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A splitting scheme for three-phase flow models

Hamza Boukili and Jean-Marc Hérard

Abstract A fractional step method that provides approximate solutions of a three-
phase flow model is presented herein. The three-fluid model enables to handle
smooth or discontinuous unsteady solutions. The numerical method is grounded on
the use of the entropy inequality that governs smooth solutions of the set of PDEs.
The evolution step relies on an explicit scheme, while implicit schemes are embed-
ded in the relaxation step. The main properties of the scheme are given. Numerical
approximations of two basic Riemann problems are eventually presented.

Key words: Three-phase flow, entropy, shocks, vapour explosion, finite volumes.

1 Introduction

In order to perform numerical simulations of vapour explosion, a phenomenum re-
sulting from the violent interaction between a hot liquid metal and a coolant (usually
liquid water and its vapour), flow models with at least three phases are mandatory.
Owing to the high velocity and high pressure levels arising in these situations, and
also due to the occurence of strong shock waves, models should at least enable
highly unsteady simulations, and should be such that unique and well defined jump
conditions hold through discontinuities. However, only few contributions arise from
the literature on that topic. Among these, one may at least mention [6, 7, 8, 10, 11].
Actually, we will focus here on the barotropic class defined in [8], and will present
a possible fractional step method in order to compute approximate solutions of the
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latter model. Some among identified difficulties concern the way to cope with pres-
sure relaxation effects and to preserve positive values of densities and statistical
fractions; moreover, schemes should be such that they provide convergent and con-
sistant approximations of shock patterns. Possible extensions to the non barotropic
framework and problems arising with mass transfer terms are not adressed here.

2 Three-phase flow model

Governing equations

In the sequel, αk ∈ [0,1], ρk, mk = αkρk, Uk, respectively denote the mean statistical
fraction, the mean density, the partial mass and the mean velocity of phase k (phase
1 denotes liquid metal). The mean pressure Pk(ρk) is an increasing function with:

lim
x→∞

Pk(x) = +∞ ; lim
x→0

Pk(x) = 0

and we note as usual c2
k = P′k(ρk). The set of PDEs that is considered is (see [8]):

∂αk
∂ t +Vi(W ) ∂αk

∂x = φk(W ) ;
∂mk
∂ t + ∂mkUk

∂x = 0 ;
∂mkUk

∂ t +
∂mkU2

k +αkPk
∂x +Σ 3

l=1,l 6=kΠkl(W ) ∂αl
∂x = mkSk(W ) .

(1)

It may be alternatively rewritten in a more condensed form:

∂W
∂ t

+
∂F(W )

∂x
+G(W )

∂H(W )

∂x
= S(W ) (2)

where the main variable W and fluxes F(W ),H(W ) are defined as:

W = (α2,α3,m1,m2,m3,m1U1,m2U2,m3U3)
t

F(W ) = (0,0,m1U1,m2U2,m3U3,m1U2
1 +α1P1,m2U2

2 +α2P2,m3U2
3 +α3P3)

t

H(W ) = (α2,α3,0,0,0,0,0,0)t

G(W ) being implicitly defined by (1). The statistical fraction α1 complies with:
α1 = 1−α2−α3. We restrict herein to the case where: Vi(W ) =U1, with (see [8]):{

Π12(W ) = Π21(W ) = Π23(W ) = P2 ;
Π13(W ) = Π31(W ) = Π32(W ) = P3 .

(3)

Closure laws for φk(W ),Sk(W ) take the form:{
φk(W ) = d(W )Σ 3

l=1 ((Pk−Pl)) ;
mkSk(W ) = Σ 3

l=1 (ekl(W )(Ul−Uk))
(4)
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where d(W ) and ekl(W ) = elk(W ) are positive bounded functions. Meaningful pres-
sure relaxation time scales d(W ) arise from [5]. Other relaxation time scales ekl(W )
imbedded in momentum transfer terms may be found in the standard literature. We
also define: ψ ′k(ρk) =

Pk(ρk)

ρ2
k

, and the entropy of the mixture:

η = Σ
3
k=1
(
mkU2

k /2+ψk(ρk)
)
,

together with the entropy flux: fη(W ) = Σ 3
k=1

(
U2

k
2 +ψk(ρk)+

Pk
ρk

)
mkUk. Actually

this three-phase flow model inherits from similar properties as the Baer Nunziato
two-phase flow model [1] (see [2, 3] for a slightly broader class).

Main properties

We recall first the main properties of the latter system (see [8]):

Property 1

• Structure of the convective subset:
The homogeneous convective subset (left hand side of (2))) is hyperbolic unless
|U1−Uk|= ck. Its eigenvalues are:

λ0,1(W )=U1 ; λ2,3(W )=U1±c1 ; λ4,5(W )=U2±c2 ; λ6,7(W )=U3±c3

The 0−1-wave is linearly degenerate, while other fields are genuinely non linear.

• Entropy inequality:
Smooth solutions of (2) comply with the entropy inequality:

∂η(W )

∂ t
+

∂ fη(W )

∂x
≤ 0. (5)

• Jump conditions:
Within each isolated wave, system (2) admits unique jump conditions.

We may now consider the 0−1 coupling wave, which is the key point of the
homogeneous model. Actually, six independent Riemann invariants arise which are
given below. These will be used in order to construct exact solutions of the one-
dimensional Riemann problem associated with (2) when neglecting source terms.

Proposition 1. Riemann invariants of the 0−1 coupling wave are:

I1
0,1(W ) =U1 ; I2

0,1(W ) = m2(U2−U1) ; I3
0,1(W ) = m3(U3−U1);

I4
0,1(W )=

(U1−U2)
2

2
+
∫

ρ2

0
(

c2
2(x)
x

dx) ; I5
0,1(W )=

(U1−U3)
2

2
+
∫

ρ3

0
(

c2
3(x)
x

dx);

I6
0,1(W ) = m2(U2−U1)

2 +m3(U3−U1)
2 +Σ

3
k=1(αkPk).
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The proof is straightforward though cumbersome.

3 Numerical scheme

A fractional step method is introduced in order to compute approximate solutions
of (2). The latter method complies with the entropy inequality (5). A Finite Volume
scheme is built, considering a classical one-dimensional mesh, where ∆xi denotes
the size of cell Ωi. The first step involves an explicit scheme, whereas the scheme in
the second -relaxation- step is implicit.

Time scheme

• Step 1. A first evolution step computes approximations of solutions of the con-
vective subset; for given W n

i , the state variable is updated following:{
∆xi(W

n+1,−
i −W n

i )+∆ tn
(
Fi+1/2(W n

i ,W
n
i+1)−Fi−1/2(W n

i−1,W
n
i )
)

+∆ tnG(W n
i )
(
Hi+1/2(W n

i ,W
n
i+1)−Hi−1/2(W n

i−1,W
n
i )
)
= 0 .

(6)

• Step 2. The second step takes all source terms into account, for given W n+1,−
i ,

and computes W n+1
i solution of:

(W n+1
i −W n+1,−

i )−∆ tnS (W n+1,−
i ,W n+1

i ) = 0 (7)

where: S (W n+1,−
i ,W n+1

i ) = (φi,2,φi,3,0,0,0,Si,1,Si,2,Si,3)
t , with:

φi,k = Σ
3
l=1

(
d(W n+1,−

i )(Pk(W n+1
i )−Pl(W n+1

i )
)

and:
Si,k = Σ

3
l=1

(
ekl(W

n+1,−
i )(Ul(W n+1

i )−Uk(W n+1
i )

)
for k = 1,2,3.

Numerical fluxes in the evolution step

We restrict herein to simple first-order Rusanov-type fluxes defined as follows:

Fi j(Wi,Wj) = (F(Wi)+F(Wj)−Ri j(Wj−Wi))/2 ,

together with:
Hi j(Wi,Wj) = (H(Wi)+H(Wj))/2

Ri j is defined as : maxi, j(r(Wi),r(Wj)), where r(W ) denotes the spectral radius of
the whole jacobian matrix ( ∂F(W )

∂W +G(W ) ∂H(W )
∂W ).
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Property 2

• For given strictly positive values (αk)
n
i and (mk)

n
i , the evolution step computes

positive values (αk)
n+1,−
i and (mk)

n+1,−
i if and only if the time step complies with

the classical CFL-like condition:

∆ tnmax j=1→Ncell (R j−1/2 +R j+1/2)/(2∆x j) =CFL < 1 (8)

• Assume that (αk)
n+1,−
i and (mk)

n+1,−
i are positive. Then the discrete relaxation

Step 2 computes a unique set of positive values (αk)
n+1
i and (mk)

n+1
i , and a

unique set (U1,U2,U3)
n+1
i without any restriction on the time step.

The proof for the first part involving the evolution Step 1 is classical. Actually,
(mk)

n+1,−
i is a convex combination of partial masses (mk)

n
i and (mk)

n
i±1, as soon as

condition (8) holds. A similar result holds for (αk)
n+1,−
i . Moreover, when turning to

Step 2, it may be easily checked that the linear system that provides (U1,U2,U3)
n+1

admits a unique solution, since the determinant δ of the local discrete system:

δi = m1m2m3 +(ê13 + ê23)m1m2 +(ê12 + ê23)m1m3 +(ê12 + ê13)m2m3
+(ê12ê13 + ê12ê23 + ê13ê23)(m1 +m2 +m3) ,

(9)

where êkl and mk respectively stand for ∆ tnekl(W
n+1,−
i ) and (mk)

n+1,−
i , is strictly

positive. Moreover, the relation (mk)
n+1
i = (mk)

n+1,−
i guarantees positive values of

partial masses. Eventually, the proof of existence and uniqueness of positive values
of (αk)

n+1
i is more intricate; it requires solving a non linear system with respect to

(x,y) = ((α2)
n+1
i ,(α3)

n+1
i ) under the constraints: x > 0, y > 0, 1− x− y > 0. We

emphasize that similar schemes have been used for two-phase flow models [9].

4 Numerical results

We focus here on simple EOS that read: Pk(ρk) = P0
k (ρk)

γk . Two distinct Riemann
problems are investigated, these being representative of what happens in water-
vapour explosion. The time step complies with the CFL-like condition (8). We have
set in all cases: CFL = 1/2. The initial discontinuity separating states WL and WR is
located at x = 1/2. We restrict here to uniform meshes, and we consider very large
relaxation time scales, setting d(W ) = 0 and ekl(W ) = 0.

Riemann problem 1: The first test case is a classical shock tube problem, where
the initial data are such that velocities are null everywhere at the beginning of the
computation, whatever the phase is. More precisely, we define WL and WR such that:

(α2)L = 0.4 ; (α3)L = 0.5 ; (α2)R = 0.2 ; (α2)R = 0.3;
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Fig. 1 Riemann problem 1. Pressure profiles on the finest mesh : P1 (green), P2 (black), P3 (red).
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Fig. 2 Riemann problem 1. Pressure profiles on the finest mesh : P = I6
0,1(W ) (black), Pwall (red).

(Uk)L = (Uk)R = 0. ; (ρk)L = 1. ; (ρk)R = 1/8.

where EOS are such that: γ1 = 7/5, γ2 = 1.005, γ3 = 1.001 and P0
k = 1.105. Phasic

pressures are plotted on Figure 1, while P = I6
0,1(W ) and the effective pressure of

the mixture acting on wall boundaries Pwall = Σk=1→3αkPk are given on Figure 2.
P is clearly well preserved through the right-going 0− 1-wave -which is located
around = 0.702- unlike Pwall , which was expected. Velocity profiles have been added
on Figure 3. The finest mesh contains 80000 regular cells.

Riemann problem 2: The second test case is a simple Riemann problem where
the initial data WL and WR are chosen such that:



A splitting scheme for three-phase flow models 7

0 0,2 0,4 0,6 0,8 1
0

100

200

300

400

Fig. 3 Riemann problem 1. Velocity profiles on the finest mesh : U1 (green), U2 (black), U3 (red).
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Fig. 4 Riemann problem 2. Pressure profiles for P = I6
0,1(W ) on three distinct meshes : 8000 cells

(black), 2000 cells (red), 800 cells (green).

Im
0,1(WL) = Im

0,1(WR)

for m = 1→ 6, see property (3). EOS are such that: γ1 = 3/2, γ2 = 2, γ3 = 5/2,
and we still set: P0

k = 1.105. Actually, this is a very tough test case, which is much
more discriminating than most of other Riemann problems that involve all waves. A
simple though efficient way to measure errors in this particular case consists in com-
puting the L1 norm of independent variables Im

0,1(W ). Obviously, and as expected,
the rough Rusanov scheme yields rather high levels of error (close to 0.1 percent on
the coarsest mesh, see Figure 4). Nonetheless, and as expected, the error in L1 norm
varies as h1/2, since the 0−1-wave is LD (see Figure 5).
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Fig. 5 Riemann problem 2. L1 norm of the error for P = I6
0,1(W ) vs the mesh size h, using log/log

scale. Coarsest and finest meshes contain 100 and 6400 regular cells respectively.
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