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An Implicit Integral Formulation for the
Modeling of Inviscid Fluid Flows in Domains
Containing Obstacles

Clément Colas, Martin Ferrand, Jean-Marc Hérard, Erwan Le Coupanec and
Xavier Martin

Abstract We focus here on an integral approach to compute compressible invis-
cid fluid flows in physical domains cluttered up with many small obstacles. This
approach is based on a multidimensional porous integral formulation of Euler sys-
tem of equations. Its discretization uses a first order semi-implicit finite volume
scheme with pressure-correction algorithm preserving the positivity of both density
and pressure. Numerical tests are completed by simulating a 2D channel flow con-
taining two aligned tubes. The results are compared to reference solutions obtained
with a pure fluid approach on a fine mesh.
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1 Introduction

In this paper we introduce a way to investigate fluid flows in thermohydraulic cir-
cuits components in nuclear reactors where three so-called ”system”, ”component”
and ”local” representation scales coexist. The first one is a 0D/1D description and
aims at providing a real time simulation of full circuits. The third one is the CFD
scale and allows a fine description on restricted physical domains. The intermediate
scale relies on a homogenized representation of some components [7, 9]; it consists
in taking into account a fluid and solid volume in cells. Our purpose is to build a

C. Colas1,2 ·M. Ferrand1 · J-M. Hérard1,2 · E. Le Coupanec1

1EDF R&D, MFEE, 6 quai Watier, 78400, Chatou, France
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formulation embedding the ”local” and ”component” scales and ensuring the con-
tinuity between these two scales. A possible approach has been introduced in [6]
using explicit schemes. The basic idea consists in an integral formulation of PDEs
in a domain where a fluid flows around many small obstacles. Herein an implicit
finite volume scheme is considered, using the open-source code Code Saturne [4].
The compressible Euler equations (1) governing inviscid fluid flows are considered,
and the unknowns ρ , uuu, P respectively denote the density, the velocity and the pres-
sure of the fluid, while the momentum is QQQ = ρuuu. The volumetric total energy E
is such that E = ρ

(
uuu2

2 + ε(P,ρ)
)

. The internal energy ε(P,ρ) is prescribed by the
EOS (Equation Of State), fff is a mass volumetric external force and Φv a volumetric
heat transfer source term. Thus the set of governing equations is:

∂tρ + ∇ ·QQQ = 0
∂tQQQ + ∇∇∇ · (uuu⊗QQQ)+∇∇∇P = ρ fff
∂tE + ∇ · (uuu(E +P)) = ρ fff ·uuu+ρΦv

(1)

The speed of acoustic waves noted c is such that: c2 =
(

P
ρ2 −

∂ε(P,ρ)
∂ρ

)
/
(

∂ε(P,ρ)
∂P

)
.

The total enthalpy is: H = E+P
ρ

, and WWW is the conservative variable: WWW = (ρ,QQQ,E)t .

2 Integral Formulation

The integral form of conservation laws described in [8, 6] is considered. Set of
equations (1) is integrated on control volumes Ωi which may contain many solid
obstacles. All Ωi cells form a mesh of the computational domain Ω ⊂ Rd (d = 1,2
or 3), such that: Ω =∪iΩ i. The obstacles may be completely or partially included in
Ωi. Part of a control volume boundary may coincide with the surface of an obstacle.
Fig.1 is a sketch of the admissible situtations. In the sequel, the subscript i j refers
to interfaces between neighbouring control volumes Ωi and Ω j, and the superscript
φ refers to fluid volumes and interfaces i j where the fluid may cross the interface,
noted Γ

φ

i j of measure Sφ

i j = meas
(

Γ
φ

i j

)
. Besides, the superscript w refers to solid

interfaces where a wall boundary Γ w
i of measure Sw

i is located inside the control
volume Ωi or on its boundary. The mass flux is null through surfaces Sw

i . The volume
occupied by the fluid within the control volume Ωi is denoted by Ω

φ

i . Nonetheless,
a control volume Ωi may contain several fluid sub-domains Ω

φ

i,k (k ∈ J1,N(i)K with
N(i) the number of sub-elements), that are not connected to each other. We introduce
within each fluid sub-cell Ω

φ

i,k a mean value of the fluid state variable WWW (x, t) noted
WWW i,k(t). The mean fluid state variable in cell Ωi, WWW i(t), is introduced as follows:

meas
(

Ω
φ

i

)
WWW i(t) = ∑

k∈{1,··· ,N(i)}

∫
Ω

φ

i,k

WWW (x, t)dx
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Fig. 1 A (blue) control
volume Ωi includes (gray)
obstacles numbered from 1
to 5. Obstacles may: overlap
part of the boundary of cell
i (1); partially occupy one
fluid cell (or subcell) (2); and
split it into two fluid sub-cells
Ω

φ

i,1 and Ω
φ

i,2 (3); be totally
included in cell i or one of its
subcells (4); be aligned with
part of the boundary of cell i
(5). The dashed blue surface
corresponds to the fluid-fluid
part of the boundary Γ

φ

i,k
between sub-cells Ωi,k and
their neighbouring sub-cells
occupied by the fluid.

(1)

(5)

(6)

(3)

(2)

(4)

•
Ωi

Γ
φ

i,1
/ j,k
′

Ω
φ

j,k′

• Ω j

Ω
φ

i,1

Ω
φ

i,2

By additivity, using Ω
φ

i =
⋃

k∈{1,··· ,N(i)}Ω
φ

i,k, where Ω
φ

i,k are all mutually disjoint:

meas
(

Ω
φ

i

)
= ∑

k∈{1,··· ,N(i)}
meas

(
Ω

φ

i,k

)
The conservation laws (1) can be rewritten as follows:

∂tWWW +∇∇∇ ·FFF (WWW ) = DDD(WWW ) (2)

where FFF (WWW ) = (ρuuu,ρuuu⊗uuu+PI,uuu(E +P))t is the convective flux and DDD(WWW ) =
(0,ρ fff ,ρ ( fff ·uuu+Φv))

t represents the source term. Equation (2) is integrated over a
bounded time interval [t0, t1] ⊂ R+and space with respect to the Ω

φ

i,k sub-cell, the
divergence theorem allows to rewrite:∫

Ω
φ

i,k

(WWW (x, t1)−WWW (x, t0))dx+
∫ t1

t0

∫
Γi,k

FFF (WWW (x, t))·nnndΓ dt =
∫ t1

t0

∫
Ω

φ

i,k

DDD(WWW (x, t))dxdt

(3)
Here, Γi,k = ∂Ω

φ

i,k denotes the whole boundary of the fluid sub-cell Ω
φ

i,k with nnn the

outward normal vector. Fluid Γ
φ

i,k and wall Γ w
i,k boundaries of each sub-cell Ω

φ

i,k are

distinguished, such that: Γi,k = Γ
φ

i,k ∪Γ w
i,k and Γ

φ

i,k ∩Γ w
i,k = /0. Summing up over the

N(i) fluid sub-cells of the control volume Ωi, we get the integral formulation:

meas
(

Ω
φ

i

)
(WWW i (t1)−WWW i (t0)) + ∑

k∈{1,··· ,N(i)}

∫ t1

t0

∫
Γ

φ

i,k∪Γ w
i,k

FFF (WWW (x, t)) ·nnndΓ dt

= ∑
k∈{1,··· ,N(i)}

∫ t1

t0

∫
Ω

φ

i,k

DDD(WWW (x, t))dxdt
(4)
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3 Time Scheme

The time discretization of the dynamic equation (4) is based on an implicit first
order scheme. It is assumed that all numerical fluxes may be evaluated by means
of a standard finite volume method, considering one mean value Wn

i per cell Ωi
at each time tn. Wn

i is an approximation of WWW i(tn), and the time step at the nth

iteration is: ∆ tn = tn+1− tn. The numerical algorithm uses a fractional step method,
with prediction and correction of the pressure [5, 1]. Each time stepping is divided
in three steps: a mass balance step which is used to update the density and to predict
the pressure, a momentum balance step where the velocity is updated and an energy
balance step that allows to update the total energy and to correct the pressure. The
superscript (·)n+1,− states that the variable is implicit for the current step (or known
from the last step).

1. Mass balance

Pressure and density are implicit, while velocity and entropy are considered frozen
at time tn. The following scheme is set:

meas
(

Ω
φ

i

) 1
(c2)n

i

(
Pn+1,−

i −Pn
i

)
+∆ tn

∫
Γ

φ

i

QQQ∗ ·nnndΓ = 0 (5)

where:
(
c2
)n

= c2(Pn,ρn), and the approximation δP =
(
c2
)n

δρ is considered,
with δP = Pn+1,−−Pn. The approximation of the implicit mass flux QQQ∗ is:

QQQ∗ = QQQn−∆ tn
∇∇∇Pn+1,− (6)

and a two-point flux approximation is used:
∫

Γ
φ

i
∇∇∇φ ·nnndΓ = ∑ j∈V (i)(φ j−φi)S

φ

i j/hi j,
on admissible meshes.

2. Momentum balance

In this step, velocity (and momentum) is implicit, whereas density and pressure are
known from Equation (5), and total energy is frozen. Integration of the momentum
equation gives:

meas
(

Ω
φ

i

)(
QQQn+1,−

i −QQQn
i

)
+∆ tn

∫
Γ

φ

i

((QQQ∗ ·nnn)uuu)n+1,−dΓ +∆ tn
∫

Γi

Pn+1,−nnndΓ

−∆ tnmeas
(

Ω
φ

i

)
ρ

n+1,−
i fff n+1,−

i = 0 (7)

where: Pn+1,−
w is equal to Pn+1,−

i for all wall interfaces of cell i. This second step
provides the velocity uuun+1,− and thus QQQn+1,− = ρn+1,−uuun+1,−, using:

((QQQ∗ ·nnn)φ)i j = (QQQ∗ ·nnn)i j φ
upwind
i j (8)

with: φ
upwind
i j = βi jφi +(1−βi j)φ j, and: βi j = max

(
0,sgn(QQQ∗ ·nnn)i j

)
.
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3. Energy balance

Total energy is implicit while pressure, density and velocity are explicit from the
previous steps. Using upwind scheme (8), the total energy En+1,− is updated:

meas
(

Ω
φ

i

)(
En+1,−

i −En
i

)
+∆ tn

∫
Γ

φ

i

(
(QQQ∗ ·nnn)E +P

ρ

)n+1,−
dΓ

−∆ tnmeas
(

Ω
φ

i

)
(ρ fff ·uuu+ρΦv)

n+1,−
i = 0 (9)

Property 1 (Positivity of the density and the pressure):

If the initial conditions are such that: ρn
i > 0 and Pn

i > 0 and the EOS is such that:
γ̂ = ρc2/P > 1. The density ρ

n+1,−
i and the pressure Pn+1,−

i remain positive for all
i, if the time step ∆ tn complies with the CFL-like condition (10):

meas
(

Ω
φ

i

)
≥ ∆ tn

∑
j∈V (i)

βi j

(
ρic2

i
Pi

)n

(uuun ·nnn)i j Sφ

i j (10)

Sketch of proof. Equation (5) gives an invertible linear system: A(Pn+1,−
i ) = B with

A−1 ≥ 0, and also B≥ 0 if and only if condition (10) holds, thus implying Pn+1,−
i ≥

0. To be conservative, we have set: ρ
n+1,−
i = (c−2)n

i Pn+1,−
i +ρn

i (γ̂
n
i −1)/γ̂n

i which
completes the proof: ρ

n+1,−
i ≥ 0, since γ̂ > 1.

Eventually, the variables are updated: ρn+1 = ρn+1,−, uuun+1 = uuun+1,−, En+1 =

En+1,−, and Pn+1 = P(ρn+1,εn+1), where: ρn+1εn+1 = En+1−0.5ρn+1
(
uuun+1

)2.

4 Numerical Results

Mesh refinement impact

Numerical approximations obtained thanks to this new approach are compared with
approximate solutions of the fluid model when the mesh perfectly matches obstacles
inside the computational domain (i.e. without any porous control volume). The inte-
gral approach is applied on porous meshes so that fluid cells are partially obstructed
by obstacles. The numerical example consists in computing the steady flow of a
compressible inviscid fluid in a channel aligned with the x-direction. At mid-length,
the channel is cluttered by two identical, steady and impermeable tubes aligned with
it. A sketch of the test case is displayed on Fig.2. The two-dimensional computa-
tional domain is Ω = [0,L]× [0,h]. It contains a discontinuous transition interface
between a totally fluid area and an obstructed area at x = L

2 . We consider admissi-
ble meshes, with faces aligned with the obstacles. At the inlet and outlet sections
of the domain, boundary conditions from the resolution of half Riemann problems
are enforced [3] and a steady state is computed. Slip wall boundary conditions are
imposed at the top (y = h) and bottom (y = 0) of the computational domain. The
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time step is controlled by the CFL-like condition (10). Several numerical approxi-

Sin

h

h/5

h/5

Sout
h/5

Sw

L/2

Ω

Fig. 2 The Ω domain has a L×h size, containing two internal obstacles (in gray). They lie in the
downstream middle of Ω and are spaced of h

5 such that Sout +Sw = Sin . The fluid flows from the
left inlet towards the right outlet.

mations of the steady state are obtained using coarse and fine meshes. Six meshes
are perfectly adapted to the domain, thus including either totally fluid cells or fully
solid cells. They are respectively composed of 24× 5, 48× 10, 96× 20, 192× 40,
384× 80 and 768× 160 regular cells. The four other meshes include porous cells,
they are respectively composed of 24× 6, 48× 12, 96× 24 and 192× 48 regular
cells. We assume that a steady state is reached when the dimensionless time residu-
als on pressure and velocity in L2 norm become small enough (≈ 10−7, see Fig.3).
The time to steadiness is mainly governed by the velocity time residual. We note Pw

the pressure on the intern upstream vertical faces, and Sw the vertical wall surface
of these intern upstream faces, such that Sw = Sin− Sout (see Fig.2). We define the
flux vector ϕϕϕ = [QS,QSH,(QU +P)S]t and the head losses vector ∆∆∆ = [0,0,PwSw]

t ,
with Q the momentum, S the fluid cross section, H the total enthalpy, U the bulk ve-
locity in the x-direction and P the pressure. When the perfect steady state is reached,
the conservation laws provide: ϕϕϕ in = ϕϕϕout +∆∆∆ . The relative deviation between inlet
and outlet boundary values for all the variables is defined as:

e(ϕϕϕ) =
|ϕϕϕ in− (ϕϕϕout +∆∆∆)|
|ϕϕϕ in|+ |ϕϕϕout |+ |∆∆∆ |

.

For each mesh, e(ϕϕϕ) is plotted for ϕϕϕ components on Fig.3. This deviation is small
(≤ 10−6). When the cells number increases, e(ϕϕϕ) may slightly increase since un-
steady terms (vortices) appear on refined meshes.

Mesh adaptation w.r.t. obstacles position: sensibility analysis

The coarsest mesh, composed of 24×5 cells, is considered for two sensibility tests.
The differences in results between the adapted fluid mesh and any configuration
where the bottom of one of the obstacles is slightly shifted off its grid edge are
compared. The first configuration, called M1, corresponds to the mesh adapted to
the tubes position. In the second configuration, M2, the lower tube width is slightly
reduced (10−5h) so that weakly porous cells exist. In the last situation, M3, the width
of the same tube is reduced again at the top (10−5h), and its upstream wall is also
slightly shifted in the downstream direction (10−5h). The relative deviation, EMkMl ,
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Fig. 3 Time residuals and value of e(ϕϕϕ) for the adapted and porous meshes. The adapted meshes
correspond to the black plots and the porous meshes to the red plots.

Fig. 4 Pressure contours (Pa) for 48×12 porous mesh (black cells are solid).

between two simulations of different Mk and Ml configurations (k, l = 1, 2 or 3) on
all Nφ

cells fluid cells for each discrete variable ϕi = (ρi,Pi), i ∈ {1, · · · ,Nφ

cells} (see
Table 1, 2 and 3) is defined as follows:

EMkMl = max
i∈{1,··· ,Nφ

cells}

∣∣∣ϕMk
i −ϕ

Ml
i

∣∣∣/ ∣∣∣ϕMl
i

∣∣∣ .
Here the domain measures are: L = 5 and h = 1. The deviations are rather weak
(≤ 10−3). The porous formulation is robust w.r.t. standard computations. We note
that the gaps are concentrated in the same area, near the upstream faces (x = 2.5).
They are higher between M3 and the other configurations. Current work aims at
extending the integral formulation to incompressible viscous fluid flows governed
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by the Navier-Stokes equations. Viscous effects are taken into account thanks to a
wall function which vanishes when the mesh is refined [2].
Table 1 Comparison of M1 and M2 configurations, x and y are the cell center coordinates.

Variables x y EM1M2

Density 4.6875 0.1 2.3842×10−6

Pressure 2.60417 0.1 1.6911×10−8

Table 2 Comparison of M1 and M3 configurations, x and y are the cell center coordinates.

Variables x y EM1M3

Density 2.8125 0.1 1.5046×10−3

Pressure 2.8125 0.1 2.205×10−3

Table 3 Comparison of M2 and M3 configurations, x and y are the cell center coordinates.

Variables x y EM2M3

Density 2.8125 0.1 1.5046×10−3

Pressure 2.8125 0.1 2.2099×10−3
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