
HAL Id: hal-01579379
https://hal.science/hal-01579379

Submitted on 31 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Fractional Step Method to Simulate Mixed Flows in
Pipes with a Compressible Two-Layer Model

Charles Demay, Christian Bourdarias, Benoit de Laage de Meux, Stéphane
Gerbi, Jean-Marc Hérard

To cite this version:
Charles Demay, Christian Bourdarias, Benoit de Laage de Meux, Stéphane Gerbi, Jean-Marc Hérard.
A Fractional Step Method to Simulate Mixed Flows in Pipes with a Compressible Two-Layer Model.
Clément Cancès - Pascal Omnes. PROMS, 200, pp.33 - 41, 2017, Springer Proceedings in Mathematics
and Statistics, �10.1007/978-3-319-57394-6_4�. �hal-01579379�

https://hal.science/hal-01579379
https://hal.archives-ouvertes.fr


A fractional step method to simulate mixed flows
in pipes with a compressible two-layer model

Charles Demay, Christian Bourdarias, Benoı̂t de Laage de Meux, Stéphane Gerbi
and Jean-Marc Hérard

Abstract The so-called mixed flows in pipes include two-phase stratified regimes
as well as single-phase pressurized regimes with transitions. It is proposed to han-
dle those configurations numerically with the compressible two-layer model devel-
oped in [7]. Thus, a fractional step method is proposed to deal explicitly with the
slow propagation phenomena and implicitly with the fast ones. It results in a large
time-step scheme accurate in both regimes. Numerical experiments are performed
including convergence results and academical test cases.

Key words: Two-layer model, implicit-explicit scheme, mixed flow

1 Introduction

We focus on air-water flows in pipes and particularly on the so-called mixed flows.
The latter include stratified regimes driven by slow surface waves as well as pres-
surized regimes (pipe full of water or air) driven by fast acoustic waves. This type
of flow occurs in piping systems of several industrial areas such as nuclear and hy-
draulic power plants or sewage pipelines.

Numerous modelling and numerical issues are tackled when dealing with mixed
flows due to the different nature of each regime. Using a 1D approach, a model
with an associated numerical scheme is proposed in [1] without computing the air
phase. With the aim of accounting for air-water interactions, a compressible two-
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layer model is developed in [7]. It results in an hyperbolic two-phase two-pressure
model which presents strong similarities with the isentropic form of two-fluid mod-
els introduced in [3]. In that framework, classical explicit schemes bring large nu-
merical diffusivity in the slow stratified regime.

Thus, a fractional step method is derived herein to split the slow dynamics from
the fast dynamics and adapt the numerical treatment. This approach is used in [2, 5]
for the Baer-Nunziato model and more recently in [6] for the model under consid-
eration. Furthermore, an implicit-explicit time discretization is also proposed in the
sequel to end up with a large time-step scheme and get accuracy in the stratified
regime. Contrary to the work presented in [6], the overall approach is driven by
the fast pressure relaxation and the shallow-water structure of the system such that
interesting results are obtained even for low speed flows.

2 The compressible two-layer model

The considered model deals with stratified gas-liquid flows in pipes. It results from
a depth-averaging of the isentropic Euler set of equations for each phase where the
classical hydrostatic assumption is made for the liquid, see [7] for details. Consid-
ering a two-layer air-water flow through a pipe of height H, it reads:

∂th1 +UI∂xh1 = λp(PI−P2(ρ2)),

∂tmk +∂xmkuk = 0,

∂tmkuk +∂xmku2
k +∂xhkPk(ρk)−PI∂xhk = (−1)k

λu(u1−u2),

(S )

where k = 1 for water, k = 2 for air, mk = hkρk and h1+h2 = H. Here, hk, ρk, Pk(ρk)
and uk denote respectively the height, the mean density, the mean pressure and the
mean velocity of phase k. The interfacial dynamics is represented by the transport
equation on h1 while the other two equations account for mass and momentum con-
servation in each phase. The interfacial pressure is denoted by PI and closed by the
hydrostatic constraint, while the interfacial velocity is denoted by UI and closed
following an entropy inequality, one obtains (see [7]):

(UI ,PI) = (u2,P1(ρ1)−ρ1g
h1

2
), (1)

where g is the gravity field magnitude. As the phases are compressible, state equa-
tions are required for gas and liquid pressures. For instance, perfect gas law may be
used for air and linear law for water. The celerity of acoustic waves is defined by

ck =
√

P′k(ρk). Regarding the source terms, λp and λu are positive bounded func-
tions accounting for relaxation time scales.

Properties of (S )

(i) Smooth solutions of (S ) comply with an entropy inequality.
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(ii) The convective part of (S ) is hyperbolic under the condition |u1− u2| 6= c1.
Its eigenvalues are unconditionally real and given by λ1 = u2, λ2,3 = u1± c1,
λ4,5 = u2±c2. The field associated with the 1-wave is linearly degenerate while
the other fields are genuinely nonlinear.

(iii) Unique jump conditions hold within each isolated field.
(iv) The positivity of hk and ρk is verified.

The details and proofs are provided in [7]. Two additional properties of (S ) are used
in the proposed fractional step method. Firstly, using (1), the momentum equation
for water can be written under a Saint-Venant-like form (see [8]):

∂tm1u1 +∂xm1u2
1 +∂xρ1g

h2
1

2
+h1∂xPI = λu(u2−u1). (2)

Secondly, the pressure relaxation in the first equation of (S ) writes classically:

PI →
t→∞

P2, (3)

and this relaxation is very fast in our framework as λp� 1. In addition, regarding
the pressurized regime, (S ) degenerates towards a single-phase Euler system when
one phase vanishes, as soon as the source terms also vanish.

3 Fractional step method adapted to mixed flows

In order to handle both regimes included in mixed flows, the proposed fractional
step method splits (S ) into three sub-systems. The material component of (S ) is
treated in (Sm) including the pressure relaxation source term and using the Saint-
Venant structure (2) for the water phase:

∂th1 +u2∂xh1 = λp(PI−P2),

∂tmk +∂xmkuk = 0, k = 1,2,

∂tm1u1 +∂xm1u2
1 +∂xρ1g

h2
1

2
= 0,

∂tm2u2 +∂xm2u2
2 = 0.

(Sm)

(Sa) refers to the acoustic component of (S ) including the pressure gradients:
∂thk = 0, ∂tmk = 0, k = 1,2,
∂tm1u1 +h1∂xPI = 0,
∂tm2u2 +h2∂xP2 +(P2−PI)∂xh2 = 0,

(Sa)

where PI = P1(ρ1)−ρ1g h1
2 . Finally, (Su) deals with the velocity relaxation source

terms:
∂thk = 0, ∂tmk = 0, ∂tmkuk = (−1)k

λu(u1−u2), k = 1,2. (Su)
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A key feature is that the fast relaxation (3) solved in (Sm) is explicitly seen by (Sa).

Proposition 1 (Hyperbolicity of (Sm)). The convective part of (Sm) is weakly hy-

perbolic. Its eigenvalues are given by {u2;u1±
√

g h1
2 }.

(Sa) is not hyperbolic as its spectrum reduces to zero. This singularity is handled in
the sequel using a relaxation approach.

In the discrete setting, the time step is denoted ∆ t and the space step ∆x. The
space is partitioned into cells Ci = [xi− 1

2
,xi+ 1

2
[ where xi+ 1

2
= (i + 1

2 )∆x are the
cell interfaces. At times tn = n∆ t, the solution is approximated on each cell Ci by

Wn
i =

(
(h1)

n
i ,(h1ρ1)

n
i ,(h2ρ2)

n
i ,(h1ρ1u1)

n
i ,(h2ρ2u2)

n
i

)T
.

Step 1: Explicit scheme for (Sm). In this step, Wi is updated from W n
i to W ∗i . A

classical explicit finite-volume scheme with Rusanov fluxes is used on the convec-
tive part while the pressure relaxation source term is treated implicitly. It writes:

W∗
i =Wn

i −
∆ t
∆x

(
F(Wn

i+ 1
2
)−F(Wn

i− 1
2
)
)
− ∆ t

∆x
B(Wn

i )
(

Wn
i+1−Wn

i

)
+S(W∗

i ), (4)

where F(W) = (0,m1u1,m2u2,m1u2
1 +m1g h1

2 ,m2u2
2)

T , B(W) = (u2,0,0,0,0)T and
S(W) = (λp(PI−P2),0,0,0,0)T . The fluxes are defined by:

F(Wn
i+ 1

2
) =

1
2

(
(Wn

i +Wn
i+1)− ri+ 1

2
(Wn

i+1−Wn
i )
)
,

ri+ 1
2
= max

j∈{i;i+1}

(
|un

2, j|; |
(
u1 +

√
g

h1

2
)n

j |
)
.

(5)

In order to solve implicitly the source term, the mass terms mn
k,i are updated first and

the first equation in (Sm) is solved under the form f (h∗1,i) = 0 where:

f (y) = y−hn
1,i +∆ t

∫ x
i+ 1

2

x
i− 1

2

un
2

∂hn
1

∂x
dx−∆ tλ n

p,i

(
PI

(m∗1,i
y

)
−P2

( m∗2,i
H− y

))
. (6)

One may easily demonstrate that f is strictly increasing on [0;H] with the limits
f →

0+
−∞ and f →

H−
+∞, such that f (x) = 0 admits a unique solution h∗1,i on [0;H].

Proposition 2 (Positivity of heights and densities). The proposed scheme for (Sm)
ensures the positivity of heights and densities under the classical CFL condition:

∆ t
∆x

max
i

( ri+ 1
2
+ ri− 1

2

2

)
< 1, (7)

which only implies material velocities.

Step 2: Implicit relaxation approach for (Sa). In this step, only uk is updated
from u∗k to u∗∗k . The lack of hyperbolicity is handled with a relaxation approach, see
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[4, 5], introducing the system (S r
a ) which relaxes towards (Sa) in the limit ε → 0:

∂thk = 0, ∂tmk = 0, k = 1,2,
∂tm1u1 +h1∂xΠI = 0,
∂tm2u2 +h2∂xΠ2 +(Π2−ΠI)∂xh2 = 0,

∂tmkΠk +a2
khk∂xuk +a2

k(uk−u2)∂xhk =
1
ε

mk(Πk−Pk), k = 1,2,

(S r
a )

where ΠI = Π1− ρ1g h1
2 and Πk relaxing toward Pk as ε → 0. The PDE verified

by Πk is derived from the PDE verified by Pk in (S ). In addition, ak are positive
numerical parameters used to ensure the stability of the relaxation approximation in
the regime of small ε , their definition is provided later according to the flow regime.

Proposition 3 (Hyperbolicity of (S r
a )). When ak > 0, the convective part of (S r

a )
is strictly hyperbolic. Its eigenvalues are given by {0;± a1

ρ1
;± a2

ρ2
}.

In order to keep a numerical diffusivity based on the material CFL condition (7), an
implicit-explicit time discretization is proposed for the convective part of (S r

a ):
h∗∗k = h∗k ,m

∗∗
k = m∗k , k = 1,2,

(m∗∗1 u∗∗1 −m∗1u∗1)/∆ t +h∗∗1 ∂xΠ
∗∗
I = 0,

(m∗∗2 u∗∗2 −m∗2u∗2)/∆ t +h∗∗2 ∂xΠ
∗∗
2 +(Π ∗2 −Π

∗
I )∂xh∗2 = 0,

(m∗∗k Π
∗∗
k −m∗kΠ

∗
k )/∆ t +a2∗∗

k h∗∗k ∂xu∗∗k +a2∗
k (u∗k−u∗2)∂xh∗k = 0, k = 1,2.

(8)

Classical combinations on (8) lead to the following semi-discrete equations on uk:
u∗∗1 −u∗1

∆ t
− ∆ t

ρ∗1
∂x

(a2∗
1

ρ∗1
∂xu∗∗1

)
=− 1

ρ∗1
∂xP∗I +

∆ t
ρ∗1

∂x

(a2∗
1 (u∗1−u∗2)

m∗1
∂xh∗1

)
,

u∗∗2 −u∗2
∆ t

− ∆ t
ρ∗2

∂x

(a2∗
2

ρ∗2
∂xu∗∗2

)
=− 1

ρ∗2
∂xP∗2 −

(P∗2 −P∗I )
m∗2

∂xh∗2.

(9)

In (9), instantaneous relaxation (ε → 0) is assumed between Πk and Pk such that
Π ∗k = P∗k . Thus, the proposed implicit relaxation approach acts as a stabilization
process involving a diffusion term weighted by ak.

Definition 1. Under the light of (9), ak is defined according to the flow regime:

• In the stratified regime (h1 < H): the pressure gradient h1∂xPI in (Sa) is seen
as a source term. It accounts for variable interfacial pressure which can be in-
terpreted as air phase pressure due to the relaxation (3) solved in the first step.
Thus, a1 is set to zero.
• In the pressurized regime (h1 = H): the stabilization process is applied and a1

must follow the so-called Whitham condition: a2
1 > max

ρ1
(ρ2

1 c2
1), see [4, 5].

• In all the regimes, a2 follows the Whitham condition a2
2 > max

ρ2
(ρ2

2 c2
2).
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After integrating (9) on a cell Ci and using centered schemes for gradients, one
obtains an implicit system which may be written in matrix form:

A∗kU∗∗k = S∗k , (10)

where A∗k is a non-singular tridiagonal matrix (M-matrix structure) and S∗k corre-
sponds to the integrated source term. Calculations are not detailed here. In practice,
the diffusion coefficient (a2

k/ρk)
∗
i+ 1

2
is computed using an harmonic average and a

threshold on h1 is introduced to identify the flow regime.

Step 3: Implicit scheme for (Su). In this step, only uk is updated from u∗∗k
to un+1

k . The velocity relaxation source term is treated implicitly (except the λu
coefficient) such that the following non-singular 2x2 system is obtained:(

m∗∗1,i +∆ tλ ∗∗u,i −∆ tλ ∗∗u,i
−∆ tλ ∗∗u,i m∗∗2,i +∆ tλ ∗∗u,i

)(
un+1

1,i
un+1

2,i

)
=

(
(m1u1)

∗∗
i

(m2u2)
∗∗
i

)
. (11)

This step concludes the overall scheme which ensures the positivity of heights and
densities under the material CFL condition (7).

4 Numerical results

In this section, the proposed scheme is denoted SPr and compared with a classical
Rusanov scheme applied on (S ) under an acoustic CFL condition.

Riemann problem for the convective part. One considers an analytical solution
which contains two shocks for each phase traveling with the fast acoustic waves and
a contact discontinuity (slow wave) where h1 jumps. Without the pressure relaxation
(3), note that a1 follows the Whitham condition. Fields are displayed on figure 1 at
T = 23.10−5s with 500 cells. A mesh refinement is also performed to check the
numerical convergence of the method.

As expected, the SPr scheme is accurate on the slow wave. Regarding the fast
waves, it is more diffusive than Rusanov on phase 1 (the fastest) while better results
are obtained on phase 2. Indeed, the optimal regime for the Rusanov scheme is on
phase 1 with acoustic time steps. Stability and convergence towards relevant shock
solutions are obtained with the expected convergence rate 1

2 due to the contact dis-
continuity.

Dambreak. The source terms are activated and one considers the dambreak prob-
lem where the initial condition is a discontinuity on h1 with constant density and
zero speed. Regarding the water layer, the (incompressible) Saint-Venant system
admits an analytical solution, see [8]. As the compressibility of water as well as the
additional air layer should have a minor influence here, one expects to obtain the
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Fig. 1 Errors in L1-norm and fields at T = 23.10−5s with 500 cells for the Riemann problem
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Fig. 2 Fields at T = 24.10−3s with 1000 cells for the dambreak problem

same kind of solution for phase 1. Therefore, a 1m long pipe is considered with
(h1/H)L = 0.6 and (h1/H)R = 0.4 as initial conditions. The velocity and height
fields for phase 1 are plotted on figure 2 at T = 24.10−3s using 1000 cells.

Contrary to the results obtained with the large time-step scheme proposed in [6],
the SPr scheme displays accurate fields regarding the Saint-Venant solution. The
Rusanov scheme is highly diffusive and regarding CPU time, it needs 3 minutes
while SPr takes 6 seconds. Those results emphasize the fact that a classical explicit
scheme applied on (S ) is not adapted to low speed configurations.

Mixed flow. One considers a closed sloping pipe with constant height and zero
speed as initial conditions. The pipe is 5m long with H = 1m, h1 = 0.8m, θ = 30
degrees and a 250 cells mesh is used. The flow becomes pressurized at the bottom
(only water) and dried at the top (only air), see figure 3 for a snapshot of the water
height and figure 4 for the pressure field.
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Fig. 3 Pipe filling snapshots for water height with 250 cells

Interesting qualitative results are obtained which demonstrates the ability of the
SPr scheme to handle mixed flows. Regarding the pressure field, one observes oscil-
lations at the transition point between the regimes which are classical when dealing
with mixed flows, see [1]. Further validation is obviously needed using available
experimental data.
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Fig. 4 Pressure field and water height at T = 0.35s with 250 cells
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