.2 shows that

(5.7.6) Z reg ≃C × (V reg×V ∗)/W is smooth.



77

5.7.B. Extension R/P . — Since R and Q ≃ Z are also k-algebras of finite type, they
are associated with k-varieties R and Q ≃ Z : the isomorphism cop∗ : Q

∼−→ Z is
induced by cop : Z

∼−→ Q . The inclusion P ,−→ R (respectively Q ,−→ R ) defines a
morphism of varieties ρG : R → P (respectively ρH : R → Q) and the equalities
P = R G and Q =R H show that ρG and ρH induce isomorphisms

(5.7.7) R/G
∼−→P and R/H

∼−→Q.

In this setting, the choice of a prime ideal rc lying over qc is equivalent to the choice
of an irreducible component R c of ρ−1

H
(Q c ) (whose ideal of definition is rc ). Simi-

larly, the argument leading to Proposition 5.1.11 implies for instance that the num-
ber of irreducible components of ρ−1

G
(Q0) is equal to |G |·|∆Z(W )|/|W |2. It also shows

that ι(W ×W ) is the stabilizer of R0 in G and R0/ι(W ×W ) ≃P 0, that ι(∆W ) is the
stabilizer ofR0 in H and that R0/ι(∆W )≃Q0. We have a commutative diagram

(5.7.8)

R c
� � //

��

R

ρH

��
ρG

||

Qc
� �

jc //

Υc

��

Q

Υ

��
V /W ×V ∗/W P•

� �
ic //

��

P

π

��

C ×V /W ×V ∗/W

{c } � � // C

which completes the diagram (5.7.2) (if we identify Q and Z through cop∗). Only
the two bottom squares of the diagram (5.7.8) are cartesian.

5.7.C. Automorphisms. — The group k××k××
�
W ∧⋊N
�

(which acts on H through
automorphisms of k-algebras) stabilizes the k-subalgebras k[C ], P and Q of H.
Therefore, it acts by automorphisms of the k-varieties on C , P and Q. The mor-
phisms Υ and π of diagram (5.7.2) are equivariant for this action.

Also, this action extends to an action on R (see Corollary 5.4.2) which makes ρH

and ρG equivariant.
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5.7.D. Irreducible components of R ×P Z . — Given w ∈W , we set

Rw = {(r, cop∗(ρH (w (r )))) | r ∈R} ⊆R ×P Z .

Lemma 5.7.9. — If w ∈W , thenRw is an irreducible component of R ×P Z , isomorphic

to R . Moreover,

R ×P Z =
⋃

w∈W

Rw

and Rw =Rw ′ if and only if w =w ′.

Proof. — It is only the geometric translation of the fact that the morphism

R ⊗P Z −→
∏

w∈W R

x 7−→ (wZ (x ))w∈W

defined by restriction from the morphism (5.2.1) is finite and and becomes an iso-
morphism after extending scalars to K.



CHAPTER 6

CALOGERO-MOSER CELLS

Notation. From now on, and until the end of §6, we fix a prime
ideal r of R and we set q = r ∩Q and p = r ∩ P . We denote by Dr

(respectively Ir) the decomposition (respectively inertia) group of r in
G .

6.1. Definition, first properties

Recall that, since we have chosen once and for all a prime ideal r0 as well as an iso-
morphism kR (r0)

∼−→ k(V ×V ∗)∆Z(W ), we can identify the sets G /H and W (see §5.1.B).
So G acts on the set W .

Definition 6.1.1. — A Calogero-Moser r-cell is an orbit of the inertia group Ir in the

set W . We will denote by ∼CM
r

the equivalence relation corresponding to the partition of W

into Calogero-Moser r-cells.

The set of Calogero-Moser r-cells will be denoted by CMCellr(W ).

Recall that W can be identified with the set HomP−alg(Q , R ) = HomK−alg(L, M). By
Proposition B.3.5, if w and w ′ are two elements of W , then

(6.1.2) w ∼CM
r

w ′ if and only if w (q )≡w ′(q ) mod r for all q ∈Q .

Remark 6.1.3. — If r and r′ are two prime ideals of R such that r ⊂ r′, then Ir ⊂ Ir′

and so the Calogero-Moser r′-cells are unions of Calogero-Moser r-cells. �

Example 6.1.4 (Reflections or order 2). — If all the reflections of W have order 2

and if w0 =− IdV ∈W , then it follows from Proposition 5.5.2 that G ⊂ {σ ∈SW | ∀w ∈
W , σ(w0w ) =w0σ(w )}. Consequently, if Γ is a Calogero-Moser r-cell, then w0Γ = Γw0

is a Calogero-Moser r-cell. �
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The action of G being compatible with the bigrading of R , the following result is
not surprising.

Proposition 6.1.5. — Let Γ be a finitely generated free abelian group and R =
⊕
γ∈Γ Rγ a

G -stable Γ -grading on R . Let r̃=
⊕
γ∈Γ r∩Rγ. Then Ir = Ir̃, hence the Calogero-Moser r̃-cells

and the Calogero-Moser r-cells coincide.

Proof. — This follows from Corollary C.2.13.

6.2. Blocks

Given w ∈W , we denote by ew ∈ Idempr(Z (MH)) the central primitive idempotent
of MH (which is split semisimple by (5.2.4)) associated with the simple moduleLw .
It is the unique central primitive idempotent of MH which acts as the identity on the
simple MH-moduleLw . Given b ∈ Idempr(Z (RrH)), we denote by CMr(b ) the unique
subset of W such that

(6.2.1) b =
∑

w∈CMr(b )

ew .

In other words, the bijection W
∼←→ Irr MH restricts to a bijection CMr(b )

∼←→ Irr MHb .
It is clear that (CMr(b ))b∈Idempr (RrH) is a partition of W . In fact, this partition coincides
with the partition into Calogero-Moser r-cells.

Theorem 6.2.2. — Let w , w ′ ∈W and let b and b ′ be the central primitive idempotents

of RrH such that w ∈CMr(b ) and w ′ ∈CMr(b
′). Then w ∼r

CM
w ′ if and only if b = b ′.

Proof. — Letωw : Z(R H) =R ⊗P Z −→ R denote the central character associated with
the simple MH-module Lw (see § D.2.A). By the very definition of Lw , we have

ωw (r ⊗P z ) = r w (cop(z ))

for all r ∈ R and z ∈ Z . Consequently, by (6.1.2), we have w ∼r
CM

w ′ if and only if
ωw ≡ωw ′ mod r. The result follows now from Corollary D.2.4.

Via Proposition D.2.3, we obtain bijections

(6.2.3) CMCellr(W ) Idempr(RrZ )
∼

b←[CMr(b )
oo ∼

b 7→b̄

// Idempr(kR (r)Z )

where b̄ denote the image of b in kR (Z ).
Since MZ is the center of MH, the fact that MH is split semisimple implies imme-

diately that

(6.2.4) dimM(MZ b ) = |CMr(b )|.
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Recall that, since Z is a direct summand of H, the algebra kR (r)Z can be identified
with its image in kR (r)H. Note however that this image might be different from the
center of kR (r)H.

Corollary 6.2.5. — We have dim kR (r)Z b̄ = |CMr(b )|.

Proof. — The Rr-module RrZ is free (of rank |W |), so the Rr-module RrZ b is pro-
jective, hence free since Rr is local. By (6.2.4), the Rr-rank of RrZ b is |CMr(b )|. The
corollary follows.

Example 6.2.6 (Specialization). — Let c ∈ C . Let rc be a prime ideal of R lying
over pc and, as in §5.1.A, define Dc =G D

rc
and Ic =G I

rc
. Then Ic = 1 by (5.1.6), hence

the Calogero-Moser rc -cells are singletons. �

6.3. Ramification locus

Let rram denote the defining ideal of the ramification locus of the finite morphism
Spec(R ) → Spec(P ): in other words, R is étale over P at r if and only if rram 6⊂ r.
Recall [SGA1, Exposé V, Corollaire 2.4] that the following assertions are equivalent:

– R is étale over P at r;
– Ir = 1;
– R is unramified over P at r.

As G acts faithfully on W , we deduce the following result (taking into account
Theorem 6.2.2).

Proposition 6.3.1. — The following are equivalent:

(1) Ir 6= 1.

(2) R is not étale over P at r.

(3) R is ramified over P at r.

(4) rram ⊂ r.
(5) |Idempr(RrQ )|< |W |.

Notice that rram is not necessarily a prime ideal of R . However, the purity the-
orem [SGA1, talk X, Theorem 3.1] implies that Spec(R/rram) is empty or of pure
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codimension 1 in Spec(R ) (since R is integrally closed and P is regular). By Corol-
lary 5.3.4 and Proposition 6.3.1, the morphism Spec(R )→ Spec(P ) is not étale if W 6=1.
Hence, if W 6=1, we deduce that

(6.3.2) Spec(R/rram) is of pure codimension 1 in Spec(R ).

Of course,

(6.3.3) rram is stable under the action of k××k××
�
(W ∧×G )⋊N
�
.

While it is difficult to determine the ideal rram (we even do not know how to deter-
mine the ring R ), the ideal pram = rram ∩P is determined by the extension Q/P . The
following result is classical [SGA1, Proposition 4.10].

Lemma 6.3.4. — Let disc(Q/P ) denote the discriminant ideal of Q in P . Then pram =p
disc(Q/P ).

Remark 6.3.5. — We proved that Spec(R/rram) is of pure codimension 1 in Spec(R )

by using the purity theorem. Using the equivalence between (4) and (5) in Lemma 6.3.1,
we obtain another proof using Proposition D.2.11. �

6.4. Smoothness

LetZ sing denote the singular locus ofZ = Spec(Z ) and zsing its defining ideal. Since
Z is integrally closed, it follows that

(6.4.1) Z sing has codimension ¾ 2 in Z .

Of course, zsing needs not be a prime ideal. Since Υ : Z → P is finite and flat, we
deduce that

(6.4.2) Υ (Z sing) is closed and of codimension ¾ 2 in P .

The defining ideal of Υ (Z sing) is
p
zsing ∩P .

Assumption. In the remainder of §6.4, we assume that Spec(P /p)
is not contained in Υ (Z sing), i.e., we assume zsing ∩P 6⊂ p.

Proposition 6.4.3. — The (Hp, Zp)-bimodule Hpe is both left and right projective and in-

duces a Morita equivalence between Hp and Zp.
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Proof. — By assumption, there exists p ∈ zsing ∩ P such that p 6∈ p. So Z [1/p ] =

P [1/p ] ⊗P Z ⊂ Zp = Pp ⊗P Z and Spec(Z [1/p ]) is regular. It follows from Propo-
sition 4.3.4 that P [1/p ] ⊗P H and Q [1/p ] are Morita equivalent via the bimodule
P [1/p ]⊗P He . The proposition follows by scalar extension.

By reducing modulo p, one gets the following consequence.

Corollary 6.4.4. — The (kP (p)H, kP (p)Z )-bimodule kP (p)He is both left and right projec-

tive and induces a Morita equivalence between kP (p)H and kP (p)Z .

Extending again scalars, we obtain the following result.

Corollary 6.4.5. — The (kR (r)H, kR (r)Z )-bimodule kR (r)He is both left and right projec-

tive and induces a Morita equivalence between kR (r)H and kR (r)Z .

Theorem 6.4.6. — The kR (r)-algebra kR (r)H is split. Every block of kR (r)H admits a unique

simple module, which has dimension |W |. In particular, the simple kR (r)H-modules are

parametrized by the Calogero-Moser r-cells, that is, by the Ir-orbits in W .

Proof. — Let us first show that kR (r)Z = kR (r)⊗P Z = kR (r)⊗Pp
Zp is a split kR (r)-algebra.

Let z1,. . . , zl be the prime ideals of Z lying over p: in other words, kP (p)z1,. . . , kP (p)zl

are the prime (so, maximal) ideals of kP (p)Z = Zp/pZp. Then kP (p)(z1 ∩ · · · ∩ zl ) is the
radical I of kP (p)Z . Moreover,

(kP (p)Z )/I ≃ kZ (z1)× · · ·×kZ (zl ).

Since kR (r) is a Galois extension of kP (p) containing (the image through cop−1 of)
kZ (zi ), for all i , it follows that kR (r)⊗kP (p)

kZ (zi ) is a split kR (r)-algebra (see Proposi-
tion B.3.12). As a consequence, kR (r)Z is split. We deduce from Corollary 6.4.5 that
kR (r)H is also split.

On the other hand, since kR (r)Z is commutative, every block of kR (r)Z admits
a unique simple module. Using again the Morita equivalence, the same property
holds for kR (r)H. Finally, as the projective Zp-module Hpe has rank |W |, the same
is true for the projective kR (r)Z -module kR (r)He , and so the simple kR (r)H-modules
have dimension |W |.

The last statement of the theorem is now clear.

Example 6.4.7. — Taking Corollary 4.3.2 into account, the condition zsing ∩ P 6⊂ p

is satisfied if Spec(P /p) meets the open subset P reg = C × V reg/W × V ∗/W or, by
symmetry, the open subset C ×V /W ×V ∗reg/W . �
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6.5. Geometry

By Lemma 5.7.9, the irreducible components of R ×P Z are the

Rw = {(r, cop∗(ρH (w (r )))) | r ∈R},
where w runs over W and the morphism ΥR :R×P Z →R obtained from Υ :Z →P
by base change induces an isomorphism between the irreducible component Rw

andR .
Consequently, the inverse image through ΥR of the closed irreducible subvariety
R (r) = Spec(R/r) is a union of closed irreducible subvarieties

(6.5.1) Υ
−1
R
(R (r)) =
⋃

w∈W

Rw (r),

where Rw (r)≃R(r) is the inverse image of R(r) inRw .

Lemma 6.5.2. — Let w and w ′ ∈W . We have Rw (r) =Rw ′(r) if and only if w ∼CM
r

w ′.

Proof. — Indeed, Rw (r) =Rw ′(r) if and only if, for all r ∈R (r), we have ρH (w (r )) =

ρH (w
′(r )). Translated at the level of the rings Q and R , this becomes equivalent to

say that, for all q ∈Q , we have w (q )≡w ′(q ) mod r.

In other words, Lemma 6.5.2 shows that the Calogero-Moser r-cells parametrize
the irreducible components of the inverse image ofR (r) in the fiber productR×PZ .

6.6. Topology

We assume in §6.6 that k=C. We fix for the remainder of the book a pair (vC, v ∗
C
) ∈

V reg×V ∗reg.

Let Y =R(C), Ȳ =Q(C) and X =P (C). We denote by Y nr the complement of the
ramification locus of ρG : Y → X and by X nr its image.

Let γ : [0, 1]→ X be a path with γ([0, 1))⊂ X nr and such that γ(0) = (0, W · vC, W · v ∗
C
).

Given w ∈W , there is a unique path γw : [0, 1]→ Ȳ lifting γ and such that γw (0) =

(0, (w (vC), v ∗
C
)∆W ) (Lemma B.7.2).

Definition 6.6.1. — We say that w , w ′ ∈ W are in the same Calogero-Moser γ-cell if

γw (1) = γw ′(1).

The choice of the prime ideal r0 (cf §5.1.B) corresponds to the choice of an irre-
ducible component of ρ−1

G
({0}×V /W /×V ∗/W ). The isomorphism iso0 extends to an

isomorphism k[V reg ×V ∗reg]∆Z (W ) ∼−→ (R/r0)⊗k[V ×V ∗]W×W k[V reg ×V ∗reg]W ×W . We have a
corresponding isomorphism of varieties Spec(R/r0)×V /W ×V ∗/W (V

reg/W ×V ∗reg/W )
∼−→
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(V reg × V ∗reg)/∆Z (W ). We denote by y0 the point of the component that is the in-
verse image of (vC, v ∗

C
)∆Z (W ). Let x0 = ρG (y0). The choice of y0 provides a bijection

H \G
∼−→ Υ −1(x0), H g 7→ ρH (g · y0). The bijection W

∼−→ H \G
∼−→ Υ −1(x0) is given by

w 7→ (w (vC), v ∗
C
)∆W .

Let y1 be a point of Y that lies in the irreducible component determined by r and
satisfies StabG (y1) =G I

r
.

We fix a path γ̃ : [0, 1] → Y such that γ̃([0, 1)) ⊂ Y nr, γ̃(0) = y0 and γ̃(1) = y1. We
denote by γ the image of γ̃ in X .

From §B.7 we deduce the following result.

Proposition 6.6.2. — Two elements w , w ′ ∈W are in the same Calogero-Moser r-cell if

and only if they are in the same Calogero-Moser γ-cell.





PART III

CELLS AND FAMILIES



Notation. We fix in this part a prime ideal C of k[C ]. Let C (C) =
Spec k[C ]/C be the closed irreducible subscheme of C defined by C.

We denote by p̄C (resp. pleft
C

, resp. p
right

C ) the prime ideal of P corre-
sponding to the closed irreducible subscheme C (C)×{0}× {0} (resp.
C (C)×V /W ×{0}, resp. C (C)×{0}×V ∗/W ). We set




P̄C = P /p̄C ≃ k[C ]/C,

P left
C
= P /pleft

C
≃ k[C ]/C⊗k[V ]W ,

P
right

C = P /pright ≃ k[C ]/C⊗k[V ∗]W ,

and we define




the P̄C-algebra H̄C =H/p̄CH,

the P left
C

-algebra Hleft
C
=H/pleft

C
H,

the P
right

C -algebra H
right

C =H/p
right

C H.

We denote by Z̄C (resp. Z left
C

, resp. Z
right

C ) the image of Z in H̄C (resp.

Hleft
C

, resp. H
right

C ). We also define




K̄C = kP (p̄C),

Kleft
C
= kP (p

left
C
),

K
right

C = kP (p
right

C ).

To simplify the notation, when C = 0, the index C will be omitted
in all the previous notations (P̄ , p̄, pleft, Hright, Kleft,. . . ). Given c ∈C
and C = Cc , the index Cc will be replaced by c (pright

c
, Hleft

c
, Kright

c
,

K̄c ,. . . ). Notice for instance that p̄C = p̄+C P (and similarly for pleft
C

and p
right

C ) and that K̄c ≃ k.

Definition . — Fix a prime ideal r̄C (resp. rleft
C

, resp. r
right

C ) of R lying over p̄C (resp. pleft
C

,

resp. p
right

C ). A Calogero-Moser two-sided (resp. left, resp. right) C-cell is defined to

be an r̄C-cell (resp. rleft
C

-cell, resp. r
right

C -cell).

When C= 0, they will also be called generic Calogero-Moser (two-sided, left or right)

cells. Given c ∈C and C= Cc , they are called Calogero-Moser (two-sided, left or right)

c -cells.

Remark . — Of course, the notion of Calogero-Moser (two-sided, left, or right) C-
cell depends on the choice of the ideal r̄C, rleft

C
or rright

C ; however, as all the prime ideals
of R lying over a prime ideal of P are G -conjugate, changing the ideal amounts to
transforming the cells according to the action of G . �
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Remark (Semi-continuity). — It is of course possible to choose the ideals r̄C, rleft
C

or
r

right

C so that r̄C contains rleft
C

and r
right

C : in this case, by Remark 6.1.3, the Calogero-
Moser two-sided C-cells are unions of Calogero-Moser left (resp. right) C-cells.

Similarly, if C′ is another prime ideal of k[C ] such that C⊂C′, then one can choose
the ideals r̄C′ , rleft

C′ or rright

C′ in such a way that they contain respectively r̄C, rleft
C

or rright

C .
Then the Calogero-Moser two-sided (resp. left, resp. right) C′-cells are unions of
Calogero-Moser two-sided (resp. left, resp. right) C-cells. �

With the definition of Calogero-Moser two-sided, left or right cells given above,
the first aim of this book is achieved. The aim of this part is now to study these
particular cells, in relation with the representation theory of H: in each case, a family
of Verma modules will help us in this study. More precisely:

– In Chapter 10, we will associate a Calogero-Moser family with each two-sided
cell: the Calogero-Moser families define a partition of Irr(W ).

– In Chapter 11, we will associate a Calogero-Moser cellular character with each left
cell.

We conjecture that, whenever W is a Coxeter group, all these notions coincide with
the analogous notions defined by Kazhdan-Lusztig in the framework of Coxeter
groups. The conjectures will be stated precisely in § 15 and some evidence will be
given (see § 15.3).





CHAPTER 7

REPRESENTATIONS

7.1. Highest weight categories

We define highest weight category structures on categories of (graded) repre-
sentations of eH, following Appendix F.2. The existence of such structures for the
restricted Cherednik algebras (cf §9) is due to Bellamy and Thiel [BelTh].

We consider the Z-grading on A = eH and take k = k[ eC ]. We have three graded k -
subalgebras B− = k[ eC ×V ∗], B+ = k[ eC ×V ] and H = k[ eC ]W of A. Theorem 3.1.5 and
Example F.2.3 show that the conditions (i)-(ix) of Appendix F.2 are satisfied with
I = {k[ eC ]⊗E }E ∈Irr(kW ).

Let R be a noetherian commutative k[ eC ]-algebra. Let Õ (R ) be the category of
finitely generated Z-graded (eH ⊗k[ eC ] R )-modules that are locally nilpotent for the
action of V .

We put eH− = k[ eC ×V ∗]⋊W and eH+ = k[ eC ×V ]⋊W . Given E a graded (k[V ∗]⋊W )-
module, we define the Verma module

∆̃(E ) = Ind
eH
eH− (k[ eC ]⊗E ) = eH⊗eH− (k[ eC ]⊗E ).

The PBW decomposition gives a canonical isomorphism of eH+-modules

(7.1.1) k[ eC ×V ]⊗E
∼−→ ∆̃(E )

where W acts diagonally and k[ eC ×V ] acts by left multiplication on k[ eC ×V ]⊗ E .
We will view kW -modules as graded (k[V ∗]⋊W )-modules concentrated in degree 0

by letting V act by 0.

Theorem F.2.7 provides the following result.

Theorem 7.1.2. — The category Õ (R ) is a highest weight category over R , with set of stan-

dard modules {R ∆̃(E )〈i 〉}E ∈Irr(kW ),n∈Z and partial order R ∆̃(E )〈i 〉< ∆̃(F )〈 j 〉 if i < j .

We put ∆̃(co) = ∆̃(k[V ∗]co(W )) = eHe ⊗k[V ∗]W k.

Lemma 7.1.3. — We have [∆̃(co)] =
∑

E ∈Irr(W ) fE (t
−1)[∆̃(E )] in K0(Õ (R )).
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Proof. — The (k[V ∗] ⋊W )-module M = k[V ∗]co(W ) has a finite filtration given by
M ¶ i = (k[V ∗]co(W ))¶ i and the associated graded module is isomorphic to

⊕
E ∈Irr(W ) fE (t

−1)E .
Consequently, we have a filtration of the eH-module ∆̃(co) given by ∆̃(co)¶ i = ∆̃((k[V ∗]co(W ))¶ i )

and the associated graded eH-module gr ∆̃(co) is isomorphic to
⊕

E ∈Irr(W ) fE (t
−1)∆̃(E ).

The result follows.

Remark 7.1.4. — Note that, for the filtration introduced in the proof of Lemma
7.1.3, the module gr ∆̃(co) is isomorphic to ∆̃(kW ), as an ungraded eH-module. �

7.2. Euler action on Verma modules

The classical formula describing the action of the Euler element on Verma mod-
ules is given in the next proposition [GGOR, §3.1(4)].

Given (ℵ, j ) ∈ ℵ◦, H ∈ ℵ and E ∈ Irr(W ), we put

m E
ℵ, j
= 〈ResW

WH
E , det j 〉WH

.

and CE =
1

dimk E

∑

s∈Ref(W )

ǫ(s )Tr(s , E ) Cs .

There is a simple formula for CE ’s [BrMi, 4.17].

Lemma 7.2.1. — We have

CE =
∑

(ℵ, j )∈ℵ◦

m E
ℵ, j
|ℵ|eℵ

dimk E
·Kℵ, j ∈
⊕
(ℵ, j )∈ℵ◦
Z¾ 0Kℵ, j .

Proof. — We have

CE =
∑

(ℵ, j )∈ℵ◦

∑

H∈ℵ

1

dimk E
Tr(eH ǫH , j , E )Kℵ, j .

Now, given (ℵ, j ) ∈ ℵ◦, the central element
∑

H ∈ℵ eH ǫH , j of kW acts on E by the scalar
m E
ℵ, j
|ℵ|eℵ

dimk E . The lemma follows.

Proposition 7.2.2. — Let E ∈ Irr(W ). The element feu acts on ∆̃(E )i by multiplication by

T i +CE .

Proof. — Recall (§3.3) that if (x1, . . . , xn ) denotes a k-basis of V ∗ and if (y1, . . . , yn ) de-
notes its dual basis, then

feu=

n∑

i=1

xi yi +
∑

s∈Ref(W )

ǫ(s )Cs s .

Let h ∈ (eH+)i , v ∈ E and m = h ⊗ v ∈ ∆̃(E )i . We have

feu ·m = hfeu⊗ v +T i m = h ⊗ (
∑

s∈Ref(W )

ǫ(s )Cs s · v )+T i m .
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Since
∑

s∈Ref(W ) ǫ(s )Cs s acts on K̄E by multiplication by CE , the result follows.

7.3. Case T = 0

Given E a Z-graded (k[V ∗]⋊W )-module, we put ∆(E ) = ∆̃(E )⊗k[T ] k[T ]/(T ): it is
a graded H-module. We define H+ = eH+/T eH+ = k[C ×V ]⋊W and H− = eH−/T eH− =
k[C ×V ∗]⋊W . Then

∆(E ) = IndH

H− (k[C ]⊗E ) =H⊗H− (k[C ]⊗E ).

If moreover E ∈ Irr(W ), we denote byωE : Z(kW )→ k its associated central character
and we set

ΩE = (Idk[C ]⊗ωE ) ◦Ω : Z −→ k[C ],

where Ω : Z → Z(k[C ]W ) is the morphism of algebras defined in §4.2.C. Note that
ΩE is a morphism of algebras.

Recall that Z 0 denotes the Z-homogeneous component of Z of degree 0.

Proposition 7.3.1. — Given E ∈ Irr(W ), an element b ∈ Z 0 acts on ∆(E ) by multiplica-

tion by ΩE (b ).

Proof. — Using the PBW-decomposition, we can write

b =
∑

i∈I

ai fi wi g i ,

where ai ∈ k[C ], fi ∈ k[V ], wi ∈ W and g i ∈ k[V ∗]. Since b is homogeneous of
degree 0, we can choose the fi ’s and g i ’s to be homogeneous elements such that
degZ(fi )+degZ(g i ) = 0 for all i ∈ I .

Let h ∈H and v ∈ E . We have

b · (h ⊗H− v ) = b h ⊗H− v = h b ⊗H− v,

so
b · (h ⊗H− v ) =
∑

i∈I

ai h fi ⊗ (wi g i · v ).

Let I0 denote the set of i ∈ I such that degZ(fi ) = degZ(g i ) = 0. Then g i v = 0 if i 6∈ I0,
and fi , g i ∈ k if i ∈ I0, so

b · (h ⊗H− v ) =
∑

i∈I0

h ⊗ (ai fi wi g i · v ).

But
∑

i∈I0
ai fi g i wi =Ω(b ) by definition, and the result follows.

Note that ΩE (eu) =CE , so the next corollary follows also from Proposition 7.2.2.

Proposition 7.3.2. — The element eu acts by ΩE (eu) = CE on ∆(E ).
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Recall (Example 3.2.1) that the (Z/dZ)-grading on H deduced from the Z-grading
is induced by conjugation by an element wz ∈ Z (W ). As a consequence, the category
of Z-graded H-modules decomposes as a direct sum, parametrized by l ∈ Z/zZ, of
subcategories with objects the graded modules M such that wz acts on M i by ζi+l .

Given R a noetherian commutative k[C ]-algebra, this induces a corresponding
decomposition of the category O (R ) of finitely generated graded (H⊗k[C ]R )-modules
that are locally nilpotent for the action of V .

7.4. Automorphisms

The group k××k××(W ∧⋊N ) acts on eH, hence it acts on the category of eH-modules.
The action is given as follows. Let M be an eH-module and let τ ∈ k××k×× (W ∧⋊N ).
We denote by τM the eH-module whose underlying k-module is M and where the
action of h ∈ eH on an element of τM is given by the action of τ−1

h on the correspond-
ing element of M .

This defines a functor
τ : eH-mod−→ eH-mod

and this induces an action of k××k×× (W ∧⋊N ) on the category eH-mod. Similarly,
we can define a functor

τ : A0-mod−→A0-mod

and an action of k××k×× (W ∧⋊N ) on the category A0-mod. There is a commutative
diagram

(7.4.1) eH−-modgr
Ind //

τ

��

eH-modgr

τ

��
eH−-modgr

Ind
// eH-modgr

The next proposition is now clear.

Proposition 7.4.2. — Given E ∈ Irr(kW ) and τ= (ξ,ξ′,γ⋊ g ) ∈ k××k×× (W ∧⋊N ), we

have
τ
∆̃(E )≃ ∆̃(g E ⊗γ−1)

and

ΩE (
τz ) = τ
�
Ωg E⊗γ−1(z )
�

for all z ∈ Z .
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Corollary 7.4.3. — Given E ∈ Irr(kW ), then ΩE : Z → k[C ] is a bigraded morphism. In

particular, Ker(ΩE ) is a bi-homogeneous ideal of Z .

7.5. Case T = 1

It follows from Proposition 3.3.2 that the Z-grading on Ḣ is inner. We put ∆̇(E ) =
Ḣ⊗eH ∆̃(E ) = ∆̃(E )⊗k[T ]

�
k[T ]/(T −1)
�
.

Let R be a commutative noetherian k[C ]-algebra. We assume that given any fam-
ily E1, E2, . . . , En−1, En = E1 ∈ Irr(kW ) and given any family a1, . . . , an ∈Z with ai 6= ai+1

and (CEi
−CEi+1

+ai −ai+1)1R non invertible in R for 1 ¶ i ¶ n − 1, then a1 = an . Note
that this assumption is automatically satisfied if R is a local ring.

Let Ȯ (R ) be the category of finitely generated R Ḣ-modules that are locally nilpo-
tent for the action of V . Theorem F.2.10 shows that this is a highest weight category
[GGOR, §3].

Theorem 7.5.1. — Ȯ (R ) is a highest weight category over R with set of standard objects

{R ∆̇(E )
�
}E ∈Irr(kW ). The order is given by E > F if (CE −CF )1R ∈Z>0.

Let F1 be the set of height one prime ideals p of k[C ] such that Õ (k(〈p, T − 1〉)) is
not semisimple. Note that given m a maximal ideal of k[C ], the category Ȯ (k(m)) is
not semisimple if and only if there is p ∈F1 such that p⊂m.

We have the following classical semisimplicity result (an improvement of which
will be given in Corollary 8.3.3 below, using the KZ functor).

Theorem 7.5.2. — The ideals in F1 are of the form (CE −CF − r ) for some E , F ∈ Irr(W )

such that CE 6=CF and some r ∈Z \ {0}. They correspond to affine hyperplanes inK (Q).

Assume R is a field and (CE −CF )1R 6∈Z− {0} for all E , F ∈ Irr(kW ). Then the category

Ȯ (R ) is semisimple.

In particular, if R is a field and Q∩
�∑

(ℵ, j )∈ℵ◦ZKℵ, j 1R

�
= {0}, then Ȯ (R ) is semisimple.

Proof. — Under the assumption on CE ’s, the order on Irr(W ) is trivial, hence Ȯ (R )
is semisimple. The second assertion follows from Lemma 7.2.1.

Consider now the case R =C and consider the principal value logarithm log :C→
C. Proposition F.2.9 shows the following.

Proposition 7.5.3. — Let c ∈C (C) and let c̃ = (T = 1, c ) ∈ C̃ (C). There is an equivalence

of graded highest weight categories

Ȯ (c )(Z) ∼−→ Õ (c̃ ), ∆̇(E ) 7→ ∆̃(E )〈log(e CE (c ))−CE (c )〉.





CHAPTER 8

HECKE ALGEBRAS

Notation. From now on, and until the end of this book, we fix a
number field F contained in k, which is Galois over Q and contains
all the traces of elements of W , and we denote by O the integral
closure of Z in F . We also fix an embedding F ,−→C. By Proposition
2.4.1, there exists a W -stable F -vector subspace VF of V such that
V = k⊗F VF . Let a 7→ ā denote the complex conjugation (it stabilizes
F since F is Galois over Q). Finally, we denote by µW the group of
roots of unity of the field generated by the traces of elements of W .

The existence of such a field F is easy: we can take the field generated by the
traces of elements of W (it is Galois overQ as it is contained in a cyclotomic number
field). Note also that F contains all the roots of unity of the form ζeH

, where H ∈A .

8.1. Definitions

8.1.A. Braid groups. — Set VC =C⊗F VF . Given H ∈A , let HC =C⊗F (H ∩VF ). We
define

V
reg

C = VC \
⋃

H∈A
HC.

We have fixed a point vC ∈ V
reg

C (cf §6.6). Given v ∈ VC, we denote by v̄ its image
in the quotient variety VC/W . The braid group associated with W , denoted BW , is
defined as

BW =π1(V
reg

C /W , v̄C).

The pure braid group associated with W , denoted by PW , is then defined as

PW =π1(V
reg

C , vC).
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The covering V
reg

C → V
reg

C /W being unramified (Steinberg’s Theorem 2.3.2), we ob-
tain an exact sequence

(8.1.1) 1−→ PW −→ BW

pW−→W −→ 1.

Given H ∈A , we denote by σH a generator of the monodromy around the hyperplane
H , as defined in [BrMaRo, §2.A], and such that pW (σH ) = sH . This is an element
of BW well-defined up to conjugacy by an element of PW . Recall [BrMaRo, Theo-
rem 2.17] that

(8.1.2) BW is generated by (gσH g −1)H ∈A ,g∈PW
.

It can be proven [Bes2, BrMaRo] that BW is already generated by (σH )H ∈A , for a
suitable choice of the elements σH .

We denote by πz the image in BW of the path in V
reg

C defined by

πz : [0, 1] −→ V
reg

C

t 7−→ e 2iπt /z vC.

Note that [BrMaRo, Lemma 2.22]

(8.1.3) πz ∈ Z(BW ).

The image of πz in W is the generator wz = e 2iπ/z IdV of W ∩Z (GLk(V )). We put
π= (πz )

z ∈ PW ∩Z(BW ).

8.1.B. Generic Hecke algebra. — Recall that ℵ◦ is the set of pairs (ℵ, j ) with ℵ ∈
A /W and 0 ¶ j ¶ eℵ−1 (see §2.3).

Consider the affine variety Q = (Gm )
ℵ◦ over O and its integral and integrally

closed commutative ring of functions O [Q] = O [(q±1
ℵ, j
)(ℵ, j )∈ℵ◦]. Its fraction field is

F (Q). Given ℵ ∈A /W , H ∈ ℵ and 0 ¶ j ¶ eH −1= eℵ−1, we put qH , j = qℵ, j .

The generic Hecke algebra associated with W , denoted byH , is the quotient of the
group algebra O [Q]BW by the ideal generated by the elements

(8.1.4)
eH−1∏

j=0

(σH −ζ j
eH

q
|µW |
H , j ),

where H runs overA . Given H ∈A , let TH denote the image of σH inH . By (8.1.2),

(8.1.5) H is generated by (b TH b −1)H ∈A ,b∈PW
,

where we still denote by b the image inH of an element b ∈ BW . If H ∈A , then

(8.1.6)
eH−1∏

j=0

(TH −ζ j
eH

q
|µW |
H , j ) = 0.
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Note that

(8.1.7) TH is invertible inH .

The following lemma follows immediately from [BrMaRo, Proposition 2.18]:

Lemma 8.1.8. — The specialization qℵ, j 7→ 1 gives an isomorphism of O -algebras O ⊗O [Q]
H

∼−→OW .

Let a 7→ ā denote the unique automorphism of the Z-algebra O [Q]which extends
the complex conjugation on O and such that qℵ, j = q−1

ℵ, j
.

Let us now state a basic conjecture (cf [BrMaRo, §4.C] for (1) and [BrMaMi1,
§2.A] for (2)).

Conjecture 8.1.8. — (1) H is a free O [Q]-module of rank |W |.
(2) There exists a symmetrizing form τH :H →O [Q] such that:

(a) After the specialization of Lemma 8.1.8 (i.e. qℵ, j 7→ 1), τH specializes to the

canonical symmetrizing form of OW (i.e. w 7→ δw ,1).

(b) If b ∈ BW , then

τH (π)τH (b −1) = τH (bπ).

Some remarks.
• There is at most one form τH satisfying (1) and (2).

• Conjecture 8.1.8 is known to hold for all but finitely many irreducible W ’s (cf
[Marin] for a report on the status on this conjecture). It holds in particular when W

is a Coxeter group and when W has type G (d e , e , r ).

• If Conjecture 8.1.8 holds, then τH (π) 6= 0 since, by the property (1) of the state-
ment (b) and by (8.1.3), τH (π) specializes to 1 through qH , j 7→ 1.

• Assumption (1) is known to hold after tensoring by F [ER, Lo, MP, Et].

When considering Hecke algebras over a base ring that does not contain Q, we
will assume that Part (1) of Conjecture 8.1.8 holds.
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8.1.C. Cyclotomic Hecke algebras. — We will not use here the classical definition
of cyclotomic Hecke algebras [BrMaMi1, §6.A], [Chl4, Definition 4.3.1], since we
will need to work over a sufficiently large ring allowing us to let the parameters
vary as much as possible.

Notation. Following [Bon1], [Bon2] and [Bon3], we will use an
exponential notation for the group algebra O [R], which will be de-
noted by O [qR]: O [qR] =⊕r∈R O qr , with qr qr ′ = qr+r ′ . Since O is
integral and R is torsion-free, O [qR]is also integral and we denote by
F (qR) its fraction field. If a =

∑
r∈Rar qr , we denote by deg(a ) (re-

spectively val(a )) its degree (respectively its valuation), that is, the
element of R∪{−∞} (respectively R∪{+∞}) defined by

deg(a ) =max{r ∈R | ar 6= 0}
(respectively val(a ) =min{r ∈R | ar 6= 0}).

We have deg(a ) = −∞ (respectively val(a ) = +∞) if and only if a = 0. The usual
properties of degree and valuation (with respect to the sum and the product) are of
course satisfied. Let us start with an easy remark:

Lemma 8.1.9. — The ring O [qR] is integrally closed.

Proof. — This follows from the fact that O [qR] =
⋃
Λ⊂RO [qΛ], where Λ runs over

the finitely generated subgroups of R, and that, if Λ has Z-rank e , then O [qΛ] ≃
O [t±1

1
, . . . , t±1

e
] is integrally closed.

Fix a family k = (kℵ, j )(ℵ, j )∈ℵ◦ of real numbers (as usual, if H ∈ ℵ and 0 ¶ i ¶ eH − 1,
then we set kH , j = kℵ, j ). The cyclotomic Hecke algebra (with parameter k ) is the O [qR]-
algebraH cyc(k ) =O [qR]⊗O [Q]H , where O [qR] is viewed as an O [Q]-algebra through
the morphism

Θ
cyc

k : O [Q] −→ O [qR]
qℵ, j 7−→ qkℵ, j .

Let TH denote the image of TH inH cyc(k ); then

(8.1.10) H cyc(k ) is generated by (ḡ TH ḡ −1)H ∈A ,g∈PW

and, if H ∈A , then

(8.1.11)
eH−1∏

j=0

(TH −ζ j
eH

q|µW |kH , j ) = 0.
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Remark 8.1.12. — It follows from Lemma 8.1.8 that, after the specialization O [qR]→
O , qr 7→ 1 (this is the augmentation morphism for the group R), we obtain O ⊗O [qR]
H cyc(k )≃OW .

Similarly,H cyc(0)≃O [qR]W . �

Remark 8.1.13. — Let (λℵ)ℵ∈A /W be a family of real numbers and, if H ∈ ℵ, set λH =

λℵ. Let k ′ℵ, j
= kℵ, j + λℵ and let k ′ = (k ′ℵ, j

)(ℵ, j )∈ℵ◦ . The map ḡ TH ḡ −1 7→ q−λH ḡ TH ḡ −1

extends to an isomorphism of O [qR]-algebrasH cyc(k )
∼−→H cyc(k ′).

Hence, if we take λℵ = −(kℵ,0 + kℵ,1 + · · ·+ kℵ,eℵ−1)/eℵ, then H cyc(k ) ≃H cyc(k ′), with
k ′ ∈K (R).

This shows that, in the study of cyclotomic Hecke algebras, it is enough to con-
sider the case of parameters in the subspaceK of Rℵ

◦
. �

Remark 8.1.14. — The group algebra O [qK ] of any characteristic 0 field K is inte-
grally closed. �

8.2. Coxeter groups

We assume in §8.2 that W is a Coxeter group (cf §2.6 for the notations). We as-
sume F ⊂R and vC ∈CR.

8.2.A. Braid groups. — For s , t ∈ S , let ms t denote the order of s t in W . For s ∈ S

and H = Ker(s − IdV ), let σs =σH be the loop in V
reg

C /W that is the image of the path

[0, 1] −→ V
reg

C

t 7−→ e iπt
�vR− s (vR)

2
+

vR+ s (vR)

2

�

from vR to s (vR). With this notation, BW admits the following presentation [Bri]:

(8.2.1) BW :





Generators: (σs )s∈S ,

Relations: ∀ s , t ∈ S , σsσtσs · · ·︸ ︷︷ ︸
ms t times

=σtσsσt · · ·︸ ︷︷ ︸
ms t times

.

Given w = s1s2 · · ·sl a reduced decomposition of w , we set σw = σs1
σs2
· · ·σsl

: it is a
classical fact that σw does not depend on the choice of the reduced decomposition.
Moreover,

(8.2.2) π=σ2
w0

.

8.2.B. Hecke algebras. —
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Generic case. — Given s ∈ S , we put qs , j = qKer(s−IdV ), j . It follows from (8.2.1) that the
generic Hecke algebra H admits the following presentation, where Ts denotes the
image of σs inH :

(8.2.3) H :





Generators: (Ts )s∈S ,

Relations: ∀ s ∈ S , (Ts −q2
s ,0
)(Ts +q2

s ,1
) = 0,

∀ s , t ∈ S , Ts Tt Ts · · ·︸ ︷︷ ︸
ms t times

= Tt Ts Tt · · ·︸ ︷︷ ︸
ms t times

.

Given w = s1s2 · · · sl a reduced decomposition of w , we set Tw = Ts1
Ts2
· · ·Tsl

. This is
the image of σw in H , hence Tw does not depend on the choice of the reduced
decomposition. Moreover,

(8.2.4) H =
⊕
w∈W

O [Q]Tw .

Note that Tw Tw ′ = Tw w ′ if ℓ(w w ′) = ℓ(w ) + ℓ(w ′). Note also that the basis (Tw )w∈W of
H depends on the choice of S , that is, of vR.

Cyclotomic case. — We take k = (kℵ, j )ℵ∈A /W , j∈{0,1} ∈K (R). Remark 8.1.13 shows that
assuming kℵ,0 + kℵ,1 = 0 does not restrict the class of algebras we are interested in.
Recall that for H ∈A , we set csH

= kH ,0−kH ,1 = 2kH ,0 =−2kH ,1. The cyclotomic Hecke
algebraH cyc(k ) is the O [qR]-algebra with the following presentation:

(8.2.5) H cyc(k ) :





Generators: (Ts )s∈S ,

Relations: ∀ s ∈ S , (Ts −qcs )(Ts +q−cs ) = 0,

∀ s , t ∈ S , Ts Tt Ts · · ·︸ ︷︷ ︸
ms t times

= Tt Ts Tt · · ·︸ ︷︷ ︸
ms t times

.

8.3. KZ functor

In this section §8.3, we assume that k = C and we consider C and Q as complex
analytic manifolds.

8.3.A. Analytic manifolds. — We denote by C{X } the ring of analytic functions
on a complex manifold X .

Let exp :C →Q be the analytic map given by qH , j = e 2iπKH ,− j /|µW |.
Let U be a submanifold of C such that

– exp restricts to an isomorphism U
∼−→ exp(U )

– given any E1, E2, . . . , En−1, En = E1 ∈ Irr(kW ) and u1, . . . , un−1 ∈U such that CEi
−

CEi+1
takes a non-zero integral value at ui for 1 ¶ i ¶ n−1, then CE1

(u1) = CE1
(un−1).

Our assumptions on U ensure that Ȯ (C{U }) is a highest weight category over
C{U } (Theorem 7.5.1).
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8.3.B. KZ functor and properties. — Let us recall the construction of the KZ func-
tor KZ : Ȯ (C{U })→ (C{U }H )-mod and its main property as in [GGOR, §5.3]. Our
change of Dunkl operators corresponds to a twist of the monodromy representation
of [GGOR] by the one-dimensional representation of BW given by σH 7→ qH ,0.

Let M ∈ Ȯ (C{U }) and let M reg =C{U }Ḣreg⊗eH M . The isomorphism Θ
reg (Theorem

3.1.11(d)) makes M reg into a (C{U }⊗D(V reg)⋊W )-module and the Morita equivalence
of Lemma 3.1.8(b) produces a (C{U } ⊗D(V reg/W ))-module M̄ reg. It has regular sin-
gularities and taking horizontal sections, we obtain a C{U }BW -module dR(M̄ reg)v̄C ,
finitely generated as a C{U }-module. The action of C{U }BW on dR(M̄ reg)v̄C factors
through an action of C{U }H : the resulting (C{U }H )-module is KZ(M ).

The KZ functor satisfies a “double endomorphism Theorem” property [GGOR,
Theorems 5.14 and 5.16].

Theorem 8.3.1. — The functor KZ : Ȯ (C{U })→ (C{U }H )-mod is exact and its restric-

tion to Proj(Ȯ (C{U })) is fully faithful. It induces an isomorphism

Z (Ȯ (C{U })) ∼−→ Z (C{U }H )
and an equivalence

Ȯ (C{U })/{M |M reg = 0} ∼−→ (C{U }H )-mod .

8.3.C. Semi-simplicity. — Let c ∈C (C) and q = exp(c ). Theorem 8.3.1 shows that
the semisimplicity of Ȯ (Cc ) is equivalent to that of C[q ]H . From Theorem 7.5.2,
we deduce the following [Rou, Proposition 5.4]. Note that this result is equivalent
to a result of Chlouveraki on Schur elements obtained independently [Chl4, Theo-
rem 4.2.5].

Corollary 8.3.2. — If the subgroup of C× generated by {q |µW |
ℵ, j }(ℵ, j )∈ℵ◦ is torsion-free, then

C[q ]H is semisimple.

Proof. — Let k = κ(c ) and let Γ0 be the subgroup of C generated by the kℵ, j ’s for
(ℵ, j ) ∈ ℵ◦. By assumption, Γ0/(Z ∩ Γ0) is torsion free. As a consequence, there is a
subgroup Γ ′ of Γ0 such that Γ0 = Γ ′ × (Z ∩ Γ0). Let p : Γ0 → Γ ′ be the projection, let
k ′ = p (k ) and let c ′ = κ−1(k ′). Theorem 7.5.2 shows that Ȯ (Cc ′) is semisimple, hence
C[q ]H is semisimple, since C[exp(c ′)]H ≃C[exp(c )]H .

Corollary 8.3.2 provides an improvement of Theorem 7.5.2 using now that the
semisimplicity of C[q ]H implies that of Ȯ (Cc ) [Rou, Proposition 5.4].

Corollary 8.3.3. — The prime ideals in F1 correspond to affine hyperplanes of K of the

form
∑
(ℵ, j )∈ℵ◦ aℵ, j Kℵ, j =

b
r for some a ∈ Zℵ◦ with gcd({aℵ, j }) = 1 and r, b ∈ Z, r ¾ 2, b ¾ 1

and gcd(r, b ) = 1.

If (Q−Z)∩
�∑

(ℵ, j )∈ℵ◦Zkℵ, j

�
= ;, then Ȯ (Cc ) is semisimple.
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Note that the affine hyperplane of K coming from a prime ideal p in F1 has a
unique equation of the form

∑
(ℵ, j )∈ℵ◦ ap,ℵ, j Kℵ, j =

bp

rp
as in the corollary. We define a

map m ′ :F1→K (Z) by m ′(p) =
∑
(ℵ, j )∈ℵ◦ ap,ℵ, j Kℵ, j .

Given p ∈ F1, let r ′
p

be the minimal positive integer such that |µW |r ′psec∗(m ′(p)) ∈
Zℵ

◦
. We define a map F1 → Zℵ

◦
by setting m (p)ℵ, j = |µW |r ′p(sec∗(m ′(p)))ℵ,− j . The ele-

ments of Zℵ
◦

can be viewed as functions on (Gm )
ℵ◦ . The previous results have the

following corollary.

Corollary 8.3.4. — The algebra C[q ]H is semisimple if and only if m (p)(q ) 6= e 2iπ|µW |bp/rp

for all p ∈F1.

Note that the set {(m (p), |µW |bp/rp (mod Z))}p∈F1
is finite, so that Corollary 8.3.4

provides a finite set of conditions. Given p ∈ F1, let Ψp ∈ F [t ] be the minimal poly-
nomial of e 2iπ|µW |bp/rp .

8.4. Representations

The following result is due to Malle [Mal3, Theorem 5.2], the difficulty being the
statement on splitting.

Theorem 8.4.1 (Malle). — The F (Q)-algebra F (Q)H is split semisimple.

Since the algebra F W is also split semisimple (by Benard-Bessis Theorem 2.4.2),
it follows from Tits Deformation Theorem [GePf, Theorem 7.4.6] that we have a
bijective map

Irr(W )
∼−→ Irr(F (Q)H )

E 7−→ E gen

defined by the following property: the character of E is the specialization of the
character of E gen through qℵ, j 7→ 1.

Let ωgen

E : Z(F (Q)H ) −→ F (Q) denote the central character associated with the
representation E : given a ∈ Z(F (Q)H ), we define ωgen

E (a ) as the element of F (Q) by
which a acts on E gen. This is a morphism of F (Q)-algebras. Since O [Q] is integrally
closed, ωgen

E restricts to a morphism of O [Q]-algebras ωgen

E : Z(H ) −→ O [Q]. We
denote by ωE : Z(OW ) → O the usual central character (specialization of ωgen

E at
q= 1).

The image of πz ∈ Z(BW ) in H belongs to the center of this algebra. Hence, one
can evaluate ωgen

E at πz and we recover the formula of [BrMi, Proposition 4.16].
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Proposition 8.4.2. — Given E ∈ Irr(W ), we have

ω
gen

E (πz ) =ωE (wz )
∏

(ℵ, j )∈ℵ◦
q
|µW |

z

m E
ℵ, j
|ℵ|eℵ

dim E
ℵ, j .

Proof. — Let U be an open submanifold of C satisfying the assumptions of §8.3.A.
The element wz e 2iπeu/z acts on objects M of OU and defines an element of Z(OU )

×. Its
action on KZ(M ) is given by πz . We deduce from Proposition 7.2.2 that πz acts on
KZ(∆(E )) by ωE (wz )e

2i CE /z and the proposition follows from Lemma 7.2.1.

The following result follows from Corollary 8.3.2.

Corollary 8.4.3. — The F (qR)-algebra F (qR)H cyc(k ) is split semisimple.

By Tits Deformation Theorem, we get a sequence of bijective maps

Irr(W )
∼−→ Irr(F (qR)H cyc(k ))

∼−→ Irr(F (Q)H )
χ 7−→ χ

cyc

k 7−→ χgen

such that χcyc

k =Θ
cyc

k ◦χgen.
Finally, letωcyc

χ ,k : Z(H cyc(k ))−→O [qR] denote the central character associated with
χ

cyc

k . It follows from Proposition 8.4.2 that

(8.4.4) ω
cyc

χ ,k (π) = q|µW |Cχ (k ).

8.5. Hecke families

We assume in §8.5 that Part (1) of Conjecture 8.1.8 holds.

8.5.A. Definition. — We will call Hecke ring, and we denote by O cyc[qR], the ring

O cyc[qR] =O [qR][
�
(1−qr )−1
�

r∈R\{0}].

Given b a central idempotent (not necessarily primitive) of O cyc[qR]H cyc(k ), we de-
note by IrrH (W , b ) the set of irreducible representations E of W such that E

cyc

k ∈
Irr(F (qR)H cyc(k )b ).

Definition 8.5.1. — A Hecke k-family is a subset of Irr(W ) of the form IrrH (W , b ),

where b is a primitive central idempotent of O cyc[qR]H cyc(k ).

The Hecke k -families form a partition of Irr(W ).

Lemma 8.5.2 (Broué-Kim). — If E and E ′ are in the same Hecke k -family, then CE (k ) =

CE ′(k ).
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Proof. — We could apply the argument contained in [BrKi, Proposition 2.9(2)].
However, our framework is slightly different and we propose a different proof,
based on the particular form of ωcyc

E ,k (π) (see 8.4.4).
Let E = {r1, r2, . . . , rm}, with ri 6= r j if i 6= j , denote the image of the map Irr(W )→R,

E 7→ |µW |CE (k ). If 1 ¶ j ¶m , we set

F j = {E ∈ Irr(W )
�� |µW |CE (k ) = r j }.

Given E ∈ Irr(W ), let eE ,k denote the associated primitive central idempotent of
F (qR)H cyc(k ). We set

b j =
∑

E ∈F j

eE ,k .

To show the lemma, it is sufficient to check that b j ∈ O cyc[qR]H cyc(k ). In O cyc[qR]H cyc(k ),
we have

π= qr1 b1+qr2 b2+ · · ·+qrm bm .

Hence,




b1 + b2 + · · · + bm = 1

qr1 b1 + qr2 b2 + · · · + qrm bm = π
· · ·

q(m−1)r1 b1 + q(m−1)r2 b2 + · · · + q(m−1)rm bm = πm−1.

The determinant of this system is a Vandermonde determinant, equal to
∏

1 ¶ i< j ¶m

(qri −qr j ),

which is invertible in the Hecke ring O cyc[qR] by construction. Since 1, π,. . . , πm−1 ∈
H cyc(k ), the result follows.

8.5.B. Reflections of order 2. — In this section §8.5.B, we assume that all the reflec-
tions of W have order 2. We thank Maria Chlouveraki for explaining us the main
result of this section.

Let O [Q] → O [Q], f 7→ f † denote the unique involutive automorphism of O -
algebra exchanging qℵ,0 and qℵ,1 for all ℵ ∈A /W . Let O [Q]BW → O [Q]BW , a 7→ a †

denote also the unique semilinear (for the involution f 7→ f † of O [Q]) automor-
phism such that β † = ǫ(pW (β ))β for all β ∈ BW . The relations (8.1.4) are stable under
this automorphism. So it induces a semilinear automorphism H →H , h 7→ h † of
the generic Hecke algebra.

This automorphism, after the specialization qℵ, j 7→ 1, becomes the unique O -linear
automorphism of OW which sends w ∈W to ǫ(w )w . In other words, it is the auto-
morphism induced by the linear character ǫ.
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Similarly, since kℵ,0+kℵ,1 = 0, if we still denote by O [qR]→O [qR], f 7→ f † the unique
automorphism of O -algebra such that (qr )† = q−r , then the specialization qℵ, j 7→ qkℵ, j

induces an O [qR]-semilinear automorphism of the algebra H cyc, still denoted by
h 7→ h †. If χ ∈ Irr(W ), let (χgen)† (respectively (χcyc

k )
†) denote the composition of

χgen (respectively χcyc

k ) with the automorphism †: it is a new irreducible character
of F (Q)H (respectively F (qR)H cyc(k )). Since it is determined by its specialization
through qℵ, j 7→ 1 (respectively qr 7→ 1), we have

(8.5.3) (χgen)† = (χǫ)gen and (χ
cyc

k )
† = (χǫ)

cyc

k .

As the automorphism f 7→ f † of O [qR] extends to the ring O cyc[qR], the next lemma
follows immediately:

Lemma 8.5.4. — Assume that all the reflections of W have order 2. If F is a Hecke k -

family, then Fǫ is a Hecke k -family.

8.5.C. About the coefficient ring. — It might seem strange to work with such a
large coefficient ring (far from being Noetherian for instance). A first argument for
this choice is that this ring is still integral and integrally closed.

Moreover, this choice allows to work with a fixed ring, whatever the value of the
parameter k is: as we let k vary in a real vector space of parameters, this choice
becomes more natural. Also, as it has been seen in Corollary 8.4.3, the fact that it is
possible to extract n-th roots of all “powers” of q implies immediately the splitness
of all the cyclotomic Hecke algebras over the same fixed ring.

This ring is of the form O [Γ ], where Γ is a totally ordered abelian group: this
allows to define for instance, thanks to the notion of degree and valuation, the a

and A-invariants associated with irreducible characters of W (even though we will
not used them in this book). Finally, as we will see in §8.6, it is also the general
framework for Kazhdan-Lusztig theory, which we aim to generalize to complex
reflection groups.

It is nevertheless necessary to compare the notion of Hecke families we have
introduced in §8.5 with the classical definitions. In order to do so, let B be a com-
mutative integral O [Q]-algebra, with fraction field FB . Let L B denote the subgroup
of B× generated by {1B qℵ, j}(ℵ, j )∈ℵ◦ , a quotient of Zℵ

◦
. We assume that L B has no tor-

sion, that O [L B ] embeds in B , and that F [L B ]∩B = O [L B ]. As in Corollary 8.4.3, the
FB -algebra FBH is split semisimple and we get a bijective map Irr(W )

∼−→ Irr(FBH ).
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Example 8.5.5. — Let Λ be a torsion-free abelian group. As in Lemma 8.1.9, note
that O [Λ] is integrally closed. Let q : ℵ◦ → Λ be a map. It extends to a morphism
of groups Zℵ

◦ → Λ and to a morphism between group algebras O [Q]→ O [Λ]. The
algebra B =O [Λ] satisfies the previous assumption. �

Let B cyc = B [(1−v )−1
v∈LB−{0}] (we note additively the abelian group L B ). As in §8.5.A,

we have a notion of Hecke B -family.

Proposition 8.5.6. — The Hecke B -families coincide with the Hecke O [L B ]-families.

Proof. — Let Λ= L B . We have B cyc∩FO [Λ] =O [Λ]cyc. We deduce that, if b is a primitive
central idempotent of FO [Λ]H such that b ∈ B cycH , then b ∈O [Λ]cycH .

The previous proposition reduces the study of Hecke families to the case where
B =O [Λ] and Λ is a torsion-free quotient of Zℵ

◦
.

LetM =m (F1), a finite subset Zℵ
◦

(cf end of §8.3.C). Consider now a torsion-free
abelian group Λ and a map q : ℵ◦→ Λ as in Example 8.5.5. Let Λ′ be a torsion-free
abelian group and let f :Λ→Λ′ be a surjective morphism of groups.

Proposition 8.5.7. — If q (M )∩Ker f = {0}, then the Hecke O [Λ]-families coincide with

the Hecke O [Λ′]-families.

Proof. — The morphism f induces a surjective morphism between group algebras
O [Λ]→O [Λ′] which extends to a surjective morphism of algebras between localiza-
tions f : O [Λ][(1− v )−1

v∈Λ−Ker f
]→O [Λ′]cyc. Let h ∈ F [Λ][{Ψp(m (p))−1}p∈F1 ,m (p) 6∈Kerq ] (cf end

of §8.3.C). If h ∈ O [Λ]cyc, then h ∈ f −1(O [Λ′]cyc).
It follows from Corollary 8.3.4 that the idempotents of Z(F (Λ)H ) are in the alge-

bra F [Λ][{Ψp(m (p))−1}p∈F1 ,m (p) 6∈Kerq ]H . Consequently, any idempotent of Z(O [Λ]cycH )

is contained in O [Λ][(1−v )−1
v∈Λ−Ker f

]H . Proposition D.1.2 shows that the central idem-
potents of O [Λ][(1− v )−1

v∈Λ−Ker f
]H are in bijection with those of O [Λ′]cycH and the

result follows.

Given Λ and q as above, there exists a morphism of groups f : Λ→ Z such that
Ker f ∩ q (M ) = {0}. So Proposition 8.5.7 reduces the study of Hecke O [Λ]-families
(and so of Hecke B -families, by the above arguments) to the case of Hecke O [t ±1]-
families, for a choice of integers mℵ, j ∈ Z defining a morphism of groups Zℵ

◦ →
t Z, qℵ, j 7→ t mℵ, j . This is the usual framework for Hecke families.
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8.6. Kazhdan-Lusztig cells

Assumption. From now on, and until the end of §8.6, we assume
that W is a Coxeter group and we fix a family k = (kℵ, j )ℵ∈A /W , j∈{0,1} ∈
C R. We denote by c : Ref(W )→ R, the map defined by csH

= 2kH ,0

for all H ∈A . It is constant on conjugacy classes.

Giving the map c : Ref(W ) → R constant on conjugacy classes of reflections is
equivalent to giving the family k ∈C R.

8.6.A. Kazhdan-Lusztig basis. — The involution a 7→ ā of O [qR] extends to an
O [qR]-semilinear involution of the algebraH cyc(k ) by setting

T w = T −1
w −1.

If X is a subset of R, we set O [qX] =⊕r∈XO qr . We also set

H cyc(k )>0 =
⊕
w∈W

O [qR>0] Tw .

The following theorem is proven in [KaLu] (equal parameter case) and [Lus1] (gen-
eral case).

Theorem 8.6.1 (Kazhdan-Lusztig). — For w ∈W , there exists a unique Cw ∈H cyc(k )

such that �
C w = Cw ,

Cw ≡ Tw modH cyc(k )>0.

The family (Cw )w∈W is an O [qR]-basis ofH cyc(k ).

Note that Cw depends only on k (i.e., on c ). For example, if s ∈ S , then

Cs =





Ts −q cs if cs > 0,
Ts si cs = 0,
Ts +q−cs if cs < 0.

Similarly, as well as Tw , Cw depends on the choice of S . The basis (Cw )w∈W is called
the Kazhdan-Lusztig basis ofH cyc(k ).
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8.6.B. Definition. — For x , y ∈W , we will write x
L ,c←− y if there exists h ∈H cyc(k )

such that Cx appears with a non-zero coefficient in the decomposition of hCy in the
Kazhdan-Lusztig basis. Let ¶c

L
denote the transitive closure of this relation; it is a

pre-order and we denote by ∼KL,c
L the associated equivalence relation.

We define similarly
R ,c←− by multiplying on the right by h as well as ¶c

R
and ∼KL,c

R .
Let ¶c

LR
be the transitive relation generated by ¶c

L
and ¶c

R
, and let ∼KL,c

LR denote the
associated equivalence relation.

Definition 8.6.2. — We call Kazhdan-Lusztig left c -cells of W the equivalence classes

for the relation ∼KL,c
L . We define similarly Kazhdan-Lusztig right c -cells and Kazhdan-

Lusztig two-sided c -cells using ∼KL,c
R and ∼KL,c

LR respectively. If ? ∈ {L , R , LR }, we denote

by KLCellc
?
(W ) the corresponding set of Kazhdan-Lusztig c -cells in W .

If ? ∈ {L , R , LR } and if Γ is an equivalence class for the relation ∼KL,c
? (that is, a

Kazhdan-Lusztig c -cell of the type associated with ?), we set

H cyc(k )¶KL,c
? Γ
=
⊕

w¶
KL,c
? Γ

O [qR] Cw and H cyc(k )<KL,c
? Γ
=
⊕

w<KL,c
? Γ

O [qR] Cw ,

as well as

M ?
Γ
=H cyc(k )¶KL,c

? Γ
/H cyc(k )<KL,c

? Γ
.

By construction, H cyc(k )¶KL,c
? Γ

and H cyc(k )<KL,c
? Γ

are ideals (left ideals if ? = L , right
ideals if ? = R or two-sided ideals if ? = LR ) and M ?

Γ
is a left (respectively right)

H cyc(k )-module if ? = L (respectively ? = R ), or an (H cyc(k ),H cyc(k ))-bimodule if
?= LR . Note that

(8.6.3) M ?
Γ

is a free O [qR]-module with basis the image of (Cw )w∈Γ .

Definition 8.6.4. — If C is a Kazhdan-Lusztig left c -cell of W , we denote by [C ]KL

c
the

class of k⊗O [qR]M L
C

in the Grothendieck group K0(kW ) = Z Irr(W ) (here, the tensor prod-

uct k⊗O [qR] − is viewed through the specialization qr 7→ 1). We will call c -cellular KL-

character of W every character of the form [C ]KL
c

, where C is a left Kazhdan-Lusztig c -cell.

If Γ is a Kazhdan-Lusztig two-sided c -cell of W , we denote by IrrKL
Γ
(W ) the set of ir-

reducible characters of W appearing in k⊗O [qR]M LR
Γ

, viewed as a left kW -module. We

will call Kazhdan-Lusztig c -family every subset of Irr(W ) of the form IrrKL
Γ
(W ) where Γ

is a Kazhdan-Lusztig two-sided c -cell. We will say that IrrKL
Γ
(W ) is the Kazhdan-Lusztig

c -family associated with Γ , or that Γ is the Kazhdan-Lusztig two-sided c -cell covering

IrrKL
Γ
(W ).
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Since kW is semisimple and since k⊗O [qR]M LR
Γ

is a quotient of two-sided ideals
of kW , the Kazhdan-Lusztig c -families form a partition of Irr(W )

(8.6.5) Irr(W ) =
∐

Γ∈KLCellc
LR (W )

IrrKL
Γ
(W )

and, since kW is split,

(8.6.6) |Γ |=
∑

χ∈IrrKL
Γ
(W )

χ(1)2.

Moreover, if C is a Kazhdan-Lusztig left c -cell of W , we set

[C ]KL

c
=
∑

χ∈Irr(W )

multKL

C ,χ
χ ,

where multKL
C ,χ
∈N. Then:

Lemma 8.6.7. — With the previous notation, we have:

(a) If C ∈ KLCellc
L
(W ), then
∑

χ∈Irr(W )

multKL
C ,χ χ(1) = |C |.

(b) If χ ∈ Irr(W ), then
∑

C ∈KLCellc
L (W )

multKL
C ,χ
=χ(1).

Proof. — The equality (a) simply says that the dimension of [C ]KL

c
is equal to |C |

by (8.6.3). The equality (b) translates the fact that, since W is a disjoint union of
Kazhdan-Lusztig left c -cells, we have [kW ]kW =

∑
C ∈KLCellc

L (W )
[C ]KL

c
.

8.6.C. Properties of cells. — The algebraH cyc(k ) is endowed with an O [qR]-linear
involutive anti-automorphism which sends Tw on Tw −1: it will be denoted by h 7→ h ∗.
It is immediate that

(8.6.8) C ∗
w
=Cw −1,

which implies that, if x and y are two elements of W , then

(8.6.9) x ¶c
L

y if and only if x−1 ¶c
R

y −1

and so

(8.6.10) x ∼KL,c
L

y if and only if x−1 ∼KL,c
R

y −1.

In other words, the map KLCellc
L
(W )→ KLCellc

R
(W ), Γ 7→ Γ −1 is well-defined and bijec-

tive.
The next property is less obvious [Lus4, Corollary 11.7]

(8.6.11) x ¶c
?

y if and only if w0 y ¶c
?

w0 x if and only if y w0 ¶
c
?

x w0.

It follows that

(8.6.12) x ∼c
?

y if and only if w0 x ∼c
?

w0 y if and only if x w0 ∼c
?

y w0.
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Moreover, if C ∈ KLCellc
L
(W ), then [Lus4, Proposition 21.5]

(8.6.13) [w0C ]KL

c
= [C w0 ]

KL

c
= [C ]KL

c
· ǫ.

Similarly, if Γ ∈ KLCellc
LR
(W ), then [Lus4, proposition 21.5]

(8.6.14) IrrKL
w0Γ
(W ) = IrrKL

Γw0
(W ) = IrrKL

Γ
(W ) · ǫ.

This shows in particular that

(8.6.15) w0Γw0 = Γ .

So tensoring by ǫ induces a permutation of Kazhdan-Lusztig c -families and of c -
cellular KL-characters.

If γ : W → k× is a linear character (note that γ has values in {1,−1}), we set
γ · c : Ref(W ) → R, s 7→ γ(s )cs . The following Lemma is proven in [Bon2, Corol-
lary 2.5 and 2.6]:

Lemma 8.6.16. — If γ ∈W ∧ and let ? ∈ {L , R , LR }. Then:

(a) The relations ¶c
?

and ¶
γ·c
? coincide.

(b) The relations ∼KL,c
? and ∼KL,γ·c

? coincide.

(c) If C ∈ KLCellc

L
(W ) = KLCell

γ·c
L (W ), then [C ]KL

γ·c = γ · [C ]
KL

c
.

(d) If Γ ∈ KLCellc
LR
(W ) = KLCell

γ·c
LR (W ), then Irr

KL,γ·c
Γ

(W ) = γ · IrrKL,c
Γ
(W ).

The next result is easy [Lus4, Lemma 8.6]:

Lemma 8.6.17. — Assume that cs 6= 0 for all s ∈Ref(W ). Then:

(a) {1} and {w0} are Kazhdan-Lusztig left, right or two-sided c -cells.

(b) Let γ : W → k× be the unique linear character such that γ(s ) = 1 if cs > 0 and γ(s ) =−1

if cs < 0. Then [1 ]KL

c
= γ and [w0 ]

KL

c
= γǫ.

Remark 8.6.18. — In fact, [Lus4, Lemma 8.6] is proven whenever cs > 0 for all s . To
obtain the general statement of Lemma 8.6.17, it is sufficient to apply Lemma 8.6.16.�

Example 8.6.19 (Vanishing parameters). — If c = 0 (i.e. if cs = 0 for all s ), then Cw =

Tw , H cyc(0) = O [qR][W ] there is only one Kazhdan-Lusztig left, right or two-sided
0-cell, namely W . We then have IrrKL,0

W (W ) = Irr(W ) and [W ]
KL

0
=
∑
χ∈Irr(W )χ(1)χ . �



CHAPTER 9

RESTRICTED CHEREDNIK ALGEBRA AND
CALOGERO-MOSER FAMILIES

In this chapter, we start by recalling in §9.1 and §9.2 some results of Gordon [Gor1]
on the representations of the restricted Cherednik algebras. We do not need to ex-
tend the defining field for representations, as the algebras are split. This is useful to
derive consequences about the partition into Calogero-Moser two-sided cells (§ 10).

9.1. Representations of restricted Cherednik algebras

The restricted Cherednik algebra is the k[C ]-algebra H̄ defined by

H̄=H/p̄H= k[C ]⊗P H.

Theorem 4.1.2 gives a PBW decomposition for that algebra.

Proposition 9.1.1. — The map k[C ]⊗ k[V ]co(W ) ⊗ kW ⊗ k[V ∗]co(W ) → H̄ induced by the

product is an isomorphism of k[C ]-modules. In particular, H̄ is a free k[C ]-module of rank

|W |3.

The algebra H̄ inherits a (N×N)-grading, a Z-grading and a N-grading from eH (cf
§3.2).

Given E ∈ Irr(kW ), we put ∆̄(E ) =∆(E )⊗P k[C ], a Z-graded H̄-module. Note that
∆̄(E ) is isomorphic to k[C ]⊗k[V ]co(W )⊗E as a graded (k[C ]W )-module.

We put ∆̄(co) =∆(co)⊗P k[C ] =∆(co)⊗k[V ]W k= H̄e .

Let C be a prime ideal of C . We put H̄C = H̄⊗k[C ] k(C). Theorem F.2.7 has the
following consequence.

Theorem 9.1.2 ([BelTh]). — H̄C-modgr is a split highest weight category over k(C) with

standard objects the baby Verma modules ∆̄C(E ) = ∆̄(E )⊗k[C ] k(C), E ∈ Irr(kW ), and their

shifts.



114

Proposition 9.1.3. — Given E ∈ Irr(kW ), the H̄C-module ∆̄C(E ) has a unique simple quo-

tient LC(E ). The map Irr(kW ) −→ Irr(H̄C), E 7→ LC(E ) is bijective and the algebra H̄C is

split.

9.2. Calogero-Moser families

Let θC : k[C ]→ k(C) be the quotient map and let ΩC
E
= θC ◦ΩE = θC ◦ωE ◦Ω : Z → k(C)

for E ∈ Irr(W ).

Lemma 9.2.1. — If z ∈ Z , then z acts by multiplication by ΩC
E
(z ) on LC(E ).

Proof. — We may assume that z is Z-homogeneous of degree i . If i = 0, then the
lemma follows from Proposition 7.3.1. If i 6= 0, then, as LC(E ) is Z-graded and finite-
dimensional, z acts nilpotently on LC(E ) and, as it also acts by a scalar, this scalar
must be equal to 0. But Ω(z ) = 0 by (4.2.10), and the result follows.

Given b ∈ Idempr(Z(H̄C)), let IrrH(W , b ) denote the set of irreducible representa-
tions E of W such that ∆̄C(E ) is in the block H̄Cb , i.e., b ∆̄C(E ) 6= 0. Note that
E ∈ IrrH(W , b ) if and only if LC(E ) belongs to Irr(H̄Cb ). It follows from Proposi-
tion D.1.2 that

Idempr(Z̄C) = Idempr(Z(H̄C)).

So,

(9.2.2) Irr(W ) =
∐

b∈Idempr(Z̄C)

IrrH(W , b ).

A Calogero-Moser C-family is a subset of Irr W of the form IrrH(W , b ), where b ∈
Idempr(Z̄C).

The next lemma follows from Corollary D.2.4, Proposition 9.1.3 and Lemma 9.2.1.

Lemma 9.2.3. — Let E , E ′ ∈ Irr W . Then E and E ′ are in the same Calogero-Moser C-

family if and only if ΩC
E
=ΩC

E ′. Moreover, the map

(9.2.4)
ΘC : Irr W −→ Υ

−1(p̄C)

E 7−→ Ker ΩC
E

is surjective and its fibers are the Calogero-Moser C-families.

Let b ∈ Idempr(Z̄C). We denote byΩC
b

the common value of theΩC
E

for E ∈ IrrH(W , b ).
When C= 0, we put Ωb =Ω

C
b
. When C=Cc for some c ∈C , we put Ωc

b
=Ω

Cc

b .
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Corollary 9.2.5. — If z is a prime ideal of Z lying over p̄C, then the inclusion P ,−→ Z

induces an isomorphism P /p̄C
∼−→ Z /z.

Proof. — By Lemma 9.2.3, there exists E ∈ Irr(W ) such that z = Ker(ΩC
E
). Since ΩC

E
:

Z → k(C) factors through a surjective morphism Z → P /p̄C, the corollary follows.

Example 9.2.6. — We will call generic Calogero-Moser family every Calogero-Moser
C′-family, where C′ = 0. In this case, the map ΘC will be simply denoted by Θ. Every
Calogero-Moser C-family is a union of generic Calogero-Moser families. �

Example 9.2.7. — Given c ∈C , we define a Calogero-Moser c -family to be a Calogero-
Moser Cc -family. In this case, ΩCc

χ will be denoted by Ωc
χ and ΘCc

will be denoted by
Θc . �

Example 9.2.8. — We have |Υ −1
0
(0)| = 1, hence there is a unique Calogero-Moser 0-

family. �

9.3. Linear characters and Calogero-Moser families

From Proposition 7.4.2 we deduce the following result.

Proposition 9.3.1. — Given E ∈ Irr(W ) and τ= (ξ,ξ′,γ⋊g )∈ k××k×× (W ∧⋊N ) stabi-

lizing C, we have
τLC(E )≃ LC(

g E ⊗γ−1).

The following result follows from Proposition 7.4.2 with ξ= ξ′ = 1.

Corollary 9.3.2. — Let c ∈ C , let γ be a linear character of W and let F be a Calogero-

Moser c -family. ThenFγ is a Calogero-Moser γ · c -family.

Using Proposition 7.4.2 again, we obtain the following result.

Corollary 9.3.3. — Let τ = (ξ,ξ′,γ⋊ g ) ∈ k× × k×× (W ∧ ⋊N ) and let F be a Calogero-

Moser C-family. If τ stabilizes C, then Fγ is a Calogero-Moser C-family.

Corollary 9.3.4. — Let γ be a linear character of W and let F be a generic Calogero-

Moser family. ThenFγ is a generic Calogero-Moser family.

Corollary 9.3.5. — Assume that all the reflections of W have order 2. LetF be a Calogero-

Moser C-family. Then Fǫ is a Calogero-Moser C-family (recall that ǫ is the determinant).
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Proof. — The element τ = (−1, 1,ǫ⋊ 1) of k× × k× × (W ∧ ⋊N ) acts trivially on k[C ].
The result follows now from Corollary 9.3.3.

Example 9.3.6 (Generic families and linear characters). — Let γ ∈W ∧ and χ ∈ Irr(W )

be in the same generic Calogero-Moser family. Then Ωχ (eu) = Ωγ(eu), hence χ(s ) =
γ(s )χ(1) for all s ∈ Ref(W ). In other words, all the reflections of W are in the center
of χ (that is, the normal subgroup of W consisting of elements which acts on Eχ by
scalar multiplication). It follows that the center of χ is W itself, hence χ = γ.

Consequently, a linear character is alone in its generic Calogero-Moser family.
This result applies in particular to 1W and ǫ, and is compatible with Corollary 9.3.4.�

9.4. Graded dimension, b-invariant

By Proposition C.1.7, the elements of Idempr(Z̄C) have Z-degree 0. In particular,
given b ∈ Idempr(Z̄C), then b Z̄C is a finite-dimensional graded k(C)-algebra. The aim
of this section is to study this grading. We put ∆̄C(co) = ∆̄(co)⊗k[C ] k(C).

Theorem 9.4.1. — Let b ∈ Idempr(Z̄C) and letF = IrrH(W , b ). Then:

(a) dim
gr

k(C)
b Z̄C =
∑

χ∈F
fχ (t

−1) fχ (t).

(b) There exists a unique χ ∈F with minimal b-invariant, which we denote by χF .

(c) The coefficient of tbχF in fχF (t) is equal to 1.

(d) b ∆̄C(co) = b H̄Ce is a projective cover of LC(χF ).

(e) The algebra EndH̄C
(∆̄C(χF )) is a quotient of b Z̄C. In particular, it is commutative.

By (2.5.6), we obtain the following immediate consequence:

Corollary 9.4.2. — Given b ∈ Idempr(Z̄C), we have

dimk(C) b Z̄C =
∑

χ∈IrrH(W ,b )

χ(1)2.
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Remark 9.4.3. — Theorem 9.4.1 generalizes [Gor1, Theorem 5.6] and Corollary 9.4.2
generalizes [Gor1, Corollary 5.8] (case of families with only one element). As pointed
out to us by Gordon, in [Gor1, Theorem 5.6], pχ (t) = tbχ∗−bχ fχ (t)fχ∗ (t

−1) should be re-
placed by pχ (t) = fχ∗ (t)fχ∗ (t

−1) with the notation of [Gor1]. Note that the difference
with our result comes from the fact that we have used a Z-grading opposed to the
one of [Gor1, §4.1], which amounts to swapping V and V ∗ and so to swap, in this
formula, χ and χ∗. �

Proof of Theorem 9.4.1. — Lemma 7.1.3 shows that

[b ∆̄C(co)]
gr

H̄C
=
∑

χ∈F
fχ (t

−1)[∆̄C(χ)]
gr

H̄C
.

The right action of b Z̄C on b H̄Ce induces an isomorphism of graded algebras
b Z̄C

∼−→ e b H̄Ce (Corollary 4.2.7). We deduce now assertion (a):

dim
gr

k(C)(b Z̄C) = dim
gr

k(C)(e b ∆̄C(co)) =
∑

χ∈F
fχ (t

−1)dim
gr

k(C)

�
(k(C)[V ]co(W )⊗Eχ )

W
�
=
∑

χ∈F
fχ (t

−1)fχ (t).

Since EndH̄C
(b H̄Ce ) is isomorphic to the local commutative algebra b Z̄C, the H̄C-

module b H̄Ce is indecomposable (and of course projective), so it admits a unique
simple quotient LC(χF ), for some χF ∈F . The highest weight category structure of
H̄C-modgr shows that

[b H̄Ce ]− tbχF [∆̄C(χF )] ∈
⊕
χ∈F

tbχF +1Z[t][∆̄C(χ)].

The assertions (b), (c) and (d) follow.

Let M be the kernel of a surjection b H̄Ce → ∆̄C(χF ). Since EndH̄C
(b H̄Ce ) is gener-

ated by Z̄C, it follows that the H̄C-endomorphisms of b H̄Ce stabilize M . We obtain
by restriction a morphism of k(C)-algebras b Z̄C→ EndH̄C

(∆̄C(χF ))which is surjective
since b H̄Ce is projective.

Corollary 9.4.4. — Let z ∈ Z and let carz (t) ∈ P [t] denote the characteristic polynomial of

the multiplication by z in the P -module Z . Then

carz (t)≡
∏

χ∈Irr(W )

(t−Ωχ (z ))χ (1)
2

mod p̄.

Proof. — Let b ∈ Idempr(k(C )Z̄ ). Since z − Ωb (z ) is a nilpotent endomorphism of
b k(C )Z̄ , the characteristic polynomial of z on b k(C )Z̄ is (t−Ωb (z ))

dimk(C ) b k(C )Z̄ . Con-
sequently,

carz (t)≡
∏

b∈Idempr(k(C )Z̄ )

(t−Ωb (z ))
dimk(C ) b k(C )Z̄ mod p̄.
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Since Ωb (z ) = Ωχ (z ) for all χ ∈ IrrH(W , b ), the result follows from (9.2.2) and from
Corollary 9.4.2.

Corollary 9.4.5. — Let γ : W −→ k× be a linear character. Then Z is unramified over P

at Ker(Ωγ).

Proof. — Indeed, if bγ denotes the primitive idempotent of k(C )Z̄ associated with
γ, then IrrH(W , bγ) = {γ} by Example 9.3.6. This implies, by Corollary 9.4.2, that
dimk(C )(bγk(C )Z̄ ) = 1.

Set zγ =Ker(Ωγ) (we have zγ∩P = p̄). Then Z /zγ ≃ k[C ], hence Zzγ
/zγZzγ

≃ k(C ). But,
on the other hand, Zzγ

/p̄Zzγ
= bγk(C )Z̄ . So dimk(C )(Zzγ

/p̄Zzγ
) = 1, which implies that

p̄Zzγ
= zγZzγ

, as desired.

9.5. Exchanging V and V ∗

If E is a graded (k[V ]⋊W )-module, one can define

∆
∗(E ) = IndH

H+
(k[C ]⊗E ),

which is a graded H-module, as well as its reduction modulo p̄, denoted by ∆̄∗(E ),
which is a graded H̄-module. If C is a prime ideal, we also set ∆̄∗

C
(E ) = k(C)⊗k[C ]∆̄

∗(E ),
which is a graded H̄C-module.

Assume now that E ∈ Irr(W ). Then, as in Proposition 9.1.3, the H̄C-module ∆̄∗
C
(E )

is indecomposable and admits a unique simple quotient, which will be denoted by
L ∗
C
(E ). Moreover, the map

(9.5.1)
Irr(W ) −→ Irr(H̄C)

E 7−→ L ∗
C
(E )

is bijective.

Remark 9.5.2. — From Proposition 9.1.3 and (9.5.1), it follows that there exists a
unique permutationÆC of Irr(W ) such that

L ∗
C
(E ) = LC(ÆC(E ))

for all E ∈ Irr(W ). It turns out that the permutation ÆC is in general difficult to
compute, and that it depends heavily on the prime ideal C, as the reader can already
check when dimk V = 1. �
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We say that E and F belong to the same ∗-Calogero-Moser C-family if L ∗
C
(E ) and

L ∗
C
(F ) are two simple modules belonging to the same block of H̄C. It follows from

Remark 9.5.2 that E and F belong to the same ∗-Calogero-Moser C-family if and
only ifÆC(E ) andÆC(F ) belong to the same Calogero-Moser C-family.

However, there is another easier description of ∗-families which has been ex-
plained to us by Gwyn Bellamy. It follows from (7.1.1) that

Res
H̄C

H̄+
C

∆̄C(E )≃ k(C)⊗k[V ]co(W )⊗E .

Recall that N = |Ref(W )| and that k[V ]
co(W )
N is one dimensional, affording the charac-

ter ǫ (as a kW -module) and that k[V ]
co(W )
>N = 0. So one gets an injective morphism of

H̄+
C
-modules E ⊗ ǫ ,→Res

H̄C

H̄+
C

∆̄C(E ). By adjunction, one gets a non-zero morphism

(9.5.3) ∆̄
∗
C
(E ⊗ ǫ)−→ ∆̄C(E ).

In particular,

(9.5.4) the simple module L ∗
C
(E ⊗ ǫ) is a composition factor of ∆̄C(E ).

Since ∆̄∗
C
(E ) is indecomposable with unique simple quotient L ∗

C
(E ), this implies that

(9.5.5) the simple modules L ∗
C
(E ⊗ ǫ) and LC(E ) belong to the same block of H̄C.

Proposition 9.5.6. — The simple kW -modules E and F belong to the same Calogero-

Moser C-family if and only if E ⊗ǫ and F ⊗ǫ belong to the same ∗-Calogero-Moser C-family.

The following consequence was announced in Remark 4.2.12.

Corollary 9.5.7. — If z ∈ Z , then Ω(z ) = ǫΩ∗(z ).

Proof. — It is sufficient to prove that, for all E ∈ Irr(W ), we haveωE (Ω(z )) =ωE (
ǫ
Ω
∗(z )).

Since ωE (
ǫ
Ω
∗(z )) =ωE⊗ǫ(Ω

∗(z )), it is sufficient to prove that

ωE (Ω(z )) =ωE⊗ǫ(Ω
∗(z )).

Take C to be the zero ideal of k[C ], so that k(C) = k(C ). By Lemma 9.2.1 (and its
version obtained by swapping V and V ∗), we get thatωE (Ω(z )) is the scalar by which
z acts on the simple module LC(E )whileωE⊗ǫ(Ω

∗(z )) is the scalar by which z acts on
the simple module L ∗

C
(E ⊗ ǫ). So the result follows from (9.5.5).
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9.6. Geometry

The composition

(9.6.1) k[C ] �
� // Z

Ωb // // k[C ]

is the identity, which means that the morphism of k-varieties Ω♯b : C −→ Z in-
duced by Ωb is a section of the morphism π ◦ Υ : Z −→ C (see the diagram 5.7.2).
Lemma 9.2.3 says that the map

Idempr(k(C )Z̄ ) −→ Υ
−1(p̄)

b 7−→ Ker(Ωb )

is bijective or, in geometric terms, that the irreducible components of Υ −1(C × 0)

are in bijection with Idempr(k(C )Z̄ ), through the map b 7→ Ω♯b (C ). We deduce the
following proposition.

Proposition 9.6.2. — Let c ∈C . Then the following are equivalent:

(1) |Idempr(k(C )Z̄ )|= |Idempr(K̄c Z̄ )|.
(2) |Υ −1

c
(0)| is equal to the number of irreducible components of Υ −1(C ×0).

(3) Every element of Υ −1
c
(0) belongs to a unique irreducible component of Υ −1(C ×0).

(4) If b and b ′ are two distinct elements of Idempr(k(C )Z̄ ), then θc ◦Ωb 6= θc ◦Ωb ′.

We say that c ∈C is generic if it satisfies one of the equivalent conditions of Propo-
sition 9.6.2. It will be called particular otherwise. We will denote by C gen (respec-
tively C par) the set of generic (respectively particular) elements of C .

Corollary 9.6.3. — C gen is a Zariski dense and open subset of C and C par is Zariski

closed in C . If W 6= 1, then C par is of pure codimension 1 and contains 0.

Moreover, C gen and C par are stable under the action of k××k×× (W ∧⋊N ).

Proof. — The stability under the action of k× × k× × (W ∧ ⋊N ) is obvious. The fact
that C gen (respectively C par) is open (respectively closed) follows from Proposi-
tion D.2.11(2). Whenever W 6= 1, the trivial character is alone in its generic Calogero-
Moser family (see Example 9.3.6) while its Calogero-Moser 0-family is Irr(W ). This
shows that 0 ∈C par and, by Proposition D.2.11(1), C par has pure codimension 1.

We deduce the following from Example 9.3.6.

Corollary 9.6.4. — If c ∈ C is generic, then any linear character of W is alone in its

Calogero-Moser c -family.
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Corollary 9.6.5. — Let γ : W −→ k× be a linear character and assume that c is generic.

Then Z is unramified over P at Ker(Ωc
γ
).

Let us conclude with a short study of the smoothness of Z . Let b ∈ Idempr(Z̄C)

and let z̄b denote the prime ideal of Z equal to the kernel of ΩC
b

: Z → k(C). By [Gor1,
§5], we have the following characterization of smoothness.

Proposition 9.6.6. — The ring Z is regular at z̄b if and only if | IrrH(W , b )|= 1. Moreover,

H̄Cb ≃Mat|W |(b Z̄C)

and b Z̄C is a local finite dimensional k(C)-algebra with residue field k(C).

Now let c ∈C and assume that C= Cc . Let zb denote the point of Υ −1
c
(0)⊂Z c ⊂Z

corresponding to b .

Proposition 9.6.7. — With the above notation, the following are equivalent:

(1) Z is smooth at zb .

(2) Z c is smooth at zb .

Proof. — Let us first recall the following Lemma:

Lemma 9.6.8. — Let ϕ : Y → X be a morphism of k-varieties (not necessarily
reduced), let y ∈ Y and let x = ϕ(y ). We assume that there exists a morphism of
k-varieties σ :X →Y such that y =σ(x ) and ϕ ◦σ= IdX . Then

Ty (Y ) =Ty (ϕ
∗(x ))⊕Ty (σ(X )).

Here, Ty (Y ) denotes the tangent space to the k-variety Y and ϕ∗(x ) denotes the
(scheme-theoretic) fiber of ϕ at x , viewed as a closed k-subvariety of Y , not neces-
sarily reduced.

Let χ ∈ IrrH(W , b ). The morphism of varieties Ω♯
χ

: C → Z is a section of the
morphism π ◦ Υ : Z → C . Moreover, by assumption, zb = Ω

♯
χ
(c ). By Lemma 9.6.8

above, we have

Tzb
(Z ) =Tzb

(Z c )⊕Tzb
(Ω♯χ (C )).

Since Tzb
(Ω♯
χ
(C )) ≃ Tc (C ), the Proposition follows from the smoothness of C and

from the fact that dim(Z ) = dim(Z c )+dim(C ).
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After the work of Etingof-Ginzburg [EtGi], Ginzburg-Kaledin [GiKa], Gordon [Gor1]
and Bellamy [Bel2], a complete classification of complex reflection groups W such
that there exists c ∈C such thatZ c is smooth has been obtained. Note that the state-
ments “There exists c ∈C such that Z c is smooth” and “The ring k(C )⊗k[C ] Z = k(C )Z

is regular” are equivalent. We recall now the result.

Theorem 9.6.9 (Etingof-Ginzburg, Ginzburg-Kaledin, Gordon, Bellamy)

Assume that W is irreducible. Then the ring k(C )Z is regular if and only if we are in

one of the following two cases:

(1) W has type G (d , 1, n ), with d , n ¾ 1.

(2) W is the group denoted G4 in the Shephard-Todd classification.

The following proposition is a consequence of the work of Etingof-Ginzburg [EtGi],
Gordon [Gor1] and Bellamy [Bel2].

Proposition 9.6.10. — The following are equivalent:

(1) There exists c ∈C such that Z c is smooth.

(2) There exists c ∈C such that the points of Υ −1
c
(0) are smooth in Z c .

Note that the proof of this fact relies on the Shephard-Todd classification of com-
plex reflection groups.

9.7. Blocks and Calogero-Moser families

Calogero-Moser families and blocks of the category O are closely related, as the
following lemma shows. Given E ∈ Irr(W ), we put ∆C(E ) = ∆(E )⊗k[C ] k(C). As in
Example 3.2.1, we consider wz = ζ

−1 IdV a generator of W ∩Z (GLk(V )).

Proposition 9.7.1. — Let E , F ∈ Irr(W ) and let i ∈ Z. The standard objects ∆C(E ) and

∆C(F )〈i 〉 are in the same block of O (k(C)) if and only if E and F are in the same Calogero-

Moser C-family and ωE (wz ) = ζ
iωF (wz ).

Proof. — We use the notations of Example 3.2.1. The element wz ∈ Z (W ) acts on the
degree r part of ∆C(F )〈i 〉 by ωF (wz )ζ

r+i . It follows from §7.3 that if ∆C(E )⊗k[C ] k(C)

and ∆C(F )⊗k[C ] k(C)〈i 〉 are in the same block of O (k(C)), then ωE (wz ) =ωF (wz )ζ
i .

Note that ∆C(E ) has a filtration whose successive quotients are isomorphic to
∆̄C(E ) ⊗k (S (V

∗)G )i . As a consequence, ∆̄C(E ) and ∆̄C(E )〈−i 〉 are in the same block,
whenever (S (V ∗)G )i 6= 0. Since z = gcd(d1, . . . , dn ), it follows that ∆̄C(E ) and ∆̄C(E )〈z 〉
are in the same block.
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Assume now E and F are in the same Calogero-Moser C-family and ωE (wz ) =

ζiωF (wz ). There is an integer j such that ∆̄C(E ) and ∆̄C(F )〈 j 〉 are in the same block
of O (k(C)). It follows that ωE (wz ) =ωF (wz )ζ

j , hence d |(i − j ). So, ∆̄C(E ) and ∆̄C(F )〈i 〉
are in the same block of O (k(C)).

Let F̃ be the set of height one prime ideals p of k[ eC ] such that the blocks of Õ (k(p))
are not trivial, ie, there exists E , F ∈ Irr(W ) and r ∈ Z such that ∆̃p(E ) and ∆̃p(F )〈r 〉
are in the same block and E 6≃F 〈r 〉. Note that the ideals of F̃ are homogeneous for
the Z-grading on k[ eC ].

We assume for the remainder of §9.7 that V 6= 0.

Proposition 9.7.2. — The ideals in F̃ are (T = 0) and the ideals (CE −CF − r T ) such that

(CE −CF − r ) ∈F1, where E , F ∈ Irr(W ) and r ∈Z \ {0}.

Proof. — Proposition 9.7.1 shows that O (k(C)) has non-trivial blocks for all prime
ideals C of k[C ]. It follows that (T = 0)∈ F̃ .

Let p be an ideal of F̃ distinct from (T = 0). Since p is homogeneous, it follows that
it is generated by some irreducible polynomial P (T ) =

∑r

i=0
ai T i , where r ¾ 0 and

ai is a homogeneous polynomial of degree d − i in the indeterminates Cs , for some
d ∈ Z. Consider the proper ideal q = (T − 1, P (T )) of k[ eC ]. Since p ∈ F̃ and p ⊂ q, it
follows that P (1)k[C ] contains an ideal inF1, hence P (1) is divisible by CE−CF−r for
some E , F ∈ Irr(W )with CE 6=CF and some r ∈Z\{0}. Since P (T ) is homogeneous, it
follows that it is divisible by CE−CF −r T . We deduce that (P (T )) = (CE−CF −r T ).

DefineF0 to be the set of height one prime ideals p of k[C ] such that the Calogero-
Moser p-families are different from the generic Calogero-Moser families. Proposi-
tions 9.7.1 and 9.7.2 have the following consequence. The fact that the ideals in F0

define hyperplanes ofC (and not merely hypersurfaces) is due to Bellamy, Schedler
and Thiel [BelSchTh, Theorem 5.1].

Corollary 9.7.3. — The ideals inF0 are those ideals of the form (CE −CF ) for some E , F ∈
Irr(W ) such that there exists r ∈Z \ {0} with (CE −CF − r ) ∈F1.

Theorem 9.7.4. — Let c ∈ C . The Calogero-Moser c -families are the smallest subsets of

Irr(W ) that are unions of generic Calogero-Moser families and unions of blocks of Ȯ (k(ħh ))
for all morphisms of k-algebras k[C ]→ k(ħh ) of the form C 7→ ħh c + c ′ with κ(c ′) ∈K (Q).

Proof. — Let I be the set of prime ideals p= (CE−CF−r ) ∈F1 such that CE (c ) = CF (c ).
By Propositions 9.7.1 and 9.7.2, the Calogero-Moser c -families are the smallest

subsets of Irr(W ) that are unions of generic Calogero-Moser families and unions of
blocks of Ȯ (p) for all p ∈ I .

Consider a morphism of k-algebras k[C ] → k(ħh ) of the form C 7→ ħh c + c ′ with
κ(c ′) ∈ K (Q). Let I (c ′) be the set of p = (CE − CF − r ) ∈ F1 such that (CE − CF −
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r )(ħh c + c ′) = 0, i.e., CE (c ) = CF (c ) and (CE −CF )(c
′) = r . The blocks of Ȯ (k(ħh )) are the

smallest subsets of Irr(W ) that are unions of blocks of Ȯ (p) for all p ∈ I (c ′). Since
I =
⋃

c ′∈C (Q) I (c
′), the theorem follows.

Since blocks of O correspond to blocks of the Hecke algebra (cf §8.3.C), we can
reformulate the previous result.

Theorem 9.7.5. — Let c ∈C and kκ(c ). The Calogero-Moser c -families are the smallest

subsets of Irr(W ) that are unions of generic Calogero-Moser families and unions of blocks

of C(qk)H for all morphisms of C-algebras C[Q] → C(qk) of the form q 7→ ζqk where

ζ= (ζℵ, j )(ℵ, j )∈ℵ◦ is a family of roots of unity.

Using Proposition 9.6.6, we deduce a description of Calogero-Moser families
from blocks of the Hecke algebra, when the Calogero-Moser space is smooth for
generic values of the parameter.

Corollary 9.7.6. — Assume Zη is smooth, for η the generic point of C . Let c ∈C (k). Let

I be a subset of Irr(W ). The following are equivalent:

– I is a union of Calogero-Moser c -families.

– I is a union blocks of Ȯ (k(ħh )) for all morphisms of k-algebras k[C ]→ k(ħh ) of the form

C 7→ ħh c + c ′ with κ(c ′) ∈K (Q).
– I is a union blocks of C(qk)H for all morphisms of C-algebras C[Q]→ C[qk] of the

form q 7→ ζqk where ζ= (ζℵ, j )(ℵ, j )∈ℵ◦ is a family of roots of unity.

Remark 9.7.7. — When W has a unique conjugacy class of reflections, the previous
results are trivial: when c 6= 0, the algebras C(qk)H in Theorem 9.7.5 and Corollary
9.7.6 are semisimple. �



CHAPTER 10

CALOGERO-MOSER TWO SIDED CELLS

In this chapter §10, we fix a prime ideal C of k[C ]. We study the relation between
Calogero-Moser two-sided C-cells and families.

10.1. Choices

In order to relate the Calogero-Moser two-sided cells with the Kazhdan-Lusztig
ones, we need to make an appropriate choice of a prime ideal r̄C of R lying over p̄C.
We do not have a procedure to make this choice, but we will give at least some hints
for this.

Recall that p̄ denotes the prime ideal of P corresponding to the closed irreducible
subvariety C × {0} × {0} of P (c.f. p.88). There are several prime ideals of Z lying
over p̄. They are described in Lemma 9.2.3, which says that they are in bijection with
the set of generic Calogero-Moser families of W . Recall also that (Example 9.3.6) the
trivial character 1W of W is itself a generic Calogero-Moser family. We denote by z̄

the associated prime ideal of Z :

z̄= Ker(Ω1W
).

We put q̄= cop(z̄).

Lemma 10.1.1. — The ideal q̄ of Q is the unique prime ideal lying over p̄ and containing

eu−
∑

H ∈A eH KH ,0. The algebra Q is étale over P at q̄.

Proof. — It follows from Corollary 9.4.5 that Q is unramified over P at q̄: as Q is a
free (hence flat) P -module and since, in characteristic zero, all the field extensions
are separable, we deduce that Q is étale over P at q̄. The fact that eu−

∑
H ∈A eH KH ,0 ∈

z̄ follows from Corollary 7.3.2. Now, if z̄′ is a prime ideal of Z lying over p̄ and
containing eu−

∑
H ∈A eH KH ,0, then there exists χ ∈ Irr(W ) such that z̄′ = Ker(Ωχ ). In
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particular, Ωχ (eu) =
∑

H ∈A eH KH ,0 and so Ωχ (eu) = Ω1W
(eu). It has been shown in

Example 9.3.6 that this implies χ = 1W .

Let us use now the notation of §9. Lemma 9.2.3 says that the set of prime ideals of
Q lying over p̄C is in bijection with the set of Calogero-Moser C-families. Let z̄C de-
note the prime ideal corresponding to the C-family containing the trivial character
1W of W :

z̄C = Ker(ΩC

1W
).

We set q̄C = cop(z̄C).

Lemma 10.1.2. — We have q̄C = q̄+CQ .

Proof. — The morphism Ω1W
: Z → k[C ] induces an isomorphism Z /z̄

∼−→ k[C ].
Since z̄C contains C, it follows that z̄+ CZ is a prime ideal of Z , corresponding to
the closed irreducible subscheme C C of C .

Corollary 10.1.3. — The ideal q̄C of Q is the unique prime ideal lying over p̄C and con-

taining eu−
∑

H ∈A eH KH ,0.

10.2. Two-sided cells

Assumption. From now on, and until the end of §10.2, we fix a
prime ideal r̄C of R lying over q̄C. Recall that K̄C = kP (p̄C) = kk[C ](C).
We put L̄C = kQ (q̄C) and M̄C = kR (r̄C). We denote by K̄, L̄ and M̄

(respectively K̄c , L̄c and M̄c ) the fields K̄C, L̄C and M̄C whenever C= 0

(respectively C=Cc for some c ∈C ).
The decomposition (respectively inertia) group of r̄C will be denoted

by D̄C (respectively ĪC). We define similarly D̄ , Ī , D̄c and Īc .

10.2.A. Galois theory. — Recall that, by Corollary 9.2.5, the canonical embedding
P /p̄C ,−→Q/q̄C is an isomorphism, hence K̄C = L̄C. Since Gal(M̄C/L̄C) = D̄C/ĪC (Theo-
rem B.2.4), we deduce that

(10.2.1) (D̄C ∩H )/(ĪC ∩H )≃ D̄C/ĪC.

In particular,

(10.2.2) (D̄C ∩H )ĪC = D̄C.
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Moreover, since the algebra Q is unramified over P at q̄ (Lemma 10.1.1), it follows
from Theorem B.2.6 that Ī ⊂H . Combined with (10.2.2), we obtain

(10.2.3) Ī ⊂ D̄ ⊂H .

Note that this last result is not true in general for ĪC, as shown by (17.1.2),
To conclude with basic Galois properties, note that, by Corollaries 9.2.5 and B.3.8,

we have

(10.2.4) ĪC\G /H = D̄C\G /H .

10.2.B. Two-sided cells and grading. — Let eC=⊕i ¾ 0C∩k[C ]N[i ] be the maximal
homogeneous ideal of k[C ] contained in C. Then eC is a prime ideal of k[C ] (see
Lemma C.2.9). Let r̄eC denote the maximal homogeneous ideal of R contained in
r̄C: it is a prime ideal of R lying over q̄eC (see Corollary C.2.12). The following is a
consequence of Proposition 6.1.5.

Lemma 10.2.5. — We have ĪC = ĪeC. The Calogero-Moser two-sided C-cells and the Calogero-

Moser two-sided eC-cells coincide.

10.2.C. Two-sided cells and families. — The k[C ]-algebra M̄C is a finite field ex-
tension of K̄C = kP (p̄C) = Frac(k[C ]/C) and M̄CH = M̄CH̄. Theorem 6.2.2 says that
there is a bijection between the Calogero-Moser two-sided C-cells and the Calogero-
Moser C-families: given b ∈ Idempr(Rr̄C

Z ), this bijection sends CM r̄C
(b ) to IrrH(W , b̄ ),

where b̄ denotes the image of b in M̄CH̄, and b̄ ∈ K̄CH̄ since K̄CH̄ is split.

Terminology, notation. Given b ∈ Idempr(M̄CZ ), we say that
the Calogero-Moser two-sided C-cell CMr̄C

(b ) covers the Calogero-
Moser C-family IrrH(W , b ). Given Γ a Calogero-Moser two-sided
C-cell, we denote by IrrCM

Γ
(W ) the Calogero-Moser C-family covered

by Γ . The set of Calogero-Moser two-sided C-cells will be denoted by
CMCellC

LR
(W ).

Remark 10.2.6. — The definition of Calogero-Moser two-sided cells depends on
the choice of the prime ideal r̄C lying over q̄C. Given r̄′

C
another prime ideal of R

lying over q̄C, there exists h ∈H such that r̄′
C
= h (r̄C) and the Calogero-Moser r̄′

C
-cells

are obtained from the Calogero-Moser r̄C-cells via the action of h on W
∼←→G /H . �
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The link between Calogero-Moser two-sided C-cells and Calogero-Moser C-families
is strengthened by the following theorem.

Theorem 10.2.7. — (a) The decomposition group D̄C acts trivially on CMCellC
LR
(W ).

(b) Given w ∈W , b ∈ Idempr(Rr̄C
Q ) and χ ∈ Irr(W ), the following are equivalent

• the Calogero-Moser two-sided C-cell of w is associated with the Calogero-Moser

C-family of χ

• w −1(r̄C)∩Q = cop(Ker(ΩC
χ ))

• (w (q ) mod r̄C) =Ω
C
χ
(cop−1(q )) ∈ M̄C = kR (r̄C) for all q ∈Q .

(c) Given Γ is a Calogero-Moser two-sided C-cell, we have |Γ |=
∑
χ∈IrrCM

Γ
(W )χ(1)

2.

Proof. — (a) follows from 10.2.4.

(b) Let ω̄w : Q → R/r̄C denote the morphism of P -algebras which sends q ∈ Q

to the image of ωw (q ) = w (q ) ∈ R in R/r̄C. Then w belongs to the Calogero-Moser
two-sided C-cell associated with the Calogero-Moser C-family of χ if and only if
ω̄w =Ωχ . But, by Lemma 9.2.3, this is equivalent to say that Ker(ω̄w ) = cop(Ker(ΩC

χ )).
Since Ker(ω̄w ) =w −1(r̄C)∩Q , the first equivalence follows. Since Q = (w −1(r)∩Q )+k[C ]

(Corollary 9.2.5), the second equivalence follows.
The assertion (c) follows from Corollaries 9.4.2 and 6.2.5.

Corollary 10.2.8. — Let C′ be a prime ideal of k[C ] contained in C and let r̄C′ be a prime

ideal of R lying above p̄C′ and contained in r̄C. Then the Calogero-Moser two-sided C-cells

are unions of Calogero-Moser two-sided C′-cells. Moreover, if Γ is a Calogero-Moser two-

sided C-cell and if Γ = Γ1
∐
· · ·
∐
Γr where the Γi ’s are Calogero-Moser two-sided C′-cells,

then

IrrCM,C
Γ
(W ) = IrrCM,C′

Γ1
(W )
∐
· · ·
∐

IrrCM,C′

Γr
(W ).

Corollary 10.2.9. — Assume that all the reflections of W have order 2 and that w0 =

− IdV ∈W . If Γ is a Calogero-Moser two-sided C-cell covering the Calogero-Moser C-family

F , then w0Γ = Γw0 is the Calogero-Moser two-sided C-cell covering the Calogero-Moser

C-family ǫF .

Proof. — First of all, w0Γ = Γw0 is a Calogero-Moser two-sided C-cell by Exam-
ple 6.1.4 whereas ǫF is a Calogero-Moser C-family by Corollary 9.3.5.

Let w ∈ Γ , χ ∈ F and q ∈ Q . By Theorem 10.2.7(b), we only need to show that
w w0(q ) ≡ Ωχǫ(q ) mod r̄C. Let τ0 = (−1, 1,ǫ) ∈ k× × k× ×W ∧. By Proposition 5.5.2,
we have w0(q ) =

τ0q for all q ∈Q . Moreover, by Corollary 7.4.2, we have Ωχǫ(q ) =
τ0Ωχ (

τ0q ) (because τ0 has order 2). Since τ0 acts trivially on k[C ], we have Ωχǫ(q ) =
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Ωχ (
τ0q ). It is now sufficient to show that w (τ0q )≡Ωχ (τ0q ) mod r̄C). This follows from

Theorem 10.2.7(b).

Example 10.2.10 (Smoothness). — If the ring Q is regular at q̄b and if χ denotes
the unique element of IrrH(W , b ) (see Proposition 9.6.6), then |CMr(b )| = χ(1)2 by
Theorem 10.2.7(c). �

Remark 10.2.11. — If r̄C and r̄ are chosen so that r̄ ⊂ r̄C, then Ī ⊂ ĪC and so every
Calogero-Moser C-cell is a union of generic Calogero-Moser two-sided cells. It is
the “cell version” of the corresponding result on families. �

If γ is a linear character, then it is alone in its generic Calogero-Moser family (Ex-
ample 9.3.6) and its covering generic Calogero-Moser two-sided cell contains only
one element (Theorem 10.2.7(c)). Let wγ denote this element. By Theorem 10.2.7(b),
we have

(10.2.12) w −1
γ
(r̄)∩Q =Ker(Ωγ).

Corollary 10.2.13. — We have w1W
= 1. In other words 1 is alone in its generic Calogero-

Moser two-sided cell and covers the generic Calogero-Moser family of the trivial character

1W (which is a singleton).

Proof. — By Theorem 10.2.7 and (10.2.12), w1W
is the unique element w ∈W such

that w −1(r̄)∩Q =Ker(Ω1W
) = q̄. Since r̄∩Q = q̄, we have w1W

= 1.

Proposition 10.2.14. — Let γ ∈W ∧. Then Ī ⊂wγH w −1
γ

.

Proof. — We shall give two proofs of this fact. First, wγ is alone in its generic
Calogero-Moser two-sided cell, so Ī wγH =wγH , whence the result.

Let us now give a second proof. By Corollary 9.4.5, Q is unramified over P at
Ker(Ωγ) = w −1

γ
(r̄)∩Q . So, by Theorem B.2.6, Iw −1

γ (r̄)
⊂ H , which is exactly the desired

statement, since Iw −1
γ (r̄)
=w −1

γ
Ī wγ.

Remark 10.2.15. — The action of H on W
∼←→G /H stabilizes the identity element

(that is, H stabilizes eu). This shows that the statement of Corollary 10.2.13 does
not depend on the choice of r̄. �





CHAPTER 11

CALOGERO-MOSER LEFT AND RIGHT CELLS

In §11, C denotes a prime ideal of k[C ]. We use Verma modules for Hleft to define
the notion of Calogero-Moser C-cellular characters. We expect that they coincide with
the Kazhdan-Lusztig cellular characters whenever W is a Coxeter group. We relate
Calogero-Moser cellular characters to Calogero-Moser left cells.

This chapter will mainly consider left Calogero-Moser C-cells and (left) Verma
modules: definitions and results can be immediately transposed to the right setting.

11.1. Verma modules and cellular characters

11.1.A. Morita equivalence. — Let P reg,left = k[C × V reg/W × {0}] = P reg ⊗P P left ,
Z reg,left = P reg,leftZ , and Hreg,left = P reg,leftH. Note that, by Example 6.4.7, zsing ∩P 6⊂ pleft.
Hence, Theorem 6.4.6 can be applied. Thanks to Corollary 4.3.5, we obtain the
following result.

Theorem 11.1.1. — The (Hreg,left, Z reg,left)-bimodule Hreg,lefte induces a Morita equivalence

between the algebras Hreg,left and Z reg,left. Consequently, the (Kleft
C

Hleft, Kleft
C

Z left)-bimodule

Kleft
C

Hlefte induces a Morita equivalence between the algebras Kleft
C

Hleft and Kleft
C

Z left.

If r is a prime ideal of R lying over pleft
C

, then the simple kR (r)H
left-modules are absolutely

simple and have dimension |W |.

The Morita equivalence of Theorem 11.1.1 induces a bijection

(11.1.2) Irr(Kleft
C

Hleft)
∼−→ Irr(Kleft

C
Z left)

L 7−→ e L .

On the other hand, the (isomorphism classes of) simple Kleft
C

Z left-modules are in
bijection with the maximal ideals of Kleft

C
Z left, that is, with the minimal prime ideals
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of Z left
C

or, in other words, with Υ −1(pleft
C
). Using (11.1.2), we obtain a bijection

(11.1.3) Υ
−1(pleft

C
)

∼−→ Irr(Kleft
C

Hleft)

z 7−→ L left
C
(z).

11.1.B. Cellular characters. — Let z ∈ Υ −1(pleft
C
) and let ez be the corresponding

primitive idempotent of Kleft
C

Z left.
We identify G0((Z

left
C
)z[W ])with G0(kW ) by [(Z /z)⊗E ] 7→ [E ] for E ∈ Irr(W ).

The right action by multiplication of kW on kW induces a right action of kW on
∆(kW ).

Definition 11.1.4. — We define the Calogero-Moser C-cellular character associated

with z as the character of W given by

γCM
z
= ([Zze Kleft

C
∆(kW )](Z left

C
)zW )

∗.

When C = 0 (respectively C = Cc for some c ∈ C ), they will be called generic

Calogero-Moser cellular characters (respectively Calogero-Moser c -cellular char-

acters).

Given z ∈ Υ −1(pleft
C
) and χ ∈ Irr(W ), we denote by multCM

z,χ
the multiplicity of the

simple module L left
C
(z) in a composition series of the Verma module Kleft

C
∆(χ).

The above definition can be expressed in terms of length of Zz-modules, through
the Morita equivalence. We first need the following lemma. Given M a finitely gen-
erated Z left

C
-module, the Zz-module Mz has finite length and we denote this length

by LengthZz
(Mz).

Lemma 11.1.5. — Let M be a finitely generated Hleft
C

-module. Then e Mz is a Zz-module of

finite length and LengthZz
(e Mz) is equal to the multiplicity of L left

C
(z) in the Kleft

C
Hleft-module

Kleft
C

M .

Proof. — By construction, LengthZz
(e Mz) is equal to the multiplicity of e L left

C
(z) in the

Kleft
C

Z left-module e Kleft
C

M . The result follows now from the Morita equivalence of
Theorem 11.1.1.

Proposition 11.1.6. — Let z ∈ Υ −1(pleft
C
). We have

γCM
z
=
∑

χ∈Irr(W )

LengthZz

�
e Kleft

C
∆(χ)
�
z
·χ =
∑

χ∈Irr(W )

multCM
z,χ
·χ .
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Proof. — We have∆(kW ) =
⊕

E ∈Irr(W )∆(E )⊗E ∗, hence Zze Kleft
C
∆(kW ) =
⊕

E Zze Kleft
C
∆(E )⊗

E ∗. Since [Zze Kleft
C
∆(E )](Z left

C
)z
= LengthZz

�
e Kleft

C
∆(E )
�
z
[Z /z], we deduce the first equal-

ity. The second equality follows from Lemma 11.1.5.

11.2. Choices

As in the case of two-sided cells, the notion of Calogero-Moser left C-cell depends
on the choice of a prime ideal of R lying over pleft

C
. We will use Verma modules to

restrict choices.

Lemma 11.2.1. — Given γ is a linear character of W , the KleftHleft-module Kleft
∆(γ) is

absolutely simple.

Proof. — This follows from Theorem 11.1.1 and (7.1.1).

Fix now a linear character γ of W . By Lemma 11.2.1, the endomorphism algebra
of Kleft

∆(γ) is equal to Kleft. This induces a morphism of P -algebras Ωleft
γ

: Z → Kleft

whose restriction to P is the canonical morphism P → P left. Since Z is integral over
P , the image of Ωleft

γ
is integral over P left and contained in Kleft = Frac(P left). Since

P left ≃ k[C ×V /W ] is integrally closed, this forces Ωleft
γ

to factor through P left. We set

zleft =Ker(Ωleft
1
) and qleft = cop(zleft).

Proposition 11.2.2. — The ideal qleft of Q satisfies the following properties:

(a) qleft is a prime ideal of Q lying over pleft.

(b) qleft ⊂ q̄.

(c) P left = P /pleft ≃Q/qleft.

Proof. — Since Kleft is a field, qleft is prime. Since the restriction of Ωleft
1

to P is the
canonical morphism P → P left, qleft ∩P = pleft. This shows (a).

By construction, ∆(γ)/p̄∆(γ) = ∆̄(γ) and so the morphism Ωγ : Z → P̄ = P /p̄ factors
through the morphisms Ωleft

γ
: Z → P left and P left→ P̄ , whence (b).

Finally, the isomorphism (c) follows from the fact that the image of Ωγ is P left.

Proposition 11.2.2 allows us to choose a prime ideal of Q lying over pleft and com-
patible with our choice of q̄. The next lemma shows that this choice is unique:

Lemma 11.2.3. — We have pleftQq̄ = qleftQq̄.
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Proof. — It is sufficient to prove that pleftQq̄ is a prime ideal of Qq̄. By Lemma 10.1.1,
the local morphism of local rings Pp̄→Qq̄ is étale. Moreover, P /pleft ≃ k[C ×V ∗/W ] is
integrally closed (it is a polynomial algebra) and so Pp̄/p

leftPp̄ is also integrally closed.
By base change, the ring morphism Pp̄/p

leftPp̄ ,−→ Qq̄/p
leftQq̄ is étale, which implies

that Qq̄/p
leftQq̄, which is a local ring (hence is connected), is also integrally closed

(by [SGA1, Talk I, Corollary 9.11]) and so is a domain (because it is connected).
This shows that pleftQq̄ is a prime ideal of Qq̄, as desired.

Corollary 11.2.4. — The ideal qleft is the unique prime ideal of Q lying over pleft and con-

tained in q̄. Moreover, Q is étale over P at qleft.

Since Q/qleft ≃ P /pleft = k[C ×V /W ], we get that Q/(qleft +CQ ) ≃ k[C ]/C⊗ k[V /W ]

and so qleft+CQ is a prime ideal of Q . We will denote it by qleft
C

.

Corollary 11.2.5. — We have Q/qleft
C
≃ P /pleft

C
. Moreover, qleft

C
is the unique prime ideal of

Q lying over pleft
C

and contained in q̄.

Proof. — The first statement is immediate and the second one follows from the first
one.

Choices, notation. From now on, and until the end of this Part, we
fix a prime ideal rleft

C
of R lying over qleft

C
and contained in r̄C. We put

Mleft
C
= kR (r

left
C
).

The decomposition (respectively inertia) group of rleft
C

is denoted by
D left

C
(respectively I left

C
).

Whenever C= 0 (respectively C= Cc with c ∈C ), the objects rleft
C

,
Kleft

C
, D left

C
and I left

C
are denoted respectively by rleft, Kleft, D left and

I left (respectively rleft
c

, Kleft
c

, D left
c

and I left
c

).

Remark 11.2.6. — It has been shown in Corollary 9.2.5 that, if q̄⋆ is a prime ideal
of Q lying over p̄, then Q/q̄⋆ ≃ P /p̄. Even though Q/qleft ≃ P /pleft, we will see in
Chapter 19 that this cannot be extended in general to other prime ideals of Q lying
over pleft: indeed, if W has type B2, then there exists a prime ideal qleft

⋆ of Q lying
over pleft such that P /pleft is a proper subring of Q/qleft

⋆
(see Lemma 19.7.12(c)). So, in

general, Kleft  Mleft
C

, where C= 0. �
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Corollary 11.2.7. — We have I left
C
⊂ D left

C
⊂ H . If moreover rleft

C
contains rleft, then I left ⊂

I left
C

.

Proof. — By Corollary 11.2.5 and Theorem B.2.6, Ī left
C
⊂H and kP (p

left
C
) = kQ (q

left
C
). So,

(D left
C
∩H )/(I left

C
∩H )≃D left

C
/I left

C
, and the first sequence of inclusions follows.

The last inclusion is obvious.

We will prove that rleft
C

determines r̄C: for this, we will use the Z-grading on R

defined in §5.3. Set

R<0 =
⊕
i<0

RZ[i ] and R>0 =
⊕
i>0

RZ[i ].

Then:

Proposition 11.2.8. — r̄C = rleft
C
+ 〈R>0, R<0〉.

Proof. — Let I denote the ideal of R generated by R>0 and R<0. The ideal p̄C of P is
Z-homogeneous (it is not necessarily (N×N)-homogeneous) so the ideal r̄C of R is
also Z-homogeneous (see Corollary C.2.10). The extension R/r̄C of P /p̄C is integral
and, since P /p̄C has its Z-grading concentrated in degree 0, it follows that the Z-
grading of R/r̄C is concentrated in degree 0 (see Proposition C.2.4). In particular,
I ⊂ r̄C and so

rleft
C
+ I ⊂ r̄C.

Moreover, (rleft
C
+ I )∩P contains C and p̄= 〈P<0, P>0〉, so

p̄C ⊂ (rleft
C
+ I )∩P.

It is now sufficient to show that rleft
C
+ I is a prime ideal.

Set I0 = I ∩R0. Then the natural map R0 ,−→ R −։ R/I induces an isomorphism
R0/I0

∼−→ R/I . Consequently, R/(rleft
C
+ I ) is isomorphic to R0/((r

left
C
+ I ) ∩R0). So we

only need to prove that (rleft
C
+ I )∩R0 is a prime ideal of R0. In fact, we will prove that

(rleft
C
+ I )∩R0 = rleft

C
∩R0, and this will conclude the proof.

First of all, note that, since rleft
C

and I are Z-homogeneous, we have (rleft
C
+ I )∩R0 =

(rleft
C
∩R0)+ I0. So it is sufficient to prove that

(∗) I0 ⊂ rleft
C

.

Since R/rleft
C

is an integral extension of P /pleft
C

and P /pleft
C

is N-graded, we deduce
that R/rleft

C
is N-graded (see Proposition C.2.4). So R<0 ⊂ rleft

C
and I0 = R0 ∩ (R ·R>0) =

R0 ∩ (R ·R<0) =R0 ∩ (R<0 ·R>0)⊂ rleft
C

.

Corollary 11.2.9. — D left
C
⊂ D̄C.
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Proof. — This follows immediately from Proposition 11.2.8 and from the fact that
R<0 and R>0 are G -stable (see Proposition 5.3.1).

Remark 11.2.10. — The algebraic proof of Proposition 11.2.8 given here is in fact
the translation of a geometric fact, as will be explained in Chapter 14. �

Proposition 11.2.11. — Let zleft
∗ be a prime ideal of Z lying over pleft

C
. Then there exists a

unique prime ideal of Z lying over p̄C and containing zleft
∗ : it is equal to zleft

∗ + 〈Z<0, Z>0〉.

Proof. — Since Z is integral over P , the proof of Proposition 11.2.8 can be applied
word by word in this situation, and provides the same conclusion.

Proposition 11.2.11 provides a surjective map

(11.2.12)
limleft : Υ −1(pleft

C
) −→ Υ

−1(p̄C)

zleft
∗ 7−→ zleft

∗ + 〈Z<0, Z>0〉.
The notation limleft will be justified in Chapter 14.

11.3. Left cells

11.3.A. Definitions. — Recall the definitions given in the preamble of §III.

Definition 11.3.1. — A Calogero-Moser left C-cell is a Calogero-Moser rleft
C

-cell. Given

c ∈C , a Calogero-Moser left c -cell is a Calogero-Moser rleft
c

-cell. A generic Calogero-

Moser left cell is a Calogero-Moser rleft-cell.

The set of Calogero-Moser left C-cells is denoted by CMCellC
L
(W ). When C = 0 (respec-

tively C=Cc , with c ∈C ), this set is denoted by CMCellL (W ) (respectively CMCellc
L
(W )).

As usual, the notion of Calogero-Moser left C-cell depends on the choice of the
prime ideal rleft

C
. The next proposition is immediate.

Proposition 11.3.2. — If C′ is a prime ideal of k[C ] contained in C and if rleft
C′ is contained

in rleft
C

, then every Calogero-Moser left C-cell is a union of Calogero-Moser left C′-cells.

Also, since rleft
C
⊂ r̄C, we have the following result.

Proposition 11.3.3. — Every Calogero-Moser two-sided C-cell is a union of Calogero-

Moser left C-cells.
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Finally, let eC be the maximal homogeneous ideal contained in C (i.e. eC=⊕i ¾ 0C∩
k[C ]N[i ]). Then eC is a prime ideal of k[C ] (see Lemma C.2.9). Let rleft

eC denote the
maximal homogeneous ideal contained in rleft

C
: it is a prime ideal of R lying over qleft

eC
(see Corollary C.2.12). We deduce from Proposition 6.1.5 the following result.

Proposition 11.3.4. — We have I left
C
= I left
eC . In particular, the Calogero-Moser left C-cells

and the Calogero-Moser left eC-cells coincide.

11.3.B. Left and two-sided cells. — We fix here a Calogero-Moser two-sided C-
cell Γ as well as a Calogero-Moser left C-cell C contained in Γ . Since D̄C stabilizes
Γ (see Theorem 10.2.7(a)) and since D left

C
⊂ D̄C (see Corollary 11.2.9), the group D left

C

stabilizes Γ (and permutes the left cells contained in Γ ). Set

C D =
⋃

d∈D left
C

d (C ).

Let w ∈ C D . We set q̄C(Γ ) = w −1(r̄C) ∩Q and qleft
C
(C D ) = w −1(rleft

C
) ∩Q . We also set

z̄C(Γ ) = cop−1(q̄C(Γ )) and zleft
C
(C D ) = cop−1(qleft

C
(C D )). It follows from Proposition B.3.5

that z̄C(Γ ) depends only on Γ and not on the choice of C or w , whereas zleft
C
(C D )

depends only on C D and not on the choice of w . We set

degC(C
D ) = [kZ (z

left
C
(C D )) : kP (p

left
C
)].

We sometimes use the notation zleft
C
(C ) or degC(C ) instead of zleft

C
(C D ) or degC(C

D ).

Proposition 11.3.5. — Let w ∈C D . Then:

(a) z̄C(Γ ) = limleft(z
left
C
(C D )).

(b) degC(C
D ) =

|C D |
|C | =

|D left
C
|

|(D left
C ∩ w H )I left

C |
.

(c) The map D left
C
\Γ −→ lim−1

left
(z̄C(Γ )), C D 7−→ zleft

C
(C D ) is bijective.

Proof. — (a) Note that z̄C(Γ ) ∈ Υ −1(p̄C), zleft
C
(C D ) ∈ Υ −1(pleft

C
) and zleft

C
(C D ) ⊂ z̄C(Γ ), whence

the result by Proposition 11.2.11.

(b) Through the action of w , the extension kR (w
−1(rleft

C
))/kP (p

left
C
) is Galois with

group w −1

D left
C
/w −1

I left
C

whereas the extension kR (w
−1(rleft

C
))/kQ (q

left
C
(C D )) is Galois with

group (w −1

D left
C
∩H )/(w

−1

I left
C
∩H ). Hence

degC(C
D ) =

|D left
C
|

|(D left
C ∩ w H )I left

C |
.

Moreover, |C D |/|C | is equal to the index of the stabilizer of C in D left
C

: but this stabi-
lizer is exactly (D left

C
∩ w H )I left

C
.
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(c) follows essentially from the commutativity of the diagram

D left
C
\G /H ∼ //

��

Υ
−1(pleft

C
)

limleft

��
D̄C\G /H

∼ // Υ −1(p̄C),

where the left vertical arrow is the canonical map (since D left
C
⊂ D̄C), and the hori-

zontal bijective maps are given by Proposition B.3.5. The additional ingredient is
the equality D̄C\G /H = ĪC\G /H (see (10.2.4)).

11.3.C. Left cells and simple modules. — By Example 6.4.7, we have zsing ∩ P 6⊂
pleft. Consequently, the results of § 6.4 can be applied. Let us recall here some
consequences (see Theorem 6.4.6):

Theorem 11.3.6. — (a) The algebra Mleft
C

Hleft is split and its simple modules have dimen-

sion |W |.
(b) Every block Mleft

C
Hleft admits a unique simple module.

Given C ∈ CMCellC
L
(W ), we denote by L left

C
(C ) the unique simple Mleft

C
Hleft-module

belonging to the block of Mleft
C

Hleft associated with C . When C = 0 (respectively
C = Cc , for some c ∈ C ), the module L left

C
(C ) is denoted by L left(C ) (respectively

L left
c
(C )).

The decomposition group D left
C

acts on the commutative ring Mleft
C

Z left (the action
factors through a faithful action of D left

C
/I left

C
) and

(11.3.7) Kleft
C

Z left =
�
Mleft

C
Z left
�D left

C .

So the primitive idempotents of the left-hand side (which are in one-to-one cor-
respondence with the simple Kleft

C
Z left-modules) are in one-to-one correspondence

with the D left
C

-orbits of primitive idempotents of Mleft
C

Z left. Thus we get a bijection

(11.3.8) Irr(Kleft
C

Z left)
∼←→
�
Irr(Mleft

C
Z left)
�
/D left

C
.

Similarly, the decomposition group D left
C

acts on the commutative ring Mleft
C

Hleft and

(11.3.9) Kleft
C

Hleft =
�
Mleft

C
Hleft
�D left

C .

So, through the bijection (11.3.8) and the Morita equivalence of Theorem 11.1.1, we
get another bijective map

(11.3.10) Irr(Kleft
C

Hleft)
∼←→
�
Irr(Mleft

C
Hleft)
�
/D left

C
.
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Using the one-to-one correspondence D left
C
\W ∼−→ D left

C
\G /H ∼−→ Υ −1(pleft

C
), C D 7→

zleft
C
(C D ) given by Proposition B.3.5, we obtain the following commutative diagram

of bijective maps.

(11.3.11)

D left
C
\W oo // Υ −1(pleft

C
) oo // Irr(Kleft

C
Z left) oo //

OO

��

Irr(Kleft
C

Hleft)
OO

���
Irr(Mleft

C
Z left)
�
/D left

C
oo //
�
Irr(Mleft

C
Hleft)
�
/D left

C

Proposition 11.3.12. — Let C ◦ be a D left
C

-orbit in W and let z= zleft
C
(C ◦). We have

Mleft
C
⊗Kleft

C
L left
C
(z)≃
⊕

C ∈CMCellCL (W )

C⊂C ◦

L left
C
(C ).

Proof. — First, it is clear that if C is a Calogero-Moser left C-cell such that L left
C
(C ) is

contained in the Mleft
C

Hleft-module Mleft
C
⊗Kleft

C
L left
C
(z), then zleft

C
(C D ) = z, hence C D ⊂C ◦. It

follows that C ⊂ C ◦.
Since the field extension Mleft

C
/Kleft

C
is separable, the Mleft

C
Hleft-module Mleft

C
⊗Kleft

C

L left
C
(z) is semisimple. As it is stable under the action of D left

C
, it is a multiple of the

right-hand side of the formula. By Theorem 11.3.6, the proof of the Proposition can
be reduced to the proof of the analogous statement for the algebra Mleft

C
Z left. Since

this algebra is commutative, it follows that Mleft
C
⊗Kleft

C
L left
C
(z) is multiplicity-free.

11.4. Back to cellular characters

11.4.A. Left cells and cellular characters. — Recall that the simple Mleft
C

Hleft-modules
are parametrized by CMCellleft

C
(W ). There exists a unique family of non-negative in-

tegers (multCM

C ,χ
)C ∈CMCellleft

C
(W ),χ∈Irr(W ) such that

[Mleft
C
∆(χ) ]Mleft

C
Hleft =
∑

C ∈CMCellCL (W )

multCM

C ,χ
· [L left

C
(C ) ]Mleft

C
Hleft

for all χ ∈ Irr(W ). They can be used to define the cellular characters, since

(11.4.1) multCM

C ,χ
=multCM

zleft
C
(C ),χ

.

Proof. — By construction, we have

[Mleft
C
∆(χ) ]Mleft

C
Hleft =
∑

z∈Υ−1(pleft
C
)

multCM
z,χ · [M

left
C
⊗Kleft

C
L left
C
(z) ]Mleft

C
Hleft

for all χ ∈ Irr(W ). The result follows now from Proposition 11.3.12.
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We can also prove the following family of identities, which are similar to identi-
ties for the Kazhdan-Lusztig multiplicities multKL

C ,χ
(see Lemma 8.6.7).

Proposition 11.4.2. — With the above notation, we have:

(a) If χ ∈ Irr(W ), then
∑

C ∈CMCellCL (W )
multCM

C ,χ
=χ(1).

(b) If C ∈ CMCellC
L
(W ), then
∑
χ∈Irr(W )multCM

C ,χ
χ(1) = |C |.

(c) If C ∈ CMCellC
L
(W ), if Γ is the unique Calogero-Moser two-sided C-cell containing C

and if χ ∈ Irr(W ) is such that multCM
C ,χ
6= 0, then χ ∈ IrrCM

Γ
(W ).

Proof. — (a) follows from the computation of the dimension of Verma modules
(see (7.1.1)).

Let us now show (b). First of all, note that, thanks to the Morita equivalence of
Theorem 4.3.7, we have

[MHe ]MH =
∑

w∈W

[Lw ]MH.

By applying decleft

C
to this equality, we deduce that

[Mleft
C

Hlefte ]Mleft
C

Hleft =
∑

C ∈CMCellCL (W )

|C | · [L left
C
(C ) ]Mleft

C
Hleft .

Since Mleft
C

Hlefte =Mleft
C
∆(co), we have the following equality

(11.4.3) [Mleft
C

Hlefte ]Mleft
C

Hleft =
∑

χ∈Irr(W )

χ(1) · [Mleft
C
∆(χ) ]Mleft

C
Hleft

and (b) follows.

(c) is immediate, as the reduction modulo p̄ of the Verma module is the corre-
sponding baby Verma module, and so is indecomposable as a K̄CH̄-module.

Given C a Calogero-Moser left C-cell, we set

(11.4.4) [C ]CM

C
=
∑

χ∈Irr(W )

multCM

C ,χ
·χ .

In other words,

(11.4.5) [C ]CM

C
= γzCM

C
(C D ).

Taking Proposition 11.4.2(c) into account, the set of irreducible characters appearing
with a non-zero multiplicity in a Calogero-Moser C-cellular character is contained
in a unique Calogero-Moser C-family F : we will say that the Calogero-Moser C-
cellular character belongs to F .

If d ∈ D left
C

and C is a Calogero-Moser left C-cell, then d (C ) is also a Calogero-
Moser left C-cell. The equality (11.4.5) shows that the Calogero-Moser C-cellular
characters associated with C and d (C ) coincide:
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Corollary 11.4.6. — If d ∈D left
C

and C is a Calogero-Moser left C-cell, then

[d (C ) ]CM

C
= [C ]CM

C
.

Remark 11.4.7. — The previous corollary 11.4.6 shows in particular that d (C ) is
contained in the same Calogero-Moser two-sided C-cell as C , which has already
been proven by a different argument (see the beginning of §11.3.B). �

Corollary 11.4.8. — Let C be a Calogero-Moser left C-cell and let z = zleft
C
(C D ). Then

|C |= LengthZz
(Z /pleft

C
Z )z.

Proof. — We have [P left
C

He ] = [P left
C
∆(co)] =
∑
χ χ(1)[P

left
C
∆(χ)]. Via the Morita equiv-

alence of Corollary 6.4.4, the module Z /pleft
C

Z corresponds to the module P left
C

He ,
hence

LengthZz
(Z /pleft

C
Z )z =
∑

χ∈Irr(W )

multCM
C ,χ ·χ(1) = |C |

using Proposition 11.4.2(b).

Corollary 11.4.9. — Assume that all the reflections of W have order 2 and let τ0 = (−1, 1,ǫ)∈
k××k××W ∧. Let z be a prime ideal of Z lying over pleft

C
and let C and Cǫ be two Calogero-

Moser left C-cells such that zleft
C
(C D ) = z and zleft

C
(C D

ǫ ) = τ0(z). Then

[Cǫ ]
CM

C
= ǫ · [C ]CM

C
.

If moreover w0 =− IdV ∈W , then we can take Cǫ =C w0, hence

[C w0 ]
CM

C
= ǫ · [C ]CM

C
.

Proof. — The first statement follows from the fact that τ0∆(χ) ≃∆(χǫ) whereas the
second can be proven as in Corollary 10.2.9.

Remark 11.4.10. — Corollary 11.4.8 is interesting in that it provides a numerical
invariant (the cardinality) of an object (a left cell) which is defined using the Galois
extension M/K (and the ring R ) in terms of an invariant which is computable inside
the extension L/K (and the ring Z ). �
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11.4.B. Cellular characters and projective covers. — Note that Mleft
C

H̄− is a Mleft
C

-
subalgebra of Mleft

C
Hleft of dimension |W |2, whose Grothendieck group is identified

with Z Irr(W ) = K0(kW ).
Given C a Calogero-Moser left C-cell, we denote by P left

C
(C ) a projective cover of

the simple Mleft
C

Hleft-module L left
C
(C ). We denote by Soc(M ) the largest semisimple

submodule (the socle) of a module M .

Proposition 11.4.11. — We have

[Soc(Res
Mleft

C
Hleft

Mleft
C

H̄−
P left

C
(C )) ]Mleft

C
⊗H̄− =
∑

χ∈Irr(W )

multCM

C ,χ
·χ = [C ]CM

C
.

Proof. — Let χ ∈ Irr(W ). Since the algebra H is symmetric (see (4.4.5)), P left
C
(C ) is

also an injective hull of L left
C
(C ). So

multCM

C ,χ
= dimMleft

C
HomMleft

C
Hleft

�
Mleft

C
∆(χ),P left

C
(C )
�
.

As Mleft
C
∆(χ) = Ind

Mleft
C

Hleft

Mleft
C

H̄−
(Mleft

C
⊗Eχ ), we deduce that

multCM

C ,χ
= dimMleft

C
HomMleft

C
H̄−

�
Eχ , Res

Mleft
C

Hleft

Mleft
C
⊗H̄−
P left

C
(C )
�
.

The result follows.

11.4.C. Cellular characters and b-invariant. — The following theorem is an ana-
logue of Theorem 9.4.1 (statements (b) and (c)).

Theorem 11.4.12. — Let C be a Calogero-Moser left C-cell. Then there exists a unique

irreducible character χ with minimal b-invariant such that multCM

C ,χ
6= 0. We denote this

character by χC . The coefficient of tbχC in fχC
(t) is equal to 1.

Proof. — Let bC be the primitive central idempotent of Mleft
C

Hleft associated with C .
The endomorphism algebra of bC Mleft

C
Hlefte is equal to (Mleft

C
⊗P Z )bC and this (com-

mutative) algebra is local. This shows that the projective module bC Mleft
C

Hlefte ad-
mits a unique simple quotient. The proof continues as that of Theorem 9.4.1.
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DECOMPOSITION MATRICES

12.1. The general framework

Let R1 be a commutative R -algebra which is a domain, and let r1 be a prime ideal
of R1. We set R2 = R1/r1, K1 = Frac(R1) and K2 = Frac(R2) = kR1

(r1). We will say that
the pair (R1,r1) satisfies Property (Dec ) if the three following statements are satisfied
(see the Appendix D):

(D1) R1 is noetherian.
(D2) If h ∈ R1H and if L is a simple K1H-module, then the charac-

teristic polynomial of h (for its action on L ) has coefficients in
R1 (note that this assumption is automatically satisfied if R1 is
integrally closed).

(D3) The algebras K1H and K2H are split.

In this context, completely similar to the one of § D.3 (see the Appendix D), the
decomposition map

decR1H

R2H
: K0(K1H)−→ K0(K2H)

is well-defined (see Proposition D.3.1).
If r2 is a prime ideal of R1 containing r1, set R3 = R1/r2 = R2/(r2/r1), K3 = Frac(R3) =

kR1
(r2) = kR2

(r2/r1) and assume that (R2,r2) satisfies (Dec ). Then the maps decR1H

R2H
,

decR1H
R3H

and decR2H
R3H

are well-defined and, by Corollary D.3.2, the diagram

(12.1.1)

K0(K1H)
decR1H

R2H //

decR1H
R3H

$$❍
❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

❍

K0(K2H)

decR2H

R3H

��
K0(K3H)

is commutative.
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Example 12.1.2 (Specialization). — Let c ∈ C . Recall that qc = pc Q is prime and
let rc be a prime ideal of R lying over qc . Let us use the notation of Example 6.2.6
and of §5.1.A. Then R/rc is an R -algebra, with fraction field Mc . As in the proof of
Theorem 4.3.7, we deduce from Corollary 6.4.4 an isomorphism of Kc -algebras

Hc

∼−→Mat|W |(Lc )

which induces, as in the generic case (see §5.2), an isomorphism of Mc -algebras

Mc Hc

∼−→
∏

d (Dc ∩H )∈Dc /(Dc∩H )

Mat|W |(Mc ).

So the Mc -algebra Mc Hc is split, as well as MH, and its simple modules are in-
dexed by Dc /(Dc ∩H ): this last set is in one-to-one correspondence with W (Corol-
lary 5.1.15). So, the decomposition map decR H

Rc H
is well-defined, and will be denoted

by decc . We can moreover identify K0(Mc Hc ) with the Z-module ZW and, through
this identification, the diagram

(12.1.3) K0(MH)
decc // K0(Mc Hc )

ZW
IdZW

// ZW

is commutative. This follows from the fact that the Morita equivalence between Hc

and Lc is the “specialization at c ” of the Morita equivalence between H and L. �

12.2. Cells and decomposition matrices

Let r be a prime ideal of R . We will denote by Dr the decomposition group
of r in G and Ir its inertia group. The Galois group G (respectively the decom-
position group Dr) acts naturally on the Grothendieck group K0(MH) (respectively
K0(kR (r)H)). Then:

Lemma 12.2.1. — Assume that the kR (r)-algebra kR (r)H is split. Then:

(a) The decomposition map decR H
(R/r)H

is well-defined (it will be denoted by decr : K0(MH)−→
K0(kR (r)H)).

(b) The decomposition map decr is Dr-equivariant.

(c) The group Ir acts trivially K0(kR (r)H).

(d) If w and w ′ are in the same Calogero-Moser r-cell, then decr(Lw ) = decr(Lw ′).
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Proof. — Since R is integrally closed, saying that the kR (r)-algebra kR (r)H is split is
equivalent to say that (R ,r) satisfies (Dec ). The decomposition maps being com-
puted by reduction of the characteristic polynomials, the statement (b) is immedi-
ate. The group Ir acting trivially on kR (r) by definition, (c) is clear. The statement (d)
then follows from (b) and (c) because the Calogero-Moser r-cells are Ir-orbits.

Lemma 12.2.1 says that, when restricted to an r-block, the decomposition map
decr has rank 1.

Example 12.2.2. — Set p = r∩ P and assume in this Example, and only in this Ex-
ample, that zsing ∩P 6⊂ p. Then Theorem 6.4.6(a) implies that the kR (r)-algebra kR (r)H

is split. Consequently, the decomposition map decr : K0(MH)→ K0(kR (r)H) is well-
defined. Simple the simple modules of MH have dimension |W |, as well as the
simple kR (r)H-modules, the decomposition map sends the isomorphism class of a
simple MH-module on the isomorphism class of a simple kR (r)H-module. So decr

defines a surjective map

(12.2.3) decr : W −→ Irr(kR (r)H)

whose fibers are the Calogero-Moser r-cells (see Lemma 12.2.1). �

Remark 12.2.4. — The previous Example can be applied in the case where r = rleft
C

or rright

C . �

12.3. Left, right, two-sided cells and decomposition matrices

In order to define decomposition matrices, one must check that some assump-
tions are satisfied (see the previous conditions (D1), (D2) and (D3)). It is the aim
of the next proposition to check that these assumptions hold in the cases we are
interested in:

Proposition 12.3.1. — Let r be a prime ideal of R amongst rC, rleft
C

, r
right

C or r̄C. Then:

(a) The kR (r)-algebra kR (r)H is split.

(b) Assume here that r 6= r̄C or C= 0 or Cc for some c ∈C . IfL is a simple kR (r)H-module

and if h ∈ H/rH = (R/r)H, then the characteristic polynomial of h (for its action on

L ) has coefficients in R/r.
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Proof. — (a) has been proven for r = rc in Example 12.1.2, for r = rleft
C

in Theo-
rem 11.3.6(a) and for r= r̄C in Proposition 9.1.3.

Let us now show (b). First of all, if r = rC or rleft
C

or r
right

C , then the images in the
Grothendieck group K0(kR (r)H) of simple kR (r)H-modules are the images of simple
MH-modules through the decomposition map (see Example 12.2.2 and Remark 12.2.4).
So, if h is the image in H/rH of h ′ ∈H, then the characteristic polynomial of h ′ acting
on a simple MH-module has coefficients in R (because R is integrally closed) and so
the characteristic polynomial of h has coefficients in R/r (it is the reduction modulo
r of the one of h).

Now, if r = r̄ or r̄c , then the simple kR (r)H-modules are obtained by scalar exten-
sion from the simple kP (r∩P )H-modules, and the result follows from the fact that
P /p̄≃ k[C ] and P /p̄c ≃ k is integrally closed.

Taking Proposition 12.3.1 into account, we can define decomposition maps

decC : K0(MH)
∼−→ K0(MCH),

decleft
C

: K0(MH)−→ K0(M
left
C

Hleft),

dec
right

C : K0(MH)−→ K0(M
right

C Hright),

decC : K0(MH)−→ K0(M̄CH̄),

dec
left

C
: K0(M

left
C

Hleft)−→ K0(M̄CH̄),

dec
right

C
: K0(M

right

C Hright)−→ K0(M̄CH̄)

and decres
C

: K0(M̄H̄)−→ K0(M̄CH̄).

As usual, the index C will be omitted if C = 0 or will be replaced by c if C = Cc (for
some c ∈C ). Recall that decC is an isomorphism (by Example 12.1.2, which extends
easily to the case where Cc is replaced by any prime ideal C of k[C ]) and that

K0(MCH)≃ZW and K0(M̄CH̄)≃Z Irr(W ).

Note however that decres
C

: K0(M̄ H̄) ≃ Z Irr(W ) −→ K0(M̄CH̄) ≃ Z Irr(W ) is not an iso-
morphism in general. Some transitivity formulas follow from 12.1.1.
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12.4. Isomorphism classes of baby Verma modules

The Verma modules ∆(χ) being defined over the ring P , the fundamental prop-
erties of decomposition maps show that

(12.4.1) dec
left

C
[Mleft

C
∆(χ) ]Mleft

C
Hleft = [M̄C∆̄(χ) ]M̄CH̄.

The multiplicities multCM
C ,χ are defined from the image of Mleft

C
∆(χ) in the Grothendieck

group K0(M
left
C

Hleft). We will now be interested to the image of M̄C∆̄(χ) in the Grothendieck
group K0(M̄CH̄):

Fix now a Calogero-Moser two-sided C-cell Γ and set LC(Γ ) = decC[Lw ]MH, for
w ∈ Γ . Note that LC(Γ ) does not depend on the choice of w ∈ Γ by Lemma 12.2.1.

Proposition 12.4.2. — If χ ∈ IrrCM
Γ
(W ), then

[M̄C∆̄(χ) ]M̄CH̄ =χ(1)LC(Γ ).

Remark 12.4.3. — The Proposition 12.4.2 says that, inside a given Calogero-Moser
C-family, the decomposition matrix of baby Verma modules in the basis of simple
modules has rank 1: this had been conjectured by U. Thiel [Thi1]. �

Proof. — Let C be a Calogero-Moser left C-cell. Then multCM
C ,χ
= 0 if C is not con-

tained in Γ (see Proposition 11.4.2(c)). Hence, by (12.4.1), we have

[M̄C∆̄(χ) ]M̄CH̄ =
∑

C ∈CMCellCL (W )

C⊂Γ

multCM
C ,χ
·dec

left
[LC(C ) ]Mleft

C
Hleft .

But, if C ⊂ Γ , then [LC(C ) ]Mleft
C

Hleft = decleft
C
[Lw ]MH where w ∈ C . Then, by the transi-

tivity of decomposition maps, we have

dec
left
[LC(C ) ]Mleft

C
Hleft = LC(Γ )

(by Lemma 12.2.1). The result then follows from Proposition 11.4.2(a).

We conclude by a result which compares the Calogero-Moser C-cellular charac-
ters for different prime ideals C:

Proposition 12.4.4. — Let C′ be a prime ideal of k[C ] contained in C and choose a prime

ideal rleft
C′ lying over qleft

C′ and contained in rleft
C

. Let C be a Calogero-Moser left C-cell and

let us write C =C1

∐
· · ·
∐

Cr , where the Ci ’s are Calogero-Moser left C′-cells (see Proposi-

tion 11.3.2). Then

[C ]CM
C
= [C1 ]

CM
C′ + · · ·+ [Cr ]

CM
C′ .
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Proof. — By Proposition 12.3.1, the decomposition map d : K0(M
left
C′ Hleft)−→ K0(M

left
C

Hleft)

is well-defined and it satisfies the transitivity property d ◦decleft
C′ = decleft

C
. Moreover,

we have
d [Mleft

C′ ∆(χ) ]Mleft
C′ Hleft = [M

left
C
∆(χ) ]Mleft

C
Hleft .

The result then follows from the fact that d [LC′(Ci ) ]Mleft
C′ Hleft = [L left

C
(C ) ]Mleft

C
Hleft for all i

(see Example 12.2.2).

12.5. Hecke algebras

Let c , c ′ ∈C (k)with κ(c ′) ∈K (Q). We assume F is large enough so that e
2iπk ′ℵ, j

/|µW | ∈
F for all (ℵ, j ) ∈ℵ◦

W
.

Consider the morphism of k-algebras k[ eC ]→ k(ħh ), T 7→ ħh−1, C 7→ c + ħh−1c ′ and
the morphism of k-algebras k[C ]→ k(ħh ), C 7→ ħh c + c ′.

There is an isomorphism of algebras k(ħh )⊗k[C ] Ḣ
∼−→ k(ħh )⊗k[ eC ] eH (cf §3.5.A). It in-

duces an equivalence
�
k(ħh )⊗k[C ] k[ eC ]/(T −1)

�
Õ ∼−→ k(ħh )Õ and an isomorphism K0(

�
k(ħh )⊗k[C ] k[ eC ]/(T

K0(k(ħh )Õ ).
Recall (Proposition 7.5.3) that there is an equivalence

(k(ħh )Ȯ )(Z) ∼−→
�
k(ħh )⊗k[C ] k[ eC ]/(T −1)

�
Õ .

Composing with the equivalence above provides an equivalence (k(ħh )Ȯ )(Z) ∼−→ k(ħh )Õ ,
hence an isomorphism

K0(k(ħh )Ȯ )[t±1]
∼−→ K0(k(ħh )Õ ), [∆̇(E )] 7→ [∆̃(E )]〈log(e CE (c ))−CE (c )〉.

Consider the discrete valuation ring k[ħh−1
](ħh
−1
). There is a decomposition map

(cf §F.1.H) K0(k(ħh )Õ )→ K0(O (c )). Composing with the isomorphism above provides
a morphism of Z[t±1]-modules K0(k(ħh )Ȯ )[t±1]→ K0(O (c )).

Forgetting the gradings, i.e. setting t= 1, we obtain a morphism of abelian groups
d ′ from K0(k(ħh )Ȯ ) to the Grothendieck group L of the category of finitely generated
H(c )-modules that are locally nilpotent for V .

Applying k(V )W ⊗k[V ]W − provides a morphism from L to the Grothendieck group
L ′ of the category of finitely generated (k(V )W ⊗k[V ]W H(c ))-modules that are locally
nilpotent for V . Composing with d ′, we obtain a morphism d ′′ from K0(k(ħh )Ȯ ) to
L ′.

Since every (k(V )W ⊗k[V ]W H(c ))-module that is locally nilpotent for V is a finite
extension of Kleft

c
H-modules, it follows that restriction through the quotient map

k(V )W ⊗k[V ]W H(c ) ։ Kleft
c

H induces an isomorphism K0(K
left
c

H-mod)
∼−→ L ′. Com-

posing d ′′ with the inverse of that map provides a morphism d ′′′ : K0(k(ħh )Ȯ ) →
K0(K

left
c

H-mod).
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Consider the morphism of O -algebras O [Q]→O (qk), qℵ, j 7→ qkℵ,− j e 2iπk ′H ,− j /|µW |. Given
a k(ħh )Ȯ -module M with k[V reg]⊗k[V ] M = 0, we have d ′′([M ]) = 0. It follows from
Theorem 8.3.1 that d ′′ factors through the morphism K0(k(ħh )Ȯ )→ K0(F (q

k)H -mod)

induced by KZ. This provides a morphism

dc ,c ′ : K0(F (q
k)H -mod)→ K0(K

left
c

H-mod).

Let us summarize these constructions in the following theorem.

Theorem 12.5.1. — There is a (unique) morphism dc ,c ′ : G0(F (q
C)H )→ G0(K

left
c

H) such

that dc ,c ′([E
gen]) = [Kleft

c
∆(χ)] for all E ∈ Irr(W ).

Given L a simple F (qk)H -module, there are non-negative integers dL ,z such that dc ,c ′(L ) =∑
z∈Υ−1(pleft

c )
dL ,z[L

left
c
(z)].

K0(k(ħh )Ȯ )[t±1]
∼ //

t=1

��

K0(k(ħh )Õ )
dec. map

// K0(O (c ))
forget grading
��

K0(k(ħh )Ȯ )
KZ

��

//❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴❴ K0(H(c )-modV −loc. nilp.)

localization
��

K0(F (q
k)H -mod) //❴❴❴❴❴❴❴❴❴❴❴

dc ,c ′ ,,❨❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

❨

K0((k(V )
W ⊗k[V ]W H(c ))-modV −loc. nilp.)

K0(K
left
c

H-mod)

∼
OO

Remark 12.5.2. — The discussion above shows that the cellular multiplicites mea-
sure something like the regular part of the characteristic cycle of a Verma module
k(c̃ )∆̇(E ) (with respect to the filtration ḢÅ of §4.4.B), although this doesn’t seem to
quite fit with the usual characteristic cycle theory. �

This theorem shows that classes of projective indecomposable (F (qk)H )-modules
are sums with positive coefficients of Calogero-Moser c -cellular characters.

Remark 12.5.3. — When W has a unique class of reflections and c 6= 0, the algebra
F (qk)H -mod is semisimple, so Theorem 12.5.1 brings no information on cellular
characters. �





CHAPTER 13

GAUDIN ALGEBRAS

13.1. W -covering of Z

Let Z ′ =Z reg×V reg/W V reg. So, we have a cartesian square

Z ′ can //

can

��

Z
Υ

��
C ×V reg×V ∗/W

can
// C ×V reg/W ×V ∗/W

There is an action of W onZ ′ given by w (z , v ) = (z , w (v )) for z ∈Z reg and v ∈ V reg.
Let Z ′ = k[Z ′] = Z reg⊗k[V reg]W k[V reg].

Lemma 13.1.1. — The multiplication map gives an isomorphism Z ′ ⋊W
∼−→ Hreg. The

image of Z ′ by that map is CHreg (V ∗) = k[C ×V reg]⊗Θ−1(k[V ∗]).

There are isomorphisms

C ×V reg×V ∗ ∼−→
can
C ×
�
(V reg×V ∗)/∆W

�
×V reg/W V reg ∼−−→

Θ#×id
Z ′.

Proof. — There is a commutative diagram

Z reg⊗k[V reg]W (k[V
reg]⋊W )

mult //

Θ⊗id ∼
��

Hreg

Θ∼
��

k[C × (V reg×V ∗)/∆W ]⊗k[V reg]W (k[V
reg]⋊W )

mult
// k[C ×V reg×V ∗]⋊W

Since the canonical map V reg×V ∗→ (V reg×V ∗)/∆W ×V reg/W V reg is an isomorphism, it
follows that the bottom horizontal map in the diagram is an isomorphism, hence the
top horizontal map is an isomorphism as well. The other assertions of the lemma
are clear.

Recall that Hrege induces a Morita equivalence between Hreg and Z reg (Corollary
4.3.5). Through the isomorphisms of Lemma 13.1.1, this corresponds to the Morita
equivalence between Z ′⋊W and Z ′W = Z reg given by Z ′.
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Given m a (non-necessarily closed) point of C × V reg × V ∗/W , we put L (m ) =

k(m )⊗k[C×V reg×V ∗/W ] Hrege . We have dimk(m ) L (m ) = |W |. The action of Θ−1(k[V ∗]) by
left multiplication on Hrege induces an action on L (m ).

Lemma 13.1.2. — Given m ∈C ×V reg×V ∗/W , the k (m )-algebra Z ′⊗k[C×V reg×V ∗/W ]k(m )

has dimension |W | and acts faithfully on the |W |-dimensional k(m )-vector space L (m ).

The non-zero eigenspaces of Θ−1(V ) on L (m ) are one-dimensional.

Proof. — Note that the image of Z ′ in Endk(m )(L (m )) coincides with the image of
Θ
−1(k(m )[V ∗]) by Lemma 13.1.1. As a consequence, the image of the commutative

algebra Θ−1(k(m )[V ∗]) in L (m ) has k (m )-dimension equal to that of L (m ). It follows
that the non-zero eigenspaces of Θ−1(V ) on L (m ) are one-dimensional.

We now introduce the spectral variety of Θ−1(V ) acting on the family {L (m )}m .
Let Z ′′ be the closed subscheme of C ×V reg×V ∗/W ×V ∗ given by

Z ′′ = {(c , v, u ,λ) | detL (c ,v ,u )(Θ
−1(y )−〈y ,λ〉) = 0 ∀y ∈ V }.

Proposition 13.1.3. — There is an isomorphism Z ′′ ∼−→Z ′, (c , v, u ,λ) 7→ (Θ#(c , v,λ), u ).

Proof. — Lemma 13.1.2 shows that characteristic and minimal polynomials of Θ−1(V )

on L (c , v, u ) agree. The proposition follows.

13.2. Gaudin operators

We consider the
�
Θ−1(k[V ∗])⊗k[C×V reg]⊗k[V ∗]

�
-module L̄ =Hreg, whereΘ−1(k[V ∗])⊗

k[C ×V reg] acts by left multiplication and k[V ∗] acts by right multiplication. Note
that L̄ is a free (k[C ×V reg]⊗k[V ∗])-module with basis W .

Given (c , v, v ∗) ∈C ×V reg×V ∗, we put L̄ (c , v, v ∗) = k(c , v )⊗k[C×V reg]H
reg⊗k[V ∗] k(v

∗),
a Θ−1(k[V ∗])-module. We denote by (ew )w∈W the k-basis of L̄ (c , v, v ∗) obtained as the
image of W .

The action of Θ−1(y ) on L̄ (c , v, v ∗) is given by the operator

D c ,v ,v ∗

y
: ew 7→ 〈y , w (v ∗)〉ew +

∑

s∈Ref(W )

ε(s )cs

〈y ,αs 〉
〈v,αs 〉

es w .

Let u be the image of v ∗ in V ∗/W . The (k[V ∗]⋊W )-module Ind
k[V ∗]⋊W

k[V ∗] k(v ∗) is iso-
morphic to the semisimplification of Ind

k[V ∗]⋊W

k[V ∗]W ⊗kW
(k(u )⊗k) = k[V ∗]⊗k[V ∗]W k(u ). Con-

sequently, L̄ (c , v, v ∗) is isomorphic to the graded module associated with a filtration
of L (c , v, u ) (the filtration does not depend on v ∗). In particular, L̄ (c , v, v ∗) depends
only on the W -orbit of v ∗, up to isomorphism. Also, the spectrum of Θ−1(V ) on
L̄ (c , v, v ∗) is the same as that on L (c , v, u ).
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We now introduce the spectral variety of Θ−1(V ) acting on the family {L̄ (c , v, v ∗)}c ,v ,v ∗.
Let Z̄ ′′ be the closed subscheme of C ×V reg×V ∗/W ×V ∗ given by

Z̄ ′′ = {(c , v, u ,λ) | detL̄ (c ,v ,v ∗)(Θ
−1(y )−〈y ,λ〉) = 0 ∀y ∈V }

where v ∗ ∈ V ∗ has image u in V ∗/W . Forgetting λ gives a morphism Z̄ ′′ → C ×
V reg×V ∗/W and the fiber at (c , v, u ) is the spectrum of Θ−1(V ).

From Proposition 13.1.3, we deduce the following description of that variety.

Proposition 13.2.1. — There is an isomorphism Z̄ ′′ ∼−→Z ′, (c , v, u ,λ) 7→ (Θ#(c , v,λ), u ).

13.3. Topology

We assume in §13.3 that k=C.

13.3.A. γ-cells. — Recall that given (c , v, v ∗) ∈C (C)×V reg×V ∗, we have a family of
commuting operators {D c ,v ,v ∗

y
}y ∈V acting on

⊕
w∈W Cew :

D c ,v ,v ∗

y
: ew 7→ 〈y , w (v ∗)〉ew +

∑

s∈Ref(W )

ε(s )cs

〈y ,αs 〉
〈v,αs 〉

es w .

Let γ : [0, 1]→ C (C)×V reg/W ×V ∗/W be a path with γ([0, 1)) ⊂ P (C)nr and γ(0) =
(0, W · vC, W · v ∗

C
) as in §6.6. We denote by γ̂ a path in C (C)×V ×V ∗ lifting γ with

γ̂(0) = (0, vC, v ∗
C
).

Theorem 13.3.1. — Let w ∈W . There is a unique path ρw : [0, 1]→ V ∗ such that

– ρw (0) =w −1(v ∗
C
).

– 〈ρw (t ), y 〉 is an eigenvalue of D γ̂(t )
y

for y ∈V and t ∈ [0, 1)

Two elements w ′, w ′′ ∈W are in the same Calogero-Moser γ-cell if and only if ρw ′(1) =

ρw ′′(1).

Proof. — Appendix §B.7 applied to the covering Z ′→ C ×V reg×V ∗/W shows the
existence of a path γ̃w in Z ′(C) lifting the image of γ̂ in C (C)×V ×V ∗/W and such
that γ̃w (0) = (zw , w −1(v ∗

C
)), where zw = (0, (vC, w −1(v ∗

C
))∆W ). Note that the image of

γ̃w in Z (C) is the path γw of §6.6. Define ρw (t ) to be the λ-component of the image
of γ̃w (t ) in Z̄ ′”, via the isomorphism of Proposition 13.2.1. It satisfies the required
properties.

The last statement follows by base change via the unramified map V reg→ V reg/W .
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13.3.B. Left cells. — Let C be a prime ideal of C[C ] and let rleft
C

be a prime ideal of
R as in the preamble to §III.

Let y1 ∈ R(C) be a point in the irreducible component determined by rleft
C

such
that StabG (y1) = G I

rleft . Fix a path ˆ̃γ : [0, 1] → R(C) ×V /W ×V ∗/W (V
reg × V ∗) such that

ˆ̃γ([0, 1)) ⊂ R(C)nr ×V /W ×V ∗/W (V
reg ×V ∗), ˆ̃γ(0) = (y0, (vC, v ∗

C
)) and ˆ̃γ(1) maps onto y1. We

denote by γ̂ the image of ˆ̃γ in C (C)×V ×V ∗.

Theorem 13.3.1 and Proposition 6.6.2 have the following consequence.

Theorem 13.3.2. — Let w ∈W . There is a unique path ρw : [0, 1]→ V ∗ such that

– 〈ρw (t ), y 〉 is an eigenvalue of D γ̂(t )
y

for y ∈V and t ∈ [0, 1)

– ρw (0) =w −1(v ∗
C
).

Two elements w ′, w ′′ ∈ W are in the same Calogero-Moser left C-cell if and only if

ρw ′(1) =ρw ′′(1).

13.4. Gaudin algebra and cellular characters

13.4.A. Left specialization. — Let Z ′left = Z ′⊗k[V ∗]W k= Z reg,left⊗k[V reg]W k[V reg], a k[C×
V reg]-algebra, free of rank |W | as a k[C × V reg]-module. It is acted on by W and
(Z ′left)W = Z reg,left.

Lemma 13.1.1 shows that Θ gives an isomorphism Z ′left ⋊W
∼−→ Hreg,left and the

image of Z ′left by that map is the k[C ×V reg]-subalgebra generated by Θ−1(V ).
There is a Morita equivalence between Hreg,left and Z reg,left given by the bimodule

∆(co)reg =∆(co)⊗k[V ] k[V
reg] =Hrege ⊗k[V ∗]W k =Hreg,lefte . It corresponds to the Morita

equivalence between Z ′left ⋊W and Z reg,left given by Z ′left. Note in particular that
Z ′left⋊W acts faithfully on ∆(co)reg.

13.4.B. Gaudin algebra. — There is a canonical isomorphism k[C ×V reg]⊗kW
∼−→

Hreg ⊗k[V ∗] k =∆
reg(kW ). Through this isomorphism, the action of Θ−1(y ) (for y ∈ V )

is given by

Dy =
∑

s∈Ref(W )

ǫ(s )Cs

〈y ,αs 〉
αs

s ∈ k[C ×V reg][W ]

where k[C ×V reg][W ] denote the group algebra of W over the algebra k[C ×V reg]:
note that, in this algebra, the elements of k[C ×V reg] and those of W commute. In
other words, k[C ×V reg][W ] = k[C ×V reg]⊗kW as an algebra. We denote by Gau(W )

the k[C ×V reg]-subalgebra of k[C ×V reg][W ] generated by the Dy ’s (y ∈ V ). It will
be called the generic Gaudin algebra associated with W : note that it is commutative.

Note also that the external action of W stabilizes Gau(W ): we have wDy = Dw (y )

for y ∈ V and w ∈W . Therefore, we can consider the algebra Gau(W )⋊W .
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Recall that ∆reg(co) has a filtration with gr ∆reg(co)≃∆(kW ). There is a filtration of
Hreg,left given for r ¶ 0 by

Hreg,left,¶ r = {h ∈Hreg,left | h∆reg(co)¶ i ⊂∆reg(co)¶ i+r , ∀i ¶ 0}.
Via the isomorphism Z ′left⋊W

∼−→Hreg,left, we obtain a filtration with (Z ′left⋊W )¶ r =

(Z ′left)¶ r ⊗kW . We deduce the following:

– The algebra Gau(W ) is the image of Z ′ =Θ−1(k[C ×V reg×V ∗]) in End(∆(kW ))

– The algebra Gau(W )W is the image of Z reg =Θ−1(k[C×V reg×V ∗]∆W ) in End(∆(kW ))

– The algebra Gau(W )⋊W is the image of Hreg,left in End(∆(kW ))

– the kernel of the action of Hreg,left on ∆(kW ) is a nilpotent ideal.

Thanks to Proposition E.1.2, we also deduce that Gau(W ) induces a Morita equiv-
alence between Gau(W )⋊W and Gau(W )W .

13.4.C. Cellular characters. — Let m be a maximal ideal of Kleft
C

Gau(W ). We define
a character of W

γGau
m
= ([(k(C)(V )⊗kW )m](Kleft

C
Gau(W ))m

)∗.

By Proposition E.1.2, the restriction map induces a bijection

(13.4.1)
�
Irr(Kleft

C
Gau(W ))
�
/W

∼−→ Irr(Kleft
C

Gau(W )W ).

Let z be the maximal ideal of Z left
C

corresponding to the orbit of m via this bijection.

Theorem 13.4.2. — We have γGau
L
= γCM

z
.

Note that, as consequence, we have γGau
w L
= γGau

L
for all w ∈W .

There is a corresponding result for cellular multiplicities:

Length(Kleft
C

Gau(W ))m
((k(C)(V )⊗E )m) =multCM

z,χ .

Consider now an algebraically closed field K and a K -point p of Spec(k(C)[V reg])

outside the ramification locus of f : Spec(k(C)Z ′left)→ Spec(k(C))×V reg.
There is a bijection Irr(Kleft

C
Gau(W ))

∼−→ f −1(p ). Denote by zm the point of f −1(p )

corresponding to m. We have γGau
m
= [K (f −1(p ))]K W . So, the C-cellular characters are

the generalized eigenspaces of the Gaudin operators at p .

Remark 13.4.3. — The description of Calogero-Moser cellular characters provided
by Theorem 13.4.2 allows efficient computations in small groups. �





CHAPTER 14

BIALYNICKI-BIRULA CELLS OF Z c

Assumption. In this chapter §14, we assume that k=C and we fix
an element c ∈C .

The group C× acts on the algebraic variety Z c . We shall interprete geometrically
several notions introduced in this book (families, cellular characters,...) using this
action (fixed points, attractive or repulsive sets...). The main result of this chapter
(and maybe of this book) is concerned with the case of a family corresponding to a
smooth point ofZ c : we will show that the associated cell characters are irreducible.
This result will be seen as a geometric result. Indeed, the smoothness of the fixed
point implies that the attractive and repulsive sets are affine spaces which inter-
sect properly and transversally; a computation of the intersection multiplicity will
conclude the proof (see Theorem 14.4.1).

14.1. Generalities on C×-actions

Let X be an affine algebraic variety endowed with a regular C×-action C××X →
X , (ξ, x ) 7→ ξ• x . We will denote byX C

×
the closed subvariety consisting of the fixed

points under the action of C×. Given x ∈X , we say that limξ→0ξ• x exists and is equal

to x0 if there exists a morphism of varieties ϕ : C → X such that, if ξ ∈ C×, then
ϕ(ξ) = ξ• x and ϕ(0) = x0. It is then clear that x0 ∈X C

×
. Similarly, we will say that

limξ→0ξ
−1 • x exists and is equal to x0 if there exists a morphism of varieties ϕ :C→X

such that, if ξ ∈C×, then ϕ(ξ) = ξ−1 • x and ϕ(0) = x0.
We denote by X att (respectively X rép) the set of x ∈X such that limξ→0ξ• x (re-

spectively limξ→0ξ
−1 • x ) exists. It is a closed subvariety ofX and the maps

limatt : X att −→ X C
×

x 7−→ limξ→0ξ• x
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and limrép : X rép −→ X C
×

x 7−→ limξ→0ξ
−1• x

are morphisms of varieties (which are of course surjective: a section is given by
the closed immersion X C

× ⊂ X att ∩X rép), because X is affine by assumption (this
follows from the facts that this is true for the affine space CN endowed with a linear
action of C× and that X can be seen as a C×-stable closed subvariety of such a CN ).
Note that this is no longer true in general if X is not affine, as it is shown by the
example P1(C) endowed with the action ξ• [x ; y ] = [ξx ; y ].

Finally, given x0 ∈X C
×
, we denote by X att(x0) (respectively X rép(x0)) the inverse

image of x0 by the map limatt (respectively limrép). The closed subvariety X att(x0)

(respectively X rép(x0)) will be called the attractive set (respectively the repulsive set)
of x0: it is a closed subvariety of X . Let us recall the following classical fact, due to
Bialynicki-Birula [Bia]:

Proposition 14.1.1. — If x0 is a smooth point of X , then there exists N ¾ 0 such that

X att(x0)≃CN . In particular,X att(x0) is smooth and irreducible.

The same statements hold forX rép(x0).

We will describe the notions developed in the previous chapters (families, cellular
characters) via fixed points and attractive sets of the C×-action on Z c .

14.2. Fixed points and families

The results of this section §14.2 are due to Gordon [Gor1]. There are several C×-
actions on all of our varieties (P , Z , R ,...). We will use the one which induces the
Z-grading of Example 3.2.1. In other words, an element ξ ∈ C× acts on H as the
element (ξ−1,ξ, 1⋊ 1) of C××C×× (Hom(W ,C×)⋊N ). Therefore, for the action on H,
ξ acts trivially on C[C ]⊗CW , acts with non-negative weights on C[V ], with non-
positive weights on C[V ∗]. We get an action on P and Zc , which induces regular
actions of C× on the varieties P• ≃V /W ×V ∗/W and Z c making the morphism

Υc :Z c −→P • =V /W ×V ∗/W

C×-equivariant. Given ξ ∈ C× and z ∈ Z c , the image of z through this action of ξ
will be denoted by ξ• z . The unique fixed point of P • is (0, 0):

(14.2.1) P C
×

• = (0, 0).

Since Υc is a finite morphism, we deduce that

(14.2.2) Z C
×

c
= Υ −1

c
(0, 0).
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Proposition 14.2.3. — The construction above provides a bijection between Z C
×

c
and the

set of Calogero-Moser c -families.

14.3. Attractive sets and cellular characters

First of all, note that

(14.3.1) P att
• =V /W ×0⊂ V /W ×V ∗/W and P rép

• = 0×V ∗/W ⊂V /W ×V ∗/W .

In other words, P att
• is the irreducible subvariety of P • associated with the prime

ideal pleft
c

. Moreover, since Υc is a finite morphism, we have

Lemma 14.3.2. — We have Z att
c
= Υ −1

c
(V /W ×0) and Z rép

c
= Υ −1

c
(0×V ∗/W ).

Proof. — Let ρ : Zc → C[t, t−1] be a morphism of C-algebras such that ρ(P•) ⊂ C[t].
Since Zc is integral over P•, it follows that ρ(Zc ) is integral over ρ(P•). As C[t] is
integrally closed, we deduce that ρ(Zc ) ⊂ C[t]. This shows that P att

• = V /W × 0 ⊂
Υc (Z

att
c
). The reverse inclusion is clear, and the other equality is proven similarly.

We have the following immediate consequence.

Proposition 14.3.3. — There is a bijection from Υ −1
c
(pleft

c
) to the set of irreducible compo-

nents of Z att
c

sending z to the corresponding irreducible closed subvariety Z att
c
[z].

Since limatt : Z att
c
→ Z C×

c
is a morphism of varieties, the image of Z att

c
[z] is irre-

ducible. As Z C
×

c
is a finite set, we deduce that limatt(Z

att
c
[z]) is reduced to a point.

Hence, the morphism of varieties limatt :Z att
c
→Z C×

c
induces a surjective map Υ −1

c
(pleft

c
)−→

Υ
−1
c
(p̄c ): this is the map limleft defined in (11.2.12).

14.4. The smooth case

Assumption and notation. We fix in §14.4 a point z0 ∈ Z C
×

c

which is assumed to be smooth in Z c . We denote by χ the unique
irreducible character of the associated Calogero-Moser c -family. We
denote by Γ the Calogero-Moser two-sided c -cell associated with z0

and we fix a Calogero-Moser left c -cell C contained in Γ .

The aim of this section is to show the following result.
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Theorem 14.4.1. — With the assumption and notation above, we have:

(a) |Γ |=χ(1)2.

(b)
⋃

d∈D left
c

d C = Γ .

(c) |C |= χ(1).
(d) [C ]CM

c
=χ .

(e) degc (C ) =χ(1).

We will provide a geometrical proof of Theorem 14.4.1. A later entirely algebraic
proof of (c,d,e) can be deduced from [Bel6, Theorem 10(3)]. In type An , this can also
be deduced, using Gaudin operators (cf Chapter 13), from [MuTaVa].

NOTATION - Given A is a commutative local ring with maximal ideal m and given
M a finitely generated A-module, we denote by em(M ) the multiplicity of M for the
ideal m, as it is defined in [Ser, Chapter V, §A.2].

Let A be a regular commutative ring (not necessarily local) and M and N two
finitely generated A-modules such that M ⊗A N has finite length. Given a a prime
ideal of A, we put

χa(M , N ) =

dim A∑

i=0

(−1)i LengthAa
(TorA

i
(M , N )a),

as in [Ser, Chapter V, §B, Theorem 1] . �

Proof. — (a) follows from Theorem 10.2.7(c).

(b) The set of irreducible components of lim−1

att
(z0) is in bijection with D left

c
\ Γ (see

Proposition 11.3.5(c)). Since z0 is smooth (and isolated), we have

Z att
c
(z0)≃CN

for some N , hence Z att
c
(z0) is smooth and irreducible (Proposition 14.1.1). This

shows that lim−1

att
(z0) is irreducible and isomorphic to an affine space. It follows

that |D left
c
\ Γ |= 1, which shows (b). In other words, with the notation introduced in

§11.3.B, we have C D = Γ .

(c) Let zL = zleft
c
(C ): then zL is the defining ideal (in Z ) of Z att

c
(z0), but we will

consider its image in Zc . Let z̄ = z̄c (Γ ): then z̄ is the defining ideal of the point z0

(which will be seen as an ideal of Zc ). We define similarly zR as being the defining
ideal of Z rép

c
(z0): we denote by C ′ a Calogero-Moser right c -cell contained in Γ (so

that zR = z
right
c
(C ′)). Corollary 11.4.8 shows that

(♣) |C |= LengthZc ,zL
(Zc /p

left
c

Zc ) and |C ′|= LengthZc ,zR
(Zc /p

right
c

Zc ).

Let mL =multCM
C ,χ . We have

(♦L ) |C |=mLχ(1) and [C ]CM

c
=mLχ .
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By symmetry, we can define a non-negative integer mR satisfying

(♦R ) |C ′|=mRχ(1).

Let us first compute the multiplicity of the Zc ,z̄-module Zc ,z̄/p
left
c

Zc ,z̄ for z̄Zc ,z̄. The
Krull dimension of this module is n = dimk V . By the additivity formula [Ser, Chap-
ter V, §A.2], we have

ez̄Zc ,z̄
(Zc ,z̄/p

left
c

Zc ,z̄) =
∑

coht(z)=n

LengthZc ,z
(Zc ,z/p

left
c

Zc ,z)ez̄Zc ,z̄
(Zc ,z̄/zZc ,z̄).

Here, coht(z) denotes the coheight of the prime ideal z of Zc ,z̄. Since Z att
c
(z0) is ir-

reducible of dimension n , there is only one prime ideal of Zc ,z̄ with coheight n

which contains pleft
c

Zc ,z̄ (and so such that LengthZc ,z
(Zc ,z/p

left
c

Zc ,z) is non-zero), this is
the prime ideal zL . Moreover, since Zc ,z̄/zL Zc ,z̄ is a regular ring (because Z att

c
(z0) is

smooth), the multiplicity ez̄Zc ,z̄
(Zc ,z̄/zZc ,z̄) is equal to 1 (see [Ser, Chapter IV]). Hence,

it follows from (♣) and (♦L ) that

(♥L ) ez̄Zc ,z̄
(Zc ,z̄/p

left
c

Zc ,z̄) =mLχ(1).

By symmetry,

(♥R ) ez̄Zc ,z̄
(Zc ,z̄/p

right
c

Zc ,z̄) =mRχ(1).

On the other hand, P /pleft
c

is a polynomial algebra and Zc /p
left
c

Zc is a free P /pleft
c

-
module of rank |W |. So Zc ,z̄/p

left
c

Zc ,z̄ is a Cohen-Macaulay Zc ,z̄-module of dimension
n . Similarly, Zc ,z̄/p

right
c

Zc ,z̄ is a Cohen-Macaulay Zc ,z̄-module of dimension n . Since
Zc has dimension 2n , it follows from [Ser, Chapter V, §B, Corollary to Theorem 4]
that
(♠)
χz̄(Zc ,z̄/p

left
c

Zc ,z̄, Zc ,z̄/p
right
c

Zc ,z̄) =LengthZc ,z̄
(Zc ,z̄/p

left
c

Zc ,z̄⊗Zc ,z̄
Zc ,z̄/p

right
c

Zc ,z̄) =χ(1)
2 > 0.

Consequently [Ser, Chapter V, §B, Complement to Theorem 1],

ez̄Zc ,z̄
(Zc ,z̄/p

left
c

Zc ,z̄) · ez̄Zc ,z̄
(Zc ,z̄/p

right
c

Zc ,z̄) ¶ χz̄(Zc ,z̄/p
left
c

Zc ,z̄, Zc ,z̄/p
right
c

Zc ,z̄).

From this last equality and (♥L ), (♥R ) and (♠), we deduce that

mL mR ¶ 1.

We obtain mL =mR = 1, which proves (c).

(d) follows immediately from (c).

(e) follows from (b) and from Proposition 11.3.5(b).





CHAPTER 15

CALOGERO-MOSER VERSUS KAZHDAN-LUSZTIG

We have recalled in § 8.6 the definition of Kazhdan-Lusztig left, right or two-
sided c -cells, of Kazhdan-Lusztig c -families, and of Kazhdan-Lusztig c -cellular
characters, starting from the representation theory of Hecke algebras. On the other
hand, the notions of Calogero-Moser left, right or two-sided c -cells, of Calogero-
Moser c -families and of Calogero-Moser c -cellular characters have been defined
and studied in Part III of this book. We conjecture that these notions coincide. The
aim of this chapter is to state precise conjectures and to give arguments which sup-
port these conjectures.

15.1. Hecke families

The aim of this section is to recall the statement of Martino’s Conjecture [Mart1]
which relates Calogero-Moser families and Hecke families (see definition 8.5.1), to
recall what is known about this conjecture, and to show some theoretical arguments
which support it.

Let k ♯ = (k
♯

ℵ, j )(ℵ, j )∈ℵ◦ denote the element of C R defined by k
♯

ℵ, j = kℵ,− j

(the indices j being viewed modulo eℵ). We assume that Assump-
tion (Free-Sym) is satisfied (see §8.1.B).

15.1.A. Statement and known cases. — We recall here the statement given in [Mart1,
Conjecture 2.7]:

Conjecture FAM (Martino). — If b ∈ Idempr(Z̄c ), then there exists a central idempotent

bH of O cyc[qR]H cyc

W (k ♯) such that:

(a) IrrH(W , b ) = IrrH (W , bH );

(b) dimC(Z̄ b ) = dimF (qR)

�
F (qR)H cyc

W (k ♯)bH
�
.
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In particular, every Calogero-Moser c -family is a union of Hecke k ♯-families.

This Conjecture has been checked in many cases by computing separately the
Calogero-Moser families and Hecke families. At the time this book is written, no
theoretical link has been made towards a proof of this Conjecture which does not
rely on the Shephard-Todd classification.

Theorem 15.1.1 (Bellamy, Chlouveraki, Gordon, Martino)

Assume that W has type G (d e , e , n ) and assume that, if n = 2, then e is odd or d = 1.

Then the Conjecture FAM holds.

The proof of this Theorem follows from the following works:

– M. Chlouveraki has computed the Hecke families in [Chl3] and [Chl5].
– Whenever e = 1, the Calogero-Moser families have been computed by I. Gor-

don [Gor2] for rational values of k (using Hilbert schemes). This result has
been extended to all values of k by M. Martino [Mart2] using purely algebraic
methods.

– M. Chlouveraki’s combinatoric and I. Gordon’s combinatoric have been com-
pared by M. Martino [Mart1] to show that Conjecture FAM holds whenever
e = 1.

– Whenever e is any non-negative integer (satisfying the conditions of the The-
orem), the Calogero-Moser families have been computed by [Bel5] for rational
values of k , because this computation relied on I. Gordon’s result. His method
can nevertheless be extended to any value of k , once M. Martino’s result has
been established [Mart2].

It was also Conjectured by M. Martino that, whenever c is generic, then the
Calogero-Moser c -families and the Hecke k ♯-families coincide. A counter-example
has been recently found by U. Thiel [Thi1].

Thanks to his computations, U. Thiel has also obtained new cases of Conjec-
ture FAM amongst the exceptional complex reflection groups [Thi2, Theorem 25.4].
It must be noticed that M. Chlouveraki has computed the partitions into Hecke
families for exceptional groups [Chl4] in all cases, while U. Thiel has computed the
partition into Calogero-Moser families for some (not all) exceptional groups, and
mainly in the generic parameter case. We summarize his results in the generic case:
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Theorem 15.1.2 (Thiel). — If W has type

G4,G5,G6,G7,G8,G9,G10,G12,G13,G14,G15,G20,G22,G23,G24,G25,G26,

then the Conjecture FAM holds for generic parameters.

15.1.B. Theoretical arguments. — Corollary 9.4.2 shows that:

Proposition 15.1.3. — In Conjecture FAM, the statement (a) implies the statement (b).

Proof. — Keep the notation of Conjecture FAM (b , bH ,...). Since the algebra F (qR)H cyc

W (k ♯)

is split semisimple, we have

dimF (qR)

�
F (qR)H cyc

W (k ♯)bH
�
=
∑

χ∈IrrH (W ,bH )

χ(1)2.

But, on the other hand, it follows from Corollary 9.4.2 that

dimC(Z̄c b ) =
∑

χ∈IrrH(W ,b )

χ(1)2.

Whence the result.

Remark 15.1.4. — The better theoretical argument to support Conjecture FAM is
(for the moment) the following. It has been proven that, if χ and χ ′ are in the
same Calogero-Moser c -family (respectively Hecke k ♯-family), then Ωc

χ
(eu) =Ωc

χ ′(eu)

(respectively Cχ (k
♯) = Cχ ′(k

♯)): see Lemma 9.2.3 (respectively Lemma 8.5.2). But it
follows from Corollary 7.3.2 and from the definition of Cχ (k

♯) that

(15.1.5) Ω
c
χ
(euc ) =Cχ (k

♯).

Even though this numerical invariant is not enough for determining in general the
Calogero-Moser families, it is relatively sharp. �

A last argument is given by the next proposition, which follows from Lemma 8.5.4
and Corollary 9.3.5:

Proposition 15.1.6. — IfF is a Calogero-Moser c -family (respectively a Hecke k ♯-family),

then Fǫ is a Calogero-Moser c -family (respectively a Hecke k ♯-family).
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15.2. Kazhdan-Lusztig cells

Assumption. In §15.2, we assume that W is a Coxeter group, that
k=C and that kR =R. We fix an element c ∈C (R).

15.2.A. Cells and characters. — The first conjecture is concerned with two-sided
cells and their associated families.

Conjecture LR . — There exists a choice of the prime ideal r̄c lying over q̄c such that:

(a) The partition of W into Calogero-Moser two-sided c -cells coincides with the partition

into Kazhdan-Lusztig two-sided c -cells.

(b) Assume that cs ¾ 0 for all s ∈ Ref(W ). If Γ ∈ CMCellc
LR
(W ) = KLCellc

LR
(W ), then

IrrCM
Γ
(W ) = IrrKL

Γ
(W ).

We propose a similar conjecture for left cells and cellular characters.

Conjecture L . — There exists a choice of the prime ideal rleft
c

lying over qleft
c

such that:

(a) The partition of W into Calogero-Moser left c -cells coincides with the partition into

Kazhdan-Lusztig left c -cells.

(b) Assume that cs ¾ 0 for all s ∈Ref(W ). If C ∈ CMCellc

L
(W ) = KLCellc

L
(W ), then [C ]CM

c
=

[C ]KL
c

.

A similar conjecture can be stated for right cells. Also, if Conjectures LR and L have
positive answer, it should be true that rleft

c
⊂ r̄c .

We propose a specific choice of ideals r0, r̄c and rleft
c

. We describe that choice in
the equivalent setting of paths, cf §6.6.

Let C ′
R

be the dual chamber to CR, obtained as the image of CR through some
isomorphism of RW -modules R⊗Q VQ

∼−→R⊗Q V ∗
Q

. We choose (vC, v ∗
C
) ∈ CR×C ′

R
and

we choose the path γ contained in C (R). We conjecture that Conjectures LR and L
hold with such choices.
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15.2.B. Characters. — First of all, note that the set of Calogero-Moser c -families,
as well as the set of Calogero-Moser c -cellular characters, do not depend on the
choice of the ideal rleft

c
. At the level of characters, the statements (b) of Conjec-

tures LR and L imply the following simpler statement, which does refer to the
choice of a prime ideal of R .

Conjecture C . — (a) The partition of Irr(W ) into Calogero-Moser c -families coincides

with the partition into Kazhdan-Lusztig c -families (Gordon-Martino).

(b) The set of Calogero-Moser c -cellular characters coincides with the set of Kazhdan-

Lusztig c -cellular characters.

Note that (a) above has been conjectured by Gordon and Martino [GoMa, Con-
jecture 1.3(1)]. So Conjecture LR lifts Gordon-Martino’s Conjecture at the level of
two-sided cells.

COMMENTARY - The choices of the prime ideals r̄c or rleft
c

are not relevant for the
Conjecture C, but they are relevant for the Conjectures LR and L. �

15.3. Evidence

As will be explained in Part IV, the conjectures stated in § 15.2 hold when W has
type A1 or B2: they also hold in type A2, but we have not included the computations
in this book. The case of type B2 will be treated in § 19. However, the difficulty of
the computations does not allow us for now to extend this list of examples. Note
that Conjectures LR and L have been proved by the first author whenever W is
dihedral of order 2m , with m odd [Bon5, Corollary 6.3] (it turns out that, in this
case, the Galois group G is SW ).

A different approach, via Gaudin operators (cf Chapter 13) has been used to settle
Conjecture L for type An [Wh, BrGoWh, HaKaRyWe].

The aim of §15.3 is to give some evidence in support of these conjectures. Note
however that Conjecture C, which only deals with characters (and not with the
partition of W into cells), holds for some infinite series of groups (see the details
below).

15.3.A. The case c = 0. — The following facts will be shown in § 17.
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Proposition 15.3.1. — When c = 0, there is only one Calogero-Moser left, right or two-

sided cell: it is W itself. Moreover,

IrrCM
W
(W ) = Irr(W ) and [W ]

CM

0
= [CW ]CW =

∑

χ∈Irr(W )

χ(1)χ .

Corollary 15.3.2. — Conjectures L and LR hold when c = 0.

Proof. — This follows from the comparison of [Bon2, Corollaries 2.13 et 2.14] with
Proposition 15.3.1.

15.3.B. Constructible characters, Lusztig families. — In the sequel of this Chap-
ter, we will only deal with positive parameters. We do not know how to treat the
case where only some parameters are equal to 0 (in order to compare with [Bon2,
Corollaries 2.13 et 2.14]).

From now on, and until the end §15, we assume that cs > 0 for
all s ∈Ref(W ).

CONVENTION - When (W ,S ) has type Bn , we write S = {t , s1, s2, . . . , sn−1} with the
convention that t is not conjugate to some si , so the Dynkin diagram is

✐ ✐ ✐ · · · ✐
t s1 s2 sn−1

In this case, we will set b = ct and a = cs1
= cs2

= · · ·= csn−1
. �

Lusztig [Lus4, §22] has defined a notion of constructible characters of W (that we
will call here c -constructible characters). We can then define a graph Gc (W ) as fol-
lows:

• The set of vertices of Gc (W ) is Irr(W ).
• Two distinct irreducible characters of W are linked in Gc (W ) if they appear in

the same c -constructible character.

We then define Lusztig c -families as the connected components of Gc (W ).

Proposition 15.3.3. — Assume that one of the following hold:

(1) c is constant;

(2) |S |¶ 2;

(3) (W ,S ) has type F4;

(4) (W ,S ) has type Bn , a 6= 0 and b /a ∈ {1/2, 1, 3/2, 2}∪]n −1,+∞).
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Then:

(a) The c -constructible characters and the Kazhdan-Lusztig c -cellular characters coin-

cide.

(b) The Lusztig c -families and the Kazhdan-Lusztig c -families coincide.

Proof. — Lusztig [Lus4, Conjectures 14.2] has proposed a series of conjectures (num-
bered P1, P2,. . . , P15) about Kazhdan-Lusztig cells and the a-function. They have
been proven in the following cases:

(1) when c is constant in [Lus4, chapitre 15];
(2) when |S |¶ 2 in [Lus4, chapitre 17];
(3) when (W ,S ) has type F4 in [Ge2];
(4) when (W ,S ) has type Bn and a = 0 or when a 6= 0 and b /a ∈ {1/2, 1, 3/2, 2}

in [Lus4, Chapter 16];
(4′) when (W ,S ) has type Bn , a 6= 0 and b /a > n −1 in [BoIa], [Bon1] et [GeIa].

Also, it is shown in [Lus4, Lemma 22.2] and [Ge3, §6 and §7] that these conjectures
implies that the c -constructible characters and the Kazhdan-Lusztig c -cellular char-
acters coincide. This shows (a). The statement (b) now follows from [BoGe, Corol-
lary 1.8].

15.3.C. Conjectures about characters. —

Families. — The c -constructible characters (and so the Lusztig c -families) have
been computed in all cases by Lusztig [Lus4]. We deduce from Proposition 15.3.3
that the Kazhdan-Lusztig c -families are known in the cases (1), (2), (3) and (4) of
Proposition 15.3.3. But, the explicit computation of Calogero-Moser c -families for
classical type has been made in the series of articles [Bel1], [Bel5], [Gor1], [Gor2],
[GoMa], [Mart2]. Using all of those computations, we obtain the following theo-
rem.

Theorem 15.3.4. — Assume that one of the following holds:

(1) |S |¶ 2.

(2) (W ,S ) has type An or Dn .

(3) (W ,S ) has type Bn , a > 0 and b /a ∈ {1/2, 1, 3/2, 2}∪]n −1,+∞).
Then Conjecture C(a) holds.
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Cellular characters. — If (W ,S ) has type An or if (W ,S ) has type Bn with a > 0

and b /a ∈ {1/2, 3/2}∪]n − 1,+∞), then it follows from the previous results that the
Kazhdan-Lusztig c -cellular characters are irreducible. Moreover, it follows from
the work of Gordon and Martino that, in those same cases, the Calogero-Moser
space Z c is smooth. Therefore, the next theorem follows from Theorem 14.4.1.

Theorem 15.3.5. — Assume that one of the following holds:

(1) (W ,S ) has type An ;

(2) (W ,S ) has type Bn with a 6= 0 and b /a ∈ {1/2, 3/2}∪]n −1,+∞).
Then Conjecture C(b) holds (and the c -cellular characters are irreducible).

Whenever W is dihedral, the first author proved Conjecture C(b), by a direct
explicit computation using Gaudin algebras [Bon5, Table 4.14].

Other arguments. — First of all, note that, if we assume that Lusztig’s Conjectures P1,
P2,. . . , P15 hold (see [Lus4, conjectures 14.2]), then the previous argument imply
that Conjecture C(a) holds in type Bn and Conjecture C(b) holds in type Bn when-
ever a > 0 and b /a 6∈ {1, 2, . . . , n −1} (because in this case, the c -constructible charac-
ters are irreducible and the Calogero-Moser space is smooth).

Remark 15.3.6. — IfF is a Calogero-Moser (respectively Kazhdan-Lusztig) c -family,
then Fǫ is a Calogero-Moser (respectively Kazhdan-Lusztig) c -family: see Corol-
lary 9.3.5 and (8.6.14).

Similarly, if χ is a Calogero-Moser (respectively Kazhdan-Lusztig) c -cellular char-
acter, then χǫ is a Calogero-Moser (respectively Kazhdan-Lusztig) c -cellular char-
acter: see Corollaries 11.4.9 and (8.6.13). �

Remark 15.3.7. — If F is a Calogero-Moser (respectively Lusztig) c -family, then
there exists a unique character χ ∈F with minimal b-invariant: see Theorem 9.4.1(b)
(respectively [Bon4], or [Lus2, Theorem 5.25 and its proof] whenever c is constant).

Similarly, if χ is a Calogero-Moser c -cellular character (respectively a c -constructible
character), then there exists a unique irreducible component χ of minimal b-invariant:
see Theorem 11.4.12. �

15.3.D. Cells. —
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Two-sided cells. — The first argument which supports Conjecture LR comes from
the comparison of the cardinality of cells, and from the fact that Conjecture C(a) has
been proven in many cases.

Remark 15.3.8. — Assume here (W , c ) satisfies one of the assumptions of Theo-
rem 15.3.4. Let F be a Calogero-Moser c -family (that is, a Kazhdan-Lusztig c -
family according to Theorem 15.3.4). Let ΓCM (respectively ΓKL) denote the Calogero-
Moser (respectively Kazhdan-Lusztig) two-sided c -cell coveringF . It follows from
Theorem 10.2.7(c) that

|ΓCM |=
∑

χ∈F
χ(1)2

and it follows from (8.6.6) that

|ΓKL|=
∑

χ∈F
χ(1)2.

Therefore,

|ΓCM |= |ΓKL|.

This is not sufficient to show that ΓCM = ΓKL. However, this shows Conjecture LR when-
ever the Galois group G is equal to SW : indeed, by replacing r̄c by some g (r̄c ) for
some g ∈G =SW , we can arrange that ΓCM = ΓKL (for all familiesF ). This also shows
the importance of making the choice of r̄c precise in Conjecture LR. �

Remark 15.3.9. — Let ΓCM (respectively ΓKL) be a Calogero-Moser (respectively Kazhdan-
Lusztig) two-sided c -cell. Let w0 denote the longest element of W . Then:

– By (8.6.12) and (8.6.15), w0ΓKL= ΓKLw0 is a Kazhdan-Lusztig c -cell and IrrKL
w0ΓKL
(W ) =

IrrKL
ΓKL
(W )ǫ.

– Since all the reflections of W have order 2, it has been shown in Corollary 10.2.9
that, if w0 is central in W , then w0ΓCM = ΓCM w0 is a Calogero-Moser two-sided
c -cell and IrrCM

w0ΓCM
(W ) = IrrCM

ΓCM
(W )ǫ.

These results show some analogy whenever w0 is central in W . For the second state-
ment, it is not reasonable to expect that it is true whenever w0 is not central (as is
shown by the type A2) without making a judicious choice of r̄c . �
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Left cells. — Let us recall that numerous Kazhdan-Lusztig left cells give rise to
the same Kazhdan-Lusztig cellular character. On the Calogero-Moser side, Corol-
lary 11.4.6 also shows that numerous Calogero-Moser left cells give rise to the same
Calogero-Moser cellular character (see for instance Theorem 14.4.1 in the smooth
case).

Remark 15.3.10. — Let CCM (respectively CKL) be a Calogero-Moser (respectively
Kazhdan-Lusztig) left c -cell. Let w0 denote the longest element of W . Then:

– It follows from (8.6.12) and (8.6.13) that w0CKL and CKLw0 are Kazhdan-Lusztig
left c -cells and that [w0CKL ]

KL

c
= [CKLw0 ]

KL

c
= [CKL ]

KL

c
ǫ.

– Since all the reflections of W have order 2, it follows from Corollary 11.4.9 that,
if w0 is central in W , then w0CCM = CCM w0 is a Calogero-Moser left c -cell and
that [w0CCM ]

CM

c
= [CCM w0 ]

CM

c
= [CCM ]

CM

c
ǫ. �

Remark 15.3.11. — Note also the analogy between the following equalities: if C is
a Calogero-Moser (respectively Kazhdan-Lusztig) left c -cell and if χ ∈ Irr(W ), then





|C |=
∑

ψ∈Irr(W )

multCM
C ,ψ
ψ(1),

χ(1) =
∑

C ′∈CMCellL (W )

multCM

C ′,χ

(respectively 



|C |=
∑

ψ∈Irr(W )

multKL

C ,ψ
ψ(1),

χ(1) =
∑

C ′∈KLCellL (W )

multKL
C ′,χ ).

See Proposition 11.4.2 (respectively Lemma 8.6.7). It would be interesting to study
if other numerical properties of Kazhdan-Lusztig left cells (as for instance [Ge3,
lemme 4.6]) are also satisfied by Calogero-Moser left cells. �

A final argument to support Conjectures L and LR is the following.

Theorem 15.3.12. — Assume that we are in one of the following cases:

(1) (W ,S ) has type An and c > 0;

(2) (W ,S ) has type Bn with a > 0 and b /a ∈ {1/2, 3/2}∪]n −1,+∞).
Then there exists a bijective map ϕ : W →W such that:
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(a) If Γ is a Kazhdan-Lusztig two-sided c -cell, then ϕ(Γ ) is a Calogero-Moser two-sided

c -cell and IrrKL
Γ
(W ) = IrrCM

ϕ(Γ )
(W ).

(b) If C is a Kazhdan-Lusztig left c -cell, then ϕ(C ) is a Calogero-Moser left c -cell and

[C ]KL

c
= [ϕ(C ) ]CM

c
.

Proof. — Under the assumptions (1) or (2), the Calogero-Moser space Z c is smooth
(see [EtGi, Theorem 1.24] in case (1) and [Gor1, Lemma 4.3 and its proof]) in case (2))
and so Theorem 14.4.1 can be applied to all the Calogero-Moser c -cells of W . The
result follows now from a comparison of cardinalities of cells.





CHAPTER 16

CONJECTURES ABOUT THE GEOMETRY OF Z c

Assumption. We assume in this chapter that k=C.

16.1. Cohomology

We follow some of the notations of Appendix A. Given i ∈Z, we set

(CW )i =
⊕
w∈W

codimC(V
w )=i

Cw ,

so that CW =
⊕

i∈Z(CW )i . This is of course not a grading on the algebra CW , but
the filtration by the vector subspaces (CW )¶ i =

⊕
j ¶ i (CW ) j induces a structure of

filtered algebra on CW .
If A is any subalgebra of CW , it inherits a structure of filtered algebra by setting

A ¶ i = A∩(CW )¶ i . As in Appendix A, we can then define its associated Rees algebra
Rees(A) (which is contained in C[ħh ]⊗ A), as well as its associated graded algebra
gr(A).

If X is a quasi-projective complex algebraic variety, we denote by Hi (X ) its i -th
singular cohomology group with coefficients in C. We denote by H2•(X ) the graded
algebra
⊕

i∈NH2i (X ). The Euler characteristic ofX will be denoted by χ (X ). IfX is
endowed with an algebraic action of C×, we denote by Hi

C×(X ) its i -th equivariant
cohomology group, with coefficients in C. We denote by H2•

C×(X ) the graded algebra⊕
i∈NH2i

C×(X ): it will be viewed as a C[ħh ]-algebra by identifying H2•
C×(pt)with C[ħh ] in

the usual way.
Recall that, given c ∈ C , we have defined in §4.2.C a morphism of algebras
Ω

c : Zc −→ Z(CW ). We propose the following conjectures about the (equivariant)
cohomology of the variety Z c .

Conjecture COH . — Let c ∈C .

(1) If i ∈N, then H2i+1(Z c ) = 0.



176

(2) We have an isomorphism of graded algebras H2•(Z c )≃ gr(ImΩc ).

Conjecture ECOH . — Let c ∈C .

(1) If i ∈N, then H2i+1
C× (Z c ) = 0.

(2) We have an isomorphism of graded C[ħh ]-algebras H2•
C×(Z c )≃Rees(ImΩc ).

Example 16.1.1. — Assume here that c = 0. Recall (Example 4.2.8) that H0 = C[V ×
V ∗]⋊W and that Z0 =C[V ×V ∗]∆W . In particular, Z0 = (V ×V ∗)/∆W and Im(Ω0) =C.
Therefore,

Hi (Z0) =Hi (V ×V ∗)W =

�
C if i = 0,
0 otherwise,

and Hi
C×(Z0) =Hi

C×(V ×V ∗)W ≃Hi
C×(pt),

so Conjectures COH and ECOH hold. �

Given E ∈ Irr(W ), we denote by eE ∈ Z(CW ) the corresponding primitive central
idempotent (the unique one such thatωE (eE ) = 1). GivenF is a subset of Irr(W ), we
set eF =
∑

E ∈F eE . It follows from Lemma 9.2.3 and from (14.2.2) that

(16.1.2) ImΩc =
⊕

p∈Z C×c

CeΘ−1
c (p )

.

In particular,

(16.1.3) dimC(ImΩc ) = |Z C×
c
|

hence

(16.1.4) χ(Z c ) = dimC(ImΩc ).

This is compatible with Conjecture COH.

Theorem 16.1.5 (Etingof-Ginzburg). — If Z c is smooth, then Conjecture COH holds.

Proof. — Assume that Z c is smooth. In [EtGi, Theorem 1.8], Etingof and Ginzburg
proved that this implies that Z c has no odd cohomology, and that

H2•(Z c )≃ gr(Z(CW )).

By Proposition 9.6.6, the smoothness of Z c implies that Θc : Irr(W )→ Z C×
c

is bijec-
tive, so that ImΩc = Z(CW ).

Based on Etingof-Ginzburg’s result, Peng Shan and the first author proved the
following, using localization methods [BoSh, Theorem A]:
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Theorem 16.1.6. — If Z c is smooth, then Conjecture ECOH holds.

Apart from the smooth case and the case c = 0, both conjectures are known only
in rank 1. For Conjecture COH, see the upcoming Chapter 18 (Theorem 18.5.8). For
Conjecture ECOH, see [BoSh, Proposition 1.7].

16.2. Fixed points

Assumption and notation. Recall that N = NGLC(V )
(W ). We fix

in this section an element of finite order τ ∈ N . That element τ
acts on C and Z and, if c ∈ C τ, it acts on Z c . We denote by Z τ

(respectively Z τ
c
, for c ∈ C τ) the reduced closed subvariety of Z

(respectively Z c ) consisting of fixed points of τ in Z (respectively
Z c ): it is an affine variety whose algebra of regular functions is

Z /
p
〈τ(z )− z , z ∈ Z 〉 (respectively Zc /

p
〈τ(z )− z , z ∈ Zc 〉).

We say that a pair (V ′, W ′) is a reflection subquotient of (V , W ) if V ′ is a subspace of
V and if there exists a subgroup N ′ of the stabilizer of V ′ in W such that W ′ =N ′/N ′

1

is a reflection group on V ′, where N ′
1

is the kernel of the action of N ′ on V ′. In this
case, we denote by Ref(W ′) the set of reflections of W ′ for its action on V ′, by C (W ′)

the vector space of maps c ′ : Ref(W ′)→C constant on W ′-conjugacy classes and by
Z (V ′, W ′) the Calogero-Moser space associated with (V ′, W ′).

Conjecture FIX . — Given X an irreducible component of Z τ, there exists a reflection

subquotient (V ′, W ′) of (V , W ) and a linear map ϕ :C τ→C (V ′, W ′) such that

X ≃Z (V ′, W ′)×C (W ′)C
τ.

Example 16.2.1. — Assume in this example that τ ∈C× is a root of unity, acting on
V by scalar multiplication. Note that C t = C in this case. Under this assumption,
we will show in § 19.8 that Conjecture FIX holds when W is of type B2. It is shown
by the first author [Bon5, Theorem 7.1 and Proposition 8.3] that it also holds if W

is of type G2 (computer calculation using the MAGMA software [Magma]), or if W is
dihedral of order 2m , with m odd, and τ is a primitive m-th root of unity.

When τ is a root of unity, it is shown in [BoMa] that Conjecture FIX holds if W is
the group denoted G4 in Shephard-Todd classification (this uses again the MAGMA
software). The best result about Conjecture FIX has been obtained by Ruslan Maksi-
mau and the first author [BoMa]. We need some notation to state it. Let C sm denote



178

the (open) subset of C consisting of elements c ∈C such that Z c is smooth (it can
be empty, see Theorem 9.6.9). We put Zsm =Z ×C C sm.

Theorem 16.2.2. — LetX be an irreducible component ofZsm and assume that τ is a root

of unity. Then there exists a reflection subquotient (V ′, W ′) of (V , W ) and a linear map

ϕ :C →C (V ′, W ′) such that ϕ(C sm)⊂C sm(V
′, W ′) and

X ≃Zsm(V
′, W ′)×Csm(W ′)C sm.

Note also that the linear map ϕ of the above theorem is explicitly described
in [BoMa]. �



PART IV

EXAMPLES





CHAPTER 17

CASE c = 0

17.1. Two-sided cells, families

Recall that R+ denotes the unique maximal bi-homogeneous ideal of R and that

R/R+ ≃ k

(see Corollary 5.3.3). Recall also that D+ (respectively I+) denotes its decomposition
(respectively inertia) group and that

D+ = I+ =G

(see Corollary 5.3.4).

Proposition 17.1.1. — R+ is the unique prime ideal of R lying over p̄0.

Proof. — Indeed, p̄0 = P+ and so R+ is a prime ideal of R lying over p̄0: since it is
stabilized by G , the uniqueness is proven.

So if we denote by r̄0 the unique prime ideal of R lying over p̄0 = P+, D̄0 its decom-
position group and Ī0 its inertia group, then

(17.1.2) r̄0 = R+ and D̄0 = Ī0 =G .

Hence:

Corollary 17.1.3. — W contains only one Calogero-Moser two-sided 0-cell, namely W

itself, and

IrrCM
W
(W ) = Irr(W ).
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A feature of the specialization at 0 is that the algebra H̄0 inherits the (N × N)-
grading, and so the N-grading. If we set

H̄0,+ =
⊕
i ¾ 1

H̄N
0
[i ],

then H̄0,+ is a nilpotent two-sided ideal of H̄0 and, since H̄N
0
[0] = kW , we get the

following result:

Proposition 17.1.4. — Rad(H̄0) = H̄0,+ and H̄0/Rad(H̄0)≃ kW .

In particular,

(17.1.5) [L̄K̄0
(χ) ]

gr

kW = χ ∈ K0(kW )[t, t−1]

and

(17.1.6) [ K̄0M̄ (χ) ]H̄0
=χ(1) [kW ]kW ∈Z Irr(W )≃ K0(H̄0).

17.2. Left cells, cellular characters

Recall that, in §5.1.B, we have fixed a prime ideal r0 of R lying over q0 = C0Q as
well as a field isomorphism

iso0 : k(V ×V ∗)∆Z(W ) ∼−→M0 = kR (r0)

whose restriction to k(V × V ∗)∆W is the canonical isomorphism k(V × V ∗)∆W ∼−→
Frac(Z0)

∼−→ L0. Hence, R/r0 ⊂ iso0(k[V × V ∗]∆Z(W )) and these two rings have the
same fraction field, the field M0. Recall also that we do not know if these two rings
are equal, or equivalently, if R/r0 is integrally closed or not.

Proposition 17.2.1. — There exists a unique prime ideal of R lying over pleft
0

and contain-

ing r0.

Proof. — Let p∗ = iso−1
0
(pleft

0
/p0). Since k[V ×V ∗]W ×W /p∗ ≃ k[V × 0]W ×W , there is only

one prime ideal r∗ of k[V ×V ∗] lying over p∗: it is the defining ideal of the irreducible
closed subvariety V ×0 of V ×V ∗. In other words,

k[V ×V ∗]/r∗ = k[V ×0].

Consequently, the unique prime ideal rleft
0

of R lying over pleft
0

and containing r0 is
defined by rleft

0
/r0 = iso0(r

∗ ∩k[V ×V ∗]∆Z(W ))∩ (R/r0).
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Let rleft
0

be the unique prime ideal of R lying over qleft
0

and containing r0 (see Propo-
sition 17.2.1) and let D left

0
(respectively I left

0
) denote its decomposition (respectively

inertia) group.

Proposition 17.2.2. — (a) ι(W ×W )⊂D left
0

and ι(W ×1)⊂ I left
0

.

(b) The canonical map ῑ : W ×W → D left
0
/I left

0
is surjective and its kernel contains W ×

Z(W ).

(c) D left
0
/I left

0
is a quotient of W /Z(W ).

(d) If R/r0 is integrally closed (i.e. if R/r0 ≃ k[V ×V ∗]∆Z(W )), then Ker(ῑ) =W × Z(W )

and D left
0
/I left

0
≃W /Z(W ).

Proof. — The first statement of (a) follows from the uniqueness of rleft
0

(see Propo-
sition 17.2.1). For the second statement, let us use here the notation of the proof of
Proposition 17.2.1, and note that W ×1 acts trivially on k[V ×V ∗]/r∗.

Now, let B0 be the inverse image of R/r0 in k[V ×V ∗] through iso0. Then k[V ×
0]W ×W ⊂ B0/r

∗ ⊂ k[V × 0]∆Z(W ) = k[V × 0]W×Z(W ) ⊂ k[V × 0]. (b), (c) and (d) follow from
these observations.

This study of decomposition and inertia groups allows us to deduce the following
result.

Corollary 17.2.3. — W contains only one Calogero-Moser left 0-cell, namely W itself,

and

[W ]
CM

0
= [kW ]kW =
∑

χ∈Irr(W )

χ(1).

Proof. — The first statement follows from Proposition 17.2.2(a) whereas the second
one follows from Proposition 11.4.2(a).

Let us conclude with an easy remark, which, combined with Proposition 17.2.2,
shows that the pair (I left

0
, D left

0
) has a surprising behaviour.

Proposition 17.2.4. — Let C be a prime ideal of k[C ]. Then there exists h ∈H such that
h I left

C
⊂ I left

0
.

Proof. — Let eC denote the maximal homogeneous ideal of k[C ] contained in C. By
Proposition 11.3.4, we have I left

C
= I left
eC . This means that we may assume that C is

homogeneous. In particular, C ⊂ C0. So qleft
C
⊂ qleft

0
and there exists h ∈ H such that

h (rleft
C
)⊂ rleft

0
. Therefore, hI left

C
⊂ I left

0
.
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It would be tempting to think, after Proposition 17.2.2, that D left
0
= ι(W ×W ) and

I left
0
= ι(W ×Z(W )). However, this would contradict Proposition 17.2.4, if we assume

that Conjectures LR and L hold: indeed, I left
0

must contain conjugates of subgroups
admitting as orbits the left cells. We will see in Chapter 18 that if dimk(V ) = 1, then
D left

0
=G .



CHAPTER 18

GROUPS OF RANK 1

Assumption and notation. In §18, we assume that dimk V = 1,
we fix a non-zero element y of V and we denote by x the element of
V ∗ such that 〈y , x 〉= 1. We also fix an integer d ¾ 2 and we assume
that k contains a primitive d -th root of unity ζ. We denote by s the
automorphism of V defined by s (y ) = ζy , so that s (x ) = ζ−1 x . We
assume finally that W = 〈s 〉: s is a reflection and W is cyclic of order
d .

18.1. The algebra eH

18.1.A. Definition. — We have Ref(W ) = {s i | 1 ¶ i ¶ d −1}. Given 1 ¶ i ¶ d −1, we
denote by Ci the indeterminate Cs i , so that k[ eC ] = k[T , C1, C2, . . . , Cd−1] and k[C ] =

k[C1, C2, . . . , Cd−1]. The k [ eC ]-algebra eH is generated by x , y , s with the relations

(18.1.1) s y s−1 = ζy , s x s−1 = ζ−1 x and [y , x ] = T +
∑

1 ¶ i ¶ d−1

(ζi −1)Ci s i .

We set C0 =Cs 0 = 0. The hyperplane arrangementA is reduced to one element, and
A /W as well (we writeA /W = {ℵ}), we put K j = Kℵ, j (for 0 ¶ j ¶ d −1). Recall that
the family (K j )0 ¶ j ¶ d−1 is determined by the relations

(18.1.2) ∀ 0 ¶ i ¶ d −1, Ci =

d−1∑

j=0

ζi ( j−1)K j .

We put

Kd i+ j = K j

for all i ∈Z and j ∈ {0, 1, . . . , d −1}. Recall that

K0+K1+ · · ·+Kd−1 = 0.
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The last defining relation for eH can be rewritten as

[y , x ] = T +d
∑

0 ¶ i ¶ d−1

(KH ,i −KH ,i+1)ǫi ,

where ǫi = d −1
∑d−1

j=0
ζi j s j .

18.1.B. Differential operators on C×. — We have

Dy = T ∂y − x−1

d−1∑

i=1

ζi Ci s i = T ∂y −d x−1

d−1∑

i=0

Kiǫi .

Given L a C[C ][y ]⋊W -module, the W -equivariant connection on OC×⊗L is given
by

∇(p ⊗ l ) =
d p

d x
⊗ l +p ⊗ y · l +d x−1

d−1∑

i=0

Ki p ⊗ ǫi l .

When L =C[C ][y ]/(y )⊗detn
=C[C ], we obtain ∇= ∂ + x−1Kn .

18.1.C. The variety (V ×V ∗)/∆W . — Let X = x d and Y = y d . Recall that eu0 = x y .
We have

k[V ×V ∗]∆W = k[X , Y , eu0]

and the relation

(18.1.3) eud
0
= X Y

holds. It is easy to check that this relation generates the ideal of relations.

18.2. The algebra Z

Recall that eu= y x +
∑d−1

i=1
Ci s i (its image in H0 is eu0) and that ǫ : W → k× is the

determinant, characterized by ǫ(s ) = ζ. We have ǫd = 1 and

Irr W = {1,ǫ,ǫ2, . . . ,ǫd−1}.
The image of the Euler element by Ωχ can be computed thanks to Corollary 7.3.2:
we have

(18.2.1) Ωǫi (eu) = d K−i

for all i ∈Z.

Recall that p̄= 〈X , Y 〉P and that p̄Z ⊆Ker(Ωχ ) for all χ ∈ Irr(W ). More precisely, we
have

(18.2.2)
d⋂

i=1

Ker(Ωǫi ) = p̄Z = 〈X , Y 〉Z .
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Proof. — It follows from Example 9.3.6 that the generic Calogero-Moser families
are reduced to one element. Given 1 ¶ i ¶ d , let bi denote the primitive central
idempotent of k(C )H̄ such that Irr k(C )H̄bi = {L (0)(ǫi )}. We have

k(C )Z̄ ≃
d∏

i=1

k(C )Z̄ bi

and, by Theorem 9.4.1,

(18.2.3) dimk(C )k(C )Z̄ bi = 1.

Since b j is characterized byΩǫi (b j ) =δi , j (the Kronecker symbol) for all i ∈ {1, 2, . . ., d },
the equality (18.2.2) follows.

The next result is well-known.

Theorem 18.2.4. — We have Z = P [eu] = k[C1, . . . , Cd−1, X , Y , eu] = k[K1, . . . , Kd−1, X , Y , eu]

and the ideal of relations is generated by

d∏

i=1

(eu−d Ki ) = X Y .

Proof. — The equality Z = k[C1, . . . , Cd−1, X , Y , eu] = P [eu] has been proven in Exam-
ple 4.4.12. Define

z =

d∏

i=1

(eu−d Ki ).

Since Ωǫi (z ) = 0 for all i by (18.2.1), it follows from (18.2.2) that

z ≡ 0 mod 〈X , Y 〉Z .

Moreover, since eud
0
= X Y , we have

z ≡ X Y mod 〈C1, . . . , Cd−1〉Z .

Therefore,

z −X Y ∈ 〈X , Y 〉Z ∩〈C1, . . . , Cd−1〉Z = 〈C1X , C1Y , C2X , C2Y , . . . , Cd−1X , Cd−1Y 〉Z .

On the other hand, z−X Y is bi-homogeneous with bidegree (d , d ), whereas Ci X and
Ci Y are bi-homogeneous with bidegree (d + 1, 1) and (1, d + 1) respectively. Conse-
quently, z −X Y = 0, which is the required relation.

Since the minimal polynomial of eu over P has degree |W |= d (Proposition 5.1.19),
we deduce that

d∏

i=1

(t−d Ki )−X Y

is the minimal polynomial of eu over P : this concludes the proof of the theorem.
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Corollary 18.2.5. — The k-algebra Z is a complete intersection.

We denote by Feu(t) ∈ P [t] the minimal polynomial of eu over P . Theorem 18.2.4
gives

(18.2.6) Feu(t) =

d∏

i=1

(t−d Ki )−X Y .

18.3. The ring R , the group G

18.3.A. Symmetric polynomials. — To take advantage of the fact that the mini-
mal polynomial of the Euler element is symmetric in the variables Ki , we will recall
here some classical facts about symmetric polynomials. Given T1, T2,. . . , Td a fam-
ily of indeterminates and given 1 ¶ i ¶ d , we denote by σi (T) the i -th elementary
symmetric function

σi (T) =σi (T1, . . . , Td ) =
∑

1 ¶ j1<···< ji ¶ d

Tj1
· · ·Tji

.

Recall the well-known formula

(18.3.1) det
�∂ σi (T)

∂ Tj

�
1 ¶ i , j ¶ d

=
∏

1 ¶ i< j ¶ d

(Tj −Ti ).

The group Sd acts on k[T1, . . . , Td ] by permutation of the indeterminates. Recall the
following classical result (a particular case of Theorem 2.2.1).

Proposition 18.3.2. — The polynomials σ1(T),. . . , σd (T) are algebraically independent

and k[T1, . . . , Td ]
Sd = k[σ1(T), . . . ,σd (T)]. Moreover, the k-algebra k[T1, . . . , Td ] is a free

k[σ1(T), . . . ,σd (T)]-module of rank d !

Recall also that σ1(T) = T1+ · · ·+Td .

Corollary 18.3.3. — We have
�
k[T1, . . . , Td ]/〈σ1(T)〉

�Sd ≃ k[σ2(T), . . . ,σd (T)] and the k-

algebra k[T1, . . . , Td ]/〈σ1(T)〉 is a free k[σ2(T), . . . ,σd (T)]-module of rank d !.

As a consequence of Proposition 18.3.2, there exists a unique polynomial ∆d in d

variables such that

(18.3.4)
∏

1 ¶ i< j ¶ d

(Tj −Ti )
2 =∆d (σ1(T),σ2(T), . . . ,σd (T)).
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18.3.B. Presentation of R . — Let σi (K) =σi (K1, . . . , Kd ) (in particular, σ1(K) = 0). By
Corollary 18.3.3, the ring Psym = k[σ2(K), . . . ,σd (K), X , Y ] is the invariant ring, in P , of
the group Sd acting by permutation of the Ki ’s. Moreover,

(18.3.5) P is a free Psym-module of rank d !.

Let us introduce a new family of indeterminates E1,. . . , Ed−1, and let Ed =−(E1+ · · ·+
Ed−1) andσi (E) =σi (E1, . . . , Ed ) (in particularσ1(E) = 0). Let Rsym = k[E1, . . . , Ed−1, X , Y ] =

k[E1, . . . , Ed , X , Y ]/〈σ1(E)〉, on which the symmetric group Sd acts by permutation of
the Ei ’s. The ring RSd

sym
is again a polynomial algebra equal to k[σ2(E), . . . ,σd (E), X , Y ]

(still thanks to Corollary 18.3.3).

Identification. We identify the k-algebras Psym and RSd
sym

through

the equalities




σ1(d K) =σ1(E) = 0

∀ 2 ¶ i ¶ d −1, σi (d K) =σi (E)

σd (d K) =σd (E)+ (−1)d X Y

Note that σi (d K) = d iσi (K).

As a consequence,

(18.3.6) Rsym is a free Psym-module of rank d !.

Lemma 18.3.7. — The ring P ⊗Psym
Rsym is an integrally closed domain.

Proof. — First of all, note that we may, and we will, assume in this proof that k is
integrally closed. Let R̃ = P ⊗Psym

Rsym. Then R̃ admits the following presentation:

(P )





Generators: K1, K2, . . . , Kd , E1, E2, . . . , Ed , X , Y

Relations:





σ1(d K) =σ1(E) = 0

∀ 2 ¶ i ¶ d −1, σi (d K) =σi (E)

σd (d K) =σd (E)+ (−1)d X Y

The presentation (P ) of R̃ shows that R̃ is endowed with an N-grading such that
deg(Ki ) = deg(Ei ) = 2 and deg(X ) = deg(Y ) = d . Thus, the degree 0 component of R̃ is
isomorphic to k, which shows that

(♣) R̃ is connected.

Since R̃ is a free Psym-module of finite rank, it follows that R̃ has pure dimension
d +1. The presentation (P ) shows that

(♥) R̃ is complete intersection.
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Let us now show that

(♠) R̃ is regular in codimension 1.

Let R̃ = Spec R̃ , a closed subvariety ofA2d+2(k) consisting of elements r = (k1, . . . , kd , e1, . . . , ed , x , y )

satisfying the equations (P ). The Jacobian Jac(r ) of this system of equations (P ) in
r ∈ R̃ is given by

Jac(r ) =




d · · · d 0 · · · 0 0 0

0 · · · 0 −1 · · · −1 0 0

∂ σ2(d K)

∂ K1

(r ) · · · ∂ σ2(d K)

∂ Kd

(r ) −∂ σ2(E)

∂ E1

(r ) · · · −∂ σ2(E)

∂ Ed

(r ) 0 0

...
...

...
...

...
...

∂ σd−1(d K)

∂ K1

(r ) · · · ∂ σd−1(d K)

∂ Kd

(r ) −∂ σd−1(E)

∂ E1

(r ) · · · −∂ σd−1(E)

∂ Ed

(r ) 0 0

∂ σd (d K)

∂ K1

(r ) · · · ∂ σd−1(d K)

∂ Kd

(r ) −∂ σd (E)

∂ E1

(r ) · · · −∂ σd (E)

∂ Ed

(r ) (−1)d+1 y (−1)d+1 x




Since R̃ is of pure dimension d + 1, its singular locus is the closed subvariety X

of points r where the rank of Jac(r ) is less than or equal to d . A point of X satisfies
the equations

det
�∂ σi (d K)

∂ K j

(k1, . . . , kd )
�

1 ¶ i , j ¶ d
= det
�∂ σi (E)

∂ E j

(e1, . . . , ed )
�

1 ¶ i , j ¶ d
= 0.

By (18.3.1), this means that∏

1 ¶ i< j ¶ d

(k j −ki ) =
∏

1 ¶ i< j ¶ d

(e j − ei ) = 0

In particular,

∆d (σ1(k1, . . . , kd ), . . . ,σd (k1, . . . , kd )) =∆d (σ1(e1, . . . , ed ), . . . ,σd (e1, . . . , ed )) = 0.

It is well-known that ∆d (0,U2, . . . ,Ud ) is an irreducible polynomial in the indetermi-
nates U2,. . . , Ud . It follows that the variety of (a2, . . . , ad , x , y ) ∈Ad+1(k) such that

(∗) ∆d (0, a2, . . . , ad−1, ad ) =∆d (0, a2, . . . , ad−1, ad + (−1)d x y ) = 0.

has dimension ¶ d −1. Consequently, X has codimension ¾ 2 in R̃ .

The assertions (♦) and (♠) imply that R̃ is normal (see [Ser, §IV.D, Theorem 11]).
So it is a direct product of integrally closed domains. Since it is connected, it follows
that it is an integrally closed domain.

We can now describe the ring R .

Theorem 18.3.8. — The ring R satisfies the following properties:
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(a) R is isomorphic to P ⊗Psym
Rsym. It admits the following presentation:

(P )





Generators: K1, K2, . . . , Kd , E1, E2, . . . , Ed , X , Y

Relations:





σ1(d K) =σ1(E) = 0

∀ 2 ¶ i ¶ d −1, σi (d K) =σi (E)

σd (d K) =σd (E)+ (−1)d X Y

(b) R is complete intersection and is a free P -module of rank d !.

(c) There exists a unique morphism of P -algebras cop : Z → R such that cop(eu) = Ed .

This morphism is injective, with Q its image.

(d) For the action of Sd by permutation of the Ei ’s, we have RSd = P and RSd−1 =Q .

(e) G =SW ≃Sd ; given σ ∈Sd and 1 ¶ i ¶ d , we have σ(Ei ) = Eσ(i ).

(f) G is a reflection group for its action on R+/(R+)
2.

Proof. — Let R̃ = P ⊗Psym
Rsym. The relations (P ) show that, in the polynomial ring

R̃ [t], the equality
d∏

i=1

(t−d Ki )−X Y =

d∏

i=1

(t−Ei )

holds. It follows that Feu(Ed ) = 0. By Theorem 18.2.4, we deduce that there exists a
unique morphism of P -algebras cop : Z → R̃ such that cop(eu) = Ed . Let z= Ker(cop).
We have z∩P = 0 since P ⊂ R̃ and, since Z is a domain and is integral over P , this
forces z= 0. So cop : Z → R̃ is injective.

Let M̃ be the fraction field of R̃ (recall that R̃ is a domain by Lemma 18.3.7). By
construction, R̃ is a free P -module of rank d ! and, by Corollary 18.3.3, R̃Sd = P .
So the extension M̃/K is Galois, contains L (the fraction field of Q ) and satisfies
Gal(M̃/K) =Sd . Moreover, Gal(M̃/L) =Sd−1 since Sd−1 is the stabilizer of Ed in Sd .
Since the unique normal subgroup of Sd contained in Sd−1 is the trivial group, this
shows that M̃/K is a Galois closure of L/K. So M̃≃M.

Since R̃ is integrally closed (Lemma 18.3.7) and integral over P , this implies that
R̃ ≃ R . Now all the statements of Theorem 18.3.8 can be deduced from these obser-
vations. For the statement (f), we can use (b), and Proposition C.3.7 because Sd acts
trivially on the relations, or check it directly by noting that R+/(R+)

2 is the k-vector
space of dimension 2d generated by K1,. . . , Kd , E1,. . . , Ed , X , Y , with the relations
K1 + · · ·+ Kd = 0 and E1 + · · ·+ Ed = 0: this shows that, as a representation of Sd ,
R+/(R+)

2 is the direct sum of the irreducible reflection representation and of d + 1

copies of the trivial representation.
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18.3.C. Choice of the ideal r0. — Let r′ denote the ideal of R generated by the
elements Ei −ζi Ed . We then have

σ1(E)≡σ2(E)≡ · · · ≡σd−1(E)≡ 0 mod r′.

We choose the ideal of R r0 = r′+ 〈K1, . . . , Kd 〉R . The k-algebra R/r0 has the following
presentation:

(P0)

�
Generators: Ed , X , Y

Relation: E d
d
= X Y

Recall that Z(W ) = W . We recover the isomorphisms of P -algebras R/r0 ≃ Q/q0 ≃
k[V ×V ∗]∆W by mapping eu = Ed to eu0 = y x ∈ k[V ×V ∗]∆W . Recall that an element
w ∈W , viewed as an element of the Galois group G =SW ≃Sd , is characterized by
the equality

(w (eu) mod r0)≡w (y )x ∈ k[V ×V ∗]∆W .

Since s i (y ) = ζi y , we have

(18.3.9) s i (eu) = Ei .

For the action of G =SW ≃ Sd , this corresponds to identifying the sets {1, 2, . . ., d }
and W via the bijective map i 7→ s i .

18.3.D. Choice of the ideals r
left, rright and r̄. — Let r′′ denote the ideal of R gener-

ated by the Ei −d Ki ’s. Then

∀ 1 ¶ i ¶ d , σi (d K)≡σi (E) mod r′′.

In particular, X Y ∈ r′′. We choose rleft = r′′+ 〈Y 〉R , rright = r′′+ 〈X 〉R and r̄= r′′+ 〈X , Y 〉R .
Then

(18.3.10)





R/rleft ≃ k[K1, . . . , Kd−1, X ] = P /pleft,

R/rright ≃ k[K1, . . . , Kd−1, Y ] = P /pright,

R/r̄≃ k[K1, . . . , Kd−1] = k[C ] = P /p̄.

The next proposition follows easily.

Proposition 18.3.11. — D left = I left =D right = I right = D̄ = Ī = 1.



193

18.4. Cells, families, cellular characters

Notation. We fix in this section a prime ideal C of k[C ] and we
denote by ki the image of Ki in k[C ]/C.

By (18.3.10), we have

(18.4.1) rleft
C
= rleft+CR , r

right

C = rright+CR and r̄C = r̄+CR

and

(18.4.2)





R/rleft
C
= k[C ]/C⊗k[X ] = P /pleft

C
,

R/r
right

C = k[C ]/C⊗k[Y ] = P /p
right

C ,

R/r̄C = k[C ]/C= P /p̄C.

We will denote by S[C] the subgroup of Sd consisting of permutations stabilizing
the fibers of the natural map {1, 2, . . ., d }→ k[C ]/C, i 7→ ki . In other words,

S[C] = {σ ∈Sd | ∀ 1 ¶ i ¶ d , kσ(i ) = ki }.

Proposition 18.4.3. — D left
C
= I left

C
=D

right

C = I
right

C = D̄C = ĪC =S[C].

Corollary 18.4.4. — Let i , j ∈ Z. Then s i and s j are in the same Calogero-Moser two-

sided (respectively left, respectively right) C-cell if and only if ki = k j .

Let us conclude with the description of families and cellular characters.

Corollary 18.4.5. — Let i , j ∈Z. Then ǫ−i and ǫ− j are in the same Calogero-Moser family

if and only if ki = k j .

The mapω 7→
∑

i∈ω ǫ
−i induces a bijective map between the set ofS[C]-orbits in {1, 2, . . . , d }

(that is, the set of fibers of the map i 7→ ki ) and the set of Calogero-Moser C-cellular charac-

ters.

Proof. — Since Z = P [eu], we deduce that ǫ−i and ǫ− j are in the same Calogero-
Moser C-family if and only if ΩK̄C

ǫ−i (eu) = Ω
K̄C

ǫ− j (eu). So the first statement follows
from (18.2.1).

For the second statement, note that eu acts onLs i by multiplication by s i (eu) = Ei .
So, modulo rleft

C
(or r̄C), the element s i (eu) is congruent to d ki = Ω

K̄C

ǫ−i (eu). Hence,
if ω is an S[C]-orbit in {1, 2, . . . , d }, then C = {s i | i ∈ ω} is a Calogero-Moser left,
right or two-sided C-cell (see Corollary 18.4.4) and, as a two-sided cell, it covers the
Calogero-Moser C-family {ǫ−i | i ∈ ω}. Since Mleft

C
M left(ǫ−i ) is an absolutely simple
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Mleft
C

Hleft-module (because it has dimension |W |), it must be isomorphic to L left
C
(C ).

This shows that [C ]CM

C
=
∑

i∈ω ǫ
−i .

18.5. Complements

We will be interested here in geometric properties of Z (smoothness, ramifica-
tion) and in the properties of the group Dc . To simplify the statements, we will
make the following assumption:

Assumption and notation. In this section, and only in this section, we
will assume that k is algebraically closed. We will identify the variety
Z with

Z = {(k1, . . . , kd , x , y , e )∈Ad+3(k) | k1+· · ·+kd = 0 and
d∏

i=1

(e−d ki ) = x y }.

Similarly, P (respectivelyC ) will be identified with the affine space

P = {(k1, . . . , kd , x , y ) ∈Ad+2(k) | k1+ · · ·+kd = 0}
(respectively

C = {(k1, . . . , kd ) ∈Ad (k) | k1+ · · ·+kd = 0} ),

which allows to redefine

Υ : Z −→ P
(k1, . . . , kd , x , y , e ) 7−→ (k1, . . . , kd , x , y ).

Finally, we denote by Z sing the singular locus of Z and Z ram the ramifi-
cation locus of Υ .

18.5.A. Smoothness. — Let us start by the description of the singular locus of Z :

Proposition 18.5.1. — Given 1 ¶ i < j ¶ d , let Z i , j = {(k1, . . . , kd , x , y , e ) ∈ Z | e =

d ki = d k j and x = y = 0}. Then

Z sing =
⋃

1 ¶ i< j ¶ d

Z i , j .

Moreover, Z i , j ≃ Ad−2(k) is an irreducible component of Z sing and Z sing is purely of codi-

mension 3.
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Proof. — The variety Z being described as an hypersurface in the affine space
{(k1, . . . , kd , x , y , e )∈Ad+3(k) | k1+· · ·+kd = 0} ≃Ad+2(k), a point of z = (k1, . . . , kd , x , y , e )∈
Z is singular if and only if the jacobian matrix of the equation vanishes at z . This is
equivalent to the following system of equations:





x = y = 0,

∀ 1 ¶ i ¶ d ,
∏

j 6=i (e −d k j ) = 0,∑d
i=1

∏
j 6=i (e −d k j ) = 0.

The last equation is implied by the second family of equations, it is then easy to
check that Z sing is as expected.

The last statements are immediate.

Corollary 18.5.2. — Given c ∈C and z ∈Z c , then z is singular in Z if and only if it is

singular in Z c .

18.5.B. Ramification. — The variety Z being normal, the variety P being smooth
and the morphism Υ : Z → P being finite and flat, the purity of the branch lo-
cus [SGA1, Talk X, Theorem 3.1] tells us that the ramification locus of Υ is purely of
codimension 1. It is in fact easily computable:

Proposition 18.5.3. — Let z = (k1, . . . , kd , x , y , e ) ∈Z and p = (k1, . . . , kd , x , y ) = Υ (z ) ∈
P . Let Feu,p (t) ∈ k[t] denote the specialization of Feu(t) at p . Then Υ is ramified at z if and

only if F ′
eu,p
(e ) = 0, that is if and only if e is a multiple root of Feu,p .

Proof. — Since Z = P [t]/〈Feu(t)〉 (see Theorem 18.2.4), this follows immediately from [SGA1,
Talk I, Corollary 7.2].

Corollary 18.5.4. — Let c = (k1, . . . , kd ) ∈ C and (x , y ) ∈ A2(k) (so that (c , x , y ) ∈ P ).

Then (c , x , y ) ∈ Υ (Z ram) if and only if ∆d (0,σ2(c ), . . . ,σd−1(c ),σd (c )− (−1)d x y ) = 0.
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18.5.C. About the group Dc . — Amongst the groups Dc , the only one we use is
D0. In this subsection, we will show that, even when n = dimk(V ) = 1, the groups Dc

have a very subtle behaviour.
The material of this subsection §18.5.C has been explained to us by G. Malle (any

errors being of course our responsibility). We thank him warmly for his help.
Fix c ∈ C , and let F c

eu
(t) ∈ k[X , Y ][t] denote the specialization of Feu(t) at c . Note

that Dc is the Galois group of F c
eu
(t), viewed as a polynomial with coefficients in the

field k(X , Y ). Actually, we have F c
eu
(t) ∈ k[T ][t], where T = X Y . The following result

will be helpful for computing Dc .

Lemma 18.5.5. — Dc is the Galois group of F c
eu
(t) viewed as a polynomial with coefficients

in k(T ).

Proof. — If L is a splitting field of F c
eu
(t) over k(T ), then the field L (Y ) of rational

functions in one variable is a splitting field of the same polynomial over k(T , Y ) =

k(X , Y ). The result follows.

Corollary 18.5.6. — The subgroup Dc of G =Sd contains a cycle of length d .

Proof. — Thanks to Lemma 18.5.5, we may view F c
eu
(t) as an element of k[T ][t]. Since

k has characteristic zero and k[T ] is regular of dimension 1, the inertia group at
infinity I is cyclic. Since d ¾ 2, the polynomial F c

eu
(t) is totally ramified at infinity,

which implies that I acts transitively on {1, 2, . . . , d }. Whence the result.

Corollary 18.5.6 gives very restrictive conditions on the group Dc . For instance,
we have the following results, the first of which is due to Schur, the second one to
Burnside.

Corollary 18.5.7. — (a) If d is not prime and Dc is primitive, then Dc is 2-transitive.

(b) If d is prime, then Dc is 2-transitive or Dc contains a normal Sylow d -subgroup.

We will give now some examples that show that the description of Dc in general
can be rather complicated. In the following table, we assume that k=C, and c ∈C is
chosen so that F c

eu
(t) ∈Q[t]. We will denote by D (Q)

c
the Galois group of F c

eu
(t) viewed

as an element of Q[t]: it might be different from Dc , as it is shown by table. We
denote by Frp r the Frobenius group (Z/rZ)⋉ (Z/pZ), viewed as a subgroup of Sp ,
where p is prime and r divides p −1.



197

F c
eu
(t) D (Q)

c
Dc

(t2+20t+180)(t2−5t−95)4−X Y Aut(A6) Aut(A6)

(t+1)4(t−2)2(t3−3t−14)−X Y (S3 ≀S3)∩A9 (S3 ≀S3)∩A9

t(t8+6t4+25)−X Y A9 A9

t(t4+6t2+25)2−X Y A9 A9

t9−9t7+27t5−30t3+9t−X Y S3⋉ (Z/3Z)
2 S3⋉ (Z/3Z)

2

t11−11t9+44t7−77t5+55t3−11t−X Y Fr110 Fr22

t13−13t11+65t9−156t7+182t5−91t3+13t−X Y Fr156 Fr26

To prove the results contained in the table, let us recall some classical facts:

(a) Dc is a normal subgroup of D (Q)
c

.

(b) The computation of DQ
c

in all the cases can be performed thanks to the MAGMA
software [Magma].

(c) Since there are no non-trivial unramified coverings of the complex affine line,
the group Dc is generated by its inertia subgroups.

(d) Given z ∈ C, let F c ,z
eu
(t) denote the specialization T 7→ z of F c

eu
(t). If α ∈ C is a

root of F c ,z
eu
(t)with multiplicity m , then Dc contains an element of order m .

From these facts, the result in the table can be obtained as follows. Let ∆c (T ) ∈
k[T ] denote the discriminant of the polynomial F c

eu
(t).

(1) The computation of D (Q)
c

in the first example is done in [MalMat, Theorem I.9.7].
Note that, to retrieve the polynomial of [MalMat, Theorem I.9.7], one must re-
place t by 2t−5, and renormalize: this operation allows to obtain a polynomial
whose coefficient in t9 is zero, as must be the case for all the F c

eu
(t). Going from

Q to C then follows, as this example comes from a rigid triple.

(2) In the second example, the MAGMA software tells us that D (Q)
c
= (S3 ≀S3)∩A9.

On the other hand, Dc is a normal subgroup of D (Q)
c

. Moreover, −1 is a root of
F c ,0

eu
(t)with multiplicity 4, so Dc contains an element of order 4 (see (d)). It also

contains an element of order 9 (see Corollary 18.5.6). But D (Q)
c

contains only
one normal subgroup containing both an element of order 9 and an element of
order 4, namely itself. So Dc =D (Q)

c
.
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(3-4) In the third and fourth examples, the equality D (Q)
c
= A9 is obtained by the

MAGMA software. The fact that Dc =A9 follows from the fact that Dc is normal
in D (Q)

c
and contains an element of order 9.

(5) Once the computation of D (Q)
c

done by the MAGMA software, note that

F c ,2
eu
(t) = (t−2)(t+1)2(t3−3t+1)2.

This allows to say, thanks to (d) and Corollary 18.5.6, that Dc contains an ele-
ment of order 9 and an element of order 2. So 18 divides |Dc |. But D (Q)

c
does not

contain any normal subgroup of index 3 and containing an element of order 9.

(6-7) The last two examples can be treated similarly. We will only deal with the last
one. In this case, thanks to the MAGMA software, we get

∆c (T ) = 1313(T −2)6(T +2)6.

This discriminant is not a square in Q(T ), but it is a square in C(T ). The non-
trivial inertia groups in Dc , except the inertia group at infinity, lie above the
ideals 〈T −2〉 and 〈T +2〉. But,

F c ,2
eu
(t) = (t−2)(t6+ t5−5t4−4t3+6t2+3t−1)2

and

F c ,−2
eu
(t) = (t+2)(t6− t5−5t4+4t3+6t2−3t−1)2.

So the inertia groups have order 2, which shows that Dc is generated by its
elements of order 2. So Dc = Fr26.

18.5.D. Cohomology. — We assume in this subsection that k=C. We aim to prove
the following result:

Theorem 18.5.8. — If dimC(V ) = 1, then Conjecture COH holds.

Proof. — Let c ∈ C and let k1,. . . , kd be the images of K1,. . . , Kd in C[C ]/Cc . We
put r = |Z C×

c
|= |{k1, k2, . . . , kd }|. The equations defining Z c show that it is rationally

smooth (it has only type A singularities). So it follows from the Proposition 18.5.9
below that

dimCHi (Z c ) =





1 if i = 0,
r −1 if i = 2,
0 otherwise.
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On the other hand,

dimC gr(ImΩc )i =





1 if i = 0,
r −1 if i = 2,
0 otherwise.

So, both H2•(Z c ) and gr(ImΩc ) are isomorphic to the graded algebra k [a1, . . . , ar−1]/(ai a j )1 ¶ i , j ¶ r−1,
with ai ’s in degree 2.

In order to complete the proof of Theorem 18.5.8, we fix an infinite sequence
of non-zero natural numbers d1, d2,. . . , as well as an infinite sequence z1, z2,. . . of
complex numbers such that zi 6= z j if i 6= j . We set

X (r ) = {(e , x , y ) ∈A3(C) |
r∏

i=1

(e − zi )
di = x y }.

First, note that X (r ) admits an automorphism σ :X (r )→X (r ), (e , x , y ) 7→ (e , y , x ).
It is an involution. So σ acts on the cohomology of X (r ). We denote by C+ (respec-
tively C−) the C〈σ〉-module of dimension 1 on which σ acts by multiplication by 1

(respectively −1). Finally, if z ∈C, we set

X (r )6=z = {(e , x , y ) ∈X (r ) | e 6= z }

and X (r )=z = {(e , x , y ) ∈X (r ) | e = z }.

These are σ-stable subvarieties of X (r ). The following result describes the coho-
mology of X (r ) as a C〈σ〉-module. We denote by Hi

c
(X (r )) the i -th cohomology

group with compact support of X (r ).

Proposition 18.5.9. — With the above notation, we have:

(a) The cohomology with compact support of X (r ) is given, as a C〈σ〉-module, by




H2
c
(X (r )) =Cr−1

− ,

H3
c
(X (r )) = 0,

H4
c
(X (r )) =C+.

(b) If r 6= 1 or z 6= z1, then the cohomology with compact support of X (r ) is given, as a

C〈σ〉-module, by




H2
c
(X (r )6=z ) =

�
Cr
− if z 6∈ {z1, z2, . . . , zr },
Cr−1
− if z ∈ {z1, z2, . . . , zr },

H3
c
(X (r )6=z ) =C+,

H4
c
(X (r )6=z ) =C+.
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(c) Finally, 



H2
c
(X (1)6=z1

) =Cr
−,

H3
c
(X (1)6=z1

) =C+⊕C−,

H4
c
(X (1)6=z1

) =C+.

REMARK - As X (r ) and X (r )6=z are affine surface, their cohomology with compact
support vanishes in degree different from 2, 3 or 4. �

Proof. — We first gather some elementary fact which will allow a proof of this The-
orem by induction. If λ ∈C, let

H λ = {(x , y ) ∈C2 | x y =λ}.
It is endowed with an action of σ given by (x , y ) 7→ (y , x ). Then it is well-known
that

(♣)





H1
c
(H λ) =C−,

H2
c
(H λ) =

�
C+ if λ 6= 0,
C+⊕C− if λ= 0.

Also, the quotient of C2 by the action of σ given by (x , y ) 7→ (y , x ) is isomorphic to
C2, through the map (x , y ) 7→ (x + y , x y ). Therefore, by setting u = x + y and v = x y ,
we obtain that

X (r )/〈σ〉= {(e , u , v )∈C3 |
r∏

i=1

(e − zi )
di = v },

so

(♦) X (r )/〈σ〉 ≃C2.

On the other hand, there is an obvious isomorphism of varieties

(♥) X (r )=z

∼−→H ∏r
i=1(z−zi )

di

which is σ-equivariant. Finally, if ξ denotes a complex number such that ξ2 =∏r−1

i=1
(zr − zi )

di , then the map

(♠) X (r )6=zr
−→ X (r −1)6=zr

(e , x , y ) 7−→ (e ,ξ−1x ,ξ−1 y )

is a σ-equivariant isomorphism of varieties.

We can now start the proof of the proposition by induction on r .

• If r = 1, then, if we translate e 7→ e − z1, we may assume that z1 = 0. Then

X (1) = {e , x , y ) ∈C3 | e d1 = x y } ≃C2/µd1
,

where the group µd−1 of d1-th roots of unity in C× acts on C2 by by ζ · (x , y ) =

(ζx ,ζ−1 y ). So the cohomology of X (1) is equal to the space of invariants, under the
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action of µd1
, of the cohomology of C2. So (a) follows. Now, the “open-closed” long

exact sequence gives, by using (♥), the following exact sequence of C〈σ〉-modules

0 // H1
c
(H z d1 ) //

H2
c
(X (1)6=z )

// H2
c
(X (1)) // H2

c
(H z d1 ) //

H3
c
(X (1)6=z )

// H3
c
(X (1)) // 0 //

H4
c
(X (1)6=z )

// H4
c
(X (1)) // 0 //

But, by (a), H2
c
(X (1)) =H3

c
(X (1)) = 0, so (b) follows from (♣).

• Let r ¾ 2 and assume that the result cohomology ofX (r −1) is given by Proposi-
tion 18.5.9. If z ∈C, let λ(z ) =

∏r

i=1
(z − zi )

di . The “open-closed” long exact sequence
gives, by using (♥), the following exact sequence of C〈σ〉-modules

(∗)

0 // H1
c
(H λ(z ))

//

H2
c
(X (r )6=z )

// H2
c
(X (r )) // H2

c
(H λ(z ))

//

H3
c
(X (r )6=z )

// H3
c
(X (r )) // 0 //

H4
c
(X (r )6=z )

// H4
c
(X (r )) // 0 //

Assume first that z = zr . Then λ(z ) = 0 and, by (♠), X (r )6=zr
≃X (r − 1)6=zr

. Using the
induction hypothesis and (♣), the exact sequence (∗) becomes

0−→C− −→Cr−1
− −→H2

c
(X (r ))−→C+⊕C− −→C+ −→H3

c
(X (r ))−→ 0−→C+ −→H4

c
(X (r ))−→ 0.

But it follows from (♦) that Hi
c
(X (r ))σ = 0 if i ∈ {2, 3}. Since the map C+→H3

c
(X (r ))

is surjective, this forces H3
c
(X (r )) = 0. Also, H2

c
(X (r )) =Cl

− for some l so, taking the
C−-isotypic component in the above exact sequence yields an exact sequence

0−→C− −→Cr−1
− −→Cl

− −→C− −→ 0.

So l = r −1, as desired. This proves (a).

Now, if z ∈ {z1, z2, . . . , zr } then, by symmetry, we may assume that z = zr and the
isomorphism (♠) yields (b) in this case by the induction hypothesis. Now, assume
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that z 6∈ {z1, z2, . . . , zr }. Then λ(z ) 6= 0 and it follows from (a) that the exact sequence
(∗) becomes

0−→C− −→H2
c
(X (r )6=z )−→Cr−1

− −→C+ −→H3
c
(X (r )6=z )−→ 0−→ 0−→H2

c
(X (r )6=z )−→C+ −→ 0.

So (b) follows because the maps are σ-equivariant.



CHAPTER 19

TYPE B2

Assumption and notation. In §19, we assume that dimk V = 2,
we fix a k-basis (x , y ) of V and we denote by (X , Y ) its dual basis.
Let s and t be the two reflections of GLk(V ) whose matrices in the
basis (x , y ) are given by

s =

�
0 1

1 0

�
and t =

�−1 0

0 1

�
.

We assume moreover that W = 〈s , t 〉: it is a Weyl group of type B2.

19.1. The algebra H

We set w = s t , w ′ = t s , s ′ = t s t , t ′ = s t s and w0 = s t s t = t s t s =− IdV . Then

W = {1, s , t , w , w ′, s ′, t ′, w0} and Ref(W ) = {s , t , s ′, t ′}.
Moreover,

Ref(W )/W = {{s , s ′},{t , t ′}}.
The matrices of the elements w , w ′, s ′, t ′ and w0 in the basis (x , y ) are given by

(19.1.1)





w = s t = s ′t ′ =

�
0 1

−1 0

�
,

w ′ = t s = t ′s ′ =

�
0 −1

1 0

�
,

s ′ = t s t =

�
0 −1

−1 0

�
,

t ′ = s t s =

�
1 0

0 −1

�
,

w0 = s s ′ = t t ′ =

�
−1 0

0 −1

�
.
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We set A =Cs and B =Ct so that, in H, the following relations hold:

(19.1.2)





[x , X ] =−A(s + s ′)−2B t ,

[x , Y ] = A(s − s ′),

[y , X ] = A(s − s ′),

[y , Y ] =−A(s + s ′)−2B t ′.

We deduce for example that

(19.1.3)





[x , X 2] =−A(s + s ′)X −A(s − s ′)Y ,

[x , X Y ] =−2B t Y ,

[x , Y 2] = A(s + s ′)X +A(s − s ′)Y ,

[y , X 2] = A(s + s ′)Y +A(s − s ′)X ,

[y , X Y ] =−2B t ′X ,

[y , Y 2] =−A(s + s ′)Y −A(s − s ′)X .

Finally, note that H is endowed with an automorphism η corresponding to
�−1 1

1 1

�
∈

N :

η(x ) = y − x , η(y ) = x + y , η(X ) =
Y −X

2
, η(Y ) =

X + Y

2
,

η(A) = B , η(B ) = A, η(s ) = t and η(s ) = t .

19.2. Irreducible characters

Let ǫs (respectively ǫt ) denote the unique linear character of W such that ǫs (s ) =

−1 and ǫs (t ) = 1 (respectively ǫt (s ) = 1 and ǫt (t ) = −1). Note that ǫsǫt = ǫ. Let χ
denote the character of the representation V of W . Then

Irr(W ) = {1,ǫs ,ǫt ,ǫ,χ}

and the character table of W is given by Table 19.2.1. The fake degrees are given by

(19.2.2)





f1(t) = 1,

fǫs
(t) = t2,

fǫt
(t) = t2,

fǫ(t) = t4,

fχ (t) = t+ t3.
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g 1 w0 s t w

|ClW (g )| 1 1 2 2 2

o (g ) 1 2 2 2 4

CW (g ) W W 〈s , s ′〉 〈t , t ′〉 〈w 〉

1 1 1 1 1 1

ǫs 1 1 −1 1 −1

ǫt 1 1 1 −1 −1

ǫ 1 1 −1 −1 1

χ 2 −2 0 0 0

TABLE 19.2.1. Character Table of W

19.3. Computation of (V ×V ∗)/∆W

Before computing the center Z of H, we will compute its specialization Z0 at
(A, B ) 7→ (0, 0). By Example 5.7.5,

Z0 = k[V ×V ∗]∆W .

Thanks to (19.2.2) and Proposition 2.5.10, the bigraded Hilbert series of Z0 is given
by

(19.3.1) dimZ×Z
k
(Z0) =

1+ tu+ tu3+2t2u2+ t3u+ t3u3+ t4u4

(1− t2)(1− t4)(1−u2)(1−u4)
.

Set
σ = x 2+ y 2, π= x 2 y 2, Σ= X 2+ Y 2 and Π= X 2Y 2.

Then

(19.3.2) k[V ∗]W = k[σ,π] and k[V ]W = k[Σ,Π].

So the bigraded Hilbert series of P• = k[V ×V ∗]W ×W = k[V ]W ⊗k[V ∗]W = k[σ,π,Σ,Π]

is given by

(19.3.3) dimZ×Z
k
(P•) =

1

(1− t2)(1− t4)(1−u2)(1−u4)
.
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Now, set

eu0 = x X + y Y , eu′
0
= (x Y + y X )X Y , eu′′

0
= x y (x Y + y X ), eu′′′

0
= x y (x X + y Y )X Y ,

δ0 = x y X Y , δ′
0
= (x 2− y 2)(X 2− Y 2) and ∆0 = x y (x 2− y 2)X Y (X 2− Y 2).

It is then easy to check that the family (1, eu0, eu′
0
, eu′′

0
, eu′′′

0
,δ0,δ′

0
,∆0) is P•-linearly

independent and is contained in k[V ×V ∗]∆W . On the other hand, 1, eu0, eu′
0
, eu′′

0
,

eu′′′
0

, δ0, δ′
0

and ∆0 have respective bidegrees (0, 0), (1, 1), (1, 3), (3, 1), (3, 3), (2, 2),
(2, 2) and (4, 4). So the bigraded Hilbert series of the free P•-module with basis
(1, eu0, eu′

0
, eu′′

0
, eu′′′

0
,δ0,δ′

0
,∆0) is equal to the one of Z0 (see (19.3.1) and (19.3.3)).

Hence

(19.3.4) k[V ×V ∗]∆W = P•⊕P•eu0⊕P•eu′
0
⊕P•eu′′

0
⊕P•eu′′′

0
⊕P•δ0⊕P•δ

′
0
⊕P•∆0.

The following result, already known (see for instance [AlFo]), describes the algebra
Z0:

Theorem 19.3.5. — Z0 = k[V × V ∗]∆W = k[σ,π,Σ,Π, eu0, eu′
0
, eu′′

0
,δ0] and the ideal of

relations is generated by the following ones:




(1) eu0 eu′
0
=σΠ+Σ δ0,

(2) eu0 eu′′
0
=Σπ+σ δ0,

(3) δ0 eu′
0
=Π eu′′

0
,

(4) δ0 eu′′
0
=π eu′

0
,

(5) δ2
0
=πΠ,

(6) eu′2
0
=Π(4 δ0− eu2

0
+σΣ),

(7) eu′′2
0
=π(4 δ0− eu2

0
+σΣ),

(8) eu′
0

eu′′
0
= 4πΠ+σΣ δ0−δ0 eu2

0
,

(9) eu0(4 δ0− eu2
0
+σΣ) =σ eu′

0
+Σ eu′′

0
.

Moreover, Z0 = P ⊕P eu0⊕P eu2
0
⊕Pδ0⊕Pδ0eu0⊕Pδ0eu2

0
⊕P eu′

0
⊕P eu′′

0
.

Proof. — It is easily checked that

(19.3.6) δ′
0
= 2 eu2

0
−σΣ−4 δ0, ∆0 =δ0 δ

′
0

and eu′′′
0
= δ0 eu0.

According to (19.3.4), these three relations imply immediately that k[V ×V ∗]∆W =

k[σ,π,Σ,Π, eu0, eu′
0
, eu′′

0
,δ0]. This shows the first statement.

The relations given in Theorem 19.3.5 follow from direct computations. Taking (5)
into account, the relation (8) can be rewritten

(8′) eu′
0

eu′′
0
=δ0(4 δ0+σΣ− eu2

0
),

whereas (6) and (7) imply

(10) π eu′2
0
=Π eu′′2

0
.
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Let E , E ′, E ′′ and D be indeterminates over the field k(σ,π,Σ,Π) and let

ρ : k[σ,π,Σ,Π, E , E ′, E ′′, D ]−→ k[V ×V ∗]∆W

denote the unique morphism of k-algebras which sends the sequence (σ,π,Σ,Π, E , E ′, E ′′, D )

to (σ,π,Σ,Π, eu0, eu′
0
, eu′′

0
,δ0). Then ρ is surjective. Let fi denote the element of

k[σ,π,Σ,Π, E , E ′, E ′′, D ] corresponding to the relation (i ) of the Theorem (for 1 ¶ i ¶ 9),
by subtracting the right-hand side to the left-hand side. Set

I= 〈 f1, f2, f3, f4, f5, f6, f7, f8, f9〉 ⊂Kerρ.

Let Z̃0 = k[σ,π,Σ,Π, E , E ′, E ′′, D ]/I and let e , e ′, e ′′ and d denote the respective im-
ages of E , E ′, E ′′ and D in Z̃0. Set

Z̃ ′
0
= P•+P• e +P• e 2 +P• e ′+P• e ′′ +P•d +P•d e +P•d e 2.

Then Z̃ ′
0

is a k-vector subspace of Z̃0. The relations given by (fi )1 ¶ i ¶ 9 show that Z̃ ′
0

is a k-subalgebra of Z̃0. As moreover σ, π, Σ, Π, e , e ′, e ′′ and d belong to Z̃ ′
0
, we

deduce that Z̃0 = Z̃ ′
0
.

Consequently, Z̃0 is a quotient of the graded k-vector space

E = P•⊕P•[−2]⊕ (P•[−4])3⊕P•[−6]⊕P•[−8],

and Z0 is a quotient of Z̃0. As the Hilbert series of the k-vector space E is equal to
the Hilbert series of Z0, we deduce that

Z̃ ′
0
= P•⊕P•e ⊕P•e

2⊕P•e
′⊕P•e

′′⊕P•d ⊕P•d e ⊕P•d e 2

and that Z̃0 ≃ Z0. This shows that Kerρ = I, as desired.

Corollary 19.3.7. — The relations (1), (2),. . . , (9) is a minimal system of relations. In

particular, the k-algebra Z0 = k[V ×V ∗]∆W is not complete intersection.

Proof. — Let us use the notation of the proof of Theorem 19.3.5. It is sufficient to
show that (fi )1 ¶ i ¶ 9 is a minimal system of generators of I. Let Z̄0 = Z0/〈σ,π,Σ,Π〉
and let e , e ′, e ′′ and d denote the respective images of eu0, eu′

0
, eu′′

0
and δ0 in Z̄0.

Then it follows from (19.3.2) and from the relations (19.3.6) that

Z̄0 = k⊕ke ⊕ke 2⊕ke ′⊕ke ′′⊕kd ⊕kd e ⊕kd e 2.

Let f̄i ∈ k[E , E ′, E ′′, D ] denote the reduction of the polynomial fi modulo 〈σ,π,Σ,Π〉.
We only need to show that ( f̄i )1 ¶ i ¶ 9 is a minimal system of generators of the kernel
of the morphism of k-algebras

ρ̄ : k[E , E ′, E ′′, D ]−→ Z̄0

which sends E , E ′, E ′′ and D on e , e ′, e ′′ and d respectively.

The algebra N = k [E , E ′, E ′′, D ] is bigraded, with E , E ′, E ′′ and D of respective
bidegrees (1, 1), (1, 3), (3, 1) and (2, 2), and the elements f̄1, . . . , f̄9 are homogeneous of
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respective bidegrees (2, 4), (4, 2), (3, 5), (5, 3), (4, 4), (2, 6), (6, 2), (4, 4), (3, 3). We deduce
that

� 9∑

i=1

k f̄i

�
∩
� 9∑

i=1

N+ f̄i

�
⊂
� 9∑

i=1

k f̄i

�
∩
� 9∑

i=1

kE f̄i

�

Since all these spaces are bigraded, this intersection is contained in

(k f̄3)∩ (kE f̄1)+ (k f̄4)∩ (kE f̄2)+ (k f̄5 +k f̄8)∩ (kE f9).

Since E divides neither f̄3 nor f̄4, nor any non-zero element of k f̄5+k f̄8, we conclude
that
�∑9

i=1
k f̄i

�
∩
�∑9

i=1
N+ f̄i

�
= 0, so ( f̄i )1 ¶ i ¶ 9 is a minimal system of generators of

Ker ρ̄.

Corollary 19.3.8. — The minimal polynomial of eu0 over P• is

t8−2σΣ t6+
�
σ2
Σ

2+2(σ2
Π+Σ2π−8πΠ)

�
t4−2σΣ (σ2

Π+Σ2π−8πΠ) t2+(σ2
Π−Σ2π)2.

Proof. — By multiplying the relation (9) by eu0 and by using the relations (1) and (2),
we get

eu2
0
(4δ0+σΣ− eu2

0
) =σ2

Π+Σ2π+2σΣδ0.

We deduce immediately that

δ0(4eu2
0
−2σΣ) = eu4

0
−σΣeu2

0
+σ2

Π+Σ2π.

Taking the square of this relation and using the relation (5), we get that the polyno-
mial of the Corollary vanishes at eu0. The degree of the minimal polynomial of eu0

over P• being equal to |W |= 8, the proof of the Corollary is complete.

19.4. The algebra Z

Recall that

eu= x X + y Y +A(s + s ′)+B (t + t ′)

and set 



eu′ = (x Y + y X )X Y −A(s − s ′)X Y +B t Y 2+B t ′X 2,

eu′′ = x y (x Y + y X )−A x y (s − s ′)+B y 2t +B x 2t ′,

δ = x y X Y +B x t ′X +B y t Y +B 2(1+w0)+AB (w +w ′).

A brute force computation shows that

(19.4.1) eu, eu′, eu′′,δ ∈ Z = Z(H)
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and that the following equalities hold:

(19.4.2)





(Z1) eu eu′ =σΠ+Σ δ,

(Z2) eu eu′′ =Σπ+σ δ,

(Z3) δ eu′ =Π eu′′+B 2
Σ eu,

(Z4) δ eu′′ =π eu′+B 2σ eu,

(Z5) δ2 =πΠ+B 2 eu2,

(Z6) eu′2 =Π(4 δ− eu2+σΣ+4A2−4B 2)+B 2Σ2,

(Z7) eu′′2 =π(4 δ− eu2+σΣ+4A2−4B 2)+B 2σ2,

(Z8) eu′ eu′′ = δ(4 δ− eu2+σΣ+4A2−4B 2)−B 2σΣ,

(Z9) eu(4 δ− eu2+σΣ+4A2−4B 2) =σ eu′+Σ eu′′.

We immediately see that eu0, eu′
0
, eu′′

0
and δ0 are the respective images, in Z0 =

Z /p0Z , of the elements eu, eu′, eu′′ and δ. On the other hand, the relations (1),
(2),. . . , (9) of Theorem 19.3.5 are also the images, modulo p0, of the relations (Z1),
(Z2),. . . , (Z9).

Theorem 19.4.3. — The k-algebra Z is generated by A, B , σ, π, Σ, Π, eu, eu′, eu′′ and δ.

The ideal of relations is generated by (Z1), (Z2),. . . , (Z9).

Moreover, Z = P ⊕P eu⊕P eu2⊕Pδ⊕Pδeu⊕Pδeu2⊕P eu′⊕P eu′′.

Proof. — The proof follows exactly the same arguments as the ones of Theorem 19.3.5,
based in part on comparisons of bigraded Hilbert series.

Corollary 19.4.4. — The relations (Z1), (Z2),. . . , (Z9) is a minimal system of relations. In

particular, the k-algebra Z is not complete intersection.

Proof. — This follows immediately from Theorem 19.4.3, using the same arguments
as in the proof of Corollary 19.3.7.

Corollary 19.4.5. — The minimal polynomial of eu over P is

t8−2(σΣ+4A2+4B 2) t6+
�
σ2
Σ

2+2(σ2
Π+Σ2π−8πΠ)+8(A2+B 2)σΣ+16(A2−B 2)2

�
t4

−2
�
(σΣ+4A2−4B 2)(σ2

Π+Σ2π)−8σΣπΠ+2B 2σ2
Σ

2
�

t2+ (σ2
Π−Σ2π)2.

Proof. — The proof follows exactly the same steps as the proof of Corollary 19.3.8,
but by starting with the relations (Z1),. . . , (Z9) instead of the relations (1),. . . , (9).
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z ∈ Z eu eu′ eu′′ δ

Ω1 −2(B +A) 0 0 2B (B +A)

Ωǫs
−2(B −A) 0 0 2B (B −A)

Ωǫt
2(B −A) 0 0 2B (B −A)

Ωǫ 2(B +A) 0 0 2B (B +A)

Ωχ 0 0 0 0

TABLE 19.5.1. Table central characters of H̄

Acknowledgments — The above computations (checking that eu, eu′, eu′′ and δ
are central, and checking the relations (Z1),. . . , (Z9)) have been done without com-
puter. Even though we have been very carefully, the heaviness of the computations
imply that it might happen that some mistakes occur. However, U. Thiel has de-
veloped a MAGMA package (called CHAMP, see [Thi3]) for computing in the algebra
H: hence, he has checked independently that the elements eu, eu′, eu′′ and δ are cen-
tral and that the relations (Z1),. . . , (Z9) hold. We wish to thank warmly U. Thiel for
this checking: he has also checked that the minimal polynomial of eu is given by
Corollary 19.4.5. �

19.5. Calogero-Moser families

The Table 19.5.1 gives the values of Ωψ (for ψ ∈ Irr(W )) at the generators of the
P -algebra Z . They are obtained by computing effectively the actions of eu, eu′, eu′′

and δ or by using Corollary 7.3.2 and using the relations (Z1),. . . , (Z9) (knowing that
Ωψ(σ) =Ωψ(π) =Ωψ(Σ) =Ωψ(Π) = 0).

Now, let K be a field and fix a morphism k[C ] → K . Let a and b denote the
respective images of A and B in K . The previous Table allows to compute imme-
diately the partitions of Irr(W ) into Calogero-Moser K -families, according to the
values of a and b . The (well-known) result is given in Table 19.5.2.
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Conditions K -families

a = b = 0 Irr(W )

a = 0, b 6= 0 {1,ǫs}, {ǫt ,ǫ} et {χ}

a 6= 0, b = 0 {1,ǫt }, {ǫs ,ǫ} et {χ}

a = b 6= 0 {1}, {ǫ} et {ǫs ,ǫt ,χ}

a =−b 6= 0 {ǫs }, {ǫt } et {1,ǫ,χ}

a b 6= 0, a 2 6= b 2 {1}, {ǫs }, {ǫt }, {ǫ} et {χ}

TABLE 19.5.2. Calogero-Moser K -families

19.6. The group G

Since w0 =− IdV belongs to W (and since all the reflections of W have order 2), the
results of § 5.5 can be applied. In particular, if τ0 = (−1, 1,ǫ) ∈ k××k× ×W ∧, then τ0

can be seen as the element w0 ∈W ,−→G and is central in G (see Proposition 5.5.2).
Hence, by (5.5.3), we get

G ⊂W4,

where W4 is the subgroup of SW consisting of permutations σ of W such that
σ(−x ) = −σ(x ) for all x ∈ W . We denote by N4 the (normal) subgroup of W4 con-
sisting of permutations σ ∈W4 such that σ(x ) ∈ {x ,−x } for all x ∈W . Then, if we set
µ2 = {1,−1},

N4 ≃ (µ2)
4.

Moreover,
|W4|= 384 and |N4|= 16.

Let ǫW : SW → µ2 = {1,−1} be the sign character and let W ′
4
=W4 ∩KerǫW and N ′

4
=

W ′
4
∩N4. Then

N ′
4
= {(η1,η2,η3,η4) ∈ (µ2)

4 | η1η2η3η4 = 1} ≃ (µ2)
3.

Moreover,
|W ′

4
|= 192 and |N ′

4
|= 8.

Recall that H is identified with the stabilizer, in G , of 1 ∈W . Moreover, G contains
the image of W ×W in SW . This image, isomorphic to (W ×W )/∆Z(W ), has order
32 and its intersection with H , isomorphic to ∆W /∆Z(W ) ≃W /Z(W ), has order 4.
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The elements (s , s ) and (t , t ) of W ×W are sent to distinct elements of N4. So H ∩N4

is a subgroup of N ′
4

of order 4. Since (w0, 1) is sent to an element of N ′
4

which does
not belong to H , we deduce that

N ′
4
⊂G .

Let f (t) ∈ P [t] denote the unique monic polynomial of degree 4 such that f (eu2) =

0 (it is given by Corollary 19.4.5). According to (B.6.1), we have

disc(f (t2)) = 256 disc(f )2 · (σ2
Π−Σ2π)2,

and so the discriminant of the minimal polynomial of eu is a square in P . Hence,

G ⊆W ′
4

.

We will show that this inclusion is an equality.

Theorem 19.6.1. — G =W ′
4

.

Proof. — It is sufficient to show that |G | = 192. We already know that N ′
4
⊂G ⊂W ′

4
,

which shows that G ∩N4 = N ′
4
. To show the Theorem, it is sufficient to show that

G /N ′
4
≃S4. But, G /N ′

4
=G /(G ∩N4) is the Galois group of the polynomial f . So we

only need to show that the Galois group of f over K is S4. Let Ḡ denote this Galois
group.

Let p = 〈σ− 2,Σ+ 2, A − 1, B ,Π−π〉. Then p is a prime ideal and P /p ≃ k[π]. Let f̄

denote the reduction of f modulo p. Then

f̄ (t) = t(t3+ (16π−16π2) t−64π2).

So, by (B.6.2), we have

disc( f̄ ) = (64π2)2 ·
�
−4(16π−16π2)3−27 · (−64π2)2

�
= 224π7(π−4)(2π+1)2.

So the discriminant of f̄ is not a square in k[π], which implies that the discriminant
of f is not a square in P . So Ḡ is not contained in the alternating group A4.

Since f is irreducible, Ḡ is a transitive subgroup of S4. In particular, 4 divides |Ḡ |.
Moreover, if c ∈C is such that cs = ct = 1, then, by Table 19.5.2 and Theorem 10.2.7,
G admits a subgroup (the inertia group of r̄c ) which admits an orbit of length 6. So
3 divides |G | and so 3 divides also |Ḡ |. Hence, 12 divides |Ḡ | and, since Ḡ 6⊂A4, this
forces Ḡ =S4.

Remark 19.6.2. — Recall that W4 is a Weyl group of type B4 and that W ′
4

is a Weyl
group of type D4. �
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19.7. Calogero-Moser cells, Calogero-Moser cellular characters

19.7.A. Results. — The aim of this section is to show that the Conjectures LR and L hold
for W . If a and b are positive real numbers and if cs = a and ct = b , then the de-
scription of Kazhdan-Lusztig left, right or two-sided c -cells, of Kazhdan-Lusztig c -
families and c -cellular characters is easy and can be found, for instance, in [Lus4].
The different cases to be considered are a > b , a = b and a < b : by using the au-
tomorphism η of W which exchanges s and t , we can assume that a ¾ b > 0. The
Conjectures LR and L then follow from the description of Calogero-Moser left, right
or two-sided c -cells, of Calogero-Moser c -families and c -cellular characters given
in Table 19.7.2:

Theorem 19.7.1. — Let c ∈C , set a = cs and b = ct and assume that a b 6= 0. Then there

exists a choice of prime ideals rleft
c
⊂ r̄c such that the Calogero-Moser left, right or two-sided

c -cells, of Calogero-Moser c -families and c -cellular characters given by Table 19.7.2.

Consequently, Conjectures LR and L hold if W has type B2.

NOTATION - In Table 19.7.2, we have set

Γχ = {t , s t , t s , s t s}, Γ +
χ
= {t , s t }, Γ −

χ
= {t s , s t s}, Γs = {s , t s , s t s} et Γt = {t , s t , t s t }.

Moreover:

• W ′
3
=H denotes the stabilizer of 1 ∈W in G =W ′

4
and W ′

2
denotes the stabilizer

of s in W ′
3

. Note that W ′
3

(respectively W ′
2

) is a Weyl group of type D3 = A3

(respectively D2 = A1×A1).
• S3 denotes the subgroup of W ′

3
which stabilizes Γs (this is also the stabilizer of

Γt ): it is isomorphic to the symmetric group of degree 3.
• Z/2Z denotes the stabilizer, in W ′

2
, of Γ +χ (or Γ −χ ). �

We will now concentrate on the proof of Theorem 19.7.1: we will first start by the
generic case, by running over the descending chain of prime ideals p̄ ⊃ pleft ⊃ 〈π〉.
The use of the ideal 〈π〉 will help us to remove some ambiguity for the computa-
tion of Calogero-Moser left cells. It is natural to ask whether this method can be
extended, since the prime ideal 〈π〉 is not chosen randomly: it is the defining ideal
of a W -orbit of hyperplanes in V ∗.

After studying the generic case, we will specialize our parameters to deduce The-
orem 19.7.1. The most difficult step is the computation of left cells (see for instance
Proposition 19.7.23).
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Conditions D̄c = Īc
Two-sided cells

ψ dimkLc (ψ) I left
c

D left
c

Left cells

Γ |Γ | IrrΓ (W ) C |C | [C ]CM
c

a 2 6= b 2

a b 6= 0
W ′

2

1 1 1W 1W 8

Z/2Z W ′
2

1 1 1W

w0 1 ǫ ǫ 8 w0 1 ǫ

s 1 ǫs ǫs 8 s 1 ǫs

w0s 1 ǫt ǫt 8 w0s 1 ǫt

Γχ 4 χ χ 8
Γ
+
χ 2 χ

Γ
−
χ 2 χ

a = b
a b 6= 0 W ′

3

1 1 1W 1W 8

S3 S3

1 1 1W

w0 1 ǫ ǫ 8 w0 1 ǫ

W \ {1, w0} 6 ǫs ,ǫt ,χ
ǫs 1 Γs 3 ǫs +χ

ǫt 1 Γt 3 ǫt +χ

χ 6

TABLE 19.7.2. Calogero-Moser cells, families, cellular characters

Notation. If z ∈ Z (or q ∈ Q ), we denote by Fz (t) (or Fq (t)) the
minimal polynomial of z (or q ) over P . If F (t) ∈ P [t], we will denote
by F̄ (t) (respectively F left(t), respectively F π(t)) the reduction of F (t)

modulo p̄ (respectively pleft, respectively 〈π〉).

19.7.B. Generic two-sided cells. — We set eu= cop(eu), eu′ = cop(eu′), eu′′ = cop(eu′′)

and δ = cop(δ). Recall that p̄ = 〈σπ,Σ,Π〉P , that z̄ = Ker(Ω1) and that q̄ = cop(z̄): ac-
cording to Table 19.5.1, we have

(19.7.3) q̄= p̄Q + 〈eu+2(A+B ),δ−2B (A+B ), eu′, eu′′〉Q .

Also, Q/q̄= P /p̄= k[A, B ]. Recall that

(19.7.4) F̄eu(t) = t4(t−2(A+B ))(t−2(B −A))(t+2(A+B ))(t+2(B −A)).

Recall also that, since w0 =− IdV ∈W and that W is generated by reflections of order
2, we have euv w0

=−euv for all v ∈W (see Proposition 5.5.2).

Lemma 19.7.5. — Let v ∈W \ {1, w0}. Then there exists a unique prime ideal r̄ of R lying

over q̄ and such that euv ≡ 2(A−B ) mod r̄.
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Proof. — Let us first show the existence statement. Let r̄′ be a prime ideal of R lying
over q̄: then eu≡−2(A+B ) mod r̄′ and euw0

≡ 2(A+B ) mod r̄′. By (19.7.4), there exists
a unique element v ′ ∈W \ {1, w0} such that euv ′ ≡ 2(A−B ) mod r̄.

Recall also that H is the stabilizer of 1 ∈ W in G = W ′
4
⊂ SW : this is also the

stabilizer of w0. Then H acts transitively on W \ {1, w0} (by Theorem 19.6.1) and so
there exists σ ∈ H such that σ(v ′) = v . Let r̄ = σ(r̄′). Then r̄ is a prime ideal of R

lying over q̄ (since σ ∈H ) and euv ≡ 2(A−B ) mod r̄. This concludes the proof of the
existence statement.

Let us now show the uniqueness statement. So let r̄ and r̄′ be two prime ideals of
R lying over q̄ such that euv − 2(A−B ) ∈ r̄∩ r̄′. Then there exists σ ∈H such that r̄′ =
σ(r̄). We then have euv ≡ euσ(v ) ≡ 2(B − A) mod r̄. By (19.7.4), we know that 2(A−B )

is a simple root of f̄ (t), so σ(v ) = v . Consequently, σ ∈ I , where I is the stabilizer of
v in H . By Theorem 19.6.1, I is the Klein group acting on W \ {1, w0, v, v w0} (note
that |I |= 4).

Let D̄ (respectively Ī ) denote the decomposition (respectively inertia) group of r̄
(in G ). By (19.7.4), we have Ī ⊂ D̄ ⊂ I and it remains to show that I = Ī . But the
generci two-sided cell covering the generic Calogero-Moser family {χ} has cardi-
nality χ(1)2 = 4, and it is an orbit under the action of Ī . So |Ī | ¾ 4 = |I |. Whence the
result.

As a consequence of the proof of the previous Lemma, we obtain the next result:

Corollary 19.7.6. — Let v ∈W \ {1, w0}. Let r̄ denote the unique prime ideal of R lying

over q̄ and such that euv ≡ 2(A−B ) mod r̄. Let D̄ (respectively Ī ) denote the decomposition

(respectively inertia) group of r̄ in G . Then:

(a) D̄ = Ī = {τ ∈G | τ(1) = 1 and τ(v ) = v } ≃Z/2Z×Z/2Z.

(b) R/r̄=Q/q̄= P /p̄≃ k[A, B ].

(c) The generic Calogero-Moser two-sided cells (with respect to r̄) are {1}, {w0}, {v },
{v w0} and W \{1, w0, v, v w0}. Moreover, Irr{1}(W ) = {1W }, Irr{w0}(W ) = {ǫ}, Irr{v }(W ) =

{ǫs }, Irr{v w0}(W ) = {ǫt } and Irr{1}(W ) = {χ}.

Choice. From now on, and until the end of this Chapter, we denote
by r̄ the unique prime ideal of R lying over q̄ and such that eus ≡
2(A−B ) mod r̄.

With this choice,

(19.7.7) D̄ = Ī =W ′
2

,
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and the generic Calogero-Moser two-sided cells are {1}, {s}, {w0s}, {w0} and Γχ , and

(19.7.8)





IrrCM
{1} (W ) = {1W },

IrrCM
{s} (W ) = {ǫs },

IrrCM
{w0 s}(W ) = {ǫt },

IrrCM
{w0}(W ) = {ǫ},

IrrCM
Γχ
(W ) = {χ}.

19.7.C. Generic cellular characters. — Recall that pleft = 〈Σ,Π〉P .

Lemma 19.7.9. — We have qleft = pleftQ + 〈eu+2(B +A), eu′+BΣ, eu′′,δ−2B (A+B )〉Q .

Proof. — Let q′ = 〈eu+ 2(B + A), eu′ + BΣ, eu′′,δ− 2B (A + B )〉Q . First of all, note that
Q/pleftQ is the P /pleft = k[A, B ,Σ,Π]-algebra admitting the following presentation:

(19.7.10)





(Q1left) eu eu′ =Σ δ,

(Q2left) eu eu′′ = 0,

(Q3left) δ eu′ =Π eu′′+B 2Σ eu,

(Q4left) δ eu′′ = 0,

(Q5left) δ2 = B 2 eu2,

(Q6left) eu′2 =Π(4 δ− eu2+4A2−4B 2)+B 2
Σ

2,

(Q7left) eu′′2 = 0,

(Q8left) eu′ eu′′ =δ(4 δ− eu2+4A2−4B 2),

(Q9left) eu(4 δ− eu2+4A2−4B 2) =Σ eu′′.

A straightforward computation shows that these relations hold in Q/q′. Let q′′ =
pleftQ + q′. Then Q/q′′ ≃ k[Σ,Π, A, B ] ≃ P /pleft, so q′′ is a prime ideal of Q , containing
pleft and contained in q̄ (by (19.7.3)). The result then follows from the uniqueness
statement in Corollary 11.2.4.

Recall that the Calogero-Moser cellular characters can be defined without com-
puting the Calogero-Moser left cells, by using only prime ideals of Z (or Q ) lying
over pleft. Note also that

(19.7.11) F left
eu
(t) = t4(t−2(A+B ))(t−2(B −A))(t+2(A+B ))(t+2(B −A)).

This equality allows us to construct other prime ideals of Q lying over pleft:
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Lemma 19.7.12. — Set



qleft
1
= qleft = pleftQ + 〈eu+2(B +A), eu′−BΣ, eu′′,δ−2B (B +A)〉Q ,

qleft
ǫs
= pleftQ + 〈eu+2(B −A), eu′−BΣ, eu′′,δ−2B (B −A)〉Q ,

qleft
ǫt
= pleftQ + 〈eu−2(B −A), eu′+BΣ, eu′′,δ−2B (B −A)〉Q ,

qleft
ǫ
= pleftQ + 〈eu−2(B +A), eu′+BΣ, eu′′,δ−2B (A+B )〉Q ,

qleft
χ
= pleftQ + 〈eu, eu′′,δ〉Q .

Then:

(a) If γ ∈ Irr(W ), then qleft
γ

is a prime ideal of Q lying over pleft. The associated generic

Calogero-Moser cellular character is γ.

(b) If γ ∈Hom(W , k×), then qleft
γ = Ker(Ωleft

γ ) and Q/qleft
γ = P left.

(c) If we denote by eu′
χ

the image of eu′ in Q/qleft
χ

, then Q/qleft
χ
= (P /pleft)[eu′

χ
] and the

minimal polynomial of eu′
χ

is t2 − Π(4A2 − 4B 2) − B 2
Σ

2. In particular, [kQ (q
left
χ
) :

kP (p
left)] = 2.

(d) If q is a prime ideal Q lying over pleft, then there exists γ ∈ Irr(W ) such that q= qleft
γ .

Proof. — (b) is easily checked by a direct computation, and it implies (a) whenever
γ is a linear character.

It follows from the presentation (19.7.10) of Q/pleftQ that Q/qleft
χ
= (P /pleft)[eu′

χ
]

and that the minimal polynomial of eu′
χ

is t2 −Π(4A2 − 4B 2)− B 2
Σ

2. Since this last
polynomial with coefficients in P /pleft = k[Σ,Π, A, B ] is irreducible, this implies that
qleft
χ is a prime ideal lying over pleft. We deduce (c) and the first statement of (a). The

last statement of (a) follows from Theorem 14.4.1.

(d) follows from the fact that the sum of the already constructed Calogero-Moser
cellular characters is equal to the character of the regular representation of W .

19.7.D. Generic left cells. — We will now lift the results about cellular characters
to results about left cells. The first one is a consequence of Theorem 19.7.12.

Corollary 19.7.13. — Let rleft be a prime ideal of R lying over qleft and contained in r̄

and let D left (respectively I left) denote its decomposition (respectively inertia) group. Then

D left =W ′
2

and |I left|= 2.

Proof. — First of all, by Corollary 11.2.9, we have D left ⊂ D̄ = W ′
2

. It follows from
Lemma 19.7.12(c) that, if C is a generic Calogero-Moser cell contained in the generic
Calogero-Moser two-sided cell Γ covering the family {χ}, then |C | = 2 and |C D | = 4.
In particular, 2 divides |I left| and I left  D left by Proposition 11.3.5(b). The Corollary
follows.



218

Corollary 19.7.14. — There exists a unique prime ideal rleft of R lying over qleft and con-

tained in r̄.

Proof. — Let rleft and rleft
∗ be two prime ideals of R lying over qleft and contained in

r̄. Then there exists h ∈H such that rleft
∗ = h (rleft). We deduce from Proposition 11.2.8

that r̄= g (r̄). So h belongs to the decomposition group of r̄, which is the same as the
one of rleft (by Corollary 19.7.13). So rleft

∗ = r
left.

We will denote by rleft the unique prime ideal of R lying over qleft

and contained in r̄. We will denote by D left (respectively I left) its
decomposition (respectively inertia) group.

Corollary 19.7.13 says that

(19.7.15) D left =W ′
2

and |I left|= 2.

Corollary 19.7.16. — R/rleft ≃Q/qleft
χ is integrally closed.

Corollary 19.7.17. — {1}, {s}, {t s t } and {w0} are generic Calogero-Moser left cells, and

their associated generic Calogero-Moser cellular characters are given by




[1 ]CM
= 1W ,

[ s ]CM
= ǫs ,

[ t s t ]CM
= ǫt ,

[w0 ]
CM
= ǫ.

Proof. — This follows from the fact that the subsets given in the Corollary are also
generic Calogero-Moser two-sided cells and that their associated generic Calogero-
Moser families are given by Corollary 19.7.6.

Corollary 19.7.18. — The following congruences hold in R :




eu≡−2(B +A) mod rleft,

s (eu)≡−2(B −A) mod rleft,

t s t (eu)≡ 2(B −A) mod rleft,

w0(eu)≡ 2(B +A) mod rleft,

t (eu)≡ s t (eu)≡ t s (eu)≡ s t s (eu)≡ 0 mod rleft.
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Proof. — By (19.7.11), the following congruence holds in R [t]:

(∗)
∏

w∈W

(t−w (eu))≡ t4(t−2(A+B ))(t−2(B −A))(t+2(A+B ))(t+2(B −A)) mod rleftR [t].

We already know that, since qleft ⊂ rleft, that eu ≡ −2(B + A) mod rleft. This implies
that s (eu) is congruent to −2(B − A), 2(B + A), 2(B − A) or 0 modulo rleft. But, since
s (eu)≡−2(B −A) mod r̄ by construction, this forces s (eu)≡−2(B −A) mod rleft.

The third and fourth congruences are obtained from the first two ones by noting
that t s t (eu) =w0s (eu) =−s (eu) and w0(eu) =−eu.

The last one follows from (∗).

Corollary 19.7.19. — The following congruences hold in R :




δ≡ 2B (B +A) mod rleft,

s (δ)≡ 2B (B −A) mod rleft,

t s t (δ)≡ 2B (B −A) mod rleft,

w0(δ)≡ 2B (B +A) mod rleft,

t (δ)≡ s t (δ)≡ t s (δ)≡ s t s (δ) ≡ 0 mod rleft

and





eu′ ≡−BΣ mod rleft,

s (eu′)≡−BΣ mod rleft,

t s t (eu′)≡ BΣ mod rleft,

w0(eu′)≡ BΣ mod rleft,

t (eu′)2 ≡ s t (eu′)2 ≡ t s (eu′)2 ≡ s t s (eu′)2 ≡ B 2(Σ2−4Π)+4A2
Π mod rleft.

Finally, g (eu′′)≡ 0 mod rleft for all g ∈G .

Proof. — The equalities (Q 1left),. . . , (Q 9left) are of course also satisfied in the algebra
R/pleftR . Since pleftR is a G -stable ideal of R , we can apply any element of G to the
equalities (Q 1left),. . . , (Q 9left), and then reduce modulo rleft. We deduce for instance
from (Q 7left) that g (eu′′)≡ 0 mod rleft for all g ∈G , as desired.

Whenever g (eu) 6≡ 0 mod rleft, we deduce from (Q 9left) that 4g (δ)≡ g (eu)2−4A2+4B 2

mod rleft, which allows to show that the congruences of δ, s (δ), t s t (δ) and w0(δ)

modulo rleft are the ones expected. Moreover, if g ∈W \ {1, s , t s t , w0}, then g (eu)≡ 0

mod rleft and we deduce from (Q 5left) that g (δ)≡ 0 mod rleft.
Finally, whenever g (eu) 6≡ 0 mod rleft, the congruence of g (eu′) modulo rleft is eas-

ily determined thanks to (Q 1left), and is as expected. However, whenever g (eu) ≡ 0

mod rleft, then g (δ)≡ 0 mod rleft by the previous observations, and it follows from (Q6left)

that g (eu′)2 ≡ B 2(Σ2−4Π)+4A2
Π mod rleft.

Lemma 19.7.20. — F left
eu′ (t) = (t−BΣ)2(t+BΣ)2(t2−B 2

Σ
2−4A2

Π+4B 2
Π)2.
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Proof. — First of all, by applying the elements of W ×W to eu′
0
∈ k[V ×V ∗], we note

that eu′
0

has 8 conjugates, and so the minimal polynomial of eu′
0

over P• has degree
8. Consequently, Feu′(t) has degree 8: it is in fact the characteristic polynomial of the
multiplication by eu′ in the free P -module Z . Hence,

Feu′(t) =
∏

w∈W

(t−w (eu′))

and the result then follows from Corollary 19.7.19.

As a conclusion, if g ∈ {t , s t , t s , s t s} and if q ∈ {eu, eu′′,δ} then

(19.7.21) g (q )≡ 0 mod rleft

and

(19.7.22) g (eu′)2 ≡ B 2(Σ2−4Π)+4A2
Π mod rleft.

The next Proposition makes the congruence (19.7.22) more precise: it is the most
subtle point of this Chapter.

Proposition 19.7.23. — The following congruences hold in R :




t (eu′)≡ s t (eu′) mod rleft,

t s (eu′)≡ s t s (eu′) mod rleft,

t (eu′) 6≡ t s (eu′) mod rleft.

Proof. — By Corollary 19.7.19,

(t− t (eu′))(t− s t (eu′))(t− t s (eu′))(t− s t s (eu′))≡ (t2−B 2
Σ

2−4A2
Π+4B 2

Π)2 mod rleftR [t].

This shows that there exists a unique g0 ∈ {s t , t s , s t s} such that g0(eu′) ≡ t (eu′)

mod rleft. Since t (eu′) 6≡ 0 mod rleft and s t s (eu′) = t w0(eu′) = −t (eu′), the element
g0 is not equal to s t s . So

g0 ∈ {s t , t s}.
We only need to show that

(∗) g0 = s t .

Let F π
eu′(t) be the reduction modulo πP of the minimal polynomial of eu′. Set

F π(t) = t4+2BΣt3+ (−4A2
Π+4B 2

Π−σΣΠ)t2

−(8A2BΣΠ+2B 3
Σ

3−8B 3
ΣΠ+2BσΣ2

Π−4BσΠ2)t

−4A2B 2
Σ

2
Π−B 4

Σ
4+4B 4

Σ
2
Π−B 2σΣ3

Π+4B 2σΣΠ2+σ2
Π

3.

Then
F π

eu′(t) = F π(t) · F π(−t).
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Let rπ be a prime ideal of R lying over πP and contained in rleft. Let rπ
0

be a prime
ideal of R lying over πP + p0 and contained in rπ. One checks easily that F π(t) is
prime to F π(−t) and is separable, so F π

eu′(t) admits 8 different roots in R/rπ, which
are the classes of the g (eu′)’s, where g runs over W . Let F left(t) denote the reduction
modulo pleft of F π(t). Then

F left(t) = (t+BΣ)2(t2−B 2
Σ

2−4A2
Π+4B 2

Π).

So it follows from Corollary 19.7.19 that eu′ and s (eu′) are roots of F π(t) in R/rπ. On
the other hand, since W ′

2
acts transitively {t , s t , t s , s t s} and stabilizes rleft, we may,

by replacing rπ by g (rπ) for some g ∈W ′
2

if necessary, assume that t (eu′) is a root of
F π(t) modulo rπ. The other roots modulo rπ is then s t (eu′) or t s (eu′) (this cannot
be s t s (eu′) = −t (eu′), as this one is a root of F π(−t) modulo rπ). So let g1 denote the
unique element of {s t , t s} such that g1(eu′) is a root of F π(t)modulo rπ. By reduction
modulo rπ

0
, we get

eu′ · s (eu′) · t (eu′) · g1(eu′)≡ F π(0)≡σ2
Π

3 mod rπ
0

.

Moreover, there exists g ∈G such that r0 ⊂ g (rπ
0
). But, since G =W ′

4
, there exists signs

η1, η2, η3, η4 such that {g (1), g (s ), g (t ), g (g1)} = {η1,η2s ,η3t ,η4g1} and η1η2η3η4 = 1.
Consequently,

eu′ · s (eu′) · t (eu′) · g1(eu′)≡σ2
Π

3 mod r0.

The next computation can be performed directly inside k[V ×V ∗]∆Z(W ) ⊃R/r0:

eu′
0
· s (eu′

0
) · t (eu′

0
) · t s (eu′

0
) = (x Y + y X )(x X + y Y )(−x Y + y X )(−x X + y Y )X 4Y 4

= (y 2Y 2− x 2X 2)(y 2X 2− x 2Y 2)Π2

= ((x 4 + y 4)Π−π(X 4 + Y 4))Π2

≡ σ2
Π

3 mod πk[V ×V ∗].

So g1 = t s .
We have therefore proven that

(t− eu′)(t− s (eu′))(t− t (eu′))(t− t s (eu′))≡ F π(t) mod rπR [t].

By reduction modulo rleft, we get

(t− t (eu′))(t− t s (eu′))≡ t2−B 2
Σ

2−4A2
Π+4B 2

Π mod rleftR [t].

So t (eu′)≡−t s (eu′) mod rleft, which shows that g0 6= t s . So g0 = s t .

Corollary 19.7.24. — For the choice of rleft made in this section, the generic Calogero-

Moser left cells are {1}, {s}, {t s t }, {w0}, {t s , s t s} and {t , s t }.
Let g left denote the involution of G which leaves 1, s , t s t and w0 fixed and such that

g left(t ) = s t and g left(t s ) = s t s . Then I left = 〈g left〉.
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Remark 19.7.25. — We understand better here the convention chosen for the action
of W ×W on k(V ×V ∗) (see §5.1.B). Indeed, if we had chosen the other action (the
one described in Remark 5.1.10), the generic Calogero-Moser left cells would have
coincided with the Kazhdan-Lusztig right cells. �

19.7.E. Proof of Theorem 19.7.1. — Keep here the notation of Theorem 19.7.1 (a =

cs , b = ct ). Let us fix for the moment a prime ideal rleft
c

of R containing rleft and pc R .
Since R/r̄≃ P /p̄, we deduce that r̄c = r̄+p̄c R is the unique prime ideal of R lying over
r̄ and containing rleft

c
. Let D left

c
(respectively I left

c
) be the decomposition (respectively

inertia) group of rleft
c

and D̄c (respectively Īc ) be the decomposition (respectively
inertia) group of r̄c .

It follows from Corollaries 19.7.18 and 19.7.19 and from Proposition 19.7.23 that

(♣)





eu≡−2(b +a ) mod rleft
c

,

s (eu)≡−2(b −a ) mod rleft
c

,

t s t (eu)≡ 2(b −a ) mod rleft
c

,

w0(eu)≡ 2(b +a ) mod rleft
c

,

t (eu)≡ s t (eu)≡ t s (eu)≡ s t s (eu)≡ 0 mod rleft
c

.

(♦)





δ≡ 2b (b +a ) mod rleft
c

,

s (δ)≡ 2b (b −a ) mod rleft
c

,

t s t (δ)≡ 2b (b −a ) mod rleft
c

,

w0(δ)≡ 2b (b +a ) mod rleft
c

,

t (δ)≡ s t (δ)≡ t s (δ)≡ s t s (δ) ≡ 0 mod rleft
c

(♥)





eu′ ≡−bΣ mod rleft
c

,

s (eu′)≡−bΣ mod rleft
c

,

t s t (eu′)≡ bΣ mod rleft
c

,

w0(eu′)≡ bΣ mod rleft
c

,

t (eu′)≡ s t (eu′)≡−t s (eu′)≡−s t s (eu′) mod rleft
c

,

t (eu′)2 ≡ b 2
Σ

2+4(a 2− b 2)Π mod rleft
c

.

and

(♠) g (eu′′)≡ 0 mod rleft
c

for all g ∈ G . Recall that we assume that a b 6= 0 and that two elements g and
g ′ of W are in the same Calogero-Moser left (respectively two-sided) c -cell if and
only if g (q ) ≡ g ′(q ) mod rleft

c
(respectively mod r̄c ) for all q ∈ {eu, eu, eu′′,δ} (since

Q = P [eu, eu′, eu′′,δ]).
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The case a 2 6=b 2. — Assume here that a 2 6= b 2. It follows from the congruences
(♣), (♦), (♥) and (♠) that the Calogero-Moser left c -cells are {1}, {s}, {t s t }, {w0},
Γ
+
χ
= {t , s t } and Γ −

χ
= {t s , s t s} and that the Calogero-Moser two-sided c -cells are {1},

{s}, {t s t }, {w0} and Γχ .
The results on Calogero-Moser c -families Calogero-Moser c -cellular characters

given by Table 19.7.2 then follow from Corollary 10.2.8, from Proposition 12.4.4,
from (19.7.8) and from Corollary 19.7.17.

Let us now determine D left
c

and I left
c

. Note that I left ⊂ I left
c

and that, according to
the description of Calogero-Moser left c -cells, that is of I left

c
-orbits, this forces the

equality. On the other hand, since r̄c = r̄ + p̄c R , we have D left ⊂ D left
c

. Since the
D left

c
-orbits are contained in the Calogero-Moser two-sided c -cells, the description

of these last ones forces again the equality. We show similarly that D̄c = D̄ =W ′
2

and
that Īc = Ī =W ′

2
.

The case where a =b . — In this case, the last congruence of (♥) becomes

t (eu′)2 ≡ b 2
Σ

2 mod rleft
c

.

So t (eu′) ≡ bΣ mod rleft
c

or t (eu′) ≡ −bΣ mod rleft
c

. By replacing rleft
c

by g (rleft
c
), where

g ∈W ′
2
=D left exchanges t and s t s , we can make the following choice:

Choice of r
left
c

. We choose the prime ideal rleft
c

so that t (eu′) ≡ bΣ

mod rleft
c

.

The family of congruences (♣), (♦), (♥) and (♠) show that the Calogero-Moser left
c -cells are {1}, {w0}, Γs = {s , t s , s t s} and Γt = {t , s t , t s t } and that the Calogero-Moser
two-sided c -cells are {1}, {w0} and W \ {1, w0}.

As previously, the results on Calogero-Moser c -families and Calogero-Moser c -
cellular characters given by Table 19.7.2 follow from Corollary 10.2.8, from Propo-
sition 12.4.4, from (19.7.8) and from Corollary 19.7.17.

Let us conclude by the description of D left
c

, I left
c

, D̄c and Īc . First of all, I left
c

has two
orbits of length 3 (Γs and Γt ) so its order is divisible by 3. Moreover, it contains I left

which has order 2. So its order is divisible by 6. The description of left c -cells then
allows to conclude that I left

c
=S3. On the other hand, D left

c
permutes the left c -cells

which have the same associated c -cellular character. So D left
c

stabilizes Γs and Γt .
This forces the equality D left

c
= I left

c
=S3.

On the two-sided cells side, recall that D̄c = Īc because D̄c /Īc is a quotient of D̄ /Ī .
Moreover, the inclusions W ′

2
⊂ Īc and I left

c
⊂ Īc show that W ′

3
⊂ Īc . The equality

Īc =W ′
3

becomes obvious.
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19.8. Complement: fixed points

As announced in Example 16.2.1, we will show that Conjecture FIX holds when
W is of type B2 and τ is a root of unity. If τ is not of order dividing 4, then Z τ =
Z C

×
is a union of affine spaces isomorphism C , so this case is easy. If τ has order

dividing 2, then Z τ =Z , and there is again nothing to prove.

Assumption. We assume in this section that k = C and we fix a
primitive 4-th root of unity τ.

We identify Z with the set of (a , b , s ,S , p , P, e , e ′, e ′′, d ) ∈ A10(C) satisfying the rela-
tions (Z 1), (Z 2),. . . , (Z 9) in (19.4.2), with A, B , σ, Σ, π, Π, eu, eu′, eu′′ and δ replaced
by a , b , s , S , p , P , e , e ′, e ′′ and d respectively. Then

Z τ = {(a , b , s ,S , p , P, e , e ′, e ′′, d ) ∈Z | s = S = e ′ = e ′′ = 0}.

Therefore,

Z τ ≃ {(a , b , p , P, e , d )∈A6(C) |





d 2 = e 2+p P

p (4d − e 2+4a 2−4b 2) = 0

P (4d − e 2+4a 2−4b 2) = 0

d (4d − e 2+4a 2−4b 2) = 0

e (4d − e 2+4a 2−4b 2) = 0

}.

This shows that Z τ has two irreducible components X and X 0, where

X = {(a , b , p , P, e , d )∈ A6(C) | d 2 = e 2+p P and 4d − e 2+4a 2−4b 2 = 0}

and X 0 = {(a , b , p , P, e , d )∈A6(C) | p = P = d = e = 0}}.

Note that the intersection ofX and X 0 is not empty.
So X 0 ≃ C ≃ pt×ptC and Conjecture FIX holds for this easy irreducible compo-

nent. On the other hand,

X ≃ {(a , b , p , P, e )∈ A5(C) | (e 2 −4a 2+4b 2)2 = 16(e 2+p P )}
= {(a , b , p , P, e )∈ A5(C) | (e −2(a + b ))(e −2(a − b ))(e +2(a + b ))(e +2(a − b )) = p P }.

Let V ′ be the τ-eigenspace of w and take W ′ = 〈w 〉. Then (V ′, W ′) is a reflection
subquotient of (V , W ), with dimCV ′ = 1. We now use the description of Z (V ′, W ′)

given in Theorem 18.2.4:

Z (V ′, W ′) ≃ {(k0, k1, k2, k3, e , x , y ) ∈A7(C) | (e −4k0)(e −4k1)(e −4k2)(e −4k3) = x y

and k0+k1+k2+k3 = 0},
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where the ki ’s are the coordinates in C (V ′, W ′). So, if we set ϕ : C → C (V ′, W ′),
(a , b ) 7→ 1

2 (a + b , a − b ,−a − b ,−a + b ), then ϕ is linear and

(19.8.1) X ≃Z (V ′, W ′)×C (V ′,W ′)C .

Note thatϕ is well-defined only up to permutation of the four coordinates inC (V ′, W ′).
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APPENDIX A

FILTRATIONS

A.1. Filtered modules

Let R be a commutative ring. A filtered R -module is an R -module M together with
R -submodules M ¶ i for i ∈Z such that

M ¶ i ⊂M ¶ i+1 for i ∈Z, M ¶ i = 0 for i ≪ 0 and M =
⋃
i∈Z

M ¶ i .

Given M a filtered R -module, the associated Z-graded R -module gr M is given by

(gr M )i =M ¶ i/M ¶ i−1.

The principal symbol map ξ : M → gr M is defined by ξ(m ) =m mod M ¶ i−1 ∈ (gr M )i ,
where i is minimal such that m ∈M ¶ i . The principal symbol map is injective but
not additive.

The Rees module associated with M is the R [ħh ]-submodule Rees(M ) =
∑

i∈Zħh
i M ¶ i

of R [ħh±1]⊗R M . We have R [ħh±1]⊗R [ħh] Rees(M ) = R [ħh±1]⊗R M . In particular, given
t ∈R×, we have an isomorphism of R -modules

R [ħh ]/〈ħh − t 〉⊗R [ħh] Rees(M )
∼−→M , ħh i m 7→ t i m .

There is an isomorphism of R -modules

R [ħh ]/〈ħh〉⊗R [ħh ] Rees(M )
∼−→ gr M , ħh i m 7→

�
0 if m ∈M <i

ξ(m ) otherwise.

A.2. Filtered algebras

Let A be an R -algebra. A (bounded below) filtration on A is the data of a filtered
R b -module structure on A such that

1 ∈ A ¶ 0 \A ¶ −1 and A ¶ i ·A ¶ j ⊂ A ¶ i+ j for all i , j ∈Z.



230

The associated graded R -module gr A is a graded R -algebra. The Rees module
associated with A is a R [ħh ]-algebra. An immediate consequence is the following
lemma.

Lemma A.2.1. — If gr A has no 0 divisors, then the principal symbol map ξ : A→ gr A is

multiplicative and A has no 0 divisors.

Proof. — Let a , b ∈ A be two non-zero elements and let i , j minimal such that a ∈
A ¶ i and b ∈ A ¶ j . Since gr A has no 0 divisors, it follows that ξ(a )ξ(b ) 6= 0, hence
a b 6∈A<i+ j . This shows that ξ(a b ) = ξ(a )ξ(b ), and that a b 6= 0.

Let us recall some facts of commutative algebra (cf [Mat, Exercises 9.4-9.5]). Let
R be a commutative domain with field of fractions K . An element x ∈ K is said to
be almost integral over R if there exists a ∈ R , a 6= 0, such that for all n ¾ 0, we have
a x n ∈ R . If x is integral over R , then x is almost integral over R , and the converse
holds if R is noetherian.

We say that R is completely integrally closed if the elements of K that are almost
integral over R are in R .

Lemma A.2.2. — Assume A is a commutative ring. If gr A is a completely integrally closed

domain, then A is a completely integrally closed domain.

Proof. — Lemma A.2.1 shows that A is a domain. Let K be its field of fractions. Let
x ∈ K be almost integral over R . Let c , d ∈ A such that x = c /d . Let i (resp. j ) be
minimal such that c ∈ A ¶ i (resp. d ∈ A ¶ j ). We show by induction on i that x ∈ A.

Let a ∈ A, a 6= 0, such that a x n ∈ A for all n ¾ 0. Let αn = a x n . We have d nαn = a c n ,
hence ξ(d )nξ(αn ) = ξ(a )ξ(c )

n (cf Lemma A.2.1). It follows that ξ(c )
ξ(d ) is an element of

the field of fractions of gr A that is almost integral over gr A. Consequently, it is in
gr A. Since gr A has no zero divisors, it follows that it is homogeneous of degree i− j .
Let u ∈ A with ξ(u ) = ξ(c )

ξ(d ) . Let x ′ = x − u = c−ud
d . We have c − ud ∈ A ¶ i−1 and x ′ is

almost integral over A. It follows by induction that x ′ ∈ A, hence x ∈ A.

A.3. Filtered modules over filtered algebras

A filtered A-module is an A-module M together with a structure of filtered R -
module such that

A ¶ i ·M ¶ j ⊂M ¶ i+ j for all i , j ∈Z.

A filtered morphism of A-modules is a morphism f : M → N , where M and N are
filtered A-modules, such that f (M ¶ i )⊂N ¶ i for all i ∈Z.
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Lemma A.3.1. — Let f : M →N be a filtered morphism of A-modules. If gr f is surjective

(resp. injective), then f is surjective (resp. injective).

Proof. — Assume gr f is surjective. We have N ¶ i = f (M ¶ i ) +N ¶ i−1. Since N ¶ i = 0

for i ≪ 0, it follows by induction that N ¶ i = f (M ¶ i ), hence f is surjective.
Assume gr f is injective. Let m ∈M −{0} and let i be minimal such m ∈M ¶ i . We

have f (m ) 6∈N ¶ i−1, hence f (m ) 6= 0.

Lemma A.3.2. — Let M be a filtered A-module and E a subset of M . If ξ(E ) generates

gr M as an A-module, then E generates M as an A-module.

Let F be a subset of A. If ξ(F ) generates gr A as an R -algebra, then F generates A as an

R -algebra.

Proof. — We have a canonical morphism of filtered A-modules f : A(E ) → M . By
assumption, gr f is surjective, hence f is surjective by lemma A.3.1.

The second assertion follows from the first one by taking A = R , M = A and E the
set of elements of A that are products of elements of F .

Let M and N be two finitely generated filtered A-modules. We endow the R -
module HomA(M , N )with the filtration given by

HomA(M , N )¶ i = { f ∈ EndA(M )| f (M ¶ j )⊂N ¶ i+ j ∀ j ∈Z}.

A map f ∈HomA(M , N )¶ i induces a morphism of gr A-modules gr M → gr N , homo-
geneous of degree i , that vanishes if f ∈HomA(M , N )¶ i−1.

Lemma A.3.3. — The construction above provides an injective morphism of graded R -

modules

gr HomA(M , N )→Homgr A(gr M , grN ).

Lemma A.3.4. — Let e be an idempotent of A ¶ 0 \A ¶ −1 Then gr A ·ξ(e ) is a progenerator

for gr A if and only if Ae is a progenerator for A.

Proof. — Note that ξ(e ) is an idempotent of gr A. The A-module Ae is a progenerator
if and only if e generates A as an (A, A)-bimodule. The lemma follows from Lemma
A.3.2.
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A.4. Symmetric algebras

Let us recall some basic facts about symmetric algebras (cf for example [Bro1, §2,
3]). A symmetric R -algebra is an R -algebra A, finitely generated and projective as an
R -module, and endowed with an R -linear map τA : A→ R such that

– τA(a b ) =τA(b a ) for all a , b ∈ A (i.e., τA is a trace) and
– the morphism of (A, A)-bimodules

τ̂A : A→HomR (A, R ), a 7→ (b 7→ τ(a b ))

is an isomorphism.

Such a form τA is called a symmetrizing form for A.

Consider the sequence of isomorphisms

A⊗R A
τ̂⊗id−−→
∼

HomR (A, R )⊗R A
f ⊗a 7→(b 7→ f (b )a )−−−−−−−−−→

∼
EndR (A).

The Casimir element is the inverse image of idA through the composition of maps
above. The central Casimir element casA is its image in A by the multiplication map
A⊗R A→ A. It is an element of Z (A).

Assume A is free over R , with R -basis B and dual basis (b ∨)b∈B for the bilinear
form A⊗R A→R , a ⊗a ′ 7→τ(a a ′). We have casA =

∑
b∈B b b ∨.

Lemma A.4.1. — Let (A,τA) be a symmetric R -algebra and G a finite group acting on the

R -algebra A and such that τA(g (a )) = τA(a ) for all g ∈G and a ∈ A.

Let B = A⋊G and define an R -linear form τB : B →R by τB (a ⊗g ) =τA(a )δ1,g for a ∈ A

and g ∈G .

The form τB is symmetrizing for B .

Proof. — We have

τB ((a ⊗ g )(a ′⊗ g ′)) =τA(a g (a ′))δg −1,g ′ =τA(a
′g −1(a ))δg −1,g ′ =τB ((a

′⊗ g ′)(a ⊗ g )).

Given g ∈ G , let Bg = A ⊗ g and Cg = HomR (Bg , R ). We have B =
⊕

g∈G Bg and
HomR (B , R ) =

⊕
g Cg . Given g ∈ G we have τ̂B (Bg ) ⊂ Cg −1 and τ̂B (a ⊗ g )(a ′ ⊗ g −1) =

τA(a g (a ′)). It follows that the restriction of τB to Bg is an isomorphism Bg

∼−→ Cg −1 .

Let now A be a filtered R -algebra, with A ¶ −1 = 0, A ¶ d−1 6= A and A ¶ d = A for some
d ¾ 0. Let τ̄ : (gr A)d → R be an R -linear form. We extend it to an R -linear form on
gr A by setting it to 0 on (gr A)i for i < d . We define an R -linear form τ on A as the
composition

τ : A
can−→ (gr A)d

τ̄−→ R .
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Denote by pi : A ¶ i → (gr A)i the canonical projection. Let x ∈ A ¶ i and y ∈ A ¶ j .
We have τ(x y ) = τ̄(pd (x y )). We have pd (x y ) = 0 if i + j < d . If i + j = d , we
have pd (x y ) = pi (x )pj (y ), hence τ(x y ) = τ̄(pi (x )pj (y )). The R -module HomR (A, R )

is filtered with HomR (A, R )¶ i =HomR (A/A ¶ d−i−1, R ) and τ̂ is a morphism of filtered
R -modules with gr(τ̂) = ˆ̄τ.

Lemma A.4.2. — Let L be an R -submodule of A ¶ 1 such that A = A ¶ 0(R+L )d , L d+1 ⊂ A<d

and A ¶ 0L = L A ¶ 0.

If τ̄ is a trace, then τ is a trace.

Proof. — Note that A = A ¶ 0L d+A<d . We have pd (A
¶ 0L d L )⊂ pd (A

<d ) = 0 and pd (L A ¶ 0L d ) =

pd (A
¶ 0L L d ) = 0. It follows that τ(a l ) = τ(l a ) for a ∈ A ¶ 0L d and l ∈ L . The consid-

erations above show that τ(a l ) = τ(l a ) for a ∈ A<d and l ∈ L and τ(b a ) = τ(a b ) for
b ∈ A and a ∈ A ¶ 0.

The next proposition is inspired by a result of Brundan and Kleshchev on degen-
erate cyclotomic Hecke algebras [BrKl, Theorem A.2].

Proposition A.4.3. — Assume gr A is projective and finitely generated as an R -module

and assume τ and τ̄ are traces.

If τ̄ is a symmetrizing form for gr A, then τ is a symmetrizing form for A.

Proof. — Note that A is a finitely generated projective R -module. Since ˆ̄τ is an
isomorphism, it follows that τ̂ is an isomorphism (Lemma A.3.1).

A.5. Weyl algebras

Let V be a finite dimensional vector space over a field k of characteristic 0. Let
D(V ) = eH1,0 be the Weyl algebra of V . This is the quotient of the tensor algebra
Tk(V ⊕V ∗) by the relations

[x , x ′] = [y , y ′] = 0, [y , x ] = 〈y , x 〉 for x , x ′ ∈V ∗ and y , y ′ ∈V .

There is an isomorphism of k-modules given by multiplication: k[V ] ⊗ k[V ∗]
∼−→

D(V ).
The k-algebra D(V ) is filtered, with D(V )¶ −1 = 0, D(V )¶ 0 = k[V ], D(V )¶ 1 = k[V ]⊕

k[V ]⊗V and D ¶ i = (D ¶ 1)i for i ¾ 2. The associated graded algebra grD(V ) is k[V ⊕
V ∗]. The associated Rees algebra Dħh (V ) is the quotient of k[ħh]⊗ Tk(V ⊕V ∗) by the
relations

[x , x ′] = [y , y ′] = 0, [y , x ] = ħh〈y , x 〉 for x , x ′ ∈V ∗ and y , y ′ ∈V .
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Consider the induced D(V )-module D(V )⊗k[V ∗] k, where k[V ∗] acts on k by evalu-
ation at 0. Via the canonical isomorphism k[V ]

∼−→D(V )⊗k[V ∗]k, a 7→ a ⊗1, we obtain
the faithful action of D(V ) by polynomial differential operators on k[V ]: an element
x ∈ V ∗ acts by multiplication, while y ∈ V acts by ∂y =

∂
∂ y . As a consequence of the

faithfulness of the action, the centralizer of k[V ] in D(V ) is k[V ].

Note that there is an injective morphism of k[ħh ]-algebras

Dħh (V ) ,→ k[ħh ]⊗D(V ), V ∗ ∋ x 7→ x , V ∈ y 7→ ħh y .

This provides by restriction k[ħh ]⊗k[V ]with the structure of a faithful representation
of Dħh (V ).



APPENDIX B

GALOIS THEORY AND RAMIFICATION

Let R be a commutative ring, G a finite group acting on R and H a subgroup of G .
We set Q =R H and P =R G , so that P ⊂Q ⊂R . Let r be a prime ideal of R . We denote
by kR (r) the fraction field of R/r (that is, the quotient Rr/rRr) and G D

r
the stabilizer

of r in G . This subgroup of G then acts on R/r and we denote by G I
r

the kernel of
this action. In other words,

G I
r
= {g ∈G | ∀ r ∈R , g (r )≡ r mod r}.

The group G D
r

(respectively G I
r

) is called the decomposition group (respectively the
inertia group) of G at r.

We fix in this chapter a prime ideal r of R and we set q= r∩Q and p= r∩P = q∩P :

r ⊂ R

q ⊂ Q

p ⊂ P

We also set
ρG : Spec R → Spec P,

ρH : Spec R → SpecQ

and Υ : SpecQ → Spec P

the maps respectively induced by the inclusions P ⊂R , Q ⊂R and Q ⊂R . Of course,
ρG = Υ ◦ρH : in other words, the diagram

Spec R
ρH //

ρG

99
SpecQ

Υ // Spec P.
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is commutative. For instance,

ρG (r) = p, ρH (r) = q and Υ (q) = p.

Finally, we set
D =G D

r
and I =G I

r
.

B.1. Around Dedekind’s Lemma

Recall that (R ,×) is a monoid. If M is another monoid, we denote by Hommon(M , R )

the set of morphisms of monoids M → (R ,×). If A is a commutative ring, We denote
by Homring(A, R ) the set of morphisms of rings from A to R : it can be seen as a subset
of Hommon((A,×), R ). These are subsets of the setF (M , R ) of maps from M to R : note
that F (M , R ) is an R -module.

Dedekind’s Lemma. If R is a domain, then Hommon(M , R ) is an R -linearly independent

family of elements of F (M , R ).

Proof. — Let ϕ1,. . . , ϕd be two by two distinct elements of Hommon(M , R ) and let
λ1,. . . , λd in R be such that

(∗) ∀m ∈M , λ1ϕ1(m )+ · · ·+λdϕd (m ) = 0.

We shall show by induction on d that λ1 = λ2 = · · ·= λd = 0. If d = 1, this is clear as
ϕ1(1) = 1.

So assume that d ¾ 2 and that there is no non-trivial R -linear relation of length
¶ d − 1 between elements of Hommon(M , R ). Since ϕ1 6=ϕ2, there exists m0 ∈M such
that ϕ1(m0) 6=ϕ2(m0). Consequently, it follows from (∗) that

λ1ϕ1(m0m )+ · · ·+λdϕd (m0m ) = 0.

and ϕ1(m0) ·
�
λ1ϕ1(m )+ · · ·+λdϕd (m )

�
= 0

for all m ∈M . By subtracting the second equation to the first one, we get

∀m ∈M ,

d∑

i=2

λi (ϕi (m0)−ϕ1(m0))ϕi (m ) = 0.

By the induction hypothesis, we get that λ2(ϕ2(m0)−ϕ1(m0)), so that λ2 = 0 because
R is a domain. Now, the induction hypothesis allows also to conclude that λ1 =λ3 =

· · ·=λd = 0.

Corollary B.1.1. — Let A be a commutative ring and assume that R is a domain. Then

Homring(A, R ) is an R -linearly independent family in F (A, R ).
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Proof. — Indeed, the set Homring(A, R ) is a subset of the set Hommon((A,×), R ): we
then apply Dedekind’s Lemma.

B.2. Decomposition group, inertia group

We recall some classical results:

Proposition B.2.1. — The ideal r is maximal if and only if p is maximal.

Proposition B.2.2. — The group G acts transitively on the fibers of ρG .

Remark B.2.3. — Of course, the statement can also be applied to H : the group H

acts transitively on the fibers of ρH . �

Proof. — See [Bou, Chapter 5, §2, Theorem 2(i)].

Theorem B.2.4. — The field extension kR (r)/kP (p) is normal, with Galois group D /I (=

G D
r
/G I

r
).

Proof. — See [Bou, Chapter 5, §2, Theorem 2(ii)].

Corollary B.2.5. — Let r′ be a prime ideal of R containing r and let D ′ =G D
r′ and I ′ =G I

r′ .

Then D ′/I ′ is isomorphic to a subquotient of D /I .

Proof. — By replacing R by R/r, Q by Q/q and P by P /p, D /I may be identified
with G and the Corollary follows immediately from Theorem B.2.4.

Theorem B.2.6. — If Q is unramified over P at q (i.e. if pQq = qQq), then I is contained

in H .

Proof. — See [Ray, Chapter X, Theorem 1].
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B.3. On the P /p-algebra Q/pQ

B.3.A. Double classes. — The proposition B.3.5 below, certainly well-known (and
easy), will be crucial in this book. We provide a proof for the convenience of the
reader. We will need some notation. If g ∈G , the composed morphism Q

g−→ R
can−→

R/r factors through a morphism ḡ : Q/pQ →R/r. The following remark is obvious:

(B.3.1) If h ∈H and i ∈ I , then i g h = ḡ .

We then obtain a well-defined map

(B.3.2)
I \G /H −→ Hom(P /p)-alg(Q/pQ , R/r)

I g H 7−→ ḡ
.

Note that Hom(P /p)-alg(Q/pQ , R/r) = HomP -alg(Q , R/r). If ϕ ∈ HomP /p−alg(Q/pQ , R/r),

then we denote by ϕ̃ the composition Q
can−→Q/pQ

ϕ−→R/r. This defines a map

(B.3.3)
Hom(P /p)-alg(Q/pQ , R/r) −→ Υ

−1(p)

ϕ 7−→ Kerϕ̃.

Since R/r is a domain, Ker ϕ̃ is a prime ideal of Q and it is clear that Kerϕ̃ ∈ Υ −1(p).
If g ∈G , then g (r)∩Q ∈ Υ −1(p). Moreover, if h ∈H and d ∈D , then

hg d (r)∩Q = g (r)∩Q .

We have then defined a map

(B.3.4)
D \G /H −→ Υ

−1(p)

D g H 7−→ g −1(r)∩Q .

Proposition B.3.5. — The map I \G /H −→ Hom(P /p)-alg(Q/pQ , R/r) defined in B.3.2 is

bijective, as well as the map D \G /H → Υ −1(p) defined in B.3.4. Moreover, the diagram

I \G /H ∼
I g H 7→ g̃

//

can

��

Hom(P /p)-alg(Q/pQ , R/r)

ϕ 7→Kerϕ̃

��
D \G /H ∼

D g H 7→ g −1(r)∩Q
// Υ −1(p)

is commutative.

Proof. — Let us start by showing that the first map is injective. Let g and g ′ be two
elements of G such that ḡ = ḡ ′. This means that

∀ q ∈Q , g (q )≡ g ′(q ) mod r.
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Consequently,

∀ r ∈R ,
∑

h∈H

g h (r )≡
∑

h∈H

g ′h (r ) mod r.

But, by Dedekind’s Lemma, the family of morphisms of rings R → R/r is R/r-
linearly independent. So this means that there exists h ∈H such that

∀ r ∈R , g (r )≡ g ′h (r ) mod r

or, equivalently,
∀ r ∈ R , g ′h (g −1(r ))≡ r mod r.

In other words, g ′hg −1 ∈ I and so g ′ ∈ I g H .

Let us now show that it is surjective. Let ϕ ∈ HomP /p−alg(Q/pQ , R/r) and let q′ =
Ker ϕ̃. Since ϕ is (P /p)-linear, we have q′ ∩P = p. Let r′ be a prime ideal of R lying
over q′. Then there exists g ∈ G such that r′ = g (r). So the map g ◦ ϕ̃ : Q → R/r′ has
q′ = r′∩Q for kernel and is Q -linear. By Theorem B.2.4, there exists d ∈G D

r′ such that
g ◦ ϕ̃(q )≡ d (q ) mod r′ for all q ∈Q . Hence, ϕ̃(q )≡ g −1d (q ) mod r, that is, ϕ = g −1d .

Let us now show that the second map is bijective. If q′ ∈ Υ −1(p), then there exists
r′ ∈ Spec R such that q′ ∩Q = r′. Also, r′ ∩P = q′ ∩P = p and so, by Proposition B.2.2,
there exists g ∈ G such that r′ = g (r). This shows that the bottom horizontal row is
surjective. The injectivity then follows again from Proposition B.2.2.

The commutativity of the diagram follows from the previous arguments.

B.3.B. Residue fields. — Let g ∈ [D \G /H ]. We set for simplification qg = r∩ g (Q ).
Note that qg ∩P = p and that we obtain a sequence of morphisms of rings P /p ,−→
g (Q )/qg ,−→ R/r. So we have a sequence of inclusions of fields

kP (p) ⊂ kg (Q )(qg ) ⊂ kR (r).

Lemma B.3.6. — The extension kR (r)/kg (Q )(qg ) is normal with Galois group (D ∩ g H )/(I ∩
g H ).

Remark B.3.7. — Note that (D ∩ g H )/(I ∩ g H ) is naturally a subgroup D /I . �

Proof. — Indeed, this follows from the fact that g (Q ) = R
g H and from Theorem B.2.4.

Corollary B.3.8. — Assume that, for all prime ideals q′ ∈ Υ −1(p), we have kQ (q
′) = kP (p).

Then D \G /H = I \G /H .
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Proof. — By Lemma B.3.6 and Theorem B.2.4, it follows from the assumption that,
for all g ∈G , we have (D ∩ g H )/(I ∩ g H )≃D /I . In other words,

∀ g ∈G , D = I · (D ∩ g H ).

Now let g ∈ G and d ∈ D . Then there exists i ∈ I and h ∈ H such that d = i g hg −1,
that is d g = i g h . We deduce that D g H = I g H .

Lemma B.3.9. — Write Υ −1(p) = {q1, . . . ,qn} and assume that Q is unramified over P at

qi for all i . Then I ⊂
⋂

g∈G
g H .

Proof. — Let g ∈ G . Then g (r)∩Q ∈ Υ −1(p) and it follows from Theorem B.2.6 that
g I ⊂H (since g I is the inertia group of g (r)). Hence, I ⊂ g −1

H .

Proposition B.3.10. — If I =
⋂

g∈G
g H = 1 and if the extension kR (r)/kP (p) is separa-

ble, then kR (r)/kP (p) is the Galois closure of the family of extensions kgQ (qg )/kP (p), g ∈
[D \G /H ].

REMARK - If R is a domain (which implies that P and Q are domains) and if G acts
faithfully, then the assumption

⋂
g∈G

g H = 1 is equivalent to say that the extension
Frac(R )/Frac(P ) is the Galois closure of Frac(Q )/Frac(P ).

Note also that the assumption I = 1 implies that G acts faithfully. �

Proof. — By Theorem B.2.4, the extension kR (r)/kP (p) is normal with Galois group
D . By Lemma B.3.6, the extension kR (r)/kg (Q )(qg ) is normal with Galois group D∩g H .

Let k be the normal closure of the family of extensions kg (Q )(qg )/kP (p), g ∈ [H \G /D ].
Then the Galois group Gal(kR (r)/k ) is the intersection of the conjugates, in D , of the
groups D ∩ g H , for g running in [H \G /D ]. So

Gal(kR (r)/k ) =
⋂

g∈[H \G /D ]
d∈D

d (D ∩ g H ) =
⋂

g∈[D \G /H ]
d∈D

D ∩ d g H .

Since hH =H for all h ∈H , we then have

Gal(kR (r)/k ) =
⋂

g∈[D \G /H ]
d∈D
h∈H

D ∩ d g hH =
⋂
g∈G

g H = 1,

by assumption. Whence the result.
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Counter-example B.3.11. — If there is some ramification, then the above proposi-
tion does not hold in general, even if we assume that P , Q and R are Dedekind
domains. Indeed, let 3p

2 be a cubic root of 2 in C, ζ a primitive subic root of 1 in C
and let R denote the integral closure of Z in M = Q(

3p
2,ζ). Let G = Gal(M /Q) ≃S3

and H =Gal(M /Q(
3p

2)) ≃ Z/2Z. Then, P = Z and, if r is a prime ideal of R such that
r∩Z= 2Z, then D =G and |I |= 3.

Hence, D \G /H is a singleton and the corresponding field extension kR (r)/kQ (q) is
Galois with Galois group Z/2Z (according to Lemma B.3.6), as well as kR (r)/kP (p).
So kP (p) = kQ (q) ≃ F2 and kR (r) ≃ F4. So kR (r) is not the Galois closure of the field
extension kQ (q)/kP (p). �

B.3.C. The case of fields. — Whenever R is a field, the situation becomes much
simpler.

Assumption. In this subsection, and only in this subsection, we
assume that R is a field: it will be denoted by M . We set L =Q =M H

and K = P = M G . We also assume that G acts faithfully on M .
Hence, M /K is a Galois extension with Galois group G and M /L is
a Galois extension with Galois group H .

It follows from the assumption that p= q= r= 0 and that D =G and I = 1. Hence,
Proposition B.3.5 provides a bijective map

G /H
∼←→HomK −alg(L , M ).

If g ∈ G , the morphism of K -algebras L →M , q 7→ g (q ), extends to a morphism of
M -algebras

g L : M ⊗K L −→ M

m ⊗K l 7−→ mg (l ).

Proposition B.3.12. — The morphism of M -algebras⊕
g∈[G /H ]

g L : M ⊗K L −→
⊕

g∈[G /H ]
M

is an isomorphism.

Proof. — Since L is a K -vector space of dimension |G /H |, M ⊗K L is an M -vector
space of dimension |G /H |. It is so sufficient to show that the map

∑
g∈[G /H ] g L is in-

jective, which is equivalent to the M -linear independence of the family of maps L→
M , q 7→ g (q ), whenever g runs over [G /H ] (see Corollary B.1.1 to the Dedekind’s
Lemma).
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B.4. Recollection about the integral closure

Proposition B.4.1. — Let f ∈ P [t], let P ′ be a P -algebra containing P and let g ∈ P ′[t].

We assume that f and g are monic and that g divides f (in P ′[t]). Then the coefficients of

g are integral over P .

Proof. — See [Bou, Chapter 5, §1, Proposition 11].

Corollary B.4.2. — If P is integral and integrally closed, with fraction field K , if A

is a K -algebra and if x ∈ A is integral over P , then the minimal polynomial of x over K

belongs to P [t].

Proof. — See [Bou, Chapter 5, §1, Corollary of Proposition 11].

Proposition B.4.3. — If P is a domain and if f ∈ P [t, t−1] is integral over P , then f ∈ P .

Proof. — Let d ¾ 1 and let p0, p1,. . . , pd−1 be elements of P such that p0 + p1 f + · · ·+
pd−1 f d−1 = f d . Let δ be the t-valuation of P and δ′ its degree. Since P is integral,
the degree of f d is dδ′, and so the above equality can hold only if δ′ = 0. Similarly,
δ= 0. So f is constant.

B.5. On the calculation of Galois groups

Let K be a field and let f (t) = td + ad−1td−1 + · · ·+ a1t+ a0 ∈ K [t] be separable. We
denote by M a splitting field of f (over K ) and we denote by

GalK (f ) =Gal(M /K ).

The group GalK (f ) is called the Galois group of f over K .
Let t1,. . . , td be elements of M such that

f (t) =

d∏

i=1

(t− ti ),

so that

M = K [t1, . . . , td ] = K (t1, . . . , td ).

This numbering provides an injective morphism of groups

GalK (f ) ,−→ Sd .

Assume now that P is an integrally closed domain, that K is its fraction field,
and that f ∈ P [t]. Let R denote the integral closure of P in M and let G =Gal(M /K ).
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Then P = R G since P is integrally closed. If r ∈ R , we denote by r̄ its image in R/r.
Write

f̄ =

l∏

j=1

f j ,

where f j ∈ kP (p)[t] is an irreducible polynomial. Then D /I = Gal(kR (r)/kP (p)) by
Theorem B.2.4. But, R contains t1,. . . , td , so

f̄ (t) =

d∏

i=1

(t− t̄i ).

We denote by Ω j the subset of {1, 2, . . . , d } such that

f j (t) =
∏

i∈Ω j

(t− t̄i ).

Let k j = kP (p)((t̄i )i∈Ω j
): it is a splitting field of f j over kP (p). Let G j = Gal(k j /kP (p)),

that is, the Galois group of f̄ j . Then,
(B.5.1)

the canonical morphism D /I =Gal(kR (r)/kP (p))→Gal(k j /kP (p)) =G j is surjective

for all j . Since G j acts transitively on Ω j , we obtain in particular that

(B.5.2) |Ω j | divides |G | for all j .

B.6. Some facts on discriminants

Let f (t) ∈ P [t] be a monic polynomial of degree d . We denote by disc(f ) its dis-
criminant. Then

(B.6.1) disc(f (t2)) = (−4)d disc(f )2 · f (0).

Proof. — By easy specialization arguments, we may assume that P is an algebraically
closed field. Let E1,. . . , Ed be the elements of P such that

f (t) =

d∏

i=1

(t−Ei ).

We fix a square root ei of Ei in P . So

f (t2) =
∏

1 ¶ i ¶ d
ǫ∈{1,−1}

(t− ǫei )

and the discriminant of f (t2) is then equal to

disc(f (t2)) =
� ∏

1 ¶ i< j ¶ d
ǫ,ǫ′∈{1,−1}

(ǫei − ǫ′e j )
2
�
·

d∏

i=1

(ei − (−ei ))
2.
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In other words,

disc(f (t2)) = 4d ·
� ∏

1 ¶ i< j ¶ d

(Ei −E j )
4
�
·

d∏

i=1

Ei = 4d disc(f )2 · (−1)d f (0),

as expected.

Let us conclude with another easy result:

(B.6.2) disc(t f (t)) = disc(f ) · f (0)2.

Proof. — As in the previous proof, we may assume that P is an algebraically closed
field, and we denote by E1,. . . , Ed the elements of P such that

f (t) =

n∏

i=1

(t−Ei ).

Then

disc(t f (t)) =
� ∏

1 ¶ i< j ¶ d

(Ei −E j )
2
�
·

d∏

i=1

(0−Ei )
2.

Whence the result.

B.7. Topological version

Let Y be a locally simply connected topological space endowed with a faithful
action of a finite group G . Let X =G \ Y and let π : Y → X be the quotient map.

Let Y nr = {y ∈ Y |FixG (y ) = 1} be the complement of the ramification locus and let
X nr = π(Y nr). Fix y0 ∈ Y nr and let F = G · y0. We define a right action of g ′ ∈ G on
g · y0 ∈ F by (g · y0) · g ′ = g g ′ · y0.

Let y1 be a point of Y in the same connected component as y0 and let I = FixG (y1).
The right action of I on F can be described in terms of lifting of paths, as we recall
below.

Fix a path γ̃ : [0, 1]→ Y with γ̃([0, 1))⊂ Y nr, γ̃(0) = y0 and γ̃(1) = y1. Let γ=π(γ̃).

Lemma B.7.1. — Given y ∈ F , there is a unique path γ̃y in Y starting at y and lifting γ.

Given y ′, y ′′ ∈ F , we have y ′′ ∈ y ′ · I if and only if γ̃y ′(1) = γ̃y ′′(1).

Proof. — Let E =π−1(γ([0, 1])). We have

E =
∐

Ω∈G /I

�⋃
ω∈Ω
ω(γ̃([0, 1]))
�

where the
⋃
ω∈Ωω(γ̃([0, 1])) are the connected components of E and theω(γ̃([0, 1])) are

the irreducible components of E .
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Let y ∈ F . There is a unique element g ∈G such that y = g · y0. The restricted path
g (γ̃)|[0,1) is the unique lift of γ|[0,1) starting at y . It follows from the description of E

that g (γ̃) is the unique lift of γ starting at y . The lemma follows.

We consider now the case of a non-Galois covering. Let H be a subgroup of G

and let Ȳ =H \ Y . We denote by φ : Y → Ȳ the quotient map and by ψ : Ȳ → X the
map such that π =ψ ◦φ. Let F̄ = φ(F ). The right action of I on F induces a right
action on F̄ . We have a bijection H \G

∼−→ F̄ , H g 7→φ(g · y1) and the right action of I

on F̄ corresponds to the right action on H \G by right multiplication.

Lemma B.7.2. — Given ȳ ∈ F̄ , there is a unique path γ̄ ȳ in Ȳ starting at ȳ and lifting γ.

Given ȳ ′, ȳ ′′ ∈ F̄ , we have ȳ ′′ ∈ ȳ ′ · I if and only if γ̄ ȳ ′(1) = γ̄ ȳ ′′(1).

Proof. — There is an element g ∈ G such that ȳ = φ(g · y0), and H g is uniquely
determined by ȳ . The path φ(g (γ̃)) is the unique lift of γ starting at ȳ . The lemma
follows.

We assume now that R is a finitely generated commutative reduced C-algebra
and Y is the topological space (Spec R )(C), for the classical topology. We have Ȳ =

(SpecQ )(C) and X = (Spec P )(C).
The prime ideal r of R corresponds to an irreducible subvariety Z of Spec R . There

is a non-empty open subset U of Z such that given y ∈U (C), we have StabG (y ) =G I
r

.
Fix a point y1 ∈ U (C). We have I = G I

r
. Lemma B.7.2 provides a topological

description of the orbits of I on the fibers of ψ.





APPENDIX C

GRADINGS AND INTEGRAL EXTENSIONS

C.1. Idempotents, radical

Let Γ be a monoid. Denote by∆ :Z[Γ ]→Z[Γ ]⊗ZZ[Γ ], γ 7→ γ⊗γ the comultiplication.
Let A be a ring. Let us recall the equivalence between the notion of a Γ -grading on
A and that of a coaction of Z[Γ ] on A.

Put A[Γ ] = A⊗ZZ[Γ ]. Given A =
⊕
γ∈Γ Aγ a Γ -graded ring structure on A, we have a

morphism of rings

µ=µA : A −→ A[Γ ], Aγ ∋ a 7→ a ⊗γ
such that

(C.1.1)

�
µ⊗ Id : A⊗ZZ[Γ ]→ A[Γ ], a ⊗γ 7→µ(a )γ is an isomorphism and
(1⊗∆) ◦µ= (µ⊗ Id) ◦µ : A −→ A⊗ZZ[Γ ]⊗ZZ[Γ ].

Conversely, consider a morphism of rings µ : A → A[Γ ] satisfying the two prop-
erties (C.1.1) above. Let Aγ = µ

−1
A
(A ⊗ γ). Note that given a ∈ Aγ and a ′ ∈ Aγ′ , we

have a a ′ ∈ Aγ+γ′ . Let a ∈ A and write µ(a ) =
∑n

i=1
ai ⊗ γi with ai ∈ A and γi ∈ Γ . We

have (1⊗∆) ◦µ(a ) = (µ⊗ Id) ◦µ(a ), hence
∑

i ai ⊗γi ⊗γi =
∑

i µ(ai )⊗γi . It follows that
µ(ai ) = ai ⊗γi , hence ai ∈ Aγi

. We deduce that A =
∑
γAγ. The first property shows

that µ is injective, hence A =
⊕
γAγ: we have obtained a Γ -graded ring structure on

A.
Given f : Γ → Γ ′ a morphism of monoids and given a Γ -grading on A, we have a

Γ
′-grading on A given by A′

γ′ =
⊕
γ∈f −1(γ′)Aγ.

Assume, up to formula (C.1.6), that Γ =Z. If B is a ring containing A and if ξ∈ B×

commutes with A, then there exists a unique morphism of rings

µ
ξ
A : A −→ B

such that µξA(a ) = aξi if a ∈ Ai . Note that, if A is N-graded (that is, if Ai = 0 for i < 0),
then µξA can be defined also whenever ξ is not invertible. If t is an indeterminate
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over A, then
µt

A
: A −→ A[t, t−1]

is a morphism of rings. If we denote by ev
ξ
A : A[t, t−1]→ B the evaluation morphism

at ξ, then

(C.1.2) µ
ξ
A = ev

ξ
A ◦µt

A
.

In particular, if B = A and ξ= 1, then

(C.1.3) µ1
A
= IdA and ev1

A
◦µt

A
= IdA .

On the other hand, the morphism µ
ξ
A : A −→ B can be extended to a Z[t, t−1]-linear

morphism µξA : A[t, t−1]−→ B [t, t−1] and

(C.1.4) µ
ξ
A ◦µt

A
=µ

ξt
A .

As particular cases, one can take B = A[u, u−1] and ξ= u, where u is another indeter-
minate, or take B = A[t, t−1] and ξ= t−1. We obtain the following equalities:

(C.1.5) µu
A
◦µt

A
=µtu

A
and µt−1

A
◦µt

A
(a ) = a ∈ A[t, t−1]

for all a ∈ A. Finally, note that

(C.1.6) ev1
A
◦µt−1

A
= ev1

A
.

Proposition C.1.7. — Assume that A is commutative and Γ is a torsion-free abelian group.

Let e be an idempotent of A. Then e ∈ A0.

Proof. — Replacing A by the ring generated by the homogeneous components of
e , we may assume that A is noetherian and Γ is finitely generated. Given d > 0,
consider the ring morphism md : A[Γ ] → A[Γ ], a ⊗ γ 7→ a ⊗ γd . Note that md (µ(e ))

is an idempotent of A[Γ ]. If e 6∈A0, then µ(e )6∈ A, hence the md (µ(e )) are distinct for
different d . Since A is commutative and noetherian, A[Γ ] is also commutative and
noetherian, and so contains only finitely many idempotents. We deduce that e ∈
A0.

Let us recall a basis result on the homegeneity of the radical [Row, Theorem
2.5.40].

Proposition C.1.8. — If Γ is a free abelian group, then Rad(A) is a homogeneous ideal of

A.

Proof. — Let r ∈ Rad(A). Write r =
∑

1 ¶ i ¶ d ri with ri ∈ Aγi
for some γi ∈ Γ . Fix

i ∈ {1, . . . , d }. Fix a group morphism ρ : Γ →Z such that ρ(γ j )6=ρ(γi ) for j 6=i .
Let n be a positive integer with n > |ρ(γi )−ρ(γ j )| for all j 6=i . Let Γ ′ = Z/nZ and

write ζ for its generator 1, so that A[Γ ′] = A⊗Z Z[ζ]. We have Rad(A) = Rad(A[Γ ′])∩A.
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Consider the group morphism θl : Γ → Γ ′, γ 7→ ζlρ(γ) and denote by θl again the
induced ring morphism A[Γ ]→ A[Γ ′]. We have

n∑

l=1

ζ−ρ(γi )l θl (µ(r )) =
∑

1 ¶ j ¶ d

r j

∑

1 ¶ l ¶ n

ζl (ρ(γ j )−ρ(γi )) = n ri .

Since θl ◦µ is a morphism of rings, it follows that n ri ∈ Rad(A[Γ ′]), hence n ri ∈Rad(A).
Similarly, we obtain (n+1)ri ∈Rad(A), hence ri ∈Rad(A). So, Rad(A) is a homogeneous
ideal.

C.2. Extension of gradings

Notation. We fix in this section a finitely generated free abelian
group Γ and a commutative Γ -graded domain P . Let Q be a domain
containing P and integral over P .

The aim of this section is to study the gradings on Q which extend the one on P .
We first start by the uniqueness problem:

Lemma C.2.1. — If Q =
⊕
γ∈Γ Q̃γ =
⊕
γ∈Γ Q̂γ are two gradings on Q extending the one of

P (that is, Pγ = Q̃γ ∩P = Q̂γ ∩P for all γ ∈ Γ ), then Q̃γ = Q̂γ for all γ ∈ Γ .

Proof. — As in § C.1 (from which we keep the notation), the gradings Q =
⊕
γ∈Γ Q̃γ

and
⊕
γ∈Γ Q̂γ correspond to ring morphisms µ̃Q : Q →Q [Γ ] and µ̂Q : Q →Q [Γ ] extend-

ing µP : P → P [Γ ]. Consider the morphism of rings β : Q [Γ ]→Q [Γ ], q ⊗γ 7→ µ̂Q (q )γ
−1

and let α = β ◦ µ̃Q : Q → Q [Γ ]. Then α is a morphism of rings and α(p ) = p for all
p ∈ P by (C.1.1). Therefore, if q ∈Q , then α(q ) ∈Q [Γ ] is integral over P , hence over
Q . Since Q is a domain, this implies that α(q ) ∈Q (Proposition B.4.3). On the other
hand, (C.1.1) shows that the composition

Q
α−→Q [Γ ]

q⊗γ 7→q−−−→Q

is the identity, hence α(q ) = q for all q ∈ Q . It follows that β ◦ µ̃Q = β ◦ µ̂Q , hence
µ̃Q = µ̂Q since β is an isomorphism (C.1.1).

Corollary C.2.2. — If Q =
⊕
γ∈ΓQγ is a grading on Q extending the one on P and if G is

a group acting on Q , stabilizing P and its homogeneous components, then G stabilizes the

homogeneous components of Q .

Proof. — Indeed, if g ∈G , then Q =
⊕
γ∈Γ g (Qγ) is a grading on Q extending the one

on P . According to Lemma C.2.1, we have g (Qγ) =Qγ for all γ.
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Counter-example C.2.3. — The assumption that Q is a domain is necessary in Lemma C.2.1.
Indeed, if P = P0 and if Q = P ⊕P ǫ with ǫ2 = 0, then we can endow Q with infinitely
many gradings extending the one on P , for instance by saying that ǫ is homoge-
neous of any degree. �

Proposition C.2.4. — Assume Q =
⊕
γ∈ΓQγ is a grading on Q extending the one on P . If

Γ is endowed with a structure of totally ordered group such that Pγ = 0 for all γ < 0, then

Qγ = 0 for all γ < 0.

Proof. — See [Bou, Chapter 5, §1, Proposition 20 and Exercise 25].

We will now be interested in the question of the existence of a grading on Q

extending the one on P . For this, let K = Frac(P ), L = Frac(Q ) and we assume that
the field extension L/K is finite.

Lemma C.2.5. — The grading on P extends to a grading of its integral closure in K .

Proof. — See [Bou, Chapter 5, §1, Proposition 21 and Exercise 25].

We will now show how the question of the existence can be read on a normal clo-
sure of the field extension L/K . Let M denote a normal closure of the field extension
L/K and let R be the integral closure of P in M .

Lemma C.2.6. — Let γ ∈ Γ . Define a grading on P [x] by giving to x the degree γ. Let

F ∈ P [x] be a monic polynomial, which is homogeneous for this grading. If F = F1 · · ·Fr ,

with Fi ∈ P [x] monic, then Fi is homogeneous for all i .

Proof. — We have µP [x](xa ) = xµP (a )γ for a ∈ P . Let γF ∈ Γ denote the total degree of
F . We have

µP [x](F ) = F γF =µP [x](F1) · · ·µP [x](Fr ).

Since P [x] is a domain, with fraction field K (x), the fact that K (x)[Γ ] is a unique
factorization domain implies that there exists G1,. . . , Gr ∈ K (x) and γ1,. . . , γr ∈ Γ
such that

µP [x](Fi ) =Giγi

for all i . This forces Fi to be homogeneous of degree γi , and Fi =Gi .

Corollary C.2.7. — Let γ ∈ Γ . Define a grading on P [x] by giving to x the degree γ ∈ Γ .
Let F ∈ P [x] be a monic polynomial, which is homogeneous for this grading. We assume

that M is the splitting field of F over K . Then R admits a grading extending the one on P .



251

Proof. — By Lemma C.2.5, we may assume that P is integrally closed. Let δ denote
the degree of F in the variable x. We shall show the result by induction on δ, the case
where δ= 1 being trivial (because P =R in this case).

So assume that δ ¾ 2 and let F1 be a monic irreducible polynomial of K [x] dividing
F . By Proposition B.4.1, we have F1 ∈ P [x]. Set K ′ = K [x]/ < F1 > and let x be the
image of x in K ′. Then K ′ is a field which contains the ring P ′ = P [x]/ < F1 >. In fact,
K ′ is the fraction field of P ′. Since F1 is homogeneous by Lemma C.2.6, P ′ is graded
(with x homogeneous of degree γ). By Lemma C.2.5, the integral closure P ′′ of P ′

in K ′ inherits a grading. On the other hand, K ′ ⊂M and M is the splitting field of
F over K ′. In P ′′[x], we have

F (x) = (x− x )F0(x),

with F0(x) ∈ P ′′[x] homogeneous, and whose degree in the variable x is equal to δ−1.
Since the splitting field of F over K is equal to the splitting field of F0 over K ′, the
result follows from the induction hypothesis.

Proposition C.2.8. — Assume that P and Q are integrally closed. If the grading on P

extends to a grading on Q , then this grading also extends to a grading on R .

Proof. — Let q1,. . . , qr be elements of Q , homogeneous of respective degrees γ1,. . . ,
γr and such that L = K [q1, . . . , qr ]. We denote by Fi ∈ K [t] the minimal polynomial
of qi over K : in fact, Fi ∈ P [t] according to Corollary B.4.2. Then M is the splitting
field of F1 · · ·Fr . By an easy induction argument, we may assume that r = 1: we then
write q = q1, γ= γ1 and F = F1.

If we give to the variable t the degree γ, then we check easily that F becomes
homogeneous (for the total degree on P [t]). The existence of an extension of the
grading then follows from Corollary C.2.7.

Lemma C.2.9. — Let p be a prime ideal of P and let p̃ be the maximal homogeneous ideal

of P contained in p (that is p̃=
⊕
γ∈Γ p∩Pγ). Then p̃ is prime.

Proof. — Indeed, (P /p)[Γ ] is a domain and p̃ is the kernel of the morphism obtained
by composition P

µP−→ P [Γ ]
can−→ (P /p)[Γ ].

Lemma C.2.10. — Let q be a prime ideal of Q and let p= q∩P . Assume that the grading

on P extends to a grading on Q . Then p is homogeneous if and only if q is homogeneous.
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Proof. — If q is homogeneous, then p is clearly homogeneous. Conversely, assume
that p is homogeneous. Let q′ =

⊕
γ∈Γ (q∩Qγ). Then q′ is a homogeneous ideal of Q

contained in q and q′ ∩P = p = q∩P . By Lemma C.2.9, q′ is a prime ideal, so q′ = q

since Q is integral over P .

Lemma C.2.11. — Assume Γ = Z. Let p be a prime ideal of P and let P ′ be the largest

graded subring of Pp. Assume that the composition P ′
i
⊂ Pp

can−→ P /p is bijective for all i ∈Z.

Let q be a homogeneous element of Q and let F ∈ P [X ] be its minimal polynomial. Then

the image of F in (P /p)[X ] is the minimal polynomial of q ⊗1 ∈Q ⊗P P /p.

Proof. — Let F ′ =
∑n

i=0
ai X i ∈ (P /p)[X ] be the minimal polynomial of q ⊗ 1, with

an = 1. Note that deg F ′ ¶ deg F .
Let d be the homogeneous degree of q and let G =

∑n

i=0
f −1

d (n−i )
(ai ) ∈ P ′[X ], where

f j : P ′
j

∼−→ P /p is the canonical bijection. We have G (q ) ∈ P ′
d n
∩ pPp = 0. It follows that

G = F .

We conclude this section with some results about the homogeneization of prime
ideals of P or Q .

Corollary C.2.12. — Assume that the grading on P extends to Q . Let q be a prime ideal

of Q and let p = q ∩ P . Let p̃ (respectively q̃) be the maximal homogeneous ideal of P

(respectively Q ) contained in p (respectively q). Then p̃= q̃∩P .

Proof. — This follows from the proof of Lemma C.2.10 and from the fact that the
diagram

P
µP //

� _

��

P [Γ ]
can // (P /p)[Γ ]

� _

��
Q

µQ // Q [Γ ]
can // (Q/q)[Γ ]

is commutative.

Corollary C.2.13. — Assume that the grading on P extends to Q and that there exists a

finite group G acting on Q , stabilizing P and preserving the grading. Let q be a prime ideal

of Q and let q̃ be the maximal homogeneous ideal of Q contained in q. Let Dq (respectively

Dq̃) be the decomposition group of q (respectively q̃) in G and Iq (respectively Iq̃) be the

inertia group of q (respectively q̃) in G . Then

Dq ⊂Dq̃ and Iq = Iq̃.
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Proof. — The first inclusion is immediate, since G preserves the grading (see Corol-
lary C.2.2). Moreover, Q/q is a quotient of Q/q̃, so Iq̃ ⊂ Iq. Conversely, if g ∈ Iq ⊂Dq ⊂
Dq̃ and if q ∈ q∩Qγ, then g (q )−q ∈ q∩Qγ ⊂ q̃. So g ∈ Iq̃.

C.3. Gradings and reflection groups

Notation. In this section, we fix a field k of characteristic zero and a
commutativeN-graded k -algebra R =

⊕
i∈NRi . We assume moreover

that R is a domain, that R0 = k and R is a finitely generated k -
algebra. We also fix a finite group G acting faithfully on R by
automorphisms of graded k -algebras and we set P = R G . Let R+ =⊕

i>0 Ri : it is the unique graded maximal ideal of R . We fix a G -
stable, graded, vector subspace E ∗ of R such that R+ =R 2

+
⊕E ∗ (such

a subspace exists because kG is semisimple) and we denote by E the
k -dual of E ∗.

The group G acts on the vector space E and the aim of this section is to give some
criterion allowing to determine whether G is a reflection subgroup of GLk (E ). Our
results are inspired by [BeBoRo].

First of all, the grading on E ∗ induces a grading on E and a grading on k [E ],
the algebra of polynomial functions on E (that is, the symmetric algebra of E ∗).
Similarly, k [E ] inherits an action of G , which preserves the grading. We denote by
k [E ]+ the unique graded maximal ideal of k [E ]. The inclusion E ∗ ,−→ R induces a
G -equivariant morphism of graded k -algebras

π : k [E ]−→R .

It is easily checked that

(C.3.1) the minimal number of generators of the k -algebra R is dimk E

(see for instance [BeBoRo, lemme 2.1]). We put

I = Kerπ,

so that

(C.3.2) R ≃ k [E ]/I .

In particular, G acts faithfully on E . Since I is homogeneous, it follows from the
graded Nakayama Lemma that

(C.3.3) the minimal number of generators of the ideal I is dimk I /k [E ]+I
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Moreover, it is also easy to check that

(C.3.4) I = k [E ]I G if and only if G acts trivially on I /k [E ]+I .

(see for instance [BeBoRo, lemme 3.1]). Finally, since kG is semisimple, we have

(C.3.5) P ≃ k [E ]G /I G .

We will also need the next lemma:

Lemma C.3.6. — If R is a free P -module, then the rank of the P -module R is |G |.

Proof. — Let d be the P -rank of R . Since R is a domain, P is also a domain and, if
we set K = Frac(P ) and M = Frac(R ), then K = LG (and so [L : K ] = |G |) and L = K ⊗P R

(and so [L : K ] = d ). Therefore, d = |G |.

The main result of this section is the following (compare with [BeBoRo, Theo-
rem 3.2], from which we borrow the proof).

Proposition C.3.7. — We assume that P is regular and that R is a free P -module. Then

the following are equivalent:

(1) R is complete intersection and G acts trivially on I /k [E ]+I .

(2) G is a subgroup of GLk (E ) generated by reflections.

Remark C.3.8. — If P is regular and since we are working with graded objects, the
following statements are equivalent:

• R is a free P -module.
• R is a flat P -module.
• R is Cohen-Macaulay.

Moreover, if R is complete intersection, then R is Cohen-Macaulay. �

Proof. — Let e = dimk E , i = dimk I /k [E ]+I and let d denote the Krull dimension of
R (which is also the one of P ). Moreover, e is the Krull dimension of k [E ] and of
k [E ]G .

Let us first show (1)⇒ (2). So assume that R is complete intersection and that G

acts trivially on I /k [E ]+I . Since R is complete intersection, (C.3.2) and (C.3.3) show
that

d = e − i .

Moreover, since G acts trivially on I /k [E ]+I , the ideal I of k [E ] can be generated by
i homogeneous G -invariant elements f1,. . . , fi and so the ideal I G of k [E ]G is gener-
ated by f1,. . . , fi . Since P is regular of Krull dimension d , the algebra P = k [E ]G /I G

can be generated by d elements π(g1),. . . , π(gd ) where g j ∈ k [E ]G is homogeneous.
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Therefore, the k -algebra k [E ]G is generated by f1,. . . , fi , g1,. . . , gd , that is, it is gen-
erated by i +d = e elements. Since the Krull dimension of k [E ]G is also equal to e ,
this shows that k [E ]G is a polynomial algebra, and so G is a reflection subgroup of
GLk (E ) by Theorem 2.2.1.

Conversely, let us now show (2)⇒ (1). So assume that G is a reflection subgroup
of GLk (E ). Then k [E ] is a free k [E ]G -module of rank |G | (by Theorem 2.2.1) and so
(k [E ]G /I G )⊗k [E ]G k [E ] is a free P -module of rank |G | (see (C.3.5)). Moreover, k [E ]/I =

R is a free P -module of rank |G | (see Lemma C.3.6). So the canonical surjection
(k [E ]G /I G )⊗k [E ]G k [E ] −։ k [E ]/I (between two free P -modules of the same rank) is
an isomorphism, hence I is generated by I G and so that G acts trivially on I /k [E ]+I

(by (C.3.4)).
On the other hand, since k [E ]G and k [E ]G /I G = P are both polynomial algebras

(see Theorem 2.2.1 for k [E ]G ), P is complete intersection and so I G can be gener-
ated by e − d elements. We deduce from (C.3.3) and (C.3.4) that i ¶ e − d and so
necessarily i = e −d and R is complete intersection.





APPENDIX D

BLOCKS, DECOMPOSITION MATRICES

Assumption and notation. We fix in this appendix a commuta-
tive ring R , which will be assumed noetherian, integral and in-
tegrally closed. Let r denote a prime ideal of R . We also fix an
R -algebra H which will be assumed to be finitely generated and
free as an R -module. We denote by Z(H ) the center of H . We set
k = Frac(R/r) = kR (r) and K = Frac(R ) = kR (0). Finally, the image
of an element h ∈H in kH will be denoted by h̄ .

D.1. Blocks of kH

If A is a ring (not necessarily commutative), we denote by Idempr(A) the set of
its primitive idempotents. For instance, Idempr(Z(H )) is the set of primitive central
idempotents ofH . Since Z(H ) is noetherian,

(D.1.1) 1=
∑

e∈Idempr(Z(H ))
e .

Moreover, the morphism H → kH induces a morphism πZ : k Z(H ) → Z(kH )
(which might be neither injective nor surjective). However, the following result
has been proven by Müller [Mül, Theorem 3.7]:

Proposition D.1.2 (Müller). — (a) If e ∈ Idempr(k Z(H )), thenπZ(e ) ∈ Idempr(Z(kH )).
(b) The map Idempr(k Z(H ))→ Idempr(Z(kH )), e 7→πZ(e ) is bijective.

In a finite dimensional commutative k -algebraA (for instance, Z(kH ) or k Z(H )),
the prime ideals are maximal and are in one-to-one correspondence with the set of
primitive idempotents of A : if m ∈ SpecA and e ∈ Idempr(A ), then e and m are
associated through this bijective map if and only if e 6∈ m (that is, if and only if
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m = Rad(A e ) + (1− e )A ). The Proposition D.1.2 shows that Spec k Z(H ) is in one-
to-one correspondence with Idempr(Z(kH )), that is, with the set of primitive central
idempotents of kH .

Moreover, the natural (and injective) morphism R ,−→ Z(H ) induces a morphism
Υ : Spec Z(H )→ Spec R . The map Z(H )→ k Z(H ) induces a bijective map between
the sets Spec k Z(H ) and Υ −1(r). Recall that

Υ
−1(r) = {z ∈ Spec Z(H ) | z∩R = r}.

Finally, we obtain a bijective map

(D.1.3) Ξr : Idempr(Z(kH ))
∼−→ Υ −1(r)

which is characterized by the following property:

Lemma D.1.4. — If e ∈ Idempr(Z(kH )) and if z ∈ Υ −1(r), then the following are equiva-

lent:

(1) z=Ξr(e ).

(2) e 6∈πZ(kz).

(3) z is the preimage, in Z(H ), of π−1
Z
(Rad(Z(kH )e )+ (1− e )Z(kH )).

Now, by localization at r, Υ −1(r) is in one-to-one correspondence with Υ −1
r
(rRr),

where Υr : Spec RrZ(H )→ Spec Rr is the map induced by the inclusion Rr ,−→ RrZ(H ).
The bijective maps, in both directions, between Υ −1(r) and Υ −1

r
(rRr) are given by

Υ −1(r) −→ Υ −1
r
(rRr)

z 7−→ Rrz

and
Υ
−1
r
(rRr) −→ Υ

−1(r)

z 7−→ z∩Z(H ).
The center of the algebra RrH is equal to RrZ(H ) and the canonical morphismH →
kH extends to a morphism RrH → kH , which will still be denoted by h 7→ h̄ .
Finally, we denote by RrZ(H ) → k Z(H ), z 7→ ẑ , the canonical morphism (so that
z̄ =πZ(ẑ ) if z ∈RrZ(H )).

To summarize, we obtain a diagram of natural bijective maps
(D.1.5)

Υ
−1(r) oo

∼ // Υ −1
r
(rRr)

oo ∼ // Spec k Z(H ) oo ∼ //
OO

∽

��

Spec Z(kH )
OO

∽

��
Idempr(k Z(H )) oo ∼ // Idempr(Z(kH )).
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D.2. Blocks of RrH

Assumption. From now on, and until the end of this Appendix, we
will assume that the K -algebra KH is split.

The question of lifting idempotents whenever the ring Rr is complete for the r-
adic topology is classical. We propose here another version, valid only whenever
the K -algebra KH is split (we only need that R is integrally closed: no assumption
on the Krull dimension of R or on its completeness is necessary).

D.2.A. Central characters. — If V is a simple KH -module, and if z ∈ K Z(H ), then
z acts on V by multiplication by a scalar ωV (z ) ∈ K (indeed, since KH is split, we
have EndKH (V ) = K ). This defines a morphism of K -algebras

ωV : K Z(H )−→ K

whose restriction to Z(H ) has valued in R (since Z(H ) is integral over R and R is
integrally closed). Hence, this defines a morphism of R -algebras

ωV : Z(H )−→R .

By composition with the canonical projection R → R/r, we obtain a morphism of
R -algebras

ωr
V

: Z(H )−→ R/r.

SinceωV (1) = 1 and R/r is integral, KerωV is a prime ideal of Z(H ) such that KerωV ∩
R = r. So

(D.2.1) Kerωr

V
∈ Υ −1(r).

This defines a map
Kerr : Irr(KH ) −→ Υ

−1(r)

V 7−→ Kerωr
V

.

Definition D.2.2. — The fibers of the mapKerr are called the r-blocks ofH .

The r-blocks of H are subsets of Irr(KH ), of which they form a partition. Note
that, since Z(H ) =R +Ker(ωr

V
), the central character ωr

V
is determined by its kernel.

Hence, two simple KH -modules V and V ′ belong to the same r-block if and only
if ωr

V
=ωr

V ′ .
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D.2.B. Lifting idempotents. — The main result of this section is the following:

Proposition D.2.3. — We have:

(a) If e ∈ Idempr(RrZ(H )), then ê ∈ Idempr(k Z(H )).
(b) The map Idempr(RrZ(H ))→ Idempr(k Z(H )), e 7→ ê is bijective.

Proof. — Let
Ω : RrZ(H ) −→

∏
V ∈Irr(KH )Rr

z 7−→ (ωV (z ))V ∈Irr(KH ).

Then Ω is a morphism of Rr-algebras, whose kernel I is equal to RrZ(H )∩Rad(KH )
and whose image will be denoted by A.

Consequently, I is nilpotent and so Ω induces a bijective map Idempr(RrZ(H ))
∼←→

Idempr(A). Moreover, by Corollary D.4.3 (which will be proven in § D.4), the reduc-
tion modulo r induces a bijective map Idempr(A)

∼←→ Idempr(k A). It then remains to
show that the kernel of the natural map k Z(H ) −։ k A is nilpotent: it is obvious as
it is the image of I in k Z(H ).

Corollary D.2.4. — The map Kerr : Irr(KH )→ Υ −1(r) is surjective. Its fibers are of the

form Irr(KH e ), where e ∈ Idempr(RrZ(H )).

Proof. — The first statement follows from (D.4.4) below and the second from the
proof of Proposition D.2.3.

By combining Propositions D.1.2 and D.2.3, we get the next corollary:

Corollary D.2.5. — We have:

(a) If e ∈ Idempr(RrZ(H )), then ē ∈ Idempr(Z(kH )).
(b) The map Idempr(RrZ(H ))→ Idempr(Z(kH )), e 7→ ē is bijective.

Therefore, we get a bijective map

(D.2.6) Υ
−1(r)

∼←→ Idempr(RrZ(H )).

If z ∈ Υ −1
r
(rRr) and if e ∈ Idempr(RrZ(H )), then

(D.2.7) e and z are associated through this bijective map if and only if e 6∈ Rrz.
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To summarize, we obtain a diagram of natural bijective maps
(D.2.8)

Υ
−1(r) oo

∼ //
aa

∽

!!❈
❈

❈

❈

❈

❈

❈

❈

❈

Υ
−1
r
(rRr)

oo ∼ //
OO

∽

��✤
✤

✤

✤

✤

✤

Spec k Z(H ) oo ∼ //
OO

∽

��

Spec Z(kH )
OO

∽

��
Idempr(RrZ(H )) oo

∼ //❴❴❴❴❴❴ Idempr(k Z(H )) oo ∼ // Idempr(Z(kH )),

where the maps with dashed arrows exist only whenever the K -algebra KH is
split.

Let
Υ
−1(r) −→ Idempr(RrZ(H ))
z 7−→ ez

denote the bijective map of diagram D.2.8. We get a partition of Irr(KH ) thanks to
the action of the central idempotents ez:

(D.2.9) Irr(KH ) =
∐

z∈Υ−1(r)

Irr(KH ez).

The subsets Irr(KH ez) are the r-blocks ofH .

Example D.2.10. — Whenever r is the zero ideal, then Rr = k = K , Υ −1(r)≃ Spec K Z(H ),
Idempr(RrH ) = Idempr(KH ) and ωr

V
=ωV . �

D.2.C. Ramification locus. — The following proposition is certainly classical (but
is valid because R is integrally closed):

Proposition D.2.11. — Assume that the algebra KH is split. Then there exists a (unique)

radical ideal a of R satisfying the following two properties:

(1) Spec(R/a) is empty or purely of codimension 1 in Spec(R );

(2) If r is a prime ideal of R , then Idempr(RrZ(H )) = Idempr(K Z(H )) if and only if a 6⊂ r.

Assume a 6= R and let r a prime ideal of R . A subset of Irr(KH ) is an r-block if and only

if it is minimal for the property of being a p-block for all height one prime ideals p of R with

a⊂ p⊂ r.

Proof. — Let (b1, . . . , bn ) be an R -basis ofH and let Idempr(K Z(H )) = {e1, . . . , el }with
l = |Idempr(K Z(H ))|. We write

ei =

n∑

j=1

ki j b j

with ki j ∈ K .
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Let us now fix a prime ideal r of R . Then Idempr(RrZ(H )) = Idempr(K Z(H )) if and
only if

(∗) ∀ 1 ¶ i ¶ l , ∀ 1 ¶ j ¶ n , ki j ∈ Rr.

If k ∈ K , we set ak = {r ∈R | r k ∈R }. Then ak is an ideal of R and, if r is a prime ideal
of R , then k ∈Rr if and only if ak 6⊂ r. Define a to be the radical of

∏

1 ¶ i ¶ l
1 ¶ j ¶ n

aki j
.

Now (∗) becomes equivalent to a 6⊂ r. This proves the statement (2).

Let us now show that Spec(R/a) is empty or purely of codimension 1 in Spec(R ).
For this, it is sufficient to prove that Spec(R/ak ) is empty or purely of codimension
1 in Spec(R ). If k ∈R , then ak =R and Spec(R/ak ) is empty. Assume that k 6∈ R , let us
show that Spec(R/ak ) is then purely of codimension 1 in Spec(R ). Let p be a minimal
prime ideal of R containing ak . Then k 6∈ Rp. We need to prove that p has height
1. But, since R is integrally closed, the same holds for Rp: so Rp is the intersection
of the localized rings Rp′ , where p′ runs over the set of prime ideals of height 1 of
R contained in p (see [Mat, Theorem 11.5]). So there exists a prime ideal p′ of R of
height 1 contained in p and such that k 6∈ Rp′ . Hence ak ⊂ p′ ⊂ p and the minimality
of p implies that p= p′, which implies that p has height 1.

Assume now a 6= R . Let I be a subset of Irr(KH ) that is a union of p-blocks for all
height one prime ideals p of R with a ⊂ p ⊂ r. There is an idempotent e of RaZ(H )
such that given V ∈ Irr(KH ), we have e V 6= 0 if and only if V ∈ I . The discussion
above shows that e ∈ RpZ(H ) for all height one prime ideals p of R that do not
contain a. So, the coefficients of e in the K -basis (b1, . . . , bn ) of KH are in

⋂
p Rp,

where p runs over all height one prime ideals of R . Since that intersection is R , we
deduce that e ∈ Z(H ). This shows that I is a union of r-blocks.

D.3. Decomposition matrices

Let R1 be a commutative R -algebra and let r1 be a prime ideal of R1. We set
R2 = R1/r1, K1 = Frac(R1) and K2 = Frac(R2) = kR1

(r1). Let F (H , K1[t]) denote the set of
maps H → K1[t]. If V is a K1H -module of finite type and if h ∈ H , we denote by
CharV

K1
(h ) the characteristic polynomial of h for its action on the finite dimensional

K1-vector space V . Therefore, CharV
K1
∈ F (H , K1[t]). Also, CharV

K1
depends only on

the class of V in the Grothendieck group K0(K1H ). This defines a map

CharK1
: K +

0
(K1H )−→F (H , K1[t]),
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where K +
0
(K1H ) denotes the submonoid of K0(K1H ) consisting of the isomorphism

classes of K1H -modules of finite type. It is well-known that CharK1
is injective [GeRo,

proposition 2.5].
We will say that the pair (R1,r1) satisfies the property (Dec ) if the following three

statements are fulfilled:

(D1) R1 if noetherian and integral.
(D2) If h ∈ R1H and if V is a simple K1H-module, then CharV

K1
(h ) ∈

R1[t] (note that this property is automatically satisfied if R1 is
integrally closed).

(D3) The algebras K1H and K2H are split.

Let redr1
:F (H , R1[t]) −→F (H , R2[t]) denote the reduction modulo r1. By assump-

tion (D3), if K ′
2

is an extension of K2, the scalar extension induces an isomorphism
K0(K2H )

∼−→ K0(K
′

2
H ), and we will identified these two Grothendieck groups.

Proposition D.3.1 (Geck-Rouquier). — If (R1,r1) satisfies (Dec ), then there exists a

unique map decR1H
R2H : K0(K1H )−→ K0(K2H ) which makes the following diagram

K0(K1H )
CharK1 //

decR1H
R2H

��

F (H , R1[t])

redr1

��
K0(K2H )

CharK2 // F (H , K2[t])

commutative. If O1 is a subring of K1 containing R1, if m1 is a prime ideal of O1 such that

m1 ∩R1 = r1, and if L is an O1H -module which is free of finite rank over O1, then kO1
(m1)

is an extension of K2 and

decR2H
R1H [K1L ]K1H = [kO1

(m1)L ]kO1
(m1)H .

Proof. — This proposition is proven in [GeRo, Proposition 2.11] whenever R1 is
integrally closed. We will show how to deduce our proposition from this case. If
we assume only that (D2) holds, let R ′

1
denote the integral closure of R1 in K1. Since

R ′
1

is integral over R1, there exists a prime ideal r′
1

of R ′
1

such that r′
1
∩R1 = r1. Set R ′

2
=

R ′
1
/r′

1
. Then kR ′1

(r′
1
) is an extension of kR1

(r1) so kR ′1
(r1)H is split, which means that,

by [GeRo, Proposition 2.11], dec
R ′1H
R ′2H

: K0(K1H ) −→ K0(kR ′1
(r′

1
)H ) is well-defined and

satisfies the desired properties. We then define decR1H
R2H by using the isomorphism

K0(kR ′1
(r′

1
)H ) ≃ K0(K2H ) and it is easy to check that this map satisfies the expected

properties.
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It then follows a transitivity property [GeRo, proposition 2.12]:

Corollary D.3.2 (Geck-Rouquier). — Let R1 be an R -algebra, let r1 be a prime ideal of

R1 and let r2 be a prime ideal of R2 = R1/r1. We assume that (R1,r1) and (R2,r2) both satisfy

(Dec ) and we set R3 = R2/r2. Then

decR1H
R3H = decR2H

R3H ◦decR1H
R2H .

D.4. Idempotents and central characters

The aim of this section is to complete the proof of Corollary D.2.4. Let O be a local
noetherian ring and let A be a O -subalgebra of O d = O ×O × · · · × O (d times). Let
m=Rad(O ), k =O /m and, if r ∈O , let r̄ denote its image in k .

If 1 ¶ i ¶ d , let πi : O d →O denote the i -th projection and

ωi : A −→O
denotes the restriction of πi to A. We set

ω̄i : A −→ k

a 7−→ ωi (a ).

On the set {1, 2, . . . , d }, we denote by⌣ the equivalence relation defined by

i ⌣ j if and only if ω̄i = ω̄ j .

Finally, we set
ei = (0, . . . , 0, 1︸︷︷︸

i -th position

, 0, . . . , 0)∈O d .

Then:

Lemma D.4.1. — Let I ∈ {1, 2, . . . , d }/⌣. Then
∑

i∈I ei ∈ A.

Proof. — By reordering if necessary the idempotents, we may assume that I =

{1, 2, . . . , d ′}with d ′ ¶ d . We proceed in several steps:

(♣) If i ∈ I and j 6∈ I , then there exists ai j ∈ A such that ωi (ai j ) = 1 and ω j (ai j ) = 0.

Proof of (♣). Since i 6⌣ j , there exists a ∈ A such that ω̄i (a ) 6= ω̄ j (a ). Let
r = ω j (a ) and u = ωi (a )−ω j (a ). Then u ∈ O × because O is local and
ai j = u−1(a − r ·1A) ∈ A satisfies the two conditions. �
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(♦) There exists a1 ∈ A such that ω1(a1) = 1 and ω j (a1) = 0 if j 6∈ I .

Proof of (♦). By (♣), there exists, for all i ∈ I and j 6∈ I , ai j ∈ A such
that ωi (ai j ) = 1 and ω j (ai j ) = 0. Note that, if i ′ ∈ I , then ωi ′ (ai j ) ≡ 1

mod m because ω̄i = ω̄i ′ . Set a =
∏

i∈I , j 6∈I ai j . Then it is clear that
ω j (a ) = 0 if j 6∈ I and ωi (a ) ≡ 1 mod m if i ∈ I . It is then sufficient to
take a1 =ω1(a )

−1a . �

We then define by induction the sequence (ai )1 ¶ i ¶ d ′ as follows:

ai+1 = a 2
i
(1+ωi+1(ai )

−2(1−a 2
i
)).

We will show by induction on i ∈ {1, 2, . . . , d ′} the following two facts:

(♥i ) The element ai is well-defined and belongs to A.

(♠i ) If 1 ¶ i ′ ¶ i and j 6∈ I , then ωi ′ (ai ) = 1 and ω j (ai ) = 0.

Proof of (♥i ) and (♠i ). This is obvious if i = 1. Let us now assume that
(♥i ) and (♠i ) hold (for some i ¶ d ′− 1). Let us prove that this implies
that (♥i+1) and (♠i+1) also hold.

Then i ⌣ i + 1 and so ωi+1(ai ) ≡ ωi (ai ) = 1 mod m. So ωi+1(ai ) is
invertible and so ai+1 is well-defined and belongs to A (this is exactly
(♥i+1)).

Now, let us set r =ωi+1(ai ) for simplifying. Then:
• If 1 ¶ i ′ ¶ i , we have ωi ′ (ai+1) = 1 · (1+ r −2(1−12)) = 1.
• ωi+1(ai+1) = r 2(1+ r −2(1− r 2)) = 1.
• If j 6∈ I , then ω j (ai+1) = 0 · (1+ r −2(1−02)) = 0.

So (♠i+1) holds. �

Therefore, ad ′ =
∑

i∈I ei ∈ A.

Corollary D.4.2. — The map

{1, 2, . . . , d }/⌣ −→ Idempr(A)

I 7−→
∑

i∈I

ei

is well-defined and bijective.
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Proof. — The Lemma D.4.1 shows that, if I ∈ {1, 2, . . . , d }/ ⌣, then eI =
∑

i∈I ei ∈ A.
If eI is not primitive, this means that, since O is local, there exists two non-empty
subsets I1 and I2 of I such that eI1

, eI2
∈ A, and I = I1

∐
I2. But, if i1 ∈ I1 and i2 ∈ I2,

then ω̄i1
(eI1
) = 1 6= 0= ω̄i2

(eI1
), which is impossible because i1⌣ i2. So the map I 7→ eI

is well-defined. It is now clear that it is bijective.

If a ∈ A, let â denote its image in k A = k ⊗O A.

Corollary D.4.3. — With this notation, we have:

(a) If e ∈ Idempr(A), then ê ∈ Idempr(k A).

(b) The map Idempr(A)→ Idempr(k A), e 7→ ê is bijective.

Proof. — (a) Let e ∈ Idempr(A) and assume that ê = e1 + e2, where e1 and e2 are two
orthogonal idempotents of k A. The ring O being noetherian, k A is a finite dimen-
sional commutative k -algebra. So there exists two morphisms of k -algebras ρ1,
ρ2 : k A→ k ′ (where k ′ is a finite extension of k ) such that ρi (e j ) =δi , j . Let ρ̃i denote

the composition A→ k A
ρi−→ k ′.

Set ai = Ker(ρ̃i ). The image of ρi being a subfield k ′, ai is a maximal ideal of A.
Since O d is integral over A, there exists a maximal ideal mi of O d such that ai =mi∩A.
Since O is local, mi is of the form O ×· · ·×O ×m×O ×· · ·×O , where m is in ti -th position
(for some ti ∈ {1, 2, . . . , d }), which implies that ρ̃i = ω̄ti

.
Since ρ1 6= ρ2 and ρi (e j ) = δi , j , we get ω̄t1

6= ω̄t2
and ω̄t1

(e ) = ρ1(e1 + e2) = 1 =

ρ2(e1+ e2) = ω̄t2
(e ). This contradicts Corollary D.4.2.

During this proof, the following result has been proven: if k ′ is a finite extension
of k and if ρ : k A→ k ′ is a morphism of k -algebras, then

(D.4.4) there exists i ∈ {1, 2, . . . , d } such that ρ(â ) = ω̄i (a ) for all a ∈ A.



APPENDIX E

INVARIANT RINGS

Let k be a field. Let A be a k-algebra acted on by a finite group G whose order is
invertible in k. Let e = 1

|G |
∑

g∈G g , a central idempotent of k[G ]. Let R = A ⋊G . The
aim of this appendix is to relate the representation theory of R and that of AG . We
are mainly interested in the case where A is the algebra of regular functions on an
affine scheme.

E.1. Morita equivalence

The following lemma is clear.

Lemma E.1.1. — There is an isomorphism of R -modules A
∼−→ R e , a 7→ a e that restricts

to an isomorphism of k-algebras AG ∼−→ e R e .

Let M be an A-module whose isomorphism class is stable under the action of
a subgroup H of G . There are isomorphisms of A-modules φh : h ∗(M )

∼−→ M for
h ∈ H , unique up to left multiplication by AutA(M ). Consequently, the elements
φh ∈NAutAG (M )(AutA(M )) define a morphism of groups H →AutAG (M )/AutA(M ).

Proposition E.1.2. — The following assertions are equivalent:

(1) R e is a progenerator for R

(2) R e induces a Morita equivalence between R and AG

(3) R =R e R

(4) for every simple R -module S , we have S G 6= 0.

(5) for every simple A-module T whose isomorphism class is stable under the action of

a subgroup H of G and for every non-zero direct summand U of IndA⋊H

A
T , we have

U H 6= 0.
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Proof. — Note that R e is a direct summand of R , as a left R -module, hence R e

is a finitely generated projective R -module. The equivalence between (1) and (2)
follows from Lemma E.1.1. If R e is a progenerator, then R is isomorphic to a
quotient of a multiple of R e . Since the image of a morphism R e → R is con-
tained in R e R , we deduce that if (1) holds, then (3) holds. Conversely, assume
(3). There are r1, . . . , rn ∈ R such that 1 ∈ R e r1 + · · ·+ R e rn , hence the morphism
(R e )n →R , (a1, . . . , an) 7→ a1r1+ · · ·+an rn is surjective and (1) follows.

We have R/R e R = 0 if and only if R/R e R has no simple module, hence if and
only if e does not act by 0 on any simple R -module. This shows the equivalence of
(3) and (4).

Let S be a simple R -module. There is a simple A-module T such that S is a direct
summand of IndR

A
(T ). Let H be the stabilizer of the isomorphism class of T . There is

a simple (A⋊H )-module U such that S is a direct summand of IndR
A⋊H
(U ). We have

S G 6= 0 if and only if U H 6= 0. This shows the equivalence of (4) and (5).

Corollary E.1.3. — If R e R = R , then Z(R ) = Z(AG ).

Proof. — By Proposition E.1.2, the rings R and e R e ≃ AG are Morita equivalent
thanks to the bimodule R e , so Z(R ) ≃ Z(AG ), the isomorphism being determined by
the action on the bimodule R e (Lemma E.1.4 below). The result follows.

Lemma E.1.4. — Let A and B be two rings and M an (A, B )-bimodule such that the canon-

ical maps give isomorphisms B
∼−→ EndA(M ) and A

∼−→ EndB opp (M )opp. Then we have an

isomorphism Z(A)
∼−→ Z(B ).

In particular, if e is an idempotent of a ring A and if left multiplication gives an isomor-

phism A
∼−→ End(e Ae )opp(Ae )opp, then there is an isomorphism Z(A)

∼−→ Z(e Ae ), a 7→ a e .

Proof. — The left multiplication on M induces induces a ring morphism α : Z(A)→
Z(B ) such that z m =mα(z ) for all z ∈ Z(A) and m ∈M . Similarly, the right multipli-
cation induces a ring morphism β : Z(B )→ Z(A) such that m z =β (z )m for all z ∈ Z(B )

and m ∈M . Hence, if z ∈ Z(A) and m ∈M , then z m = β (α(z ))m , and so β ◦α= IdZ(A)

since the action of A on M is faithful by assumption. Similarly α ◦β = IdZ(B ).

E.2. Geometric setting

We assume now that A = k[X ], where X is an affine scheme of finite type over k,
i.e., A is a finitely generated commutative k-algebra. Then Proposition E.1.2 has the
following consequence.
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Corollary E.2.1. — If G acts freely on X , then R e induces a Morita equivalence between

R and AG .

Let X reg = {x ∈ X |StabG (x ) = 1} and let R reg = k[X reg]⋊G . We assume X reg is dense
in X , i.e., the pointwise stabilizer of an irreducible component of X is trivial. The
following proposition gives a sufficient condition for a double centralizer theorem.

Proposition E.2.2. — Assume that X is a normal variety, i.e., all localizations of A at

prime ideals are integral and integrally closed.

(1) The canonical morphism of algebras R → End(AG )opp (A)opp is injective.

(2) If the codimension of X \ X reg is ¾ 2 in each connected component of X , then the

morphism above is an isomorphism and Z (R ) = Z (AG ).

Proof. — It follows from Corollary E.2.1 that given f ∈ AG such that D (f ) ⊂ X reg,
then the canonical morphism A[ f −1]⋊G → EndAG [ f −1](A[ f

−1])opp is an isomorphism.
In particular, the morphism of the proposition R → End(AG )opp (A)opp is an injective
morphism of A-modules, since X reg is dense in X .

Let K be the cokernel of the canonical morphism R → End(AG )opp (A)opp. We have
K ⊗A Ak [X reg] = 0, hence the support of K has codimension ¾ 2. Since A is normal,
it has depth ¾ 2, hence Ext1

A
(K , A) = 0. We deduce that K is a direct summand of the

torsion free A-module End(AG )opp (A)opp, hence K = 0. The last statement follows from
Lemma E.1.4.

The statement on the center of R can be obtained more directly.

Lemma E.2.3. — If A is an integral domain and G acts faithfully on X , then Z (R ) = AG .

Proof. — Let a =
∑

g∈G ag g ∈ Z (R ) with ag ∈ A for g ∈ G . Given g0 a non-trivial
element of G , there is x ∈ A such that g0 x g −1

0
6= x . We have

0= [x , a ] =
∑

g∈G

(x − g x g −1)ag g ,

hence (x − g0 x g −1
0
)ag0
= 0. Since A is integral, it follows that ag0

= 0. We have shown
that a = a1 ∈ A. Since [a , g ] = 0 for all g ∈G , we deduce that a ∈ AG .

We conclude by a description of the simple R -modules whenever R = R e R . In
this case, using the Morita equivalence between R and AG induced by the bimodule
R e , we obtain a bijective map

(E.2.4) Irr(R )
∼−→ Irr(AG )

S 7−→ e S .
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Since A is commutative, Irr(A) (respectively Irr(AG )) is in one-to-one correspondence
with the maximal ideals of A (respectively of AG ), so we obtain a bijective map

(E.2.5) Irr(A)/G
∼←→ Irr(AG )

(see Propositions B.2.1 and B.2.2). By composing the two previous bijective maps,
we obtain a third bijective map

(E.2.6) Irr(A)/G
∼←→ Irr(R )

We will describe more concretely this last map. In order to do that, let Ω be a G -orbit
of (isomorphism classes of) simple A-modules. The A-module SΩ = A/∩T ∈ΩAnnA(T )

inherits an action of G , hence it becomes an R -module.

Proposition E.2.7. — Assume that R =R e R and that A is commutative and finitely gen-

erated. Then:

(a) If Ω ∈ Irr(A)/G , then SΩ is a simple R -module.

(b) The map Irr(A)/G −→ Irr(R ), Ω 7→ SΩ is bijective (and coincides with the bijective

map E.2.5).

(c) If S is a simple A-module, then ResR
A
(S ) is semisimple and multiplicity-free, and two

simple A-modules occurring in ResR
A
(S ) are in the same G -orbit.

(d) If S and S ′ are two simple R -modules, then S ≃ S ′ if and only if ResR
A
(S ) and ResR

A
(S ′)

have a common irreducible submodule.

Proof. — (a) By construction, we have a well-defined injective morphism of A-modules
SΩ ,→
⊕

T ∈ΩT (here, we identify T and A/AnnA(T ). So, if S is a non-zero R -submodule
of SΩ, then it is a non-zero A-submodule of SΩ. Therefore, S contains some submod-
ule isomorphic to T ∈Ω. Since the action of G stabilizes S , it follows that S = SΩ and
that

(∗) ResR
A
(SΩ) =
⊕
T ∈Ω

T .

This proves (a).

(b) It follows from (∗) that the map Irr(A)/G −→ Irr(R ), Ω 7→ SΩ is injective. Now,
let Ω ∈ Irr(A)/G , let T ∈ Ω and let m = AnnA(T ). We denote by H the stabilizer of m
in G (that is, the decomposition group of m). Then e S = S G

Ω
≃ T H = (A/m)H . But, by

Theorem B.2.4, (A/m)H = AG /(m∩AG ). This proves that e SΩ is the simple AG -module
associated with the maximal ideal m ∩ AG of AG or, in other words, is the simple
AG -module associated with Ω through the bijective map E.2.5. This completes the
proof of (b).

(c) and (d) now follow from (a), (b) and (∗).



APPENDIX F

HIGHEST WEIGHT CATEGORIES

We fix in Appendix F a commutative noetherian ring k .

F.1. General theory

F.1.A. Definitions and first properties. — We say that a poset ∆ is locally finite if
given any D , D ′ ∈∆, then there are only finitely many D ′′ ∈∆ such that D <D ′′ <D ′.
We say that a subset Γ of ∆ is an ideal if given D ∈ ∆ and D ′ ∈ Γ with D < D ′, then
D ∈ Γ . Given D ∈∆, we define∆¶ D = {D ′ ∈∆ |D ′ ¶D }, and we define similarly∆<D ,
∆¾ D and ∆>D . We say that an ideal Γ is finitely generated if there are D1, . . . , Dn ∈ ∆
such that Γ =∆¶ D1

∪ · · ·∪∆¶ Dn
.

Let C be a k -linear abelian category. We assume that given M ∈ C and given
I a family of subobjects of M , then there exists a subobject

∑
N∈I N of M . This

is a subobject L of M containing all subobjects in I and such that given any map
f : M → M ′ and any subobject M ′′ of M ′ such that f (N ) ⊂ M ′′ for all N ∈ I , then
f (L )⊂M ′′.

Let∆ be a family of isomorphism classes of objects of C (the standard objects). We
assume ∆ is endowed with a locally finite poset structure.

Given Γ ⊂∆, we denote by

– C [Γ ] the full subcategory of C of objects M such that Hom(D , M ) = 0 for all
D ∈∆ \ Γ

– C Γ the full subcategory of C of objects M that have a filtration 0 =M0 ⊂M1 ⊂
· · · ⊂Mr =M such that Mi/Mi−1 ∈ Γ for 1 ¶ i ¶ r

– i (C Γ ) the full subcategory of C of objects that are direct summands of objects
of C Γ .

We extend the definition of (split) highest weight categories over k of [Rou] to
the case of a non-necessarily finite ∆.
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Definition F.1.1. — We say that C , endowed with the poset of standard objects ∆, is a

highest weight category if

(i) for all D ∈∆, we have End(D ) = k

(ii) given D1, D2 ∈∆ such that Hom(D1, D2) 6= 0, we have D1 ¶D2

(iii) every object of C is the quotient of an object of C ∆
(iv) for all M ∈ C , D , D ′ ∈∆, there is a surjection R ։D with kernel in C ∆>D such that

Hom(R , D ′) is a finitely generated projective k -module and Ext1(R , M ) = 0.

Remark F.1.2. — Assumption (iv) is aimed at making sense of the existence of an
approximation of a projective module, and of the requirement that objects of ∆ are
finitely generated and projective over k . �

We assume from now on that C is a highest weight category.

Note first that Definition F.1.1 (iv) admits a version where D is replaced by an
arbitrary object of C ∆.

Lemma F.1.3. — Let N ∈C ∆, D ′ ∈∆ and M ∈C . Then, there exists a surjection R ։N

with kernel in C ∆ such that Hom(R , D ′) is a finitely generated projective k -module and

Ext1(R , M ) = 0.

Proof. — Fix a filtration 0=N0 ⊂N1 ⊂ · · · ⊂Nr =N such that Ni/Ni−1 ∈∆ for 1 ¶ i ¶ r .
Given i , there exists a surjection fi : Ri ։Ni/Ni−1 such that ker fi ∈ C ∆, Hom(Ri , D ′)

is a finitely generated projective k -module and Ext1(Ri , Ni−1⊕M ) = 0. So, fi lifts to a
map g i : Ri → Ni and the sum g =

∑
i g i :
⊕

i Ri → N is surjective. Furthermore, L =

ker g has a filtration 0 = L0 ⊂ L1 ⊂ · · · ⊂ L r = L such that L i/L i−1 ≃ ker fi for 1 ¶ i ¶ r .
It follows that L ∈ C ∆. Note finally that Ext1(

⊕
i Ri , M ) = 0 and Hom(

⊕
i Ri , D ′) is a

finitely generated projective k -module.

Lemma F.1.4. — Let 0→M → L →N → 0 be an exact sequence in C with L , N ∈ i (C ∆).
Then M ∈ i (C ∆).

Proof. — It is enough to prove the lemma for L , N ∈ C ∆. By Lemma F.1.3, there
is a surjection R ։ N with kernel N ′ ∈ C ∆ and with Ext1(R , M ) = 0. Let L ′ be the
kernel of the canonical map L ⊕ R ։ N . The kernel of the canonical map L ′ ։ L

is isomorphic to N ′, hence L ′ ∈ C ∆. The kernel of the canonical map L ′ ։ R is
isomorphic to M . Since Ext1(R , M ) = 0, it follows that M is a direct summand of L ′,
hence M ∈ i (C ∆).

Lemma F.1.5. — Let Γ be an ideal of C and let M ∈ C [Γ ]. Let D ∈ ∆ and let i ¾ 0. If

Exti (D , M )6=0, then there exists D0, . . . , Di ∈ Γ with D =D0 <D1 < · · ·<Di .

Proof. — When i = 0, there is D ′ ∈ Γ such that Hom(D , D ′) 6= 0, hence D ¶D ′, so
D ∈ Γ . We proceed now by induction on i ¾ 1.
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There exists M ′ ∈C , ζ ∈ Ext1(D , M ′) and ξ ∈ Exti−1(M ′, M ) such that ξ ◦ζ6=0. There
exists a surjection R ։ D with kernel L in C ∆>D such that Ext1(R , M ′) = 0. So, ζ
factors through a map f : L →M ′. Since ξ ◦ ζ6=0, it follows that ξ ◦ f 6=0. So, there
exists D ′ > D such that Exti−1(D ′, M )6=0. By induction, we deduce that there exists
D ′

0
, . . . , D ′

i−1
∈ Γ such that D ′ =D ′

0
<D ′

1
< · · ·<D ′

i−1
. It follows that the lemma holds for

D , M and i .

Lemma F.1.6. — Let D , D ′ ∈ ∆. The k -module Ext1(D , D ′) is finitely generated. If it is

non-zero, then D <D ′.

Proof. — Note first that by Definition F.1.1 (iv), the k -module Hom(D , D ′) is finitely
generated for all D , D ′ ∈ ∆. Consequently, Hom′ s in C ∆ are finitely generated k -
modules. Fix a surjection R ։ D with kernel L ∈ C ∆>D such that Ext1(R , D ′) = 0.
Since Hom(L , D ′) is a finitely generated k -module, we deduce that Ext1(D , D ′) is a
finitely generated k -module. If Ext1(D , D ′)6= 0, then Hom(L , D ′)6=0, hence there is
D ′′ >D such that D ′′ ¶ D ′. So, D <D ′.

Lemma F.1.7. — Let I be a finite subset of ∆. Fix a total order ≺ on I such that i < j

implies i ≺ j .

Let M ∈ C with a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M such that Mi/Mi−1 ∈ I

for 1 ¶ i ¶ r . Then, M has another filtration 0 = M ′
0
⊂ M ′

1
⊂ · · · ⊂ M ′

r
= M such that

M ′
i
/M ′

i−1
∈ I for 1 ¶ i ¶ r and M ′

i
/M ′

i−1
�M ′

i+1
/M ′

i
for 1 ¶ i < r .

Proof. — We prove the result by induction on r . Take D ∈ I maximal for ≺ such
that D ≃Mi/Mi−1 for some i , and consider i minimal with this property. We have
D�M j/M j−1 for j < i , hence Ext1(D , M j/M j−1) = 0 for j < i by Lemma F.1.6. It follows
that Ext1(D , Mi−1) = 0, hence Mi has a subobject L isomorphic to D such that Mi =

L ⊕Mi−1. The object M /L has a filtration with (M /L ) j =M j for j < i and (M /L ) j =

M j+1/L for j ¾ i . That filtration has length r − 1, and the subquotients are in I . By
induction, N =M /L has another filtration 0=N ′

0
⊂ · · · ⊂N ′

r−1
=N with N ′

i
/N ′

i−1
∈ I for

1 ¶ i < r and N ′
i
/N ′

i−1
�N ′

i+1
/N ′

i
for 1 ¶ i < r − 1. We obtain an appropriate filtration

of M by taking M ′
1
= L and M ′

i
the inverse image of N ′

i−1
for i > 1.

We define a partial order ⋖ on ∆ as the one generated by D ⋖D ′ if Exti (D , D ′) 6= 0

for some i ∈ {0, 1}.
The following proposition shows that ⋖ is the coarsest order on ∆ that makes

(C ,∆) into a highest weight category.

Proposition F.1.8. — The partial order ⋖ is coarser than <. The category C equipped

with the poset (∆,⋖) is a highest weight category.

Proof. — The first statement follows from Lemma F.1.5.
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Consider M ∈ C and D , D ′ ∈ ∆. There is a surjection R ։ D with kernel N ∈
C ∆>D and such that Hom(R , D ′) is a finitely generated projective k -module and
Ext1(R , M ) = 0. By Lemma F.1.7, there is a filtration 0 = R0 ⊂ R1 ⊂ · · · ⊂ Rr−2 ⊂ Rr−1 =

N ⊂ Rr = R with subquotients in ∆ and there is an integer i ∈ {1, . . . , r − 1} such that
given j ∈ {1, . . . , r −1}, we have D ⋖ (R j /R j−1) if and only if j > i .

Consider j > i and l ∈ {1, . . . , r − 1} such that Ext1(R j /R j−1, Rl /Rl−1) 6= 0. We have
(R j /R j−1)⋖ (Rl /Rl−1) 6= 0, hence D ⋖ (Rl /Rl−1). It follows that l > i . We deduce that
Ext1(R/Ri , Ri ) = 0, hence R ≃R/Ri⊕Ri . The k -module Hom(R/Ri , D ′) is finitely gener-
ated and projective and Ext1(R/Ri , M ) = 0. So (iv) holds for (C ,∆,⋖). The conditions
(i)–(iii) are clear. This completes the proof of the proposition.

F.1.B. Ideals and Serre subcategories. —

Proposition F.1.9. — Let Γ be an ideal of ∆.

(i) Every object of C ∆ has a subobject in C ∆\Γ whose quotient is in C Γ .
(ii) An object of C is in C [Γ ] if and only if it is a quotient of an object of C Γ .

(iii) C [Γ ] is a Serre subcategory ofC . It is a highest weight category with poset of standard

objects Γ .

(iv) The inclusion functor C [Γ ] ,→ C has a left (resp. right) adjoint sending an object

M ∈C to its largest quotient (resp. subobject) in C [Γ ].

Proof. — Statement (i) follows immediately from Lemma F.1.7.

Let f : P ։M be a surjection with P ∈C Γ and M ∈C . Let D ∈∆ \ Γ . There exists
a surjection g : R ։D with kernel in C ∆>D such that Ext1(R , ker f ) = 0.

Consider now h : D →M and let h ′ = h ◦ g : R →M . The map h ′ factors through a
map h ′′ : R → P . Since R ∈C ∆\Γ and P ∈C Γ , we deduce that h ′′ = 0, hence h = 0. So,
M ∈C [Γ ]. We have shown that every quotient of an object of C Γ is in C [Γ ].

Let M ∈C [Γ ]. Consider a surjection f : R ։M with R ∈C ∆. By (i), there is R ′ ¶ R

such that R ′ ∈ C ∆\Γ and R/R ′ ∈ C Γ . By induction on the length of the filtration, we
see that Hom(N , M ) = 0 for all N ∈C ∆\Γ . In particular, Hom(R ′, M ) = 0. So, f factors
through a surjection R/R ′։M , hence M is a quotient of an object ofC Γ . This shows
(ii).

Note that C [Γ ] is closed under subobjects and extensions, while the category of
quotients of objects of C Γ is closed under taking quotients. It follows that C [Γ ] is a
Serre subcategory.

Let M ∈C [Γ ] and D , D ′ ∈ Γ . We fix a surjection f : R ։D as in Definition F.1.1(iv).
By (i), there is R ′ ¶ ker f such that R ′ ∈C ∆\Γ and ker f /R ′ ∈C Γ>D . The map f factors
through a surjection R/R ′։D .

We have Hom(R ′, D ′) = 0, hence Hom(R/R ′, D ′) ≃ Hom(R , D ′) is a finitely gener-
ated projective k -module. Since Ext1(R , M ) = 0 and Hom(R ′, M ) = 0, we deduce that
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Ext1(R/R ′, M ) = 0. So, the surjection R/R ′։D satisfies Definition F.1.1(iv) for C [Γ ].
We deduce that C [Γ ] is a highest weight category, hence (iii) holds.

Let M ∈ C . There exists a surjection f : R ։ M with R ∈ C ∆. As above, there
is R ′ ¶ R such that R ′ ∈ C ∆\Γ and R/R ′ ∈ C Γ . Let M ′ = f (R ′). Note that M /M ′ is a
quotient of R/R ′, so M /M ′ ∈C [Γ ]. Consider now N ∈C [Γ ]. Since Hom(R ′, N ) = 0, we
have Hom(M ′, N ) = 0, hence every map M →N factors through M /M ′. We deduce
that M /M ′ is the largest quotient of M that is in C [Γ ]. The functor M 7→ M /M ′ is
left adjoint to the inclusion functor.

Consider now the family I of subobjects of M that are quotients of objects of C [Γ ]
and let M ′′ be their sum. Given N ∈C [Γ ], we have an isomorphism HomC [Γ ](N , M ′′)

∼−→
HomC (N , M ). We deduce that the inclusion functor C [Γ ] ,→ C has a right adjoint,
sending an object M to M ′′. This shows (iv).

Corollary F.1.10. — The category C is the union of the full subcategories C [Γ ], where Γ

runs over finitely generated ideals of ∆.

F.1.C. Projective objects. — Note first that since every object of C is a quotient of
an object of C ∆, it follows that every projective object of C is a direct summand of
an object of C ∆.

We start with a projectivity criterion.

Lemma F.1.11. — Let N ∈C ∆ such that Ext1(N , D ) = 0 for all D ∈∆. Then, N is projec-

tive.

Proof. — Let M ∈ C . By Lemma F.1.3, there exists a surjection f : R ։N such that
ker f ∈C ∆ and Ext1(R , M ) = 0. We have Ext1(N , ker f ) = 0, hence f is a split surjection
and Ext1(N , M ) = 0. It follows that N is projective.

Lemma F.1.12. — Let D be an object of ∆ such that ∆>D is finite. Then, there is a projec-

tive object P of C and a surjective map P ։D whose kernel is in C ∆>D .

Proof. — Fix r > 0 and an increasing bijection φ :∆>D

∼−→ {1, 2, . . ., r }. Let P0 =D . We
construct by induction on i ∈ {1, 2, . . ., r } a family of objects P1, . . . , Pr in C ∆>D and
surjections fi : Pi ։ Pi−1 such that Ext1(Pi ,φ−1(i )) = 0 and ker fi is a finite multiple of
φ−1(i ).

Assume Pi has been constructed. Since Ext1(Pi ,φ−1(i +1)) is a finitely generated k -
module (Lemma F.1.6), there exists an object Pi+1 ofC and a surjection fi+1 : Pi+1։ Pi

such that the canonical map Ext1(Pi ,φ−1(i + 1))→ Ext1(Pi+1,φ−1(i + 1)) vanishes and
ker fi+1 is a finite multiple of φ−1(i +1). Since Ext1(φ−1(i +1),φ−1(i +1)) = 0, it follows
that Ext1(Pi+1,φ−1(i +1)) = 0.

We put P = Pr and g i = fi ◦ · · · ◦ fr : P ։ Pi−1. Note that ker g i ∈C φ−1({i ,...,r }).
Given D ′ ∈∆ with D ≮D ′, we have also φ−1(i )≮D ′ for all i , hence Ext1(P, D ′) = 0.
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Let i ∈ {1, 2, . . . , r }. We have Ext1(ker g i+1,φ−1(i )) = 0 and Ext1(Pi ,φ−1(i )) = 0, hence
Ext1(P,φ−1(i )) = 0. So, Ext1(P, D ′) = 0 for all D ′ ∈ ∆. We deduce from Lemma F.1.11
that P is projective.

Let us now provide a criterion for the existence of enough projective objects.

Proposition F.1.13. — If∆>D is finite for all D ∈∆, thenC has enough projective objects.

More precisely, fix PD a projective object with quotient D for every D ∈∆. Then, {PD }D∈∆
is a generating family of projective objects. Furthermore, every object of C ∆ has a finite

projective resolution.

Proof. — Given D ∈ ∆, Lemma F.1.12 shows there is a projective object PD and a
surjection PD ։D . Let M ∈C ∆ with a filtration 0=M0 ⊂M1 ⊂ · · · ⊂Mr =M such that
Mi/Mi−1 ∈∆ for 1 ¶ i ¶ r . We have a surjection PMi /Mi−1

։Mi/Mi−1. It lifts to a map
fi : PMi /Mi−1

→ Mi and the sum
∑

fi :
⊕

PMi /Mi−1
→ M is surjective. So, every object

of C ∆ is a quotient of a projective object. The last statement follows from Lemma
F.1.5.

Proposition F.1.14. — Let Γ be an ideal of∆. Given M , N ∈C [Γ ], we have Exti
C [Γ ](M , N ) =

Exti
C (M , N ) for all i ¾ 0.

Proof. — Note that the statement of the proposition is clear when i ¶ 1 since C [Γ ] is
a Serre subcategory of C (Proposition F.1.9).
⋆ Assume first Γ is a finitely generated ideal.
• Assume further that M ∈ C ∆ is projective in C [Γ ]. Assume Exti

C (M , N ) 6= 0

for some i > 1. There is N ′ ∈ C and ζ ∈ Ext1
C (M , N ′) and ξ ∈ Exti−1

C (N
′, N ) with

ξ ◦ ζ 6= 0. By Lemma F.1.3, there exists a surjection f : P ։ M with P ∈ C ∆ such
that Ext1(P, N ′) = 0. By Proposition F.1.9(i), there exists P ′ ¶ P such that P ′ ∈ C ∆\Γ
and P /P ′ ∈C Γ . Since Hom(P ′, M ) = 0, we deduce that f factors through a surjection
P /P ′։M . As M is projective inC [Γ ], that last surjection splits, hence there is P̃ ¶ P

such that f restricts to a surjection g : P̃ ։M with kernel P ′. Since the composition
ζ◦ f vanishes, we deduce that ζ◦g vanishes, hence ζ factors through a map h : P ′→
N ′ and ξ ◦h 6= 0. By Lemma F.1.5, we have Exti−1(P ′, N ) = 0, hence a contradiction.
So, Exti

C (M , N ) = 0 for all i > 0.

• Consider now an arbitrary M ∈ C [Γ ]. By Proposition F.1.13, there exist P ∈
Proj(C [Γ ]) and a surjection f : P ։M . Given i > 1, there are isomorphisms Exti−1

C (ker f , N )
∼−→

Exti
C (M , N ) (by the discussion above) and Exti−1

C [Γ ](ker f , N )
∼−→ Exti

C [Γ ](M , N ). By in-
duction on i , we have Exti−1

C [Γ ](ker f , N ) = Exti−1
C (ker f , N ). It follows that Exti

C [Γ ](M , N ) =

Exti
C (M , N ).
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⋆ Consider finally the case of an arbitrary ideal Γ . There exists a finitely gener-
ated ideal Γ ′ contained in Γ and such that M , N ∈ C [Γ ′]. We have Exti

C [Γ ′](M , N ) =

Exti
C [Γ ](M , N ) and Exti

C [Γ ′](M , N ) = Exti
C (M , N ) and the proposition follows.

Lemma F.1.15. — Let M , N ∈C .

(i) If M ∈ Proj(C ) and N ∈C ∆, then the k -module Hom(M , N ) is projective.

(ii) Given i ¾ 0, the k -module Exti (M , N ) is finitely generated.

(iii) If M ∈C ∆, then Exti (M , N ) = 0 for i ≫ 0.

(iv) Let Γ be an ideal of ∆ such that M is a quotient of an object of C Γ . If Exti (D , M ) 6= 0

for some D ∈∆ and i ¾ 0, then D ∈ Γ .

Proof. — Assume M ∈ Proj(C ) and N ∈ ∆. By Lemma F.1.3, there exists a surjec-
tion R ։M such that Hom(R , N ) is a finitely generated projective k -module. Since
Hom(M , N ) is a direct summand of Hom(R , N ), we deduce that it is a finitely gener-
ated projective k -module as well.

When M ∈ Proj(C ) and N ∈C ∆, it follows by induction on the length of a filtration
of N that Hom(M , N ) is a finitely generated projective k -module. This shows (i).

When M ∈ Proj(C ) and N ∈ C , there exists N ′ ∈ C ∆ such that N is a quotient of
N ′. We deduce that Hom(M , N ) is a finitely generated k -module.

Let us now prove (ii) and (iii). Thanks to Proposition F.1.14, we can assume that
∆ is finitely generated as an ideal, hence C has enough projectives by Proposition
F.1.13.

Consider a surjection f : P ։M with P projective. Since Hom(P, N ) is a finitely
generated k -module, so is Hom(M , N ). We prove that the statement of the lemma by
induction on i > 0. We have a surjection Exti−1(ker f , N )։ Exti (M , N ). By induction,
Exti−1(ker f , N ) is finitely generated, hence so is Exti (M , N ). This shows (ii).

It is enough to prove (ii) for M ∈ ∆. We proceed by induction: we assume that
given D ∈∆D>M , we have Exti (D , N ) = 0 for i ≫ 0. We can assume that ker f ∈C ∆>M ,
hence Exti (ker f , N ) = 0 for i ≫ 0. So, Exti (M , N ) = 0 for i ≫ 0. This shows (iii).

Let us show (iv). We can assume that Γ is finitely generated. Assume D 6∈Γ . Let
Γ ′ = ∆¶ D ∪ Γ . Since D is projective in C Γ ′ , we have Exti

C [Γ ′](D , M ) = Exti
C (D , M ) = 0

if i > 0 (Proposition F.1.14). So we have i = 0. There is M ′ ∈ C Γ and a surjection
M ′ ։M . Since Hom(D , M ) 6= 0, it follows that Hom(D , M ′) 6= 0, a contradiction. So
(iv) holds.

Proposition F.1.16. — Assume∆ is finite. Then, (C ,∆) is a highest category over k as in

[Rou, Definition 4.11]. There is a split quasi-hereditary k -algebra A [CPS2, Definition
3.2] and an equivalence A-mod≃C .

Proof. — It follows from Proposition F.1.13 that C has a progenerator P and from
Lemma F.1.15 that A = End(P ) is finitely generated and projective as a k -module.
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So, we have an equivalence Hom(P,−) :C ∼−→ A-mod. By Lemma F.1.15, Hom(P, D ) is
a finitely generated projective k -module for all D ∈∆. Finally, Lemma F.1.12 shows
that given D ∈∆, there is P ∈ Proj(C ) and a surjection P ։ D with kernel in C ∆>D .
It follows that (C ,∆) is a highest category over k as in [Rou, Definition 4.11]. The
statement about quasi-hereditary algebras is [Rou, Theorem 4.16].

Given A an abelian category, M an object of A and L a simple object of A , we
denote by [M : L ]∈Z¾ 0∪{∞} the maximum of the set of integers n such that M has
a filtration 0=M−1 ⊂M0 ⊂ · · · ⊂M2n =M with M2i−1/M2i−2 ≃ L for 1 ¶ i ¶ n .

Proposition F.1.17. — Assume k is a field. Then,

– any object D ∈∆ has a unique simple quotient L (D ) and [D : L (D )] = 1

– every simple object of C is isomorphic to L (D ) for a unique D ∈∆
– Let D , D ′ ∈∆ such that [D : L (D ′)] 6=0. Then, we have D ′ ¶D and [D : L (D ′)]<∞.

Assume furthermore that ∆ is finitely generated as an ideal. Then every object of C has a

projective cover. In particular, given D ∈ ∆, the simple object L (D ) has a projective cover

P (D ) and [M : L (D )] = dimk HomC (P (D ), M )<∞ for all M ∈C .

Proof. — Let L be a simple object of C . There is D ∈∆ such that Hom(D , L )6=0, since
L is a quotient of an object of C ∆. Consider now D ′ ∈ ∆ such that Hom(D ′, L )6= 0.
Assume D�D ′ and let Γ be the ideal of ∆ generated by D and D ′. Then D is pro-
jective in C [Γ ] hence a surjection D ։ L factors through a surjection D ′։ L . Since
Hom(D , D ′) = 0, we obtain a contradiction. It follows that there is a unique D ∈ ∆
such that L is a quotient of D .

Fix now D ∈∆ and assume there are simple objects L , L ′ ∈C and a surjective map
f : D ։ L⊕L ′. We have L , L ′ ∈C [∆¶ D ] and D is projective inC [∆¶ D ]. It follows that
composition with f induces a surjection End(D )։Hom(D , L⊕L ′). Since End(D ) = k ,
we obtain a contradiction: D has at most one simple quotient.

Consider now I the family of subobjects of D that are in C [∆<D ] and let M =∑
N ∈I N ∈ C [∆<D ]. Since Hom(D , M ) = 0, we deduce that D /M 6=0. Since C [∆<D ] is

a Serre subcategory of C , we have Hom(N , D /M ) = 0 for all N ∈ C [∆<D ]. Let L be
a non-zero subobject of D /M . Since L 6∈C [∆<D ], there exists a non-zero map D → L .
That map lifts to a non-zero map D →D , hence an isomorphism since End(D ) = k .
So, L =D /M , hence D /M is simple.

We have shown that every D ∈∆ has a unique simple quotient L (D ), that L (D ) ≃
L (D ′) implies D ≃ D ′ and every simple object of C is isomorphic to L (D ) for some
D ∈∆.

Since D is projective in C¶ D and End(D ) = k , we deduce that [D : L (D )] = 1.
Let D ′ ∈ ∆ such that [D : L (D ′)] 6= 0. Let Γ be the ideal of ∆ generated by D and

D ′. By Lemma F.1.11, there is P ∈ Proj(C [Γ ]) and a surjection P ։D ′ with kernel in
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C Γ>D ′ . We have dimk Hom(P, D ) <∞ (Lemma F.1.15), hence [D : L (D ′)] <∞. Also,
Hom(P, D )6=0, hence D ′ ¶D .

Assume now ∆ is finitely generated as an ideal. Let D ∈∆. There is a projective
object P of C and a surjection P ։ L (D ). Since EndC (P ) is finite-dimensional, it
follows that there is P (D ) an indecomposable direct summand of P and a surjection
f : P (D )։ L (D ). As EndC (P (D )) is a local k -algebra, it follows that f is a projective
cover.

F.1.D. Ideals and quotients. — Let Γ be an ideal of ∆. Recall that C [Γ ] is a Serre
subcategory of C (Proposition F.1.9). We put C (∆ \ Γ ) =C /C [Γ ].

Proposition F.1.18. — Let Γ be an ideal of ∆. Then C (∆ \ Γ ) is a highest weight category

with poset of standard objects∆\Γ and given Γ ′ an ideal of∆, there is a canonical equivalence

(C [Γ ′])
�
Γ
′ \ (Γ ∩ Γ ′)
� ∼−→
�
C (∆ \ Γ )
�
[Γ ′ \ (Γ ∩ Γ ′)].

Proof. — Given M ∈ C ∆\Γ and N ∈ C , we have an isomorphism HomC (M , N )
∼−→

HomC (∆\Γ )(M , N ) since HomC (M , M ′) = Ext1
C (M , M ′) = 0 for all M ′ ∈ C [Γ ] (Lemma

F.1.5).
We deduce that HomC (D , D ′) ≃ HomC /C [Γ ](D , D ′) for all D , D ′ ∈ ∆ \ Γ . It follows

that (i) and (ii) in Definition F.1.1 hold for C (∆ \ Γ ).
Let M ∈ C . By Proposition F.1.9(iv), there is N ⊂M such that M /N is the largest

quotient of M in C [Γ ]. There is a surjection f : R ։N with R ∈ C ∆. By Proposition
F.1.9(i), there is a subobject R ′ ⊂C with R ′ ∈C ∆\Γ and R/R ′ ∈C Γ . Let N ′ = f (R ′). We
have a surjection R/R ′։N /N ′, hence N /N ′ ∈C [Γ ]. It follows that N /N ′ = 0, hence
N is a quotient of R ′. The image in C (∆ \ Γ ) of the map R ′→M is a surjection. So,
(iii) in Definition F.1.1 holds for C (∆ \ Γ ).

Let I (resp. J ) be the thick subcategory of D b (C ) generated by Γ (resp. ∆ \ Γ ).
Since Exti

C (D , D ′) = 0 for all i ¾ 0, D ∈∆ \ Γ and D ′ ∈ Γ (Lemma F.1.5), it follows that
HomD b (C )(C , C ′) = 0 for C ∈ J and C ′ ∈ I . We deduce that HomD b (C )(M , M ′)

∼−→
HomD b (C )/I (M , M ′) for all M ∈ J and M ′ ∈ D b (C ). Since C (∆ \ Γ ) is the heart
of the canonical quotient t -structure on D b (C )/I , we deduce that Ext1

C (M , M ′) ≃
Ext1

C (∆\Γ )(M , M ′) for all M ∈C ∆\Γ and M ′ ∈C . In particular, if M ∈C ∆\Γ is projective

in C , then it is projective in C (∆ \ Γ ). Also, C ∆\Γ ∼−→
�
C (∆ \ Γ )
�∆\Γ

.

Let us now assume that ∆ is finitely generated as an ideal. Let M ∈ C . We have
seen that there exists R ∈C ∆\Γ and a map R →M that becomes surjective inC (∆\Γ ).
In the proof of Proposition F.1.13, we saw that there exists a surjection P ։ R with
P ∈ Proj(C )∩C ∆\Γ . The composition P → R →M is surjective in C (∆ \ Γ ) and P is
projective in C (∆ \ Γ ). We deduce that the quotient functor induces an equivalence
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Proj(C )∩C ∆\Γ ∼−→ Proj(C (∆ \ Γ )) and that C (∆ \ Γ ) has enough projectives. So, (iv) in
Definition F.1.1 holds for C (∆ \ Γ ).

Let us consider again an arbitrary∆. We haveC [Γ ′]Γ ′\(Γ∩Γ ′) ∼−→
�
C [Γ ′](Γ ′\(Γ∩Γ ′))

�Γ ′\(Γ∩Γ ′)

and C Γ ′\(Γ∩Γ ′) =C [Γ ′]Γ ′\(Γ∩Γ ′) ∼−→
�
C (∆ \ Γ )
�Γ ′\(Γ∩Γ ′)

. So, we have an equivalence
�
C [Γ ′](Γ ′ \ (Γ ∩ Γ ′))

�Γ ′\(Γ∩Γ ′) ∼−→
�
C (∆ \ Γ )
�Γ ′\(Γ∩Γ ′)

.

We have shown that every object of (C [Γ ′])(Γ ′ \ (Γ ∩Γ ′)) is the cokernel of a morphism
in C [Γ ′]Γ ′\(Γ∩Γ ′), hence the canonical functor (C [Γ ′])(Γ ′\ (Γ ∩Γ ′))→C (∆\Γ ) is fully faith-
ful.

Let D , D ′ ∈∆ \ Γ and M ∈C . There is a finitely generated ideal Γ ′ of Γ containing
D , D ′ and such that M ∈C [Γ ′].

There exists a surjection P ։ D with kernel in C Γ ′>D and P ∈ Proj(C [Γ ′]). Since
(C [Γ ′])(Γ ′ \ (Γ ∩ Γ ′)) is a highest weight category, we deduce that (iv) in Definition
F.1.1 holds for C (∆ \ Γ ). The last statement of the proposition follows.

Lemma F.1.19. — Let Γ be an ideal of ∆. The quotient functor qΓ :C →C (∆\ Γ ) has a left

adjoint ∨qΓ .

Assume ∆ is finitely generated as an ideal. Given M ∈ C , there is a finitely generated

ideal Γ of ∆ such that ∆ \ Γ is finite and such that the canonical map ∨qΓqΓ (M )→M is an

isomorphism.

Proof. — Thanks to Corollary F.1.10 and Proposition F.1.18, it is enough to prove the
lemma when∆ is finitely generated as an ideal, and we make now that assumption.

Let PΓ be the full subcategory of projective objects of C that are in i (C ∆\Γ ). The
quotient functor qΓ restricts to an equivalence φ from PΓ to the category of projec-

tive objects of C (∆ \ Γ ) Let N ∈ C (∆ \ Γ ). Fix a projective presentation P
f−→ Q →

N → 0. Define ∨q
Γ
(N ) = coker(φ−1(f )). It is easy to check that this defines a functor

C (∆ \ Γ )→C that is left adjoint to qΓ .
Let M ∈ C . Let P →Q →M → 0 be a projective presentation of M . There is an

ideal Γ of ∆ such that ∆ \ Γ is finite and P,Q ∈ i (C ∆\Γ ). It follows that the canonical
map ∨qΓqΓ (M )→M is an isomorphism.

F.1.E. Base change. — Let D be an additive category. We denote by D-Mod the
abelian category of additive functors Dopp → Z-Mod and by D-mod its full subcat-
egory of functors that are quotients of representable functors. The Yoneda functor
defines a fully faithful embedding

D ,→D-mod, M 7→Hom(−, M ).

The family of representable functors is a generating family of projective objects of
D-Mod and we will identify D with the corresponding full subcategory of D-Mod.
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The full subcategory D-mod of D-Mod is closed under extensions and quotients.
We say that D is locally noetherian if D-mod is closed under taking subobjects in
D-Mod. When D is locally noetherian, the subcategory D-mod of D-Mod is a Serre
subcategory.

Lemma F.1.20. — Let A be an abelian category with enough projectives. The canonical

functorA → Proj(A )-Mod, M 7→Hom(−, M ) is exact and fully faithful and it takes values

in Proj(A )-mod.

The following conditions are equivalent

(i) given M ∈A and given I a family of subobjects of M , there exists a subobject
∑

N ∈I N

of M

(ii) Proj(A ) is locally noetherian

(iii) the Yoneda functor gives an equivalenceA ∼−→ Proj(A )-mod.

Proof. — The first statement is clear.
Assume (i). Let P ∈ Proj(A ) and let Ψ be a subobject of Hom(−, P ). There is

a family I of objects of Proj(A ) and maps fQ : Hom(−,Q ) → Ψ such that
∑

fQ :⊕
Q∈I Hom(−,Q )→Ψ is surjective. Let gQ : Q → P such that Hom(−, gQ ) is the compo-

sition of fQ with the inclusion Ψ ,→Hom(−, P ). By assumption, there is a subobject
L =
∑

Im(gQ ) of P . We have Ψ ⊂Hom(−, L ). Since
∑

Hom(−, fQ ) :
⊕

Q∈I Hom(−,Q )→
Hom(−, L ) is surjective, it follows that Ψ = Hom(−, L ). There is P ′ ∈ Proj(A ) and
a surjective map P ′ ։ L . It follows that Ψ is a quotient of Hom(−, P ′), hence L ∈
Proj(A )-mod. This shows that (ii) holds.

Assume (ii). Every object M of Proj(A )-mod is isomorphic to the cokernel of a
map f : Hom(−, P ) → Hom(−,Q ) with P,Q ∈ Proj(A ). There is g ∈ Hom(P,Q ) such
that f =Hom(−, g ). We have M ≃ coker f =Hom(−, cokerg ) and (iii) follows.

Assume (iii). Let M ∈ A and let I be a family of subobjects of M . Since sums
of subobjects exist in Z-Mod, they exist in Proj(A )-Mod. So, there is a subobject
Ψ =
∑

Q∈I Hom(−,Q ) of Hom(−, M ). Let Φ = Hom(−, M )/Ψ . Since Φ ∈ Proj(A )-mod,
there is N ∈A and an isomorphism Φ≃Hom(−, N ). There is a map f ∈Hom(M , N )

such that Hom(−, f ) corresponds to the quotient map Hom(−, M ) ։ Φ. We have
Ψ = ker(Hom(−, f ))≃Hom(−, ker f ). We deduce that ker f =

∑
Q∈I Q . So, (i) holds.

Let D be a k -linear category. Note that the forgetful functor from the category
of k -linear functors Dopp → k -Mod to the category D-Mod is an isomorphism of
categories.

Let k ′ be a commutative k -algebra. We denote by k ′D the k ′-linear category
with set of objects {k ′M } where M runs over the set of objects of D and with
Homk ′D (k

′M , k ′N ) = k ′ ⊗HomD (M , N ). There is a base change functor k ′ ⊗− : D →
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k ′D, M 7→ k ′M that is compatible, via the Yoneda embedding, with the base change
functor k ′⊗− :D-Mod→ (k ′D)-Mod, F 7→ (k ′N 7→ k ′⊗ F (N )).

Lemma F.1.21. — Assume k ′ is a localization of k . Let M ∈ (k ′D)-mod. There exists

M̃ ∈D-mod such that k ′M̃ ≃M .

Proof. — Let Q ∈D and N a subobject of k ′Q in (k ′D)-Mod such that M ≃ (k ′Q )/N .
Let φ : k → k ′ be the canonical algebra map and φQ = φ ⊗ IdQ : Q → k ′ ⊗Q . Let

L =φ−1
Q
(N )⊂Q . We have a canonical isomorphism k ′L

∼−→N , hence M ≃ k ′(Q/L ).

Lemma F.1.22. — Assume k ′ is a finitely generated module over a localization of k .

If D is locally noetherian, then k ′D is locally noetherian.

Proof. — Let M ∈D and let N be a subobject of k ′M in (k ′D)-Mod.
Assume k ′ is a localization of k . The proof of Lemma F.1.21 shows that there

exists a subobject L of M such that k ′L ≃ N . Since L ∈ D-mod, it follows that N ∈
(k ′D)-mod.

Assume k ′ is a finitely generated k -module. The restriction of k ′M to D-Mod is a
quotient of a finite direct sum of copies of M , hence the restriction N0 of N to D-Mod

is the quotient of an object of D-mod. So, there exists P ∈ D and a surjective map
P ։N0 in D-mod. By adjunction, we obtain a surjective map k ′P ։N in (k ′D)-Mod.
So N ∈ (k ′D)-mod.

The general case follows by transitivity.

Proposition F.1.23. — Let A be a k -algebra and assume D-Mod is a full abelian subcate-

gory of A-Mod (i.e., it is closed under quotients and subobjects).

Then (k ′D)-Mod is equivalent to the full subcategory of (k ′A)-Mod whose objects are

quotients of direct sums objects of the form k ′ ⊗M , for M ∈ D. That subcategory is closed

under taking quotients and subobjects.

Proof. — Let M , N ∈D-Mod. There is a commutative diagram with canonical maps,
where the two rightmost horizontal maps are adjunction maps

k ′HomA(M , N ) //

∼
��

Homk ′A(k
′M , k ′N )

∼ // HomA(M , k ′N )

��
k ′HomD-Mod(M , N ) // Hom(k ′D)-Mod(k

′M , k ′N ) ∼
// HomD-Mod(M , k ′N )

If M ∈ D, then the bottom leftmost horizontal map is an isomorphism, while the
rightmost vertical map is injective. We deduce that the rightmost vertical map is an
isomorphism. So, this map is an isomorphism when M is a direct sum of objects
of D, hence when M is the cokernel of a map between direct sum of object of D.
Consequently, the canonical functor (k ′D)-Mod→ (k ′A)-Mod is fully faithful and its
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image is the full subcategory of (k ′A)-Mod of objects that are quotients of direct
sums objects of the form k ′⊗M , for M ∈D.

Let M ∈ (k ′D)-Mod and N ∈ (k ′A)-Mod a subobject of M . Let M ′ and N ′ be the
restrictions of M and N to A. We have M ′ ∈ D-Mod, hence N ′ ∈ D-Mod. Since N is
a quotient of k ′⊗N ′, we deduce that N ∈ (k ′D)-Mod. So, (k ′D)-Mod is closed under
taking subobjects.

Assume k is a discrete valuation ring with residue field k̄ and field of fractions
K .

Lemma F.1.24. — Assume Hom-spaces in K D are finite-dimensional vector spaces over

K and D is locally noetherian. Then K D and k̄D are locally noetherian.

Let M ∈ K D. There exists M̃ ∈D such that K M̃ ≃M and Hom(P, M ) is a free k -module

of finite rank for every P ∈D.

Given any such M̃ , the class [k̄ M̃ ]∈ K0((k̄D)-mod) depends only on [M ] ∈ K0((K D)-mod).

Proof. — Lemma F.1.21 ensures the existence of N ∈ D-mod such that k ′N ≃ M .
Let N ′ be the torsion subobject of N and M̃ = N /N ′. We have k ′M̃ ≃ M . Let P ∈
D. Since Hom(P, M ) is a torsion-free k -module such that K ⊗Hom(P, M ) is a finite-
dimensional K -vector space, it follows that Hom(P, M ) is a free k -module of finite
rank.

Let M̃1 and M̃2 be two objects ofD-mod with K M̃1 ≃ K M̃2 and such that Hom(P, M̃i )

is a finite rank free k -module for all P ∈D and i ∈ {1, 2}. There exists f ∈Hom(M̃1, M̃2)

injective such that πn M̃2 ⊂ Im(f ) for some n ¾ 0, where π is a generator of the maxi-
mal ideal of k . We proceed by induction on n to show that [k̄ M̃1] = [k̄ M̃2].

Assume n = 1. Let L = coker f . There is an exact sequence

0→ Tork
1
(k̄ , L )→ k̄ M̃1→ k̄ M̃2→ k̄ L → 0.

Since πL = 0, we have Tork
1
(k̄ , L )≃ k̄ L , hence [k̄ M̃1] = [k̄ M̃2].

In the general case, let M̃3 = Im(f )+πn−1M̃2. We have πM̃3 ⊂ Im(f ), hence [k̄ M̃1] =

[k̄ M̃3]. We have mn−1M̃2 ⊂ M̃3, so it follows by induction that [k̄ M̃2] = [k̄ M̃3]. This
completes the proof of the lemma.

The previous lemma provides a decomposition map

d : K0((K D)-mod)→ K0((k̄D)-mod)

with the property that d ([K M ]) = [k̄ M ] when M ∈ D-mod and Hom(P, M ) is a pro-
jective k -module for all P ∈D.

Proposition F.1.13 and Lemma F.1.20 imply the following result.

Lemma F.1.25. — Assume∆ is finitely generated as an ideal. The Yoneda functor induces

an equivalence C ∼−→ Proj(C )-mod.
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Given two ideals Γ ⊂ Γ ′, we have a functor FΓ⊂Γ ′ :C [Γ ′]→C [Γ ] sending an object of
C [Γ ′] to its largest quotient inC [Γ ] (Proposition F.1.9). This functor sends projective
objects to projective objects.

When Γ and Γ ′ are finitely generated, we have a commutative diagram

C [Γ ] M 7→Hom(−,M )

∼
//

� _

��

Proj(C [Γ ])-mod

−◦FΓ⊂Γ ′
��

C [Γ ′]
M 7→Hom(−,M )

∼ // Proj(C [Γ ′])-mod

and the vertical arrow −◦ FΓ⊂Γ ′ is fully faithful.

Given M ∈C , there is a finitely generated ideal Γ ′ of∆ such that M ∈C [Γ ′] (Corol-
lary F.1.10) and Hom(−, M ) defines an object of Proj(C [Γ ′])-mod. So, we obtain a
functor

C → colimΓ Proj(C [Γ ])-mod,

where the colimit is taken using the system of strictly transitive transition functors
−◦ FΓ⊂Γ ′ . Lemma F.1.25 shows the following result.

Corollary F.1.26. — The Yoneda functor gives an equivalence

C ∼−→ colimΓ Proj(C [Γ ])-mod,

where Γ runs over finitely generated ideals of ∆.

Let k ′ be a noetherian commutative k -algebra. Given Γ a finitely generated ideal
of ∆, we put (k ′C )Γ =

�
k ′Proj(C [Γ ])
�
-mod. We define k ′C = colimΓ (k

′C )Γ , where Γ
runs over finitely generated ideals of ∆. Note that, in this colimit, given Γ1 ⊂ Γ2, the
functors (k ′C )Γ1 → (k ′C )Γ2 are fully faithful.

The base change functor k ′ ⊗− : Proj(C [Γ ])-mod→
�
k ′Proj(C [Γ ])
�
-mod induces a

base change functor k ′⊗− :C → k ′C .

Proposition F.1.27. — Assume k ′ is a finitely generated module over a localization of k .

The category k ′C is a highest weight category with set of standard objects k ′∆= {k ′D }D∈∆.

Proof. — It follows from Lemma F.1.22 that (k ′C )Γ is a Serre subcategory of (k ′Proj(C [Γ ]))-Mod.
We deduce that k ′C is an abelian category that admits sums of subobjects.

Let D ∈∆. The object D is projective in C [∆¶ D ], hence

Endk ′C (k
′D ) = End(k ′C )∆ ¶ D

(k ′D ) = k ′EndC [∆ ¶ D ]
(D ) = k ′.

So, (i) in Definition F.1.1 holds for k ′C .
Let D1, D2 ∈∆ and let Γ be the ideal of∆ generated by D1 and D2. If D1 �D2, then D1

is projective in C [Γ ], hence as above we have Hom(k ′D1, k ′D2) ≃ k ′Hom(D1, D2) = 0.
We deduce that (ii) holds.
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By assumption, every object of k ′C is a quotient of an object of the form k ′P ,
where P is a projective object of C [Γ ] for some finitely generated Γ . Note that k ′P ∈
(k ′C )k ′∆ and (iii) holds.

Let Γ be a finitely generated ideal of ∆. Let M ∈ (k ′C )Γ . Let D ∈∆\ Γ and consider
g : k ′D → M . Let P ∈ Proj(C [Γ ]) and f : k ′P ։ M be a surjection. Let Γ ′ = Γ ∪
∆¶ D . Since D is projective in C [Γ ′] (Lemma F.1.12), it follows that k ′D is projective
in (k ′C )Γ ′ , hence there is h : k ′D → k ′P such that g = f ◦ h . On the other hand,
Hom(k ′C )Γ ′ (k

′D , k ′P ) ≃ k ′HomC (D , P ) = 0. So, g = 0. We deduce that Hom(k ′D , M ) =

0, hence (k ′C )Γ ⊂ (k ′C )[k ′Γ ].
Let D , D ′ ∈∆ and M ∈ k ′C . Let Γ be a finitely generated ideal of ∆ containing D

and D ′ and such that M ∈ (k ′C )Γ . By Lemma F.1.12, there is P ∈ Proj(C [Γ ]) and a
surjective map P ։D whose kernel is in C ∆>D . So, we have a surjection k ′P ։ k ′D

whose kernel is in (k ′C )k ′∆>D . We have Hom(k ′C )Γ (k
′P, k ′D ′) ≃ k ′HomC [Γ ](P, D ′) and

HomC (P, D ′) is a finitely generated projective k -module (Lemma F.1.15). It follows
that Homk ′C (k

′P, k ′D ′) is a finitely generated projective k ′-module.
Consider an exact sequence 0 → M → N → k ′P → 0 with N ∈ k ′C . There is a

finitely generated ideal Γ ′ of ∆ containing Γ and such that N ∈ (k ′C )Γ ′ . Now, there is
R ∈ Proj(C [Γ ′]) and a surjection f : k ′R ։ N . By Proposition F.1.9(i), there is R ′ ¶ R

such that R ′ ∈C Γ\Γ ′ and R/R ′ ∈C Γ . We have Hom(k ′R ′, k ′P ) = 0 and Hom(k ′R ′, M ) =

0, hence f factors through a surjection k ′(R/R ′) ։ N . We have k ′(R/R ′) ∈ (k ′C )Γ ,
hence N ∈ (k ′C )Γ , so the surjection N ։ k ′P splits. This shows that Ext1

k ′C (k
′, M ) = 0,

hence (iv) holds. This completes the proof of the proposition.

F.1.F. Grothendieck groups. — The next lemma follows from [We, Lemma II.6.2.7].

Lemma F.1.28. — We have K0(C ) = colimΓ K0(C [Γ ]), where Γ runs over finitely generated

ideals of ∆.

Let V ∈ k -mod. Given M ∈ D, the object V ⊗k Hom(−, M ) is representable by

an object V ⊗k M : given k r
f−→ k s → V → 0 an exact sequence in k -mod, we have

V ⊗k M = coker(f ⊗M : M r →M s ).

Lemma F.1.29. — Let M ∈ C ∆ and let 0 → V1 → V → V2 → 0 be an exact sequence in

k -mod. We have an exact sequence 0→V1⊗k M → V ⊗k M → V2⊗k M → 0.

Proof. — We can assume that ∆ is finitely generated as an ideal, so that C has
enough projectives. Let P ∈ Proj(C ). Since Hom(P, M ) is projective over k , it fol-
lows that we have an exact sequence 0→ V1⊗k Hom(P, M )→ V ⊗k Hom(P, M )→V2⊗k

Hom(P, M )→ 0, hence an exact sequence 0→Hom(P, V1 ⊗k M )→Hom(P, V ⊗k M )→
Hom(P, V2⊗k M )→ 0. The lemma follows.
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Lemma F.1.30. — Let Γ be an ideal of∆ such that∆\Γ is finite. We have an exact sequence

0→ K0(C [Γ ])→ K0(C )→ K0(C (∆ \ Γ ))→ 0.

Proof. — Without assumption on ∆ \ Γ , there is an exact sequence [We, Theorem
II.6.4]

K0(C [Γ ])→ K0(C )→ K0(C (∆ \ Γ ))→ 0.

Assume∆\Γ has a single element D0. It follows from Lemma F.1.29 that the func-
tor D0⊗k− : k -mod→C is exact. Let M ∈C . Let N be the cone of the adjunction map
D0⊗k HomC (D0, M )→M . We have HomD b (C )(D0, N [i ]) = 0 for all i . Since D0 is projec-
tive, it follows that HomC (D0, H i (N )) = 0 for all i . So, N is a bounded complex with
cohomology contained in C [Γ ]. It follows that M 7→N provides a left adjoint to the
inclusion functor of the thick subcategory of D b (C ) of complexes with cohomology
in C [Γ ]. As a consequence, the canonical map K0(C [Γ ])→ K0(C ) is a split injection.
So, the lemma holds when |∆ \ Γ | = 1. The general case follows by induction on
|∆ \ Γ |.

It follows from Lemma F.1.29 that given V ∈ k -mod and D ∈∆, the class [V ⊗k D ] ∈
K0(C ) depends only on [V ] ∈ K0(k -mod) and D . We denote it by [V ] · [D ]. This
provides K0(C )with a structure of K0(k -mod)-module.

Lemma F.1.31. — The morphism of K0(k -mod)-modules

K0(k -mod)(∆)→ K0(C ), (aD )D∈∆ 7→
∑

D

aD · [D ]

is injective.

If ∆ is finitely generated as an ideal and Spec k is connected, then the canonical map

K0(C -proj)→ K0(C ) is injective with image the free Z-submodule generated by {[D ]}D∈∆.

Proof. — When∆ is finite, the lemma follow from Lemma F.1.30. When∆ is finitely
generated, given a finite family I of ∆, there is an ideal Γ of ∆ such that∆\Γ is finite
and contains I . Since the lemma holds for C /C [Γ ], we deduce that the lemma holds
for C . The general case follows from Lemma F.1.28.

Definition F.1.32. — We say that C is separated if D b (C ) is generated as a triangulated

category by {V ⊗k D }, where V ∈ k -mod and D ∈∆.

Lemma F.1.33. — If all the finitely generated ideals of Γ are finite, then C is separated.

Proof. — When ∆ is finite, the statement follows by induction as in the proof of
Lemma F.1.30.

Let M be a bounded complex of objects of C . There is a finitely generated ideal
Γ of ∆ such that M is a bounded complex of objects of C [Γ ]. Since the lemma holds
for C [Γ ], we are done.
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Lemma F.1.34. — If C is separated, then K0(C ) is a free K0(k -mod)-module with basis

{[D ]}D∈∆.

If in addition ∆ is finite and Spec k is connected, then there is an isomorphism

K0(k -mod)⊗Z K0(C -proj)
∼−→ K0(C ), a ⊗ [P ] 7→ a · [P ].

Proof. — The first statement follows immediately from Lemma F.1.31. The second
statement follows by induction from Lemma F.1.30.

Remark F.1.35. — If D b (C ) is generated, as a triangulated category closed under
taking direct summands, by {V ⊗k D }, where V ∈ k -mod and D ∈∆, then it is sepa-
rated: this is shown by the proof of Lemma F.1.30 when ∆ is finite, and the general
case follows. �

F.1.G. Completed Grothendieck groups. — We define the completed Grothendieck

group of C as K̂0(C ) = colimΓ limΩ⊂Γ K0(C [Γ ]/C [Ω]) where Γ runs over finitely gener-
ated ideals of ∆ and Ω runs over ideals of Γ such that Γ \Ω is finite.

Note that given Ω⊂Ω′, the transition map K0(C [Γ ]/C [Ω])→ K0(C [Γ ]/C [Ω′]) is sur-
jective, while given Γ ′ ⊂ Γ , the transition map limΩ⊂Γ K0(C [Γ ]/C [Ω])→ limΩ⊂Γ ′ K0(C [Γ ′]/C [Ω])
is injective.

There is a canonical morphism of groups

K0(C )→ K̂0(C ), [M ] 7→ [[M ]]
since C = colimΓ C [Γ ], where Γ runs over finitely generated ideals of ∆.

When Γ is finitely generated, we have K̂0(C ) = limΩ⊂Γ K0(C [Γ ]/C [Ω])where Ω runs
over ideals of ∆ such that ∆ \Ω is finite.

When ∆ is finite, we have a canonical isomorphism K0(C )
∼−→ K̂0(C ).

Let Mapfg(∆, K0(k -mod)) be the abelian group of maps χ : ∆ → K0(k -mod) such
that {D ∈∆ | χ(D ) 6= 0} is contained in a finitely generated ideal of ∆.

Lemma F.1.36. — There is an isomorphism

σ : Mapfg(∆, K0(k -mod))
∼−→ K̂0(C ), χ 7→
∑

D∈∆
[χ(D )] · [[D ]]

and an isomorphism

K̂0(C )
∼−→Mapfg(∆, K0(k -mod)), [[M ]] 7→ (D 7→

∑

i ¾ 0

(−1)i [Exti (D , M )]).

Proof. — Assume first ∆ is finite. Consider the morphisms

f : K0(k -mod)∆
∼−→ K0(C ), ([VD ])D∈∆ 7→

∑

D∈∆
[VD ] · [D ]

and
g : K0(C )

∼−→ K0(k -mod)∆, [M ] 7→ (D 7→
∑

i ¾ 0

(−1)i [Exti (D , M )]).
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Lemma F.1.34 shows that f is an isomorphism. Since g ◦ f has a triangular matrix
with entries 1 on the diagonal, it follows that g is an isomorphism.

Consider now a general∆. We have Mapfg(∆, K0(k -mod)) = colimΓ limΩK0(k -mod)Ω

where Γ runs over finitely generated ideals of ∆ and Ω runs over ideals of Γ such
that Γ \Ω is finite. The lemma follows from the case where ∆ is finite.

Lemmas F.1.34 and F.1.36 have the following consequence.

Proposition F.1.37. — If C is separated, then we have a canonical injection K0(C ) ,→
K̂0(C ).

Lemma F.1.38. — Assume k is a field. The map M 7→ ([M : L (D )])D∈∆ induces an injection

K̂0(C ) ,→Z∆.

Proof. — Let M ∈ C and D ∈ ∆. There is a finitely generated ideal Γ of ∆ and an
ideal Ω of Γ such that Γ \ Ω is finite and contains D and such that M ∈ C [Γ ]. We
have [M : L (D )] = [M ′ : L (D )], where M ′ is the image of M in C (Γ \Ω). It follows that
[M : L (D )] depends only on the class of M in K̂0(C ).

When ∆ is finite, C is equivalent to the category of finite-dimensional modules
over a finite-dimensional k -algebra, hence the class of a module in K0 is determined
by the multiplicities of simple modules in a composition series. So, we obtained the
injectivity when ∆ is finite, and the general case follows.

Let k ′ be a noetherian commutative flat k -algebra. There is a commutative dia-
gram

K0(C ) //

��

K̂0(C )
σ−1

∼
//

��

Mapfg(∆, K0(k -mod))

��

K0(k
′C ) // K̂0(k

′C )
σ−1

∼ // Mapfg(∆, K0(k
′-mod))

where the vertical maps are induced by the functor k ′⊗k −.

F.1.H. Decomposition maps. — Assume k is a discrete valuation ring with residue
field k̄ and field of fractions K . It follows from §F.1.E that there is a decomposition
map

d : K0(K C )→ K0(k̄C )
with the property that d ([K M ]) = [k̄ M ] when M is an object of C [Γ ] where Γ is a
finitely generated ideal of ∆ and Hom(P, M )∈ k -proj for all P ∈ Proj(C [Γ ]).

We construct now decomposition maps over more general local rings k , using
completed Grothendieck groups.

Assume k is a local integral ring with residue field k̄ and field of fractions K . We
have canonical isomorphisms dimK : K0(K -mod)

∼−→ Z and dimk̄ : K0(k̄ -mod)
∼−→ Z.
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We define d̂ : K0(KC )
∼−→ K0(k̄C ) as the map making the following diagram commu-

tative

K̂0(K C )
σ−1

∼
//

d̂
��

Mapfg(∆,Z)

K̂0(k
′C )

σ−1

∼ // Mapfg(∆,Z)

Proposition F.1.39. — Let M ∈ C and let Γ be a finitely generated ideal of ∆ such that

M ∈C [Γ ]. Assume Hom(P, M ) ∈ k -proj for all P ∈ Proj(C [Γ ]). Then d̂ ([[K M ]]) = [[k M ]].

Proof. — Assume first ∆ is finite. There are objects D̄ of C for D ∈ ∆ such that
Exti (D , D̄ ′) =δ0iδD ,D ′ for all D , D ′ ∈∆ and i ¾ 0 (Proposition F.1.16 and [Rou, Propo-
sition 4.19]). The assumption on M guarantees that it has a finite projective resolu-
tion 0→ P −n → ·· ·→ P 0→M → 0 [Rou, Proposition 4.23]. As a consequence, [[M ]] =
σ(D 7→
∑

i ¾ 0(−1)i [Hom(P i , D̄ )]). Since dimK [HomKC (K P i , K D̄ )] = dimk [HomkC (k P i , k D̄ )],
the proposition follows.

Consider the general case. Let Γ be a finitely generated ideal of ∆ such that
M ∈ C [Γ ]. Let Ω be a finitely generated ideal of Γ such that Γ \Ω is finite. There
exists a projective object of C [Γ ] whose image in C [Γ ]/C [Ω] is a progenerator, and
Hom(P, M ) ≃ Hom(qΩ(P ), qΩ(M )) (cf proof of Lemma F.1.19). Since the proposition
holds for qΩ(M ), we deduce that it holds for M .

When k is a discrete valuation ring, there is a commutative diagram

K0(K C ) //

d
��

K̂0(K C )
σ−1

∼
//

d̂
��

Mapfg(∆,Z)

K0(k̄C ) // K̂0(k
′C )

σ−1

∼ // Mapfg(∆,Z)

F.1.I. Blocks. — We assume in §F.1.I that Spec k is connected.
We define the equivalence relation ∼ on ∆ as the one generated by D ∼D ′ when

Exti
C (D , D ′) 6= 0 for some i ∈ {0, 1}. This is the equivalence relation generated by the

partial order ⋖ (cf Proposition F.1.8).

Proposition F.1.40. — Given I ∈∆/∼, the full subcategory C [I ] of C is an indecompos-

able Serre subcategory whose objects are the quotients of objects ofC I . It is a highest weight

category with poset of standard objects I . We have C =⊕I ∈∆/∼C [I ].

Proof. — Let I , J ∈∆/∼with I 6= J . Given M ∈C I and N ∈C J , we have Ext1(M , N ) =

0 and Hom(M , N ) = 0. It follows that C ∆ =⊕I ∈∆/∼C I . We deduce that a quotient of
an object of C I is in C [I ].
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Let L ∈C . There is an exact sequence M
f−→N → L → 0 with M , N ∈C ∆. We have

decompositions M =
⊕

I ∈∆/∼M I , N =
⊕

I ∈∆/∼N I and f =
∑

I f I with f I : M I → N I

and M I , N I ∈ C I . It follows that L =
⊕

I coker f I and coker f I is a quotient of an
object of C I . Assume L ∈ C [I ]. Consider J 6= I . We have Hom(N J , L ) = 0, hence
coker f J = 0. It follows that L = coker f I is the quotient of an object of C I . We have
shown that C =⊕I ∈∆/∼C [I ].

Let e be an idempotent of the center of C [I ]. Note that e acts by 0 or 1 on an
object of ∆. Let Ie be the subset of I of objects on which e acts by 0. Given D , D ′ ∈ I

with Exti (D , D ′) 6= 0 for some i ∈ {0, 1}, we have D , D ′ ∈ Ie or D , D ′ ∈ I \ Ie . We deduce
that I = Ie or Ie = ;. Since every object of C [I ] is the quotient of an object of C I , it
follows that e = 0 or e = 1. So, C [I ] is indecomposable.

Since (C ,∆,⋖) is a highest weight category (Proposition F.1.8), it follows that C [I ]
is a highest weight category with set of standard I and partial order ⋖, hence it is a
highest weight category with the partial order <.

Lemma F.1.41. — Let D , D ′ ∈∆.

We have D ∼D ′ if and only if there is a finitely generated ideal Γ of ∆ and an ideal Ω of

Γ such that Γ \Ω is a finite set containing D and D ′ and such that qΩ(D ) and qΩ(D
′) are in

the same block of C [Γ ](Ω).

Proof. — Let Γ be a finitely generated ideal of ∆ and Ω an ideal of Γ such that Γ \Ω
is a finite set containing D and D ′. We have Exti

C (D , D ′)≃ Exti
C [Γ ](Ω)(qΩ(D ), qΩ(D

′)) for
i ∈ {0, 1} (cf proof of Proposition F.1.18).

We have D ∼ D ′ if and only if there exists D0 = D , D1, . . . , Dn = D ′ in ∆ such that
Ext∗(Di , Di+1) 6= 0 or Ext∗(Di+1, Di ) 6= 0 for some ∗ ∈ {0, 1}, for all i ∈ {0, . . . , n − 1}.
So, D ∼ D ′ if and only if there is a finitely generated ideal Γ of ∆, an ideal Ω
of Γ and D0 = D , D1, . . . , Dn = D ′ in Γ \ Ω such that Ext∗C [Γ ](Ω)(qΩ(Di ), qΩ(Di+1)) 6= 0 or
Ext∗C [Γ ](Ω)(qΩ(Di+1), qΩ(Di )) 6= 0 for some ∗ ∈ {0, 1}, for all i ∈ {0, . . . , n − 1}: this is equiv-
alent to the requirement that qΩ(D ) and qΩ(D

′) are in the same block of C [Γ ](Ω) by
Proposition F.1.40.

Given Γ a finitely generated ideal of ∆ and Ω an ideal of Γ such that Γ \Ω is a finite
set containing D and D ′, there is a finite family BΓ ,Ω of prime ideals of k such that
given a prime ideal q of k , we have kq⊗k D ∼ kq⊗k D ′ if and only if p⊂ q.

Lemma F.1.42. — Let D , D ′ ∈ ∆ and let k ′ be a commutative noetherian k -algebra that

is a finitely generated module over a localization of k . If k ′ ⊗k D ∼ k ′ ⊗k D ′ in k ′∆ then

D ∼D ′.

Proof. — Assume first ∆ is finite. In that case, the result is classical: we have
R Hom•

k ′C (k
′D , k ′D ′) ≃ k ′ ⊗L R Hom•

C (D , D ′). So, if Ext∗
k ′C (k

′D , k ′D ′) 6= 0 for some
∗ ∈ {0, 1}, then Ext∗C (D , D ′) 6= 0 for some ∗ ¾ 0.
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Consider D =D0, . . . , Dn =D ′ in∆with Ext∗
k ′C (k

′Di , k ′Di+1) 6= 0 or Ext∗
k ′C (k

′Di+1, k ′Di ) 6=
0 for some ∗ ∈ {0, 1} for all i ∈ {0, n−1}. We have Ext∗C (Di , Di+1) 6= 0 or Ext∗C (Di+1, Di ) 6= 0

for some ∗ ¾ 0 for all i ∈ {0, n − 1}. It follows that D and D ′ are in the same block of
C , hence D ∼D ′ by Proposition F.1.40.

The general case follows from Proposition F.1.27 and its proof.

Proposition F.1.43. — Assume k is integral and integrally closed. One of the following

holds:

– Given p a prime ideal of k , a subset of ∆ corresponds to a block of kpC if and only if it

is a block of K C , where K is the field of fractions of k .

– There exists a family F of height one prime ideals of k with the following property:

given p a prime ideal of k , a subset of ∆ corresponds to a block of kpC if and only if it

is a union of blocks of kqC for any q ∈F with q⊂ p.

In the second case,F is a union over the set of finite subsets of ∆, of finite sets.

Proof. — Assume ∆ is finite. We have C ≃ A-mod where A is a k -algebra that
is finitely generated and projective as a k -module. The proposition follows from
Proposition F.1.40 and Proposition D.2.11

The general case follows from Lemma F.1.41. The set F is the union of the finite
sets associated with the categories C [Γ ](Ω), where Γ runs over finitely generated
ideals of ∆, Ω runs over ideals of Γ such that Γ \Ω is finite and generates Γ as an ideal
of ∆.

Remark F.1.44. — Proposition F.1.42 shows that if D 6∼D ′, then kq⊗k D 6∼kq⊗k D ′ for
all prime ideals q of k . �

F.2. Triangular algebras

The construction of a highest weight category from representations of triangular
algebras in [GGOR, §2] is done under the presence of a grading coming from an
inner derivation. The method used there does not actually use that the gradings
are inner, and we describe here constructions following [GGOR, §2], with a more
general setting.

F.2.A. Definition. — Let A be a graded k -algebra with three graded subalgebras
B+, B− and H such that

(i) H , B− and B+ are flat k -modules
(ii) the multiplication map µ : B+⊗H ⊗B−→ A is an isomorphism of k -modules

(iii) µ(B+ ⊗H ) =µ(H ⊗B+) and µ(B−⊗H ) =µ(H ⊗B−)

(iv) B>0
− = B<0

+
= 0, B 0

− = B 0
+
= k and H =H 0
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Given ε ∈ {+,−}, the canonical map H → (BεH )/(BεH )<0 is an isomorphism. Com-
posing its inverse with the quotient map, we obtain a canonical morphism of graded
k -algebras BεH ։H .

We identify the category of H -modules with the category of graded H -modules
that are concentrated in degree 0.

F.2.B. Induced modules. —

F.2.B.1. Given F a graded (B−H )-module, we put ∆(F ) = A ⊗B−H F . Note that ∆ is
an exact functor that is left adjoint to the restriction functor from the category of
graded A-modules to the category of graded (B−H )-modules.

There is a canonical isomorphism of graded (B+H )-modules

B+H ⊗H F
∼−→∆(F )

and a canonical isomorphism of graded B+-modules

B+⊗ F
∼−→∆(F ).

When E is an H -module, we view E as a graded (B−H )-module concentrated in
degree 0 through the canonical map p : B−H ։H and put ∆(E ) =∆(p ∗(E )). There is
a canonical isomorphism of graded (B+H )-modules

B+H ⊗H E
∼−→∆(E ).

Let n ¾ 0. We put

∆n (E ) =∆
��
(B−H /(B−H )<−n

�
⊗H E
�
.

Note that ∆0(E ) =∆(E ) and ∆n (E ) has a filtration with subquotients

∆(E ),∆
�
(B−H )−1⊗H E
�
, . . . ,∆
�
(B−H )−n ⊗H E
�
.

F.2.B.2. Given M a B−-module and n a non-positive integer, let AnnB<n
− (M ) = {m ∈

M |B<n
− m = 0}, a B−-submodule of M . We put Mln =

⋃
n<0 AnnB<n

− (M ) and we say that
M is locally nilpotent for B− if M =Mln. The functor M 7→Mln is right adjoint to the
inclusion functor from the category of locally nilpotent B−-modules to the category
of B−-modules.

Note that

– When M is a graded B−-module, Mln is a graded B−-submodule of M .
– If M is a (B−H )-module, then Mln is a (B−H )-submodule of M , since H B<n

− =

(H B−)
<n = (B−H )<n = B<n

− H .

Assume now M is an A-module. Since (B−)<i H (B+) j ⊂ A<i+ j ⊂ A(B−)<i+ j for i+ j < 0,
it follows that Mln is A-submodule of M . We deduce that M 7→Mln is right adjoint
to the inclusion functor from the category of A-modules (resp. graded A-modules)
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that are locally nilpotent as B−-modules to the category of A-modules (resp. graded
A-modules).

Let M ∈ A-modgr and E ∈H -modgr. We have an isomorphism of k -modules

HomA-modgr(∆n (E ), M )
∼−→HomH -modgr(E ,AnnB<−n

− (M )), f 7→ f|1⊗E

If E is concentrated in degree d , then

HomH -modgr(E ,AnnB<−n
− (M )) =HomH (E ,

�
AnnB<−n

− (M )
�

d
)⊂HomH (E , Md ).

Note that if M is a finitely generated graded A-module that is locally nilpotent
for B−, then M<i = 0 for i ≪ 0.

Lemma F.2.1. — Let M ∈ A-modgr, let E be an H -module, let d ∈ Z and let i ∈ Z such

that M<i = 0. Then the canonical map HomA-modgr(∆n (E )〈−d 〉, M )→HomH (E , Md ) is an

isomorphism for n ¾ d − i .

Proof. — We have
�
AnnB<−n

− (M )
�

d
= Md since (B−)<−n Md ⊂ M<d−n = 0 and the result

follows.

Lemma F.2.2. — Let E , E ′ ∈H -mod and let d ∈Z.

If d < 0, then HomA-modgr(∆(E ),∆(E
′〈d 〉)) = 0

The functor ∆ induces an isomorphism

HomH (E , E ′)
∼−→HomA-modgr(∆(E ),∆(E

′)).

Proof. — We have

Hom-modgr(∆(E ),∆(E
′〈d 〉))≃HomB−H -modgr(E ,∆(E ′)〈d 〉)

If d < 0 then (∆(E ′)〈d 〉)0 = 0, hence HomB−H -modgr(E ,∆(E ′)〈d 〉) = 0. This shows the
first statement.

Note that E ′ =∆(E ′)0 is a (B−H )-submodule of ∆(E ′). It follows that

HomB−H -modgr(E ,∆(E ′))≃HomH (E , E ′)

and the second statement follows.

F.2.C. Category O g r . — We fix a set I of isomorphism classes of H -modules that
are finitely generated as k -modules.

We assume that

(v) given E ∈ I , every submodule of E is a quotient of a finite multiple of E

(vi) EndH (E ) = k for all E ∈ I

(vii) HomH (E , F ) = 0 for all E , F ∈ I with E 6≃ F

(viii) the H -modules
�
(B+H )¾ n/(B+H )>n

�
⊗H E and
�
(B−H )¶ −n/(B−H )<−n

�
⊗H E are di-

rect summands of finite direct sums of objects of I for all E ∈ I and n ¾ 0

(ix) the A-module ∆(E ) is noetherian for all E ∈ I .
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We denote by OH the full subcategory of H -Mod with objects the quotients of
finite direct sums of objects in I . Note that OH is an abelian subcategory of H -Mod

closed under quotients and subobjects, and I is a set of projective generators for OH .
There is an equivalence of categories

⊕
E ∈I

Hom(E ,−) : OH

∼−→ (k -mod)(I ).

Example F.2.3. — Assume there is a field k0 that is a subalgebra of k and a split
semisimple k0-algebra H0 such that H =H0⊗k0

k . Let I = {L⊗k0
k}, where L runs over

the set of isomorphism classes of simple H0-modules. The assumptions (v)-(viii)
above are satisfied. �

Remark F.2.4. — Note that Assertion (ix) is satisfied if B+ is noetherian: since E is
a finitely generated k -module, it follows that every B+-submodule of ∆(E )≃ B+⊗E

is finitely generated. �

We denote by O g r the category of finitely generated graded A-modules M that
are locally nilpotent for B− and satisfy M i ∈OH for all i ∈Z. Note that if OH is closed
under extensions, then O g r will also be closed under extensions.

Lemma F.2.5. — Let M be a graded A-module. The following conditions are equivalent

(i) M ∈O g r

(ii) there exists a finite family S of objects of I , dE ∈ Z and nE ∈ Z¾ 0 for E ∈ S such that

M is a quotient of
⊕

E ∈S∆nE
(E 〈dE 〉).

Proof. — Assume (i). There is a finite subset J of Z such that M is generated by⊕
j∈J M j as an A-module. Given j ∈ J , there is a finite family S j of objects of I and

a surjective morphism of H -modules f j :
⊕

E ∈Sj
E ։M j . By adjunction, we obtain a

morphism of graded (B−H )-modules g j :
⊕

E ∈Sj
B−H ⊗H E 〈− j 〉→M . Let E ∈ S j . Since

f j (E ) is a finitely generated H -module, there is a non-negative integer nE such that
(B−)

¶ −nE f j (E ) = 0. So, g j factors through a morphism of graded (B−H )-modules
h j :
⊕

E ∈Sj

�
(B−H )/(B−H )¶ −nE

�
⊗H E 〈− j 〉→M . Let

h ′
j

:
⊕
E ∈Sj

A⊗B−H

�
(B−H )/(B−H )¶ −nE

�
⊗H E 〈− j 〉→M

be the morphism of graded A-modules obtained from h j by adjunction. The map∑
j∈J h ′

j
is surjective and this shows (ii) holds.

Assume (ii). Let E ∈ I . Note that (∆n (E ))<−n = 0, hence B<−n−i
− (∆n (E ))i = 0. It fol-

lows that ∆n (E ) is locally nilpotent for B−. There is an isomorphism of H -modules
(B−H )/(B−H )<−n ≃⊕n

i=0
(B−H )¶ −i/(B−H )<−i , hence

∆n (E )
i ≃
⊕

j

(B+H )i+ j ⊗H

�
(B−H )− j ⊗H E
�
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is isomorphic to a direct summand of a finite direct sum of objects of I . We deduce
that ∆n (E ) ∈O g r .

Since O g r is closed under taking finite direct sums, quotients and shifts, it follows
that (i) holds.

Lemma F.2.6. — Let E ∈ I , n ∈Z¾ 0 and let M ∈O g r . If M <−n = 0, then Ext1
O g r (∆n (E ), M ) =

0.

In particular, given E ′ ∈ I and d ¶ n , we have Ext1
A-modgr

(∆n (E ),∆(E
′〈d 〉)) = 0.

Proof. — We have

Hom-modgr(A⊗B−H (B−H )<−n ⊗H E , M )≃Hom(B−H )-modgr((B−H )<−n ⊗H E , M ) = 0

since ((B−H )<−n ⊗H E )i = 0 for i ¾ −n , while M i = 0 for i <−n .
There is an exact sequence of graded A-modules

0→ A⊗B−H (B−H )<−n ⊗H E → A⊗H E →∆n (E )→ 0.

Since A⊗H E is projective in the category of graded A-modules whose restriction to
H is in OH , we deduce that Ext1

O g r (∆n (E ), M ) = 0.

Let ∆g r = {∆(E 〈n〉)}E ∈I , n∈Z, a set of objects of O g r (cf Lemma F.2.5). We put a
partial order on ∆g r : given E , F ∈ I and i , j ∈Z, we put E 〈i 〉< F 〈 j 〉 if i < j .

Theorem F.2.7. — O g r is a highest weight category with poset of standard objects ∆g r .

Proof. — Since OH is closed under taking quotients, we deduce that that O g r is a
full subcategory of A-modgr closed under taking quotients. Let E ∈ I . By (ix), every
A-submodule of ∆n (E ) is finitely generated. So, all subobjects of objects of O g r are
finitely generated as B+-modules by Lemma F.2.5. We deduce that O g r is closed
under taking subobjects, since OH has that property.

We check now the conditions of Definition F.1.1. Conditions (i) and (ii) are given
by Lemma F.2.2, and (iii) by Lemma F.2.5.

Let E , E ′ ∈ I , d ∈Z and M ∈O g r . By Lemma F.2.5, there is m ¾ 0 such that M <−m =

0. It follows from Lemma F.2.6 that Ext1
O g r (∆n (E ), M ) = 0 for n ¾m . There is m ′ ¾ 0

such that ∆(E ′)d is killed by B<−m ′
− . Consequently given n ¾m ′, we have

HomO g r (∆n (E ),∆(E
′〈d 〉))≃HomH -modgr(E ,AnnB<−n

− (∆(E
′〈d 〉))) =HomH -modgr(E ,∆(E ′)d ).

Since ∆(E ′)d is a direct summand of a finite direct sum of objects of I , we deduce
that HomO g r (∆n (E ),∆(E

′〈d 〉)) ∈ k -proj. So, (iv) holds.

F.2.D. Inner grading. — We assume in §F.2.D that k is a Q-algebra and that there
is h ∈ A such that Ai = {a ∈ A | ha −a h = i a } for all i ∈Z. We assume that A 6= A0.

Lemma F.2.8. — There is a unique decomposition h = h ′+h0 where h ′ ∈ B+⊗H ⊗B<0
− and

h0 ∈ Z (H ).
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Proof. — We have h ∈ A0. Write h = h ′+h0 where h ′ ∈ B+⊗H ⊗B<0
− and h0 ∈ B+⊗H .

Since h0 ∈ A0, it follows that h0 ∈ H . Let a ∈ H . We have 0 = [h , a ] = [h ′, a ] + [h0, a ].
Since [h ′, a ]∈ B+⊗H ⊗B<0

− and [h0, a ]∈H , we deduce that [h0, a ] = 0. This shows that
h0 ∈ Z (H ).

Let E ∈ I . The action of h0 on E is given by multiplication by an element CE of k .
Note that h acts by CE + i on ∆(E )i .

We put L =
⋃

E ∈I (CE +Z)⊂ k . Let ∼ be the equivalence relation on L generated by
λ∼ λ′ if λ−λ′ 6∈k×. We assume in section §F.2.D that

(x) CE 6∼CE + i for i ∈Z−{0}.

We define a relation on I as the transitive closure of the relation E > F if there
exists a maximal ideal m of k such that the image of CE −CF in k/m is contained in
Z>0. Our assumption above ensures that > is a partial order on I .

Let O be the category of finitely generated A-modules with are locally nilpotent
for B− and whose restriction to H is the quotient of a (possibly infinite) direct sum
of objects of I .

Let M ∈ A-Mod. Given λ ∈ k , we put

Wλ(M ) = {m ∈M | (h −λ)n m = 0 for n ≫ 0}.

Given α ∈ L/∼, we putWα(M ) =
∑
λ∈αWλ(M ).

We denote by O g r,α the full subcategory of O g r of objects M such that M i ⊂
Wi+α(M ) for all i ∈ Z. We denote by O α+Z the full subcategory of O of objects M

such that M =
∑

i∈ZWi+α(M ).

Proposition F.2.9. — We have O g r =
⊕
α∈L/∼O g r,α and O =⊕α+Z∈(L/∼)/ZO α+Z. Further-

more, given α ∈ L/∼, the forgetful functor gives an equivalence O g r,α ∼−→O α+Z.
Fix an element β̃ ∈ L/ ∼ for each β ∈ (L/ ∼)/Z. There is an equivalence of graded

categories O (Z) ∼−→O g r sending ∆(E ) to ∆(E )〈ãCE +Z−CE 〉.

Proof. — Let M ∈ O . Let us first show that M =
∑
λ∈LWλ(M ). This is clear when

M =∆(E ) for some E . It follows that it holds also when M =∆n (E ), hence for M a
direct sum of ∆n (E )’s. One shows as in Lemma F.2.5 that every object M ∈ O is a
quotient of a finite direct sum of ∆n (E )’s, hence the result holds for M . So, we have
an H -module decomposition M =

⊕
α∈L/∼Wα(M ).

Let M (α + Z) =
⊕

i∈ZWα+i (M ): this is an A-submodule of M in O α+Z and M =⊕
α+Z∈(L/∼)/ZM (α+Z). This gives the required decomposition of O .
Assume now M ∈O g r . Let M (α)i =Wi+α(M )∩Mi and M (α) =

⊕
i∈ZM (α)i , a graded

A-submodule of M contained in O g r,α. We have M =
⊕
α∈L/∼M (α), and this provides

the required decomposition of O g r .
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Let M ∈ O α+Z. Let M i = Wα+i (M ). This defines a structure of graded A-module
on M , and gives an object M ′ of O g r,α. The construction M 7→M ′ is inverse to the
forgetful functor O g r,α→O α+Z.

Consider now an element β̃ ∈ L/ ∼ for each β ∈ (L/ ∼)/Z. We have constructed
an equivalence F : O β ∼−→ O g r,β̃ . These functors extend uniquely to the required
equivalence of graded categories O (Z) ∼−→O g r .

From Proposition F.2.9 and Theorem F.2.7, we deduce the following result ([GGOR,
Theorem 2.19] when k is a field). Let ∆= {∆(E )}E ∈I , with the poset structure of I .

Theorem F.2.10. — O is a highest weight category with poset of standard objects ∆.

Example F.2.11. — Let g be a finite dimensional reductive Lie algebra over k = C.
Let b+ be a Borel subalgebra and h⊂ b+ a Cartan subalgebra. Let b− be the opposite
Borel subalgebra. Let A =U (g), B± =U (b±) and H =U (h). Let h ∈ h be the sum of the
simple coroots. We consider the inner grading on h, hence on A defined by ad(h ).
We have b<0

+
= b>0

− = b
6=0 = 0 and b0

− = b0
+
=C.

We take for I the set of isomorphism classes of simple h-modules, so that OH is
the category of semisimple h-modules. Then O is the usual BGG category. �

Remark F.2.12. — If the grading on A is not inner, then O is not a highest weight
category in general.
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