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 2

We have induced hyperpolarized long-lived states in compounds containing 
13
C-bearing methyl 

groups by dynamic nuclear polarization (DNP) at cryogenic temperatures, followed by 

dissolution with a warm solvent. The hyperpolarized methyl long-lived states give rise to 

enhanced antiphase 
13
C NMR signals in solution, which often persist for times much longer than 

the 
13
C and 

1
H spin-lattice relaxation times under the same conditions. The DNP-induced effects 

are similar to quantum-rotor-induced-polarization (QRIP), but are observed in a wider range of 

compounds, since they do not depend critically on the height of the rotational barrier. We 

interpret our observations with a model in which nuclear-Zeeman and methyl-tunnelling 

reservoirs adopt an approximately uniform temperature, under DNP conditions. The generation 

of hyperpolarized NMR signals which persist for relatively long times in a range of methyl-

bearing substances may be important for applications such as investigations of metabolism, 

enzymatic reactions, protein-ligand binding, drug screening, and molecular imaging. 
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Nuclear magnetic resonance (NMR) is a highly versatile and informative analytical technique, 

with applications ranging from anatomic imaging to atomic-scale analysis of molecular structure 

and dynamics. The main limitation of NMR is arguably its low sensitivity, which originates in 

the small population differences between spin energy levels in thermal equilibrium, at even the 

highest static magnetic fields available. A range of hyperpolarization methods is available for 

increasing the NMR sensitivity by boosting the polarization. In solution, large enhancements are 

generated by Dissolution Dynamic Nuclear Polarization (d-DNP) and Parahydrogen Induced 

Polarization (PHIP).
1-3
 The main drawback of these methods is that once generated, the 

hyperpolarization decays on a timescale governed by the longitudinal relaxation time, T1, which 

is an irreversible process.  

Long-lived nuclear spin states (LLS) offer promise for alleviating this limitation. LLS are 

defined as nuclear spin configurations that relax much more slowly than longitudinal 

magnetization.
4-6
 LLS exist for groups of two spins or more, when the effects of fluctuating spin 

interactions are cancelled or reduced for symmetry reasons. The prototypical long-lived state, 

also known as singlet order, is the population difference between the singlet and triplet manifolds 

in an ensemble of spin-1/2 pairs. Potential applications of the LLS concept include drug 

screening, molecular imaging and reaction monitoring.
7-9
 LLS have been used as a carrier of 

hyperpolarisation.
10-15 

Molecular scaffolds have been designed to minimise the relaxation rates of 

singlet order, with reported lifetimes of over an hour.
16
 Such record lifetimes, however, concern 

chemical motifs that are not commonly found. 

Long-lived nuclear spin states are also known to exist in methyl, CH3 groups,
17-18

 which are 

ubiquitous in organic chemistry and biochemistry. Methyl LLS correspond to a population 

imbalance between manifolds of states of different spin permutation symmetry, conventionally 
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 4

denoted as A and E manifolds; we refer to the relevant population difference as an A/E 

imbalance (AEI). Such a population imbalance is protected from dominant relaxation 

mechanisms by rapid methyl rotation, leading to long lifetimes in solution.  

Methyl LLS are implicated in the phenomenon of quantum-rotor-induced polarization (QRIP), 

in which strong antiphase 
13
C signals are observed when certain compounds are cooled to 

cryogenic temperatures, rapidly dissolved in a hot solvent, and observed by solution NMR at 

room temperature.
19-20

 QRIP has been observed for compounds such as γ-picoline (4-

methylpyridine) for which the methyl rotation encounters an unusually low rotational barrier, 

leading to a significant tunnelling splitting of ~ 6 K between the A and E manifolds in the 

cryogenic solid state. For such special cases, a significant AEI may be established simply by 

equilibrating the sample at a temperature below 10 K, without any paramagnetic agents or 

microwaves. This population imbalance builds up within tens of minutes to a value that is 

significantly larger than the Zeeman polarization at room temperature. The AEI is maintained to 

a significant degree through the dissolution process, leading to the generation of a hyperpolarized 

methyl LLS in the room temperature solution, and hence enhanced antiphase 
13
C signals through 

cross-relaxation.
17
 

In this paper, we show that the requirement of low rotational barriers (or, equivalently, large 

tunnelling splittings) required for QRIP at liquid-helium temperature may be alleviated by using 

dynamic nuclear polarization (DNP). This opens up the practical use of methyl AEI and in turn 

long-lived states to arbitrary methyl-bearing molecules. We report observations of this effect for 

compounds containing methyl groups in several molecular environments. The interplay between 

quantum-rotor and DNP effects is illustrated by simple energy-level diagrams. 
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 5

 

Fig. 1 Schematic energy-level diagram for a methyl group, at liquid-helium temperature, with a 

vanishing (a-b) or large (c-d) tunnelling splitting (only the lowest tunnelling levels are shown). 

Exaggerated spin populations are shown for positive DNP in a and c, and negative DNP in b and 

d. 

Consider a 
13
C-bearing methyl group in a solid. The A3X spin system consists of three protons 

and one carbon-13, with 2
4
 = 16 energy levels. Provided that the three protons are magnetically 

equivalent, i.e., the rapid methyl rotation averages the chemical shift anisotropy of the three 

protons and their dipolar couplings with external spins, the energy eigenstates are given by 

symmetry-adapted combinations of these energy levels, which transform as irreducible 

representations of the group C3(M), with 8 combinations of symmetry A, and 8 of symmetry E 

(see ref. 
17
 for a detailed description).  In general, the A and E levels are split by the 

1
H and 

13
C 

Zeeman splittings, while the E levels are raised in energy with respect to the A levels by the 
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 6

tunnelling splitting. This splitting is associated with the overlap of the spatial wave-functions of 

the methyl protons, and depends strongly on the methyl rotational barrier.
21
 Two extreme cases 

may be identified: in the case of a large rotational barrier, the tunnelling splitting is very small, 

and the energy level structure is dominated by the Zeeman splittings (Fig. 1a-b). In the case of a 

small rotational barrier, on the other hand, the tunnelling splitting may be much larger than the 

Zeeman splitting (Fig. 1c-d). In extreme cases such as 4-methylpyridine (γ-picoline), the 

tunnelling splitting is ~126 GHz, which is more than 2 orders of magnitude larger than the 
1
H 

nuclear Zeeman splitting in accessible magnetic fields. 

In the case of a very large tunnelling splitting (Fig. 1c-d), a large and positive AEI may be 

established by allowing the sample to reach thermal equilibrium at a temperature of a few Kelvin 

by cooling with liquid He. This resulting positive AEI is substantially maintained through the 

dissolution process, leading to a hyperpolarized methyl LLS that gives rise to enhanced 

hyperpolarized 
13
C signals through cross-relaxation. This is the origin of QRIP.

17-20
 However, in 

the case of a high rotational barrier and a small tunnelling splitting (Fig. 1a-b), cooling by liquid 

He leads to a small or absent AEI. Conventional QRIP experiments fail for such systems unless 

the sample temperature is lowered well below 1 K, where equilibration of the sample may take 

prohibitively long times. 

DNP may be used to establish Zeeman population imbalances of arbitrary signs and far from 

thermal equilibrium values.
22
 This has been used to generate hyperpolarized long-lived states in 

pairs of spins with I = ½.
8, 23-24

 Similarly, in the case of methyl groups, we show that DNP can 

give rise to significant AEI, by preferentially populating one manifold with respect to the other, 

even when these groups are not shifted with respect to each other by a large tunnelling splitting. 

As in the QRIP effect, the AEI in the solid state translates into a hyperpolarized LLS in solution, 
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 7

which in turn gives rise to hyperpolarized antiphase 
13
C signals in solution. Related effects have 

been observed for materials containing CD3 groups.
25
 

 

 

Fig. 2 Experimental procedure for the dissolution-NMR experiments. After polarization in the 

solid-state, the sample is dissolved and transferred to the high-resolution liquid-state NMR 

system; the evolution of the magnetic field and the temperature is shown in a. For the 

acquisition, in b, the following sequence of event is looped: T00 filter, build-up delay TB, 90° 

pulse, acquisition. In c, the T00 filter is looped Nfilter times, and a series of spectra is acquired with 
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 8

small-tip-angle pulses. The T00 filter is composed of the sequence of pulses and gradients shown 

in d. Repeated acquisition events are shown within light grey boxes. 

The experimental procedure used to demonstrate this effect is sketched in Fig. 2. The species 

of interest are prepared in a glass-forming solvent (100 µL of D2O:glycerol-d8 1:1 with 50 mM 

TEMPOL), cooled to a temperature of ~1.2 K in a field of 6.7 T and irradiated with frequency-

modulated microwaves,
26-28

 with a frequency slightly displaced from the centre of the electron 

spin resonance line. The polarization and the AEI were allowed to build up for 20 minutes. The 

Zeeman polarization was found to be P(
1
H) ~50% for positive DNP (microwave frequency at 

fµwaves = 187.8 GHz, below the centre of the electron spin resonance line) and P(
1
H) ~ −50% for 

negative DNP (microwave frequency at fµwaves = 188.3 GHz, above the centre of the electron spin 

resonance line).   

Once the polarization and AEI are established, the dissolution-NMR experiment is carried out. 

The DNP sample is i) dissolved with D2O (5 mL heated to ca. 420 K at a pressure of 1 MPa) in 

700 ms, then ii) pushed in 4.5 s with a pressure of 0.6 MPa He gas to a home-built injector in a 

11.7 T magnet, and iii) finally injected in ca. 2 s in a 5-mm sample tube (complete sequence 7.2 

s). The TEMPOL concentration in the final sample is 1 mM. The AEI is NMR silent, but 

“bleeds” by cross-relaxation into spin-state population differences that give rise to an antiphase 

13
C multiplet upon application of a radiofrequency pulse on the 

13
C channel

17-18
. Fig. 2b shows 

the pulse sequence used to identify methyl LLS and measure relaxation rates. After injection of 

the sample in the high-resolution NMR system, a series of 
13
C spectra is obtained, with a 

repetition time of 5 s. Before each acquisition, a combination of RF pulses and gradients known 

as “T00 filter” is used to suppress signals arising from any components of the spin density matrix 

other than the AEI (the notation "T00" filter reflects the suppression of density operator terms that 
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 9

do not transform as spherical tensor operators of rank 0 and component index 0)
29
. The spin 

system is then left to evolve for a relaxation delay, during which the AEI converts partially to 

population differences across observable transitions. A strong, non-selective 90° excitation pulse 

is applied on the 
13
C channel before acquisition. 

In the case of 2-
13
C-acetate, 3-

13
C-pyruvate and 

13
CH3-methionine, this procedure leads to an 

enhanced antiphase 
13
C multiplet, as shown in Fig. 3a-c, indicating that a significant AEI is 

generated by dynamic nuclear polarization; no such signal is observed for 3-
13
C-alanine (not 

shown). In the case of 2-
13
C-acetate, small antiphase signals are also observed when no 

microwave irradiation is applied under cryogenic conditions (Fig.3g); no such signals are 

observed for the three other compounds (Fig. 3h-i). Changing the microwave irradiation 

frequency to the opposite side of the electron spin resonance line inverts the sign of the antiphase 

13
C signals for 2-

13
C-acetate, but not for 

13
CH3-methionine and 3-

13
C-pyruvate (Fig. 3d-f). 

 

Fig. 3 
13
C 1D spectra of the methyl signal of 2-

13
C-acetate (left), 3-

13
C-pyruvate (middle) and 

Me-
13
C-methionine (right) at 11.7 T and 298 K. Spectra a to i are obtained using the scheme 
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 10

shown in Fig. 2b. For Me-
13
C-methionine, the first spectrum is shown. For 2-

13
C-acetate, the 

10th spectrum is shown; for 3-
13
C-pyruvate, the 4th spectrum is shown; earlier spectra are 

contaminated by residual magnetization.  The polarization step in the solid state used either 

positive DNP (a-c), negative DNP (d-f), or no DNP (g-i). Thermal equilibrium spectra acquired 

with 4 scans are shown in j-l. The vertical scale is independent for each molecule but is 

consistent for all the spectra of a given molecule.  

A full explanation of these observations is beyond the scope of this preliminary report. 

Nevertheless, the salient features may be rationalised by considering Boltzmann population 

distributions within the energy level diagrams of Fig 1, assuming for simplicity that DNP 

establishes a common temperature across the entire manifold of nuclear Zeeman and tunnelling 

quantum levels.  For brevity, we refer to this common temperature as “spin temperature”, 

bearing in mind that the associated quantum system involves tunnelling energy as well as 

Zeeman energy. This assumption is plausible in the current case, since prior observations have 

shown that the thermal contact between the Zeeman system and the lattice, and the tunnelling 

system and the lattice, are both very weak at cryogenic temperatures, relative to the Zeeman-

tunnelling contact.
21
 Nevertheless, the interpretation given here is merely qualitative, and 

encounters obvious problems in some cases, for example when negative temperatures are 

invoked. Although a negative temperature is a valid concept for finite spin systems, which have a 

finite set of quantum levels, the concept of negative temperature is inherently flawed for 

tunnelling levels, which are unbounded at high energy.
30
 A fuller understanding will require a 

more detailed analysis of the quantum dynamics, supported by further experiments, as is the case 

for conventional DNP processes.
31-37

 There is extensive prior literature on the interaction of 

electron spins and methyl tunnelling splittings.
38-41
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 11

First consider the case where the tunnelling splitting is smaller than the Zeeman splitting (Fig. 

1a-b). In this case, the lowest and highest energy level both belong to the A symmetry species. 

Hence, either a very low positive spin temperature (in which only the lowest energy level is 

significantly populated, Fig. 1a) or a very low negative spin temperature (so that only the highest 

energy level is significantly populated, Fig. 1b) both give rise to excess population in the A 

manifold, compared to the E manifold. We therefore expect that in such systems the sign of the 

LLS after dissolution, and hence that of the antiphase 
13
C signals, is independent of the sign of 

DNP. As shown in Fig. 3c and 3f, this is observed for 
13
CH3-methionine and in 3b and 3e for 3-

13
C-pyruvate. 

Different behaviour is anticipated when the tunnelling splitting is large compared to the 

Zeeman splitting (Fig. 1c-d). In this case, the lowest energy level belongs to the A manifold, 

while the highest energy level belongs to the E manifold. Hence, very low positive or negative 

spin temperatures are expected to give rise to A/E population imbalances of opposite sign. We 

therefore expect that in such systems, a change in sign of DNP changes the sign of the LLS after 

dissolution, and hence that of the antiphase 
13
C signals. As shown in Fig. 3a and 3d this is 

observed for 2-
13
C-acetate. The reduced intensity of the observed signals may be associated with 

a breakdown of the spin temperature hypothesis for negative DNP involving unbounded 

tunnelling levels, as discussed above. The existence of a relatively large tunnelling splitting for 

2-
13
C-acetate is consistent with the observation of a small QRIP effect in the absence of 

microwave irradiation (Fig. 3g). 

Table 1 Relaxation time constants (in seconds) for the longitudinal magnetisation and the A/E 

imbalance at 11.7 T and 298 K. The longitudinal relaxation rates are obtained as a single-

exponential fit to the total area of the multiplet in inversion recovery experiments. The minimum 
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 12

and maximum relaxation time constants of the A/E imbalance are given, corresponding to the 

extrema of single-exponential fits of each component in the multiplet in the dissolution NMR 

experiments shown in Fig. 2b. 

substance T1C/s T1H/s TAE/s (min, max) 

2-
13
C-acetate 13.5 5.5 (46, 52) 

3-
13
C -pyruvate

 
13.5 5.1 (16,19) 

13
CH3 -methionine 6.8 2.2 (5,8) 

3-
13
C -alanine 2.1 1.4 NA 

 

 

Fig. 4 Selection of 
13
C 1D spectra of the methyl signal of 2-

13
C-acetate from the time series 

obtained with the experimental procedure shown in Fig. 2a-b, with positive DNP at 11.7 T and 

298 K. The first spectrum shown here was obtained ~ 60 s after dissolution. Subsequent spectra 

are obtained every 15 s. 

The relaxation rate constant of the LLS after dissolution to the liquid state may be obtained 

from 1D 
13
C spectra obtained with the pulse sequence shown in Fig. 2b. Experimental spectra of 

Page 12 of 25

ACS Paragon Plus Environment

The Journal of Physical Chemistry Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 13

2-
13
C-acetate are shown in Fig. 4a. Note the long persistence of these enhanced signals, with 

relaxation times in the range of TLLS = 50 s, relative to the Zeeman relaxation times for 2-
13
C-

acetate, which are T1(
13
C) = 13.5 s and T1(

1
H) = 5.5 s. Table 1 summarises the relaxation time 

constants of the LLS, together with longitudinal relaxation time constants for 
1
H and 

13
C 

magnetization. In all cases where antiphase multiplets were detected, TLLS  is found to be longer 

than T1(
1
H). For 3-

13
C-pyruvate and 

13
CH3-methionine, however, the relaxation time TLLS  of the 

A/E imbalance is found to be comparable to T1(
13
C). The AEI is nevertheless long lived, since it 

involves 
1
H spin order that relaxes more slowly than 

1
H magnetization, but it does not extend the 

timescales that may be probed with 
13
C magnetization. On the other hand, for acetate TLLS  is 

found to be larger than both T1(
1
H) and T1(

13
C). The long lifetime of the LLS for 2-

13
C-acetate in 

solution may be explained by the low rotational barrier for the methyl group in this compound, 

which gives rise to a short correlation time for methyl rotation in solution
17-18

. At this point, it is 

not known whether the radical content of the dissolved solution significantly influences the 

decay of the methyl long-lived states. Paramagnetic effects on the relaxation of 2-spin long-lived 

states are generally weaker than for conventional magnetization.
42
  

The absence of any hyperpolarized antiphase 
13
C multiplet in our dissolution-NMR 

experiments on 3-
13
C-alanine may be due to the fact that the methyl group is bound to an sp

3
 

carbon, a configuration which is known to result in a large rotational barrier.
43
 Strong hindering 

of methyl rotation may destroy the long-lived polarization effects, for at least two main reasons. 

Firstly, the symmetry-adapted basis states, with their A and E symmetry labels, may not be 

accurate energy eigenstates for frozen methyl groups in the solid state. It is therefore debatable as 

to whether the AEI is established in the solid state in this case; Secondly, as shown by theory 
17-

18
, a large value for the rotational correlation time τR of the methyl group is associated with a 
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short AEI decay time constant in solution. Hence, in 3-
13
C-alanine, the methyl AEI, even if it is 

generated by DNP in the solid state, may be too short-lived to survive the dissolution, transfer 

and injection process. Further experiments are needed to resolve these issues.  

 

Fig. 5 Intensities of the components of the hyperpolarized antiphase signal in a dissolution-NMR 

experiment on 2-
13
C-acetate at 11.7 T and 298 K, with positive DNP. The acquisition was 

performed using the pulse sequence in Fig. 2c. The time axis starts with the last T00 filter.  

Figure 5 shows the build-up and decay of the four antiphase components of the 
13
C multiplet 

of 2-
13
C-acetate, monitored with a series of experiments with small-tip-angle pulses, using a train 

of T00 filters after dissolution (see Fig. 2c). The build-up occurs on a time scale that is 

comparable with T1(
1
H). These trajectories are similar to those obtained in the QRIP 

observations on γ-picoline, which have been thoroughly analysed in terms of 
1
H-

13
C dipolar and 

CSA cross-relaxation effects for the case of a rapidly rotating methyl group.
17
 

Table 2 DNP-induced enhancements in dissolution NMR experiments of methyl-
13
C-molecules. 

The enhancements are expressed as ratios of the area of n
th
 component in the hyperpolarized 

quartet to that of the corresponding component in the thermal equilibrium spectrum. The 
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components of the multiplets are numbered from left to right. The enhancement for 1 scan is 

given for the spectrum shown in Fig. 3a-c. The summed enhancements are given for 20, 4 and 10 

consecutive scans for 2-
13
C-acetate, Me-

13
C-methionine and 3-

13
C-pyruvate, respectively 

 enhancements (for 1 scan) summed enhancements 

substance 1 2 3 4 1 2 3 4 

2-
13
C-acetate 62 -20 11 -47 570 -154 115 -410 

3-
13
C -pyruvate 274 -110 48 -244 1020 -380 191 -867 

13
CH3 -methionine 172 -119 21 -150 281 -179 44 -233 

 

The enhancements of the anti-phase signals shown in Fig. 3a-c are reported in Table 2. The 

enhancements are significantly smaller than those achieved by direct polarization in dissolution-

DNP experiments. This is mainly because observable population differences across the 
13
C 

transitions are only progressively released from the LLS by cross-relaxation processes. This may 

be seen either as a limitation (smaller enhancements) or as an advantage (repeated observations) 

of methyl LLS as carriers of hyperpolarized spin order. The enhanced Zeeman magnetization 

generated in conventional dissolution DNP experiments is completely destroyed when a single 

90° pulse is applied to generate observable NMR signals. This is not the case for the experiments 

described here, since the observation pulses do not influence the methyl LLS, allowing repeated 

observations by “harvesting” the LLS in small fractions. Table 2 also shows figures for the 

enhancements obtained when the entire time series of signals is integrated. This cumulative 

enhancement provides qualitative information on the degree of hyperpolarization stored in and 

released by the A/E imbalance (note that if N consecutive spectra in the time series were 

summed, the increase in signal to noise ratio (SNR) would be given by the cumulative 
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enhancement divided by √�. Since the antiphase magnetisation builds up on a time-scale 

comparable to T1, the SNR could be optimised with Ernst-Angle-type excitation
44
). 

In summary, we have demonstrated that long-lived nuclear spin state imbalances in methyl 

groups may be generated by dynamic nuclear polarization. The signs of the resulting 

hyperpolarized antiphase 
13
C signals are explained by invoking the spin-temperature hypothesis, 

taking into account the distribution of energy levels. The relaxation time constants of methyl 

LLSs are found to be strongly dependent on the molecular environment, but are often longer than 

the 
1
H or 

13
C spin-lattice relaxation times constants. Methyl long-lived states may provide a new 

class of relaxation-based probes to characterize molecular dynamics, and serve as carriers of 

hyperpolarized spin order, facilitating applications to NMR investigations of biochemistry and 

metabolism, and in molecular imaging. 
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