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Abstract

Simple rules based on population equilibria can characterize indirect interactions in three-

species systems but fail to predict them when considering behavioral mechanisms. In this

paper, we revisit the effects of shared predation, i.e. the situation in which two prey are

consumed by a common predator. Such predation usually induces negative indirect inter-

actions between prey, or apparent competition, through an increase of predator density

and thus of predation pressure. Two mechanisms can however weaken apparent compe-

tition and lead to equivocal signs of indirect interactions. On the one hand, predator

distraction, which stems from the difficulty to efficiently forage for different prey at the

same moment in time and diminishes the number of prey captured per predator. On

the other hand, predator negative density dependence limits predator growth. To get

further insights into simple rules describing indirect interactions brought about by shared

predation, we studied two classes of one-predator–two-prey models exhibiting these two

mechanisms. We found robust simple rules derived from predator equilibria which state

that at least one prey is favored by the presence of the other when the predators partition

their foraging effort between them. These rules thus characterize a surprising wide range
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of indirect effects including apparent predation, apparent commensalism and apparent

mutualism. They also highlight different situations in which larger predator populations

do not entail smaller prey populations and in which neither prey species can be negatively

affected by the other.

Introduction

In natural ecosystems, a species interacts with networks of many others. Such a diversity

implies a complex set of interactions, which may have major effects on the dynamics of

species. This includes higher order effects between species that do not directly interact

together, i.e. indirect interactions [1]. One of the ecological approaches explored to

understand such indirect effects in complex food webs is based on community modules [2].

It consists in the extension of pairwise interactions, as predator-prey interactions, to three

or more species systems. In some of these modules, simple rules based on comparison of

equilibria can predict the outcome of indirect effects between species, such as the R∗ rule

in one-resource–multi-consumer systems [3] and the P ∗ rule in one-predator–multi-prey

systems [4]. These conceptual rules however fail to identify indirect effects in modules

that include more complex dynamics induced by behavioral mechanisms.

The introduction of an alternative prey into a one-predator–one-prey system is known

to alter the initial interactions through indirect effects [5]. A fairly general result is

that this introduction can increase the density of the predator in the long term, which

consequently raises the predation pressure on both prey. A well-known example is the

decrease of the leafhopper Erythroneura elegantula, subsequent to the invasion of the re-

lated leafhopper E. variabilis in California, which was mediated by a parasitoid common

to both species, Anagrus epos [6]. Such a long-term negative indirect effect occurring be-
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tween prey because of the numerical response of a shared enemy has been termed apparent

competition [7]. The P ∗ rule states that in this situation the prey that withstands the

highest predator equilibrium can lead to the extinction of the other prey through appar-

ent competition [4]. However, the P ∗ rule overlooks the fact that even though predators

can forage for many different prey, they can hardly search or forage for all of them si-

multaneously. Cognitive processes, such as the formation of prey search images [8], or

simply the spatial segregation of different prey species, can indeed impose a partition of

the time a predator can dedicate to each of its prey. As a predator partitions its foraging

time between its prey, it releases its predation pressure on each of them. Such a predator

distraction effect, also known as switching, is a widespread mechanism in nature: it has

been reviewed in [9] and more recently reported for generalist insect predators [10,11] or

parasitoid [12,13], lizards [14] or large mammal predators such as wolves [15] or lions [16].

In the short term, predator distraction tends to induce positive indirect interactions be-

tween prey [17]. Positive indirect interactions, termed apparent mutualism in an analogy

to apparent competition, can thus undermine predictions based on the P ∗ rule [18, 19].

Short-term positive indirect interactions may however be weakened or counterbalanced

by the long-term numerical response of the predator, as reported e.g. between the thrips

Frankliniella occidentalis and the whitefly Trialeurodes vaporariorum sharing a common

predatory mite Ambliseius swirskii [20]. Following the introduction of thrips, the preda-

tory mite may relax its predation pressure on each prey in the short term. In the long term

however, thrips and whiteflies increase the density of predatory mites and thus eventually

experience apparent competition. Therefore, predator distraction and predator numerical

response are two important mechanisms in one-predator–multi-prey systems. Since these

two mechanisms act on prey density in an opposite manner, co-occurrence may eventually

lead to various kinds of indirect effects between prey that we aim here to characterize.
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In this paper, we have primarily looked for long-term effects induced by the two

previous mechanisms. In a variety of models, it has been shown that apparent competition

is prevalent in the long term [7,21]. To our knowledge, only few studies have shown that

other kind of indirect effects can occur in the long term, such as apparent mutualism,

apparent predation or apparent commensalism. As such, predators and prey that cycle

can promote positive indirect effects between prey [22]. When populations do not cycle,

mechanisms such as predator satiation, distraction effects, or negative density dependence

among predators have been identified as factors promoting the occurrence of positive

indirect effects between prey [19]. Here, we concentrated on the influence of the way

predators partition their time between their prey, i.e. their time partitioning strategy. To

this end, we followed Holt’s original definition of indirect effects [7] and evaluated positive

indirect effects as the change in a prey equilibrium density in the absence or presence of

the other prey. This approach is in line with the R∗ and P ∗ rules, which are also based on a

comparison of equilibria. This also helps interpreting the results, since most experimental

studies compare single prey–predator situations to multi-prey–predator ones.

Following [23] to ensure the robustness of our findings, we analyzed two classes of one-

predator–two prey models and first considered that predators have fixed preferences for

each of their prey, which is termed fixed time partitioning strategy or adaptive switching.

We then explored models when predators choose their preferences for each prey regarding

the respective density of the latter, which is termed adaptive time partitioning strategy.

As a result of the predator distraction effect, we have shown that apparent mutualism

between prey always occur in the short term regardless of the time partitioning strategy

of the predator. We have also found that, independently of the foraging strategy, indirect

effects are always positive on at least one of the prey species in the long term, so that

apparent competition never occurs in the proposed framework, but apparent predation,

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/063230doi: bioRxiv preprint first posted online Jul. 11, 2016; 

http://dx.doi.org/10.1101/063230


5

apparent commensalism or apparent mutualism do. Lastly, we noted that time partition-

ing favors long-term commensalism and mutualism, and that this effect is even stronger

if predators adaptively forage. We finally showed that simple rules based on predator

equilibria characterize each kind of indirect effects found in this study and discussed the

implications of such results with special emphasis on biological control programs.

Modeling

A one-predator–one-prey interaction with negative density de-

pendence

The present study is built on the extensions of two classes of predator–prey models with

negative density dependence of the predator, which will encompass an alternative prey

and foraging preferences. Actually, the fundamental idea behind the analysis of these two

classes of predator-prey models is to test the influence of model structure on results, and

thus ensure the robustness of simple rules characterizing indirect effects.

Predator–prey interactions are commonly represented with the classical Lotka-Volterra

model, which has a significant historical importance in earlier literature about indirect

effects [7]. We started the study with a modified Lotka-Volterra model and represented

prey growth through a prey-dependent logistic equation, and the predator negative density

dependance through a quadratic term in the predator differential equation [19,24]. With

N and P corresponding to prey and predator population densities, the model reads


Ṅ = rNN

(
1− N

KN

)
− λNNP,

Ṗ = eNNP − dPP 2 −mP,
(1)
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where the dot indicate derivatives with respect to time. The prey population grows

logistically, with rN its intrinsic growth rate and KN its carrying capacity. We assume

a linear functional response of the predator, with λN the capture rate of the predator.

Predators grow proportionally to the amount of prey consumed per predator, with eN
λN

the

conversion rate. They also negatively interfere, with a density dependent death rate dP ,

and die at a mortality rate m.

We also identified the Leslie-Gower model as another simple class of predator-prey

model that exhibits negative density dependence. It assumes that prey have similar

dynamics as in model (1) and that predators grow logistically with rP their intrinsic

growth rate and a carrying capacity, αNN , proportional to the amount of prey consumed

per predator. The model thus reads:


Ṅ = rNN

(
1− N

KN

)
− λNNP,

Ṗ = rPP

(
1− P

αNN

)
.

(2)

The predator equation differs from the one in model (1), which assumes that the

reproductive rate of the predator population is proportional to its prey consumption rate,

but its per capita predator reproductive rate is positively correlated with the number of

prey consumed per predator, which has been identified as an important characteristic

to be satisfied by predator-prey models (see e.g. [25, 26]). Though model (1) has severe

limitations when population becomes small [27], it has been used in many biological

situations [28–31] and in various studies of population interactions [32,33].
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Introduction of an alternative prey with distraction effects

We extended models (1) and (2) to account for the presence of an alternative prey A in a

situation where the predator establishes its predation activity on the two prey according to

some trade-off (see [34] and references therein). Indeed, in nature, many prey species try

to conceal or hide themselves to escape predation. To neutralize this strategy, predators

can focus on specific cues emitted by a given prey species (visual, olfactory, auditory, etc.)

to better locate and capture it. This is generically termed ‘formation of a search image’

by the predator [8, 34]. Because any given organism can only process a limited amount

of information in a given time period, forming a search image specific to a given prey

type limits the efficiency in capturing other prey types: there is a time partitioning of

predator’s attention for each of the prey species.

Search image models can provide significant impacts on predator–prey systems through

the trade-off between capture rates of both prey represented here by parameter q ∈ (0, 1)

[35]. This parameter is termed the foraging ratio in this study. It represents the proportion

of its time a predator focuses on prey N ; correspondingly a proportion (1−q) of predator’s

time is dedicated to prey A. Introducing the foraging ratio in models (1) and (2) lead to

two different models:



Ṅ = rNN

(
1− N

KN

)
− qλNNP,

Ȧ = rAA

(
1− A

KA

)
− (1− q)λAAP,

Ṗ = qeNNP + (1− q)eAAP − dP 2 −mP

(3)

and
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Ṅ = rNN

(
1− N

KN

)
− qλNNP,

Ȧ = rAA

(
1− A

KA

)
− (1− q)λAAP,

Ṗ = rPP

(
1− P

qαNN + (1− q)αAA

)
.

(4)

In both models, the dynamics of the alternative prey A are identical to prey N , with

corresponding parameters rA, KA and λA. An important difference with the single-prey

models (1) and (2) is that, because of prey diversity and the trade-off resulting from the

search image formation process, the capture rates of prey N and prey A are modulated

by q and (1 − q) respectively. The reproduction term of predators P in model (3) and

the carrying capacity of P in model (4) now depend on both prey. They are determined

as the sum of the contributions of each prey: qeNN + (1 − q)eAA and qαNN + (1 −

q)αAA, respectively. The foraging ratio q accounts for potentially time-varying predator

preference for each prey: if q = 1, P only forages for prey N whereas if q = 0, P

concentrates on A. If q is strictly between 0 and 1, P has a mixed foraging behavior.

It should be noted that, even though it was motivated by cognitive processes, models

(3) and (4) are also relevant in a spatially structured context, when prey species are

segregated in space. If both prey inhabit habitats which do not overlap, but between

which the predator can move freely, q and (1−q) then represent the respective proportions

of time spent by a predator in the N and A habitats (see e.g. investigations on coarse

grained habitats in [17, 36]). Such a behavior also refers to predator switching from one

prey’s habitat to another depending on their respective density, which is known to stabilize

predator-prey systems [37,38]. In this situation, the spatial segregation of prey imposes a

partitioning of predator captures due to switching, similar to that brought about by prey

search image formation.
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Finally, let us comment on some of models (3) and (4) properties as compared to

models (1) and (2), respectively. Suppose capture rates are equal and compare the one-

prey models (1) and (2) with the respective two-prey models (3) and (4) with balanced

foraging (i.e. q = 1
2
). At the same overall number of prey in both scenarios (but spread

over the two prey species for (3) and (4)), it is fairly easy to show that captures are

more important in the one-prey environment (they are actually doubled because of the

linear functional response). Conversely, adding the same number of an equivalent, but

different, prey species halves the capture rate of the primary prey. This is a characteristic

of the predator distraction effect: since prey are different, prey search image formation

(or spatial segregation of prey) renders the predator unable to capture both species at a

maximum rate at the same moment in time. All else equal, the distraction effect makes

the predator less efficient in a multi-prey environment. Meisner et al. results on the

distribution of the attack rates of Aphidius ervi, a natural enemy of aphids, provide a

striking example of predator distraction (see Figure 2 in [12], albeit, strictly speaking, A.

ervi is a parasitoid).

Results

Core of simple rules

Since the analytical expressions resulting from the analysis of model (4) are fairly simple,

we chose to report the study of this model in the body of the results section, and detailed

the analysis of model (3) in Appendix S3. Actually, the main property of the two models

is that they are extensions of single-prey models may possess an equilibrium at which

predators and prey coexist; when it exists, this equilibrium is globally stable. In what

follows, we denote this single prey equilibrium E∗N = (N∗N , P
∗
N).
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For model (2), E∗N exists whatever the value of the carrying capacity; it reads:

E∗N = (N∗N , P
∗
N) =

(
rNKN

rN + αNλNKN

, αN
rNKN

rN + αNλNKN

)
. (5)

In the analysis of model (1), we assumed that eNKN > m which is the condition of

existence of the coexistence equilibrium E∗N .

Because one-predator–one-prey equilibrium values are important to predator–multi-

prey systems, P ∗N , the realized predator equilibrium on prey N , will be given particular

attention in what follows. We also introduce P ∗N = αNKN for model (2) (respectively

P ∗N = eNKN−m
d

for model (1)), the ideal predator equilibrium on prey N , corresponding

to the density a predator population would reach preying on a species N artificially

maintained at its carrying capacity. Both the realized and ideal predator equilibria will

be at the basis of simple rules aiming to characterize indirect effects.

Fixed time partitioning strategy

The analysis of model (3) with fixed q shows that the dynamics always present a unique

stable equilibrium, corresponding to the coexistence of the predator and one or both of

its prey (Appendix S1.1). Indeed, a three-species coexistence equilibrium exists, provided

that:

rN > αArAKA
q(1− q)λN

rA + (1− q)2αAλAKA

, (6)

rA > αNrNKN
q(1− q)λA

rN + q2αNλNKN

, (7)

where (6) ensures the presence of prey N at equilibrium and (7) that of prey A; these
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conditions also ensure that the corresponding equilibrium is stable. Both conditions

cannot be simultaneously transgressed (Appendix S1.1).

To elucidate the effects of predator foraging preferences, we studied the influence of q

on the equilibrium of prey N and compared it with N∗N , its value at equilibrium when A

is absent. This leads to the following expression (Appendix S1.1):

N∗(q) =
rNrAKN + (1− q)2αAλArNKAKN − q(1− q)αAλNrAKAKN

q2αNλNrAKN + (1− q)2αAλArNKA + rNrA
, (8)

so that N∗(0) corresponds to the carrying capacity KN because P only forages for A and

N∗(1) is equal to N∗N because P only forages for N . Two cases can then occur. Either

the presence of the alternative prey is beneficial for N that reaches an equilibrium density

comprised between N∗N and KN , or detrimental to N that reaches an equilibrium density

smaller than N∗N . Actually, if αAKA > 2αN
rNKN

rN + αNλNKN

or, using the realized and

ideal predator equilibrium definitions, if

P ∗A > 2P ∗N , (9)

then prey N experiences negative effects for large values of q; otherwise, only positive

effects can occur on prey N (Appendix S1.2). For large values of αA or KA, i.e. large P ∗A,

prey N can thus suffer negative effects. These can be strong enough to exclude N ; that

is when condition (6) is not satisfied. In a similar way, for low values of αN , KN , rN or

large value of λN , i.e. low P ∗N , condition (9) tends to be more easily satisfied.

We get a symmetrical condition regarding the occurrence of detrimental effects from

prey N on prey A for small values of q:

P ∗N > 2P ∗A. (10)
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If this does not hold, only positive effects occur on prey A.

In the analysis of model (3), although forms (6), (7) and (8) differ, simple rules (9)

and (10) are the same (Appendix S3). Thus the following discussion can be interpreted

for both models (3) and (4).

Different effects on prey N were illustrated with prey which differ in parameters ei for

model (3) (not shown) and in parameters αi for model (4) (Figure 1). In the first case,

both prey contribute little to the predator population (low eI or αi) (Figure 1.A): N∗(q)

stays above N∗N for all q ∈ [0, 1]. Beneficial effects on both prey, i.e. apparent mutualism,

are thus observed whatever the predator preference. The predator shares its foraging time

between prey providing little to its population. As a consequence, the predator population

does not take advantage of the low-quality prey and predator distraction effects dominate

in the long term. In the second case, prey A quality has been increased (Figure 1.B) but

N remains of moderate quality: N∗(q) remains above N∗N if the predator has a slight

preference for N , but becomes smaller if the predator has a marked preference for N .

Beneficial effects on prey A and detrimental effects on prey N , i.e. apparent predation,

may be observed. This occurs because prey A is very beneficial to the predator because

of a large eA or αA respectively, so that it increases the predator’s growth rate and thus

predation pressure on prey N (the same would hold with a large Ka). In the meantime,

the high-quality prey benefits from predator distraction brought about by the low quality

prey. In the third case, both prey are of high quality (Figure 1.C): both conditions (9)

and (10) are satisfied so apparent predation and apparent mutualism can occur depending

on q values. In such cases, apparent predation can however be strong enough to exclude

one or the other prey.

In addition to these results, we showed that in both models at least one of the two

prey always experiences beneficial effects (Appendix S1.3 and Appendix S3), preventing
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Figure 1. Dependence of N∗ and A∗ on q. N∗ and A∗ are the densities of the
primary prey and alternative prey at equilibrium, and are represented by black and gray
curves, respectively. q is the preference of the predator. Most parameters are identical in
all three subplots (rN = rA = 6; KN = KA = 3; λN = 3, λA = 2), except for parameters
αi which do vary (subplot A: αN = 0.7, αA = 0.6 ; subplot B: αN = 1.5, αA = 4 ; subplot
C: αN = 12, αA = 8). The white areas correspond to values of q that induce apparent
mutualism. The light gray areas correspond to values of q that induce apparent
predation. The dark gray areas correspond to values of q that induce apparent predation
with exclusion of one prey. qA and qB are particular values of the foraging ratio used in
Appendix S1.4 to compute Figure S1.
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the occurrence of apparent competition and amensalism, so that at most one prey can

suffer from negative indirect effects, resulting in apparent predation. Finally, temporal

evolutions of the populations for model (4) have been computed to illustrate the effects

of an introduction of prey A: because of predator distraction, N is indirectly favored in

the short term, whereas it can benefit or suffer from the presence of A in the longer term

(Figure S1, Appendix S2.4). Notice that in both the illustrated cases in Figure S1, the

opposite effects occur as the multi-prey environment is profitable to the predator.

Adaptive time partitioning strategy

Adaptive foraging by predators has a major impact on food webs dynamics [40, 41]. We

thus considered the case in which the predator adapts its foraging ratio according to the

actual prey densities. This resulted in predator switching between prey N and prey A:

the predator chooses the most beneficial foraging ratio as a function of the environmental

conditions [37,42]. We still used models (3) and (4) but contrary to the previous section,

the foraging ratio q now varies in time: the predator population chooses q to maximize

its growth rate. This actually leads to maximize qeNN + (1 − q)eAA and qαNN + (1 −

q)αAA respectively, with respect to q at each moment in time. In fact, this instantaneous

optimization is the limit of the dynamical fitness (W ) maximization model

dq

dt
=

1

ε
q(1− q)∂W

∂q
,

as behavioral adaptation (q adaptation) is fast compared to population dynamics, i.e.

as ε tends to zero, and where fitness W is defined as the per capita growth rate of the

predator (see e.g. [43]).

With an instantaneous per capita growth rate maximization behavior, the predator
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forages for the most profitable prey and switches to the other one when the former be-

comes scarce. In fact, we showed in Appendix S3.1 that in model (4) the predator forages

for prey N and ignores prey A (i.e. q = 1) if:

N >
αA
αN

A, (11)

When inequality (11) is reversed, the predator switches to prey A. Thus a threshold

separates the state space in two regions, where q = 0 or q = 1, respectively. In both

regions, the non-predated prey follows logistic growth and the foraged predator–prey

system follows model (2). If prey N has a density precisely equal to
αA
αN

A, i.e. the system

is on the threshold, the predator potentially forages for both prey. Yet, the relationship

between N and A on this surface renders the predator dynamics independent from q and

yields:

Ṗ = rPP

(
1− P

αNN

)
= rPP

(
1− P

αAA

)
,

so that any q is optimal on the threshold.

Because the predator switches on the threshold, model (4) with adaptive q is discontin-

uous on this surface. It is actually the adaptive predator preferences in the remainder of

the state space that impose specific dynamics and foraging ratio q onto this surface. This

situation can be investigated using techniques developed for discontinuous differential

equations [44,45].

Near the threshold, two situations can occur. On the one hand, trajectories on both

sides of the threshold may be oriented in the same direction: solutions would then go

through the threshold. On the other hand, trajectories may be oriented in opposite direc-

tions: the threshold is then either repulsive or attractive, depending on the orientation of

the trajectories. In the former case, trajectories go away from the threshold and remain in

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/063230doi: bioRxiv preprint first posted online Jul. 11, 2016; 

http://dx.doi.org/10.1101/063230


16

one of the two regions, while in the latter case, trajectories converge to the threshold and

stay on it, a phenomenon called sliding mode [44]. Two conditions ensure the existence

of a sliding mode on the threshold and read (Appendix S3.2):

P > − 1

λA

(
rN − rA −

N

KN

(
rN −

αNKN

αAKA

rA

))
, (12)

P >
1

λN

(
rN − rA −

N

KN

(
rN −

αNKN

αAKA

rA

))
. (13)

Since (12) and (13) cannot be simultaneously breached with P > 0, no part of the

threshold is repulsive, so that the threshold is partitioned into two regions, one with

sliding mode dynamics for high values of P when (12) and (13) are satisfied (region S),

and another where solutions go through. The analysis of the dynamics on the threshold

can be performed using Filippov theory [44] but can also be presented in a more natural

way. In region S, both prey are of equal quality for the predator and a sliding mode will

persist as long as this remains true. From (11) the threshold is invariant if:

αAȦ− αNṄ = 0, (14)

should hold true, so the foraging ratio in region S can be computed as:

q∗ =

rN − rA −
N

KN

(
rN −

αNKN

αAKA

rA

)
+ λAP

P (λA + λN)
. (15)

It can be shown that q∗ necessarily belongs to [0, 1] in region S.

As q∗ depends on state variables, the foraging ratio of the predator varies depending

on the position of the system in region S. Using the value of q? given by (15), model (4)
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reduces to two equations in region S:


Ṅ =

(
λArN + λNrA
λA + λN

)
N

(
1− N

αA(λNrA+λArN )KNKA

αNλNrAKN+αAλArNKA

)
− λN

(
λA

λA + λN

)
NP,

Ṗ = rPP

(
1− P

αNN

)
.

(16)

The complex behavior q∗ of the predator actually renders the predator-prey system

equivalent to a one-predator–one-prey Leslie-Gower model (2) which possesses a globally

stable equilibrium:

E∗eq = (N∗eq, P
∗
eq) =

(
αA(λArN + λNrA)KAKN

αAλArNKA + αNλNrAKN + αAαNλAλNKAKN

, αNN
∗
eq

)
.

(17)

Yet, model (16) is only defined in region S of the threshold so that E∗eq is an equilibrium

of model (4) with adaptive q only if it lies in region S, i.e. if it satisfies conditions (12)

and (13). These existence conditions yield that αAKA > αNN
∗ and αNKN > αAA

∗, i.e.,

using the realized and ideal predator equilibrium definitions,

P ∗A > P ∗N , (18)

and

P ∗N > P ∗A. (19)

Straightforward computations actually show that both these existence conditions guar-

antee that N∗eq and A∗eq are larger than N∗N and A∗A, respectively, so that when it exists,

E∗eq is characteristic of a positive indirect interaction between prey.

A similar analysis can also be done with model (3). On the threshold, the latter is
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reduced to a one-predator–one-prey Lotka-Volterra model (1), which admits a globally

stable equilibrium on the threshold (Appendix S1). Actually, existence conditions of this

latter are conditions (18) and (19) which also ensure positive indirect effects between prey.

The following interpretation of these conditions thus holds for both models (3) and (4).

Figure 2 illustrates the two generic dynamics possible in model (4) with adaptive

q: convergence to a long-term pure diet equilibrium (Figure 2.A) or to a mixed-diet

equilibrium (Figure 2.B) with different ideal predator equilibrium values. These two

situations can also be illustrated in model (3) depending on conditions (18) and (19).

Actually, condition (18) means that prey A at carrying capacity is more valuable to the

predator than prey N at the one-predator–one-prey equilibrium. Thus, if (18) holds,

an adaptive predator cannot stick to a prey-N -only diet since at some point in time it

would be advantageous to switch to prey A. If prey A is also more valuable at the single-

prey equilibrium than prey N at the carrying capacity, i.e. if (19) is not verified, there

is no advantage for the predator to switch back to prey N . In this situation, prey N

benefits from the presence of A but has no effect on it: the predator ignores N and only

forages for A (Figure 2.A). This one sided positive indirect effect is referred to as apparent

commensalism of N with A [5]. Symmetrical results hold regarding prey A. However, if

both (18) and (19) hold true, there are no pure diet equilibria so that only the mixed diet

equilibrium E∗eq exists and is stable (Figure 2.B). In that case, long-term dynamics are of

the apparent mutualism type.

One can additionally show that conditions (18) and (19) cannot simultaneously be

breached (Appendix S3.3). This implies that, as in the fixed partitioning strategy, at

least one prey always benefits from the time partitioning of the predator. However, in

contrast with the results obtained for predators with a fixed preference for their prey,

adaptive predator foraging only induces neutral or positive indirect effects between their
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Figure 2. Evolution of the one-predator–two-prey system with adaptive
preference. Most parameters are identical in all two subplots (rN = 12, rA = 15,
rP = 12; λN = 1, λA = 1; αN = 0.5, αA = 1). In subplot A, prey A is the most profitable
prey (P ∗N = 7.5, P ∗A = 60) while in subplot B both prey are worthy to the predator
(P ∗N = 40, P ∗A = 10). In both subplots, the light shaded surface figures the switching
surface, while region S, delimited by the two dashed lines defined from sliding mode
conditions (12) and (13), is represented in darker gray in subplot B only. Indeed, in
subplot A condition (12) is only satisfied for large values of P , so that the trajectory is
way below the sliding area and converges to the region where q = 0. In subplot B, the
trajectory eventually converges to the sliding area, where P adopts a mixed diet, after
having first crossed the threshold surface with condition (13) not satisfied.
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prey, so apparent predation does not occur in this situation. Moreover, prey diversity is

also profitable to the predator since one can easily show that P ∗eq > P ∗N and P ∗eq > P ∗A (Ap-

pendix S3.4). Temporal evolution of the populations in model (4) has also been computed

to illustrate the effects on prey N of an introduction of prey A: positive effects induced

by predator distraction in the short-term, and different outcomes in the long term (Figure

S2, Appendix S1.5).

Foraging mode and positive indirect effects

To further explore the occurrence of indirect effects, we compared conditions when preda-

tors follow a fixed or an adaptive time partitioning strategy. We based our comparisons on

the realized and ideal predator equilibrium values, in line with the previous work of Holt

et al. [4]. We indeed showed that simple rules, as (9,10) or (18,19), can also characterize

indirect effects in simple predator-prey systems influenced by complex mechanisms. Since

these simple rules are observed for both Lotka-Volterra and Leslie-Gower models, they

transcend model structures and can thus be considered as robust. We found that when

the predator follows a fixed partitioning time strategy, apparent mutualism is guaranteed

when both inequalities (9) and (10) are reversed, i.e. when P ∗A < 2P ∗N and P ∗N < 2P ∗A.

Otherwise, apparent mutualism or apparent predation, which can even lead to the exclu-

sion of one or the other species, can happen depending on the value of q (Figure 1). When

the predator follows an adaptive partitioning time strategy, apparent mutualism occurs

when both conditions (18) and (19) are satisfied, i.e. when P ∗A > P ∗N and P ∗N > P ∗A.

Otherwise, commensalism of one prey with the other happens. At this point one should

notice the additional biological constraint that P ∗N > P ∗N and P ∗A > P ∗A.

The combination of these conditions yields three different generic situations deter-
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mined in part by the realized predator equilibria on single prey P ∗A and P ∗N : Both prey A

and N may withstand the same, slightly or markedly different levels of predators at the

predator–single-prey equilibrium. We illustrated these cases in Figure 3 by varying P ∗A

and keeping P ∗N constant. In the first situation, i.e. P ∗A = P ∗N , apparent mutualism occurs

for all feasible P ∗N and P ∗A values when the predator adaptively forages (Figure 3.A, light

gray region). In contrast, apparent mutualism is only guaranteed in the smaller portion

of the parameter space located below 2P ∗N and 2P ∗A (Figure 3.A, dotted region) when the

predator follows a fixed time partitioning strategy; otherwise, depending on the value of

q, any indirect effect relevant to the fixed time partitioning strategy may occur. In the

second situation, i.e. P ∗A between P ∗N and 2P ∗N , commensalism of N with A happens with

the adaptive time partitioning strategy as P ∗N remains lower than P ∗A (Figure 3.B, dark

gray region). A small region in which mutualism is guaranteed with the fixed time parti-

tioning strategy, but does not occur with the adaptive one, also appears for low P ∗N and

P ∗A (Figure 3.B, dark gray and dotted area). In the third situation, as P ∗A is larger than

2P ∗N , only the fixed time partitioning strategy qualitatively differs from the previous sit-

uation since no parameter combination guarantees the occurrence of mutualism anymore

(Figure 3.C).

Although our conditions are slightly more complicated than the P ∗ rule, we were able

to derive some simple rules ensuring the occurrence of unilateral and bilateral positive

indirect effects driven by predator distraction, which can thus be generalized in the fol-

lowing situations. In a fixed time partitioning strategy, prey species should be much alike

and correspond to small ideal predator equilibrium to experience apparent mutualism.

Indeed, the realized predator equilibrium on one prey must be no larger than twice the

realized equilibrium on the other, and the ideal predator equilibrium on one prey should

stay below twice the realized predator equilibrium on the other. If one of the prey does
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A

B

C

Figure 3. Occurrence of mutualism between prey depending on values of
P∗Aand P∗N. In subplot A, both prey can support the same level of predator at
predator–single-prey equilibrium (P ∗A = P ∗N); in subplot B, prey A is slightly more
profitable than prey N at equilibrium (P ∗A > P ∗N) and in subplot C, prey A is markedly
more profitable than prey N at equilibrium (P ∗A > 2P ∗N). Four different regions are
defined: unfeasible region (white area), ensured apparent mutualism with the fixed time
partitioning strategy (dotted area), and apparent mutualism (light gray area) or
apparent commensalism (dark gray area) with the adaptive time partitioning strategy.
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not satisfy these rules, unilateral negative indirect effects can occur, leading to apparent

predation. In an adaptive time partitioning strategy, the rule is even simpler since ap-

parent mutualism happens when both ideal predator equilibria are larger than the largest

realized predator equilibrium. However, if one of the prey does not satisfy these rules, ap-

parent commensalism can occur. Thus, prey characterized by large P ∗ are more likely to

experience apparent mutualism in an adaptive time partitioning strategy than in a fixed

one. This outcome is reinforced by the fact that at most one prey can potentially suffer

from negative indirect effects in the fixed time partitioning strategy, while prey are never

penalized in an adaptive one. Such a discrepancy between foraging modes underscores the

importance of characterizing predator foraging habits, especially in terms of adaptation

to its prey environment.

Discussion

The classical P ∗ rule disregards the fact that if a predator forages for many prey, it can

have difficulties doing it at the same time. In some situations, such as when prey search

image formation is needed or simply because of spatial segregation of prey species, the

predator has to partition its time or its foraging effort, which releases predation pressure

on each prey. This predator distraction effect directly induces positive indirect effects

between prey species in the short term. However, predators’ numerical response may act

concurrently on prey densities so that the combination of the two results in all likelihood in

different types of indirect effects between prey species [17,18]. Most models developed to

investigate indirect effects between prey species in predator–multi-prey systems conclude

that apparent competition between prey is the rule in the long term, e.g. [4, 7, 36, 46].

Nonetheless, it has been reported that apparent competition may be weakened in some
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specific situations, such as when the predator adaptively forages for its prey [47–50].

It has even been shown that mechanisms such as predator satiation, negative density

dependence or adaptive foraging can reverse the indirect interactions and give rise to

apparent mutualism between prey [19]. These situations make thus difficult the use of

classical simple rules for describing complex predator–prey systems.

According to Holt’s original definition [7], “two species are in apparent competition

whenever the presence of either species leads to a reduced population density for the

other species at equilibrium”. In this study, we followed this definition, defining apparent

mutualism and other indirect interactions, as apparent predation or apparent commensal-

ism, as long term phenomena characterized by changes in equilibrium densities between

the one- and two-prey scenarios. This approach has been the basis of the P ∗ rule which

is built on the comparison of predator equilibria [4]. In the same way, we investigated

indirect effects in the long term by comparing predator equilibria, whereas short term

indirect effects linked to predator distraction have been evaluated as the instantaneous

change caused by the presence of one prey on the other’s density. For that purpose, two

classes of models based on different assumptions and structures have been explored. In

both cases, similar indirect effects have been identified and characterized by identical rules

based on realized and ideal predator equilibrium values. To go further in the exploration

of indirect effects, we also compared simulations with either dynamical or instantaneous

behavioral adaptation and found that both led to the same asymptotic results (simula-

tions not shown). Drawing on these, we ensured the robustness of our conclusions and

highlighted the relevance of simple rules for describing species interactions in community

modules, even influenced by complex mechanisms.

In this paper, we indeed showed that positive indirect interactions can occur in the long

term, once the predator population has numerically responded to the presence of different
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prey. In particular, we have obtained the intriguing result that higher predator densities

do not necessarily lead to more prey suppression: predator distraction can counterbalance

its numerical response and promote apparent mutualism between prey, and this is true

whether predators forage adaptively or not. However, two main mechanisms can act

against the occurrence of apparent mutualism. In the fixed time partitioning strategy, a

prey with an ideal predator equilibrium larger than twice the realized predator equilibrium

on the other prey may bring about a significant numerical response of the predator, and

consequently affect negatively the other prey through apparent predation. In the adaptive

time partitioning strategy, a prey with an ideal predator equilibrium smaller than the

realized predator equilibrium on the other prey will eventually be completely ignored

by the predator, leading to an apparent commensalism effect. Prey characteristics able

to break apparent mutualism down are thus tighter in the adaptive scenario and also

inhibit any negative indirect effect; this is because if adaptive foraging is beneficial to the

predator, it also maximizes predator distraction and the consequent predator pressure

release. Apparent mutualism is therefore more easily guaranteed in the adaptive rather

than in the fixed case, while apparent predation only occurs in the latter case.

Our results complement previous findings on apparent mutualism reported in [7, 18,

19]. Although apparent mutualism is more frequent if predators are adaptive foragers,

we showed that this is not compulsory: depending on prey characteristics, fixed time

partitioning predators can indeed induce apparent mutualism for some, or all, values of

the foraging ratio. Furthermore, predator distraction does not always weaken apparent

competition equally on both prey. We thus identified situations when prey only experience

unilateral positive effects so that apparent predation or apparent commensalism may

occur. Actually, such indirect effects are known to be promoted by predatory behavior in

the short term [17], and have recently been identified in the long term under the influence
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of predator saturation [51]. Our results showed that apparent predation can also occur

with other mechanisms such as predator distraction and time partitioning strategies. They

thus provide further underpinnings to the hypopredation phenomenon, a term which has

been recently identified by [51] in the field of invasion biology: an invasive prey can

actually be beneficial to a native prey by indirectly decreasing predation pressure, in

contradiction with the hyperpredation concept, i.e. an increase in predation pressure [32].

Because adaptive behavior strongly weakens predators’ functional response on the focal

prey, we did not found hyperpredation in the adaptive time partitioning strategy. In

both strategies, we however emphasized on the fact that, at equilibrium, higher predator

densities do not necessarily imply lower prey densities. As far as we know, this study

is one of the first to precisely identify such phenomena in the long term. In fact, these

phenomena contradict one of the main rationale underlying apparent competition theory,

and may have important real-life consequences. Hence, depending on species interactions

and predator behavior, different outcomes of multi-species predation can be expected.

From the classical apparent competition evidenced in absence of time partitioning to

apparent mutualism, its radical opposite shown in the present paper; we also produced

intermediate outcomes in the form of apparent predation and apparent commensalism.

Positive interactions between species are increasingly recognized as important drivers

of ecosystems structure and functioning, while a large part of the theory has so far concen-

trated on antagonistic interactions [52,53]. The picture is even a little more complicated

since we have shown that complex interactions between individual behavior and popula-

tion dynamics can turn an essentially antagonistic interaction into a unilateral or bilateral

positive indirect one. These properties may be relevant in various applied areas, such as

in the field of conservation biology: for instance, Halpern et al. [54] recommend a more

thorough consideration of potential positive interactions in planning restoration or con-
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servation programs in aquatic ecosystems. In a closer connexion with the present study,

Sundararaj et al. [16] show that livestock populations can distract Asiatic lions from

preying on native endangered chital deers, and advocate making the most of livestocks in

conservation biology programs. As a matter of fact, lions’ numerical response could also

be weakened by other factors than distraction, such as strong territorial behavior lead-

ing to direct interference, or large time scales required by the lions’ population to reach

an equilibrium, leading to only observe short-term effects on prey. In fact, mechanisms

promoting positive indirect effects are highly variable among systems and can result in

a variety of indirect effects in nature. Identification of such mechanisms combined with

extended simple rules are thus key to characterize indirect interaction in community mod-

ules, and could yield unifying principles in ecology based on equilibria comparison.

Our study can be specifically relevant to biological pest control program design. A

large part of the experimental studies investigating indirect effects compare one-prey to

two-(or more) prey scenarios (e.g. over 2/3 of the studies reviewed in [55] on predator-

prey systems, see also [1]). This empirical approach is actually identical to the method we

followed to analyze interactions in this paper. In this context, ideal and realized predator

equilibria are simple indicators that could be experimentially estimated with single-prey

and one-predator–single-prey systems, and then used to predict one-predator–multi-prey

interactions. Since species behavior is known to alter biological pest control, mechanisms

influencing species interactions, such as distraction effect, interference or spatial distribu-

tion, would need to be empirically identified prior to the start of experiments [56]. Experi-

mental investigation into indirect effects could validate the combination of both indicators

and identification of mechanisms for describing interactions in complex predator-prey sys-

tems. In turn, simple rules may help to ensure success of biological control programs or

prevent potential failures by wisely choosing predators regarding their realized and ideal
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equilibria for example.

The present modelling study provided rationale supporting the empirical observation

of Prasad and Snyder that “higher predator densities will not necessarily lead to improved

pest control” [57]. A part of the effect reported in [57] is due to intraguild predation

mechanisms, but distraction of generalist predators caused by the simultaneous presence

of different prey is also acknowledged as an important driver of pest control disruption.

This mechanism, originally put forward in [58], questions popular biological pest control

practices. On the one hand, pest suppression cannot be determined by predator density

alone; thus, against all odds, natural enemy density is not a reliable biological indicator

of pest control. On the other hand, biological control programsbased on resource sup-

plementation to biocontrol agents may turn counter-productive. For instance, providing

alternative food to biological control agents can increase predator density, but also dis-

tract them from the targeted pest [10]. Similarly, shelters or banker plants [59] may also

draw predators’ attention away from the targeted pest, which potentially disrupt pest

control [57, 60]. Because distraction effects have been reported in various biological con-

trol agents species (e.g. [10–13, 57]), we believe that careful experimental studies should

be conducted to assess the long term efficacy of resource supplementation in biological

control programs.
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Appendix

S1 Analysis of model (4) with fixed time partitioning strategy

S1.1 Equilibria and stability analysis

Model (4) with q fixed has the following boundary equilibria:

E1 = (KN , 0, 0),

E2 = (0, KA, 0),

E3 = (KN , KA, 0),

E4 =

(
rNKN

rN + q2αNλNKN

, 0, qαN
rNKN

rN + q2αNλNKN

)
,

E5 =

(
0,

rAKA

rA + (1− q)2αAλAKA

, (1− q)αA
rAKA

rA + (1− q)2αAλAKA

)
,

and a unique interior equilibrium: E∗ = (N∗(q), A∗(q), P ∗(q)) with

N∗(q) =
rArNKN + (1− q)2αAλArNKAKN − q(1− q)αAλNrAKAKN

(1− q)2αAλArNKA + q2αNλNrAKN + rArN
,

A∗(q) =
rArNKA + q2αNλNrAKAKN − q(1− q)αNλArNKAKN

(1− q)2αAλArNKA + q2αNλNrAKN + rArN
,

P ∗(q) =
rArN((1− q)αAKA + qαNKN)

(1− q)2αAλArNKA + q2αNλNrAKN + rArN
.

The equilibrium E∗ exists if N∗(q), A∗(q), and P ∗(q) are positive that is if both

rArNKN + (1− q)2αAλArNKAKN − q(1− q)αAλNrAKAKN > 0,

rArNKA + q2αNλNrAKAKN − q(1− q)αNλArNKAKN > 0,

are satisfied. These conditions can be written as follows:

rN > rA
q(1− q)αAλNKA

rA + (1− q)2αAλAKA

(Condition (7)),
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rA > rN
q(1− q)αNλAKN

rN + q2αNλNKN

(Condition (8)).

Both conditions cannot be transgressed simultaneously. Indeed, if they were, we could

introduce rA obtained from the opposite of condition (8) into the opposite of condition

(7) and obtain:

rN ≤ rN
q(1− q)αNλAKN

rN + q2αNλNKN

q(1− q)αAλNKA

rA + (1− q)2αAλAKA

,

= rN

(
q2(1− q)2αAαNλAλNKAKN

rArN + q2αNλNrAKN + (1− q)2αAλArNKA + q2(1− q)2αAαNλAλNKAKN

)
.

Since the numerator of the bracketed fraction is smaller than its denominator, this yields

a contradiction and either condition (7) or (8) shall hold true.

The Jacobian matrix of model (4) at an equilibrium Ē = (N̄ , Ā, P̄ ) is the following:

JĒ =



−rNN̄
KN

0 −λNN̄

0 −rAĀ
KA

−λAĀ

αN
rP P̄

2

(αNN̄ + αAĀ)2
αA

rP P̄
2

(αNN̄ + αAĀ)2
rP −

2rP P̄

αNN̄ + αAĀ


.

E1, E2 and E3 are unstable because rP is one of their eigenvalues. E4 is stable if condition

(7) is not verified and E5 is stable if condition (8) is not fulfilled.

When both conditions (7) and (8) are satisfied, E∗ exists and the characteristic polyno-

mial of the Jacobian matrix is as follows:

Det(JE∗ − λId) = λ3a3 + λ2a2 + λa1 + a0,

with a0 = −
(
rNN

∗(q)

KN

rAA
∗(q)

KA

rP + λNN
∗(q)

rAA
∗(q)

KA

αNrP + λAA
∗(q)αArP

rNN
∗(q)

KN

)
,

a1 = −
(
rNN

∗(q)

KN

rP +
rNN

∗(q)

KN

rAA
∗(q)

KA

+
rAA

∗(q)

KA

rP + λNN
∗(q)αNrP + λAA

∗(q)αArP

)
,
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a2 = −
(
rNN

∗(q)

KN

+
rAA

∗(q)

KA

+ rP

)
and a3 = −1.

For this equilibrium to be stable, the Routh-Hurwitz criterion imposes that

a0 < 0, a2 < 0, a3 < 0 and a2a1 − a3a0 > 0,

The three former conditions are verified when E∗ exists, while we get for the latter:

a2a1 − a3a0 =
rNN

∗(q)

KN

rAA
∗(q)

KA

(
rNN

∗(q)

KN

+
rAA

∗(q)

KA

+ 2rP

)
+ ...

...rP
rNN

∗(q)

KN

(
rNN

∗(q)

KN

+ αNλNN
∗(q) + rP

)
+ ...

...rP
rAA

∗(q)

KA

(
rAA

∗(q)

KA

+ αAλAA
∗(q) + rP

)
+r2

P (αNλNN
∗(q) + αAλAA

∗(q))

which is also positive if E∗ exists. Then E∗ is locally asymptotically stable.

S1.2 Positive or negative effect on N of the introduction of A

We will study N∗(q) and show that it is always decreasing for q ∈ [0, 1] or is decreasing to

a minimum and then increasing to N∗N . To do so, we need to consider N∗(q) as a function

of q over R, and not only restricted to the set [0, 1] which is biologically sensible.

Several points need to be noticed for that:

• N∗(0) = KN > N∗(q) for all q ∈ (0, 1] (with N∗(1) = N∗N).

• lim
q→−∞

N∗(q) = lim
q→+∞

N∗(q) = KN
αAλNrAKA + αAλArNKA

αNλNrAKN + αAλArNKA

.

• N∗(q) is continuous and has two extrema for q ∈ R. Indeed

dN∗(q)

dq
=

KNλNrA
(KNrAλNαNq2 +KArNλAαA(1− q)2 + rNrA)2

× ...

...
[
− α2

AK
2
AλA(1− q)2rN − 2αNKNqrArN + αAKA((2q − 1)rArN + ...
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...αNKNq(λNqrA + 2λA(q − 1)rN))
]
,

which cancels at the roots of the numerator, a 2nd order polynomial. The two roots

are real because lim
q→−∞

N∗(q) = lim
q→+∞

N∗(q) implies that, either N∗(q) is constant

(which it is not), or it has at least an extremum.

• The derivative of N∗ in q = 0 is negative:

dN∗

dq

∣∣∣∣
q=0

= −λNrAKN(α2
AλArNK

2
A + αArArNKA)

(αAλArNKA + rArN)2
< 0.

• The derivative of N∗ in q = 1 is as follows:

dN∗

dq

∣∣∣∣
q=1

=
λNrAKN(−2αNrArNKN + αAKA(rArN + αNKN(λNrA))))

(αNλNrAKN + rNrA)2
,

and is positive if

αAKA >
2αNKNrN

rN + αNλNKN

(condition (7)).

Since
dN∗

dq

∣∣∣∣
q=0

< 0, the first extremum N∗(q) has for q > 0, if it has one, must be a

minimum. Therefore, three situations arise:

• N∗(q) has no extremum for q ∈ [0, 1), so that
dN∗

dq

∣∣∣∣
q=1

≤ 0. This implies that

N∗(q) ≥ N∗N for all q ∈ [0, 1].

• N∗(q) has exactly one extremum for q ∈ (0, 1), which needs to be a minimum, having

N∗(q) < N∗N , and no maximum in q = 1. This is equivalent to having
dN∗

dq

∣∣∣∣
q=1

> 0.

• N∗(q) has two extrema for q ∈ (0, 1], a minimum then a maximum, so that
dN∗

dq

∣∣∣∣
q=1

≤

0. Since N∗(q) has no more than two extrema over R, this implies that N∗(q) is

always decreasing for q outside the interval so that lim
q→−∞

N∗(q) > N∗(0) > N∗(1) >

lim
q→+∞

N∗(q), which leads to a contradiction.
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S1.3 At least one prey always benefits from the time partitioning

If q = 0 or q = 1, one of the prey is ignored so that it benefits from a positive indirect

effect from the other prey.

Consider P ∗(q) = qαNN
∗(q) + (1 − q)αAA

∗(q) the equilibrium of the predator P for

q ∈ (0, 1) from the Ṗ = 0 equation. Suppose that P ∗(1) = αNN
∗(1) ≥ P ∗(0) = αAA

∗(0).

Suppose moreover that there exists q such that N∗(1) ≥ N∗(q) > 0 and A∗(0) ≥ A∗(q),

which means that both prey experience detrimental effects for this q value. As conse-

quences,

P ∗(q) = qαNN
∗(q) + (1− q)αAA∗(q),

≤ qαNN
∗(1) + (1− q)αAA∗(0),

= qP ∗(1) + (1− q)P ∗(0),

≤ P ∗(1).

Since N∗(q) 6= 0, from the Ṅ = 0 equation, P ∗(q) =
rN
qλN

(
1− N∗(q)

KN

)
. Since

rN
qλN

>
rN
λN

and

(
1− N∗(q)

KN

)
≥
(

1− N∗(1)

KN

)
> 0, we have:

rN
qλN

(
1− N∗(q)

KN

)
>
rN
λN

(
1− N∗(1)

KN

)
,

which means that P ∗(q) > P ∗(1). That contradicts the initial assumptions.

Because both prey play a symmetric role in the equations, similar contradictions occur

if we assume P ∗(0) ≥ P ∗(1) and follow a symmetrical reasoning. Thus indirect effects

without extinction are always positive for at least one of the prey.

The only roadblock to the preceding proof occurs when either N∗(q) = 0 or A∗(q) = 0.
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Suppose N∗(q) = 0 and A∗(q) ≤ A∗(0). We have:

P ∗(q) = (1− q)αAA∗(q) ≤ (1− q)αAA∗(0),

≤ P ∗(0).

Then, since A∗(q) > 0 because both species cannot go extinct simultaneously, we have,

from the Ȧ = 0 equation, P ∗(q) =
rA

(1− q)λA

(
1− A∗(q)

KA

)
. Since

rA
(1− q)λA

>
rA
λA

and(
1− A∗(q)

KA

)
>

(
1− A∗(0)

KA

)
> 0, we have:

rA
(1− q)λA

(
1− A∗(q)

KA

)
≥ rA
λA

(
1− A∗(0)

KA

)
,

which means that P ∗(q) > P ∗(0). That contradicts the initial assumptions.

A symmetrical reasoning can be held in the case where A∗(q) = 0, which concludes

the proof that at least one prey always benefits from the predator’s time partitioning .

S1.4 Temporal evolution of the populations

Temporal dynamics of prey N were computed (Figure S1) to illustrate the effects on N

of the introduction of A. Before the introduction, the predator only forages for N (q = 1)

then partitions its foraging time as A is introduced, which relaxes its pressure on the

primary prey in the short term. Beneficial effects in the short term are thus due to a

distraction effect on the predator. Depending on how the alternative prey improves the

growth rate of the predator according to the q values, long-term positive indirect effects

can occur on prey N if both prey have low αi (subplot A) or long-term negative indirect

effects if the alternative prey is such that αA � αN (subplot B).
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Figure S1. Effects of the introduction of an alternative prey on a
one-predator–one-prey system with fixed time partitioning strategy. All
parameters are the ones defined for Figure 1.A and Figure 1.B, respectively. q = qA is
defined in Figure 1.A, and q = qB in Figure 1.B. Initially, q = 1, during a timespan
represented by the black rectangular shape, A is then introduced (black trait above the
figures) and the predator adopts a fixed q (timespan represented by the grey rectangular
shape).
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S2 Analysis of model (4) with adaptive time partitioning strat-

egy

S2.1 Partition of the state-space

The predator optimally forages for its prey by maximizing its intrinsic growth rate, which

is equivalent to:

maxq

(
Ṗ

P

)
= maxq

(
1− P

qαNN + (1− q)αAA

)
,

which is then achieved for the q value that maximizes K(q) = qαNN + (1 − q)αAA. We

have:

dK(q)

dq
= αNN − αAA.

So the predator maximizes its intrinsic growth rate by:

• only foraging for A if N <
αA
αN

A (q = 0) because K(q) is a decreasing function of q.

• only foraging for N if N >
αA
αN

A (q = 1) because K(q) is an increasing function of

q.

• adopting some mixed diet if N =
αA
αN

A (q ∈ [0, 1]) because K(q) is constant.

S2.2 Sliding mode conditions

Let ~n be the normal vector to the surface N =
αA
αN

A, oriented from the region where

q = 0 toward the region where q = 1.

~n =


1

−αA
αN

0

.
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Let denote ~S0 and ~S1 the right-hand sides of model (4) when q = 0 and q = 1, respectively.

Sliding mode is observed on the surface N =
αA
αN

A if:

〈 ~S0, ~n〉 > 0 and 〈 ~S1, ~n〉 < 0.

On the one hand:

〈 ~S0, ~n〉 = rN

(
1− N

KN

)
N − αA

αN

[
rA

(
1− A

KA

)
A− λAAP

]
,

= rN

(
1− N

KN

)
− rA

(
1− αNN

αAKA

)
+ λAP,

where the equality N =
αA
αN

A has been used. Then the condition 〈 ~S0, ~n〉 > 0 is equivalent

to:

P > − 1

λA

(
rN − rA −

N

KN

(
rN −

αNKN

αAKA

rA

))
On the other hand:

〈 ~S1, ~n〉 = rN

(
1− N

KN

)
N − λNNP −

αA
αN

[
rA

(
1− A

KA

)
A

]
,

= rN

(
1− N

KN

)
− λNP − rA

(
1− αNN

αAKA

)
,

where the equality N =
αA
αN

A has been used. Then the condition 〈 ~S1, ~n〉 < 0 is equivalent

to:

P >
1

λN

(
rN − rA −

N

KN

(
rN −

αNKN

αAKA

rA

))

S2.3 At least one prey benefits from the time partitioning

Here we show that either condition (19), (20) or both hold true, so that at least one of

the two prey benefits from the adaptive time partitioning.
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Suppose that both (19) and (20) are breached so that:

P ∗A < P ∗N and P ∗N < P ∗A.

Recall that we necessarily have the feasibility conditions P ∗N < P ∗N and P ∗A < P ∗A. Thus,

using both breached conditions and the first feasibility condition, we have:

P ∗A < P ∗N < P ∗N < P ∗A,

which contradicts the second feasibility condition.

S2.4 The predator always benefits from its mixed diet

The predator benefits from its mixed diet if P ∗eq is larger than P ∗N and P ∗A, which leads to:

P ∗eq > P ∗N ,

αA(λArN + λNrA)KAKN

αAλArNKA + αNλNrAKN + αAαNλAλNKAKN

> αN
rNKN

rN + αNλNKN

.

We develop and simplify the two members of the inequality:

αArNKA + αAαNλNKAKN > αNrNKN .

We then factorize the inequality and obtain:

αAKA > αN
rNKN

rN + αNλNKN

,

P ∗A > P ∗N ,

which results on condition (19).
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We get the symmetrical condition (20) regarding

P ∗eq > P ∗A

which reads:

P ∗N > P ∗A,

Thus, if P ∗eq exists, i.e. if the predator adopts a mixed diet, it always reaches a higher

density at equilibrium than in pure diets.

S2.5 Temporal evolution of the populations

We illustrated the cases where condition (19) holds true but (20) is not satisfied (Fig-

ure S2.A), and where both conditions are satisfied (Figure S2.B). In figure S2.A, a one-

predator–low-quality-prey system is considered; only prey N is present at the beginning

of the simulation; thereafter a better, but still low-quality, prey A is introduced. In this

type of situation, condition (19) holds true, but (20) is not satisfied, hence E∗eq is not an

equilibrium of the model. At first, the system is not influenced by A because it is of low

density. The predator ignores A until the system reaches the threshold, because of the

growth of A. As this occurs, the predator switches from N to A, which has just become the

most profitable prey. Since N is a lower-quality prey than A, it is ignored by the predator

in the long-term and reaches its carrying capacity, whereas P focuses on A (q = 0). N

experiences short-term neutral effects followed by positive effects due to the switching of

the predator to the higher-quality prey. In the long term, the presence of prey A thus

releases predation from prey N which tends to its carrying capacity. Long-term dynamics

of prey A appear unaffected by the presence of prey N since the predator behaves as
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if the latter was missing (apparent commensalism). A symmetric situation takes place

for A and N if (20) holds true, but (19) is not satisfied. Thus both prey can reversely

experience commensalism, depending on which is the most profitable for the predator.

Figure S2.B illustrates a similar scenario in which both prey are of high-quality so that

(19) and (20) hold and E∗eq is the only stable equilibrium of the system. At first, prey N

experiences short-term positive indirect effects thanks to a distraction effect: the predator

immediately switches from N to A which is of high density. However, because N is also

valuable, the system eventually reaches region S and ultimately converges towards the

co-existence equilibrium E∗eq. Therefore, both prey experience long-term positive effects

by reaching equilibrium values that are higher than the ones corresponding to one-prey

only situations (apparent mutualism).

S3 Analysis of model (1) with an additional prey

S3.2 Analysis of model (1)

In what follows, we will consider that predators can persist in the system with only one

prey, i.e. eNKN > m. Model (1) thus admits a unique globally stable equilibrium at

which predators and prey coexist:

E∗ = (N∗N , P
∗
N) =

(
KN

mλN + drN
rNd+ λNeNKN

, rN
eNKN −m

rNd+ λNeNKN

)
.

We consider that P ∗N is the realized predator equilibrium on prey N , and we introduce

P ∗N = eNKN−m
d

, the ideal predator equilibrium on prey N . We do not detail the methodol-

ogy that leads to the main results in that follows, since the assumptions and mathematical

steps remain the same that the ones we have used to identify indirect effects with the
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Figure S2. Effects of the introduction of an alternative prey on a
one-predator–one-prey system with adaptive time partitioning strategy
(rN = rA = 6; KN = KA = 3;λN = 3, λA = 2). Initially, q = 1, during a timespan
represented by the black rectangular shape, A is then introduced (black trait above the
figures). In subplot A (αN = 0.2, αA = 0.4), P switches from N to A when (9) is not
satisfied anymore (q = 0 represented by the white rectangular shape). In subplot B
(αN = 2, αA = 4), P instantaneously switches from N to A (q = 0 represented by the
white rectangular shape) then reaches the switching surface and stays on it (q ∈ [0, 1],
gradient of the gray rectangular shape).
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Leslie-Gower model.

S3.2 A one-predator–two-prey model

To ease the reading, we recall model the Lotka Volterra one predator two-prey model (3):



Ṅ = rN

(
1− N

KN

)
N − qλNNP

Ȧ = rA

(
1− A

KA

)
A− (1− q)λAAP

Ṗ = qeNNP + (1− q)eAAP − dP 2 −mP

(20)

S3.3 Fixed time partitioning strategy

If qeNKN + (1 − q)eAKA −m > 0, model (3) admits a unique stable equilibrium E∗ =

(N∗(q), A∗(q), P ∗(q)) with:

N∗(q) =
KNrArNd+ (1− q)2eAλAKAKNrN + qrAλNKNm− q(1− q)eAλNKAKNrA

q2eNλNKNrA + (1− q)2eAλAKArN + rNrAd
,

A∗(q) =
KArArNd+ q2λNeNKAKNrA + (1− q)λAKArNm− q(1− q)λAeNKAKNrN

q2rAeNλNKN + (1− q)2rNeAλAKA + rNrAd
,

P ∗(q) =
qrArNeNKN + (1− q)rArNeAKA −mrArN
q2rAeNλNKN + (1− q)2rNeAλAKA + rNrAd

.

(21)

We studied the influence of q on the equilibrium of prey N and compared it with

N∗N . Following the methodology introduced in Appendix S1.2, we concluded that A has

a positive effect on N for any value of q if:

P ∗A < 2P ∗N . (S4)
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We get a symmetrical condition regarding the occurrence of positive effects from prey

N on prey A, which leads to the occurrence of apparent mutualism if the following con-

ditions are satisfied:

P ∗A < 2P ∗N , (S5)

and

P ∗N < 2P ∗A, (S6)

As demonstrated in Appendix S1.3, at least one prey always benefits from the time

partitioning: the indirect effects range from apparent predation and punctual apparent

commensalism to apparent mutualism.

S3.4 Adaptive time partitioning strategy

The predator can choose q to maximize its growth rate. The predator thus forages for

prey N and ignores A (i.e. q = 1) if:

N >
eA
eN
A. (S7)

If the inequality (S7) is reversed, the predator switches to prey A (q = 0). If prey N has a

density equal to
eA
eN
A, the system is at a threshold separating the two regions where q = 0

and q = 1, respectively. On the threshold, the system admits a unique stable equilibrium

peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/063230doi: bioRxiv preprint first posted online Jul. 11, 2016; 

http://dx.doi.org/10.1101/063230


51

E∗eq = (N∗eq, A
∗
eq, P

∗
eq) with

N∗eq =
eAKAKN(λAλNm+ λNrAd+ λArNd)

eNKNλNrAd+ eAKAλArNd+ eAKAλAeNKNλN
,

A∗eq =
eNKAKN(λAλNm+ λNrAd+ λArNd)

eNKNλNrAd+ eAKAλArNd+ eAKAλAeNKNλN
,

P ∗eq =
eNKNeAKA(λNrA + λArN)− eAKAλAmrN − eNKNλNmrA

eNKNλNrAd+ eAKAλArNd+ eAKAλAeNKNλN
.

(S8)

The existence conditions of E∗σ yield that:

P ∗N > P ∗A, (S9)

and

P ∗A > P ∗N , (S10)

These conditions guarantee that N∗eq > N∗N and A∗eq > A∗A, so both prey experience

apparent mutualism when the predator adopts a mixed diet (q ∈ [0, 1]). If condition (S9)

is not satisfied, prey N benefits from the presence of prey A but has no effect on it, which

refers to apparent commensalism. The symmetrical results hold regarding prey A.
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