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A network is defined as g-conditionally faulty if there are 𝑔𝑔 fault-free neighbors is found in every vertex at least, where 𝑔𝑔 ≥ 1. An folded hypercube 𝐹𝐹𝐹𝐹 𝑛𝑛 with n-dimension, a famous variation of an ndimensional hypercube 𝐹𝐹 𝑛𝑛 , can be established from 𝐹𝐹 𝑛𝑛 through putting in an edge to every pair of vertices which has complementary addresses. Any odd n for 𝐹𝐹𝐹𝐹 𝑛𝑛 is bipartite. Let 𝐹𝐹𝐹𝐹 𝑣𝑣 represents the faulty vertex set and 𝐹𝐹𝐹𝐹 𝑒𝑒 represents the faulty edge set in 𝐹𝐹𝐹𝐹 𝑛𝑛 , as well as let 𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒) represents the faulty vertex and/or faulty edge set which is incident to the end-vertices of any edge 𝑒𝑒 ∈ 𝐸𝐸(𝐹𝐹𝐹𝐹 𝑛𝑛 ). Suppose that 𝐹𝐹𝐹𝐹 𝑛𝑛 is 4conditionally faulty and |𝐹𝐹𝐹𝐹 𝑣𝑣 | + |𝐹𝐹𝐹𝐹 𝑒𝑒 | ≤ 2𝑛𝑛 -7 . We prove the properties of embedding fault-tolerant cycles in 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 as follows: 1) For 𝑛𝑛 ≥ 4 and �𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒)� < 𝑛𝑛 -2, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 consists of the fault-free cycle for every even length from 4 to 2 𝑛𝑛 -2|𝐹𝐹𝐹𝐹 𝑣𝑣 |; 2) For 𝑛𝑛 = 4 and 𝑛𝑛 ≥ 8 where n is even, and �𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒)� ≤ 𝑛𝑛 -3, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 consists of the fault-free cycle for every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -2|𝐹𝐹𝐹𝐹 𝑣𝑣 | -1 .

I. INTRODUCTION

To choose an appropriate interconnection network (referred to as network) is one of significant works for the design in parallel computing and distributed systems. At present, many network topologies are presented in the literature [START_REF] Bermond | Interconnection networks[END_REF][START_REF] Hsu | Interconnection networks and algorithms[END_REF][START_REF] Kuo | Every edge lies on cycles embedding in folded hypercubes with vertex-fault-tolerant[END_REF]. The hypercube proposed by Bhuyan and Agrawal [START_REF] Bhuyan | Generalized hypercube and hyperbus structures for a computer network[END_REF] is a famous network model with several outstanding characteristics including regularity, symmetry, low degree, short mean internode distance, small diameter, smaller edge complexity, and recursive structure. These characteristics are highly useful for the development and design of large-scale parallel or distributed systems, see Leighton [START_REF] Leighton | Introduction to parallel algorithms and architectures: Arrays• trees• hypercubes[END_REF]. Therefore, many variants of hypercube are presented including El-Amawy and Latifi [START_REF] El-Amawy | Properties and performance of folded hypercubes[END_REF], Esfahanian et al. [START_REF] Esfahanian | The twisted n-cube with application to multiprocessing[END_REF], and Preparata and Vuillemin [START_REF] Preparata | The cube-connected cycles: a versatile network for parallel computation[END_REF]. The folded hypercube is one of the variants that has become a focus of research. Folded hypercube can be established from a hypercube through putting in an edge to every pair of vertices which has the longest distance, i.e., a pair of vertices has complementary addresses. It has been proved helpful for improving the performance of the system on conventional hypercube in numerous measurements, for examples, connectivity, diameter, faulty diameter, and many more. (Please refer to El-Amawy and Latifi [START_REF] El-Amawy | Properties and performance of folded hypercubes[END_REF] and Wang [START_REF] Wang | Embedding Hamiltonian cycles into folded hypercubes with faulty links[END_REF])

The ability of efficiently simulate algorithms for the design of other architectures is a major characteristic of an interconnection network. We can formulate the such simulation as network embedding. Let G represents guest network and H represents host network. To embed a G into a H is defined as a one-to-one mapping f from the vertex set G to the vertex set H. Under f, an edge in G is corresponded to a path in H [START_REF] Leighton | Introduction to parallel algorithms and architectures: Arrays• trees• hypercubes[END_REF]. According to the embedding strategy, we can simulate the influence for a guest network on a host network. Therefore, we can develop the algorithms for a guest network and applied them to the host network.

Cycles (rings) are considered as the most basic networks available for parallel and distributed computation. When we want to design simple algorithms with low communication costs, cycles are suitable one. There are many valid algorithms designed on cycles to solve all kinds of algebra and graph problems, see SzyId [START_REF] Szyid | Parallel Computation: Models And Methods[END_REF] and Leighton [START_REF] Leighton | Introduction to parallel algorithms and architectures: Arrays• trees• hypercubes[END_REF]. In arbitrary networks, cycles are able to be employed for distributed computing in control/data flow structures. These usages encourage the embedding of cycles for networks.

Because the and/or edges in the network may be occasionally broken, the network's fault tolerance must be considered. The literature has shown a lot of studies for the issue of fault-tolerant cycle embedding in an n-dimensional folded hypercube 𝐹𝐹𝐹𝐹 𝑛𝑛 in [START_REF] Kuo | Every edge lies on cycles embedding in folded hypercubes with vertex-fault-tolerant[END_REF][START_REF] Wang | Embedding Hamiltonian cycles into folded hypercubes with faulty links[END_REF][START_REF] Ma | Edge-fault-tolerant hamiltonicity of folded hypercubes[END_REF][START_REF] Xu | Edge-fault-tolerant properties of hypercubes and folded hypercubes[END_REF][START_REF] Fu | Fault-free cycles in folded hypercubes with more faulty elements[END_REF][START_REF] Hsieh | A note on cycle embedding in folded hypercubes with faulty elements[END_REF][START_REF] Hsieh | Some edge-fault-tolerant properties of the folded hypercube[END_REF][START_REF] Hsieh | A further result on faultfree cycles in faulty folded hypercubes[END_REF][START_REF] Hsieh | 1-vertex-fault-tolerant cycles embedding on folded hypercubes[END_REF][START_REF] Kuo | Pancyclicity and bipancyclicity of conditional faulty folded hypercubes[END_REF][START_REF] Cheng | Cycles embedding on folded hypercubes with faulty nodes[END_REF][START_REF] Kuo | Faulttolerant path embedding in folded hypercubes with both node and edge faults[END_REF]. Let 𝐹𝐹𝐹𝐹 𝑣𝑣 represents the faulty vertex set and 𝐹𝐹𝐹𝐹 𝑒𝑒 represents the faulty edge set in 𝐹𝐹𝐹𝐹 𝑛𝑛 . In 2001, Wang proposed that 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑒𝑒 consists of a Hamiltonian cycle of length 2 𝑛𝑛 if |𝐹𝐹𝐹𝐹 𝑒𝑒 | ≤ 𝑛𝑛 -1 [START_REF] Wang | Embedding Hamiltonian cycles into folded hypercubes with faulty links[END_REF]. In 2006, Xu and Ma presented that every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 exists on the cycle for every even length from 4 to 2 𝑛𝑛 ; if n is even, every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 also exists on the cycle for every odd length from 𝑛𝑛 + 4 to 2 𝑛𝑛 -1 [START_REF] Xu | Edge-fault-tolerant properties of hypercubes and folded hypercubes[END_REF]. In addition, Xu et al. in 2006 stretched his result as aforementioned to show that every fault-free edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑒𝑒 exists on the cycle for every even length from 4 to 2 𝑛𝑛 ; if n is even, every fault-free edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑒𝑒 also exists on the cycle for every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1 , where |𝐹𝐹𝐹𝐹 𝑒𝑒 | < 𝑛𝑛 -1 [START_REF] Xu | Edge-fault-tolerant properties of hypercubes and folded hypercubes[END_REF]. Let 𝑓𝑓 ∈ 𝐹𝐹𝐹𝐹 𝑣𝑣 be any faulty vertex in 𝐹𝐹𝐹𝐹 𝑛𝑛 . Hsieh et al. in 2009 presented that 𝐹𝐹𝐹𝐹 𝑛𝑛 -{𝑓𝑓} consists of the fault-free cycle for every even length from 4 to 2 𝑛𝑛 -2 if 𝑛𝑛 ≥ 3, and if 𝑛𝑛 ≥ 2 where n is even, 𝐹𝐹𝐹𝐹 𝑛𝑛 -{𝑓𝑓} consists of the fault-free cycle of every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1 [START_REF] Hsieh | 1-vertex-fault-tolerant cycles embedding on folded hypercubes[END_REF]. Furthermore, Cheng et al. in 2013 presented that every fault-free edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -{𝑓𝑓} exists on the cycle for every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -3 for 𝑛𝑛 ≥ 2 where n is even. Kuo in 2015 spread Cheng et al.'s result [START_REF] Cheng | Cycles embedding on folded hypercubes with faulty nodes[END_REF] to get that every fault-free edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -{𝑓𝑓} exists on a cycle for every even length from 4 to 2 𝑛𝑛 -2 if 𝑛𝑛 ≥ 3, and if 𝑛𝑛 ≥ 2 where n is even, every faultfree edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -{𝑓𝑓} also exists on the cycle for every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1 [START_REF] Kuo | Every edge lies on cycles embedding in folded hypercubes with vertex-fault-tolerant[END_REF]. However, the independent reliability is owned by each component in a network. If a component of a network is independently broken, the probability is low for all breakdowns. Due to this reason, Harary in 1983 first presented the opinion of conditional connectivity [START_REF] Harary | Conditional connectivity[END_REF]. Subsequently, Latifi et al. in 1994 determined the conditional vertex-faults which requires that each vertex of a network contains at least g fault-free neighbors, 𝑔𝑔 ≥ 1 [START_REF] Latifi | Conditional connectivity measures for large multiprocessor systems[END_REF]. For this thesis, we focus on 𝑔𝑔 = 1 and define that a network is 4-conditionally faulty if its every vertex contains at least four fault-free neighbors. Let 𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒) represents the faulty vertex and/or faulty edge set which is incident to the end-vertices of any edge 𝑒𝑒 ∈ 𝐸𝐸(𝐹𝐹𝐹𝐹 𝑛𝑛 ) . Suppose that 𝐹𝐹𝐹𝐹 𝑛𝑛 is 4-conditionally faulty and

|𝐹𝐹𝐹𝐹 𝑣𝑣 | + |𝐹𝐹𝐹𝐹 𝑒𝑒 | ≤ 2𝑛𝑛 -7 .
We prove the properties of embedding fault-tolerant cycles in 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 , as follows:

1) For 𝑛𝑛 ≥ 4 and �𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒)� < 𝑛𝑛 -2, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 consists of the fault-free cycle for every even length from 4 to 2 𝑛𝑛 -2|𝐹𝐹𝐹𝐹 𝑣𝑣 |, where: 2) For 𝑛𝑛 = 4 and 𝑛𝑛 ≥ 8 where n is even, and �𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒)� ≤ 𝑛𝑛 -3, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 consists of the fault-free cycle for every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -2|𝐹𝐹𝐹𝐹 𝑣𝑣 | -1. Please note, the terms of network, node, and edge is interchangeable for graph, vertex, and link, respectively used throughout this paper. The following gives the organization of remainder for this paper. Some necessary definitions and notations are presented in Section 2. The major result is shown in Section 3. In the last, concluding remarks are concluded in Section 4.

II. PRELIMINARIES

Let a graph is defined as 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) . 𝐺𝐺 = (𝑉𝑉, 𝐸𝐸) is an ordered pair which V is the vertex set and is a finite set, and E is the edge set and is a subset of {(u, v)|(u, v) is an unordered pair of V}. The vertex set and the edge set can be also represents 𝑉𝑉(𝐺𝐺) and 𝐸𝐸(𝐺𝐺), respectively. When (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸 , the vertices u and v are adjacent. For the edge e = (𝑢𝑢, 𝑣𝑣), u and v are called the end-vertices of e. We call u adjacent to v, and vice versa. A graph 𝐺𝐺 = (𝑉𝑉 0 ∪ 𝑉𝑉 1 , 𝐸𝐸) is bipartite if (𝑉𝑉 0 ∩ 𝑉𝑉 1 ) = ∅; and 𝐸𝐸 ⊆ {(x, y)|x ∈ 𝑉𝑉 0 and y ∈ 𝑉𝑉 1 }. A path 𝑃𝑃[𝑣𝑣 0 , 𝑣𝑣 𝑘𝑘 ] = 〈𝑣𝑣 0 , 𝑣𝑣 1 , … , 𝑣𝑣 𝑘𝑘 〉 is a sequence of different vertices with any two follow-up vertices are adjacent. 𝑣𝑣 0 and 𝑣𝑣 𝑘𝑘 are called as the end-vertices of the path. Furthermore, a subpath may be involved by a path, represented as 〈𝑣𝑣 0 , 𝑣𝑣 1 , … , 𝑣𝑣 𝑖𝑖 , 𝑃𝑃�𝑣𝑣 𝑖𝑖 , 𝑣𝑣 𝑗𝑗 �, 𝑣𝑣 𝑗𝑗 , 𝑣𝑣 𝑗𝑗+1 , … , 𝑣𝑣 𝑘𝑘 〉 , where 𝑃𝑃[𝑣𝑣 𝑖𝑖 , 𝑣𝑣 𝑗𝑗 ] = 〈𝑣𝑣 𝑖𝑖 , 𝑣𝑣 𝑖𝑖+1 , … , 𝑣𝑣 𝑗𝑗-1 , 𝑣𝑣 𝑗𝑗 〉 . The number of edges on the path represents the length of the path. When 𝑣𝑣 0 = 𝑣𝑣 𝑘𝑘 and 𝑣𝑣 0 , 𝑣𝑣 1 , … , 𝑣𝑣 𝑘𝑘-1 are different, a path 〈𝑣𝑣 0 , 𝑣𝑣 1 , … , 𝑣𝑣 𝑘𝑘 〉 forms a cycle. A vertex is thought fault-free if it is not broken. An edge is thought fault-free if the two end-vertices and their edge are not broken. Vertex u is a fault-free neighbor of v if u and (u, v) are not faulty. A path (cycle) is fault-free if it has no faulty edges and faulty vertices. The faulty vertex and/or faulty edge set incident to the end-vertices of any edge 𝑒𝑒 ∈ 𝐸𝐸(𝐺𝐺) can be denoted as 𝐹𝐹 𝐺𝐺 (𝑒𝑒) . Other graph-theoretic terminologies and notations are not described here can refer to West et al. in 2001 [23].

An n-dimensional hypercube 𝐹𝐹 𝑛𝑛 (n-cube for short) is denoted as an undirected graph. 𝑉𝑉(𝐹𝐹 𝑛𝑛 ) contains 2 𝑛𝑛 vertices labelled as binary strings of length n from 00 … 0 𝑛𝑛 to 11 … 1 𝑛𝑛 . Each edge 𝑒𝑒 = (𝑢𝑢, 𝑣𝑣) ∈ 𝐸𝐸(𝐹𝐹 𝑛𝑛 ) connects two vertices u and v if and only if u and v differ in exactly one bit of their labels, i.e., 𝑢𝑢 = 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛-1 … 𝑏𝑏 𝑘𝑘 … 𝑏𝑏 1 and 𝑣𝑣 = 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛-1 … 𝑏𝑏 𝑘𝑘 ��� … 𝑏𝑏 1 , where 𝑏𝑏 𝑘𝑘 ��� is the one's complement of 𝑏𝑏 𝑘𝑘 , i.e., 𝑏𝑏 𝑘𝑘 ��� = 1 -𝑖𝑖 if and only if 𝑏𝑏 𝑘𝑘 = 𝑖𝑖 for 𝑖𝑖 ∈ {0, 1}. e is called as an edge of dimension k. Obviously, each vertex connects to exactly n other vertices. Furthermore, it exists 2 𝑛𝑛-1 edges in each dimension and |𝐸𝐸(𝐹𝐹 𝑛𝑛 )| = 𝑛𝑛 • 2 𝑛𝑛-1 . Figure 1 shows a 2-dimensional hypercube 𝐹𝐹 2 and a 3-dimensional hypercube 𝐹𝐹 3 .

Let 𝑥𝑥 = 𝑥𝑥 𝑛𝑛 𝑥𝑥 𝑛𝑛-1 … 𝑥𝑥 1 and 𝑦𝑦 = 𝑦𝑦 𝑛𝑛 𝑦𝑦 𝑛𝑛-1 … 𝑦𝑦 1 be two n-bit binary strings; and let 𝑦𝑦 = 𝑥𝑥 (𝑘𝑘) , where 1 ≤ 𝑘𝑘 ≤ 𝑛𝑛, if 𝑦𝑦 𝑘𝑘 = 1 -𝑥𝑥 𝑘𝑘 and 𝑦𝑦 𝑖𝑖 = 𝑥𝑥 𝑖𝑖 for all 𝑖𝑖 ≠ 𝑘𝑘, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛. In addition, let 𝑦𝑦 = 𝑥𝑥̅ if 𝑦𝑦 𝑖𝑖 = 1 -𝑥𝑥 𝑖𝑖 for all 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 . The Hamming distance 𝑑𝑑 𝐻𝐻 (𝑥𝑥, 𝑦𝑦) between vertex x and vertex y is the number of different bits in the corresponding strings of the vertices. The Hamming weight ℎ𝑤𝑤(𝑥𝑥) of x is the number of i's such that 𝑥𝑥 𝑖𝑖 = 1. Note that 𝐹𝐹 𝑛𝑛 is a bipartite graph with two partite sets {x|ℎ𝑤𝑤(𝑥𝑥) is odd} and {x|ℎ𝑤𝑤(𝑥𝑥) is even} . Let 𝑑𝑑 𝐹𝐹 𝑛𝑛 (𝑥𝑥, 𝑦𝑦) be the distance between vertex x and vertex y in graph 𝐹𝐹 𝑛𝑛 . Clearly, 𝑑𝑑 𝐹𝐹 𝑛𝑛 (𝑥𝑥, 𝑦𝑦) = 𝑑𝑑 𝐻𝐻 (𝑥𝑥, 𝑦𝑦).

An n-dimensional folded hypercube 𝐹𝐹𝐹𝐹 𝑛𝑛 can be established from an n-cube by putting in an complementary edge to every pair of vertices which has the longest distance, i.e., for a vertex whose address is 𝑏𝑏 = 𝑏𝑏 𝑛𝑛 𝑏𝑏 𝑛𝑛-1 … 𝑏𝑏 1 , it now has one more edge to vertex 𝑏𝑏 � = 𝑏𝑏 𝑛𝑛 ��� 𝑏𝑏 𝑛𝑛-1 ������ … 𝑏𝑏 1 � , except its original n edges. Thus, 𝐹𝐹𝐹𝐹 𝑛𝑛 has 2 𝑛𝑛-1 more edges than 𝐹𝐹 𝑛𝑛 . These augmented edges skips are called to distinguish them from edges in 𝐹𝐹 𝑛𝑛 , and employ 𝐸𝐸 𝑠𝑠 to represent the skips set. So the complete edge set of a folded hyper cube 𝐸𝐸(𝐹𝐹𝐹𝐹 𝑛𝑛 ) can be represented as 𝐸𝐸(𝐹𝐹 𝑛𝑛 ) ∪ 𝐸𝐸 𝑠𝑠 . Therefore, the edges of 𝐹𝐹𝐹𝐹 𝑛𝑛 can be formally defined as that 𝐸𝐸(𝐹𝐹𝐹𝐹 𝑛𝑛 ) = 𝐸𝐸(𝐹𝐹 𝑛𝑛 ) ∪ 𝐸𝐸 𝑠𝑠 = {𝑒𝑒 = (𝑢𝑢, 𝑣𝑣)|𝑑𝑑 𝐻𝐻 (𝑢𝑢, 𝑣𝑣) = 1 ∈ 𝐸𝐸(𝐹𝐹 𝑛𝑛 ) 𝑜𝑜𝑜𝑜 𝑑𝑑 𝐻𝐻 (𝑢𝑢, 𝑣𝑣) = 𝑛𝑛 ∈ 𝐸𝐸 𝑠𝑠 } . Examples of 2-dimensional folded hypercube 𝐹𝐹𝐹𝐹 2 and 3dimensional folded hypercube 𝐹𝐹𝐹𝐹 3 are illustrated in Figure 2. It has been indicated that 𝐹𝐹𝐹𝐹 𝑛𝑛 is (𝑛𝑛 + 1)-regular, (𝑛𝑛 + 1)connected, vertex-transitive, and edge-transitive in Xu et al. [START_REF] Xu | Edge-fault-tolerant properties of hypercubes and folded hypercubes[END_REF]. Furthermore, 𝐹𝐹𝐹𝐹 𝑛𝑛 has been indicated that for any odd 𝑛𝑛 ≥ 3 is bipartite in Lewinter and Widulski [START_REF] Lewinter | Hyper-Hamilton laceable and caterpillar-spannable product graphs[END_REF]. ) . Furthermore, all edges in 𝐸𝐸 𝑠𝑠 are between 𝐹𝐹 𝑛𝑛-1 0 and 𝐹𝐹 𝑛𝑛-1 1 .

Let 𝐹𝐹 𝑣𝑣 (respectively, 𝐹𝐹𝐹𝐹 𝑣𝑣 ) and 𝐹𝐹 𝑒𝑒 (respectively, 𝐹𝐹𝐹𝐹 𝑣𝑣 ) represent the faulty vertex set and the faulty edge set in 𝐹𝐹 𝑛𝑛 (respectively, 𝐹𝐹𝐹𝐹 𝑛𝑛 ). By Definition 1, if we perform an ipartition on 𝐹𝐹𝐹𝐹 𝑛𝑛 to form two (𝑛𝑛 -1)-cubes 𝐹𝐹 𝑛𝑛-1 0 and 𝐹𝐹 𝑛𝑛-1 1 , we derived that 𝐹𝐹 𝑣𝑣 0 = 𝐹𝐹𝐹𝐹 𝑣𝑣 ∩ 𝑉𝑉(𝐹𝐹 𝑛𝑛-1 0 ), 𝐹𝐹 𝑣𝑣 1 = 𝐹𝐹𝐹𝐹 𝑣𝑣 ∩ 𝑉𝑉(𝐹𝐹 𝑛𝑛-1 1 ), 𝐹𝐹 𝑒𝑒 0 = 𝐹𝐹𝐹𝐹 𝑒𝑒 ∩ 𝐸𝐸(𝐹𝐹 𝑛𝑛-1 0 ) and 𝐹𝐹 𝑒𝑒 1 = 𝐹𝐹𝐹𝐹 𝑒𝑒 ∩ 𝐸𝐸(𝐹𝐹 𝑛𝑛-1 1 ) . Finally, some previously outcomes of path (cycle) embedding in hypercubes and folded hypercubes are considered in the remainder of this section. These results are beneficial for our method. Lemma 3 Xu and Ma in 2006 [START_REF] Xu | Cycles in folded hypercubes[END_REF] For 𝑛𝑛 ≥ 3, every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 lies on a cycle of every even length from 4 to 2 𝑛𝑛 ; and for 𝑛𝑛 ≥ 2 where n is even, every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 lies on a cycle of every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1. [START_REF] Hsieh | 1-vertex-fault-tolerant cycles embedding on folded hypercubes[END_REF] For 𝑛𝑛 ≥ 3, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 contains a fault-free cycle of every even length from 4 to 2 𝑛𝑛 -2; and for 𝑛𝑛 ≥ 2 where n is even, 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 contains a fault-free cycle of every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1, where |𝐹𝐹𝐹𝐹 𝑣𝑣 | = 1.

Lemma 4 Hsieh et al. in 2009

Lemma 5 Xu et al. in 2006 [12] For 𝑛𝑛 ≥ 3, every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑒𝑒 lies on a fault-free cycle of every even length from 4 to 2 𝑛𝑛 ; and for 𝑛𝑛 ≥ 2 where n is even, every edge of 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑒𝑒 lies on a fault-free cycle of every odd length from 𝑛𝑛 + 1 to 2 𝑛𝑛 -1, where |𝐹𝐹𝐹𝐹 𝑒𝑒 | = 𝑛𝑛 -1. 

1 = 1 0(Definition 1

 111 For convenience, 𝐹𝐹𝐹𝐹 𝑛𝑛 can be denoted as * * … * * 𝑛𝑛 = * 𝑛𝑛 , where * ∈ {0,1} means the "don't care" symbol. A regular hypercube 𝐹𝐹 𝑛𝑛 can be partitioned into two subcubes 𝐹𝐹 𝑛𝑛-1 along dimension i, where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 . The subcubes are defined as 𝐹𝐹 𝑛𝑛-1 0 = * 𝑛𝑛-𝑖𝑖 0 𝑖𝑖-1 and 𝐹𝐹 𝑛𝑛-1 * 𝑛𝑛-𝑖𝑖 1 𝑖𝑖-1 , in which the values of the ith bits of the vertices are 0 and 1, respectively. Formally, 𝐹𝐹 𝑛𝑛-subgraph of 𝐹𝐹𝐹𝐹 𝑛𝑛 induced by {𝑥𝑥 𝑛𝑛 … 𝑥𝑥 𝑖𝑖 … 𝑥𝑥 1 ∈ 𝑉𝑉(𝐹𝐹𝐹𝐹 𝑛𝑛 )|𝑥𝑥 𝑖𝑖 = 0} (respectively, {𝑥𝑥 𝑛𝑛 … 𝑥𝑥 𝑖𝑖 … 𝑥𝑥 1 ∈ 𝑉𝑉(𝐹𝐹𝐹𝐹 𝑛𝑛 )|𝑥𝑥 𝑖𝑖 = 1}). Hsieh and Kuo in 2007 [25] An i-partition on 𝐹𝐹𝐹𝐹 𝑛𝑛 = * 𝑛𝑛 , where 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, partitions 𝐹𝐹𝐹𝐹 𝑛𝑛 along dimension i into two (𝑛𝑛 -1 )-cubes * 𝑛𝑛-𝑖𝑖 0 * 𝑖𝑖-1 (𝐹𝐹 𝑛𝑛-1 0 ) and * 𝑛𝑛-𝑖𝑖 1 * 𝑖𝑖-1 (𝐹𝐹 𝑛𝑛-1 1

Lemma 1 Lemma 2

 12 Saad and Schultz in 1988 [26] Let u and v be any two vertices in 𝐹𝐹 𝑛𝑛 and 𝑑𝑑 𝐹𝐹 𝑛𝑛 (𝑢𝑢, 𝑣𝑣) = 𝑑𝑑 . Then, there exist n internally disjoint paths joining u and v in 𝐹𝐹 𝑛𝑛 , where d paths of them are of length d and lie in a d-dimensional subcube. Ma et al. in 2007 [27] Let u and v be any two fault-free vertices in 𝐹𝐹 𝑛𝑛 . Then, 𝐹𝐹 𝑛𝑛 -𝐹𝐹 𝑣𝑣 -𝐹𝐹 𝑒𝑒 contains a faultfree path of every length l with 𝑑𝑑 𝐹𝐹 𝑛𝑛 (𝑢𝑢, 𝑣𝑣) + 2 ≤ 𝑙𝑙 ≤ 2 𝑛𝑛 -2|𝐹𝐹 𝑣𝑣 | -1 and 2|(𝑙𝑙 -𝑑𝑑 𝐹𝐹 𝑛𝑛 (𝑢𝑢, 𝑣𝑣)) , where |𝐹𝐹 𝑣𝑣 | + |𝐹𝐹 𝑒𝑒 | ≤ 𝑛𝑛 -2 𝑎𝑎𝑛𝑛𝑑𝑑 𝑛𝑛 ≥ 3.

FIGURE 1 .

 1 FIGURE 1. (a) 2-dimensional hypercube 𝑸𝑸 𝟐𝟐 and (b) 3-dimensional hypercube 𝑸𝑸 𝟑𝟑 .

FIGURE 2 .

 2 FIGURE 2. (a) 2-dimensional folded hypercube 𝑭𝑭𝑸𝑸 𝟐𝟐 and (b) 3dimensional folded hypercube 𝑭𝑭𝑸𝑸 𝟑𝟑 , in which edges in 𝑬𝑬 𝒔𝒔 are denoted as dashed lines.

FIGURE 3 .

 3 FIGURE 3. An illustration of Case 2 in the proof of Lemma 10. (a) Case 2.2; (b) Case 2.3.
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Lemma 6 and Guo in 2013 [START_REF] Cheng | Fault-tolerant cycle embedding in the faulty hypercubes[END_REF] Let 𝐹𝐹 𝐹𝐹 𝑛𝑛 (𝑒𝑒) denote the faulty vertex and/or faulty edge set which is incident to the end-vertices of any edge 𝑒𝑒 ∈ 𝐸𝐸(𝐹𝐹 𝑛𝑛 ). Suppose that 𝐹𝐹 𝑛𝑛 is 3-conditionally faulty and |𝐹𝐹 𝐹𝐹 𝑛𝑛 (𝑒𝑒)| ≤ 𝑛𝑛 -2 . Then, every fault-free edge of 𝐹𝐹 𝑛𝑛 -𝐹𝐹 𝑣𝑣 -𝐹𝐹 𝑒𝑒 lies on a cycle of every even length from 4 to 2 𝑛𝑛 -2|𝐹𝐹 𝑣𝑣 | if |𝐹𝐹 𝑣𝑣 | + |𝐹𝐹 𝑒𝑒 | ≤ 2𝑛𝑛 -7, where 𝑛𝑛 ≥ 5.

The proof of Lemma 7 is given in the Appendix section. 

III. CYCLES EMBEDDING IN A FAULTY FOLDED HYPERCUBE

Let 𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒) represent the faulty vertex and/or faulty edge set which is incident to the end-vertices of any edge 𝑒𝑒 ∈ 𝐸𝐸(𝐹𝐹𝐹𝐹 𝑛𝑛 ). Suppose that 𝐹𝐹𝐹𝐹 𝑛𝑛 is 4-conditionally faulty and �𝐹𝐹 𝐹𝐹𝐹𝐹 𝑛𝑛 (𝑒𝑒)� ≤ 𝑛𝑛 -3. We show that 1) For 𝑛𝑛 ≥ In 𝐹𝐹 𝑛𝑛-1 1 , since |𝐹𝐹 𝑣𝑣 1 |+|𝐹𝐹 𝑒𝑒 1 | ≤ 𝑛𝑛 -4 and 𝑑𝑑 𝐻𝐻 �𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �� = 𝑛𝑛 -2, by Lemma 1, there exists a fault-free path 𝑃𝑃[𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �] of length 𝑛𝑛 -2. Then, 〈𝑥𝑥, 𝑥𝑥 (𝑛𝑛) , 𝑃𝑃�𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 ��, 𝑦𝑦 �, 𝑦𝑦, 𝑥𝑥〉 forms a cycle of odd length 𝑙𝑙 = 𝑛𝑛 + 1 in 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 .

Case 2.2. 𝑙𝑙 = 𝑛𝑛 + 3.

In 𝐹𝐹 𝑛𝑛-1 1 , since |𝐹𝐹 𝑣𝑣 1 |+|𝐹𝐹 𝑒𝑒 1 | ≤ 𝑛𝑛 -4 and 𝑑𝑑 𝐻𝐻 �𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �� = 𝑛𝑛 -2, by Lemma 2, there exists a fault-free path 𝑃𝑃[𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �] of length 𝑛𝑛 -2 + 2 = 𝑛𝑛 . Then, 〈𝑥𝑥, 𝑥𝑥 (𝑛𝑛) , 𝑃𝑃�𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 ��, 𝑦𝑦 �, 𝑦𝑦, 𝑥𝑥〉 forms a cycle of odd length 𝑙𝑙 = 𝑛𝑛 + 3 in 𝐹𝐹𝐹𝐹 𝑛𝑛 -𝐹𝐹𝐹𝐹 𝑣𝑣 -𝐹𝐹𝐹𝐹 𝑒𝑒 . (see Figure 3 . Then, 𝐶𝐶 0 can be denoted as 〈𝑥𝑥, 𝑦𝑦, 𝑃𝑃�𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 ��, 𝑥𝑥〉 in 𝐹𝐹 𝑛𝑛-1 0 . Furthermore, since |𝐹𝐹 𝑣𝑣 1 |+|𝐹𝐹 𝑒𝑒 1 | ≤ 𝑛𝑛 -4 and 𝑑𝑑 𝐻𝐻 �𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �� = 𝑛𝑛 -2, by Lemma 2, there exists a fault-free path 𝑃𝑃�𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 �� of every even length from 𝑛𝑛 -

. Therefore, 〈𝑥𝑥, 𝑥𝑥 (𝑛𝑛) , 𝑃𝑃�𝑥𝑥 (𝑛𝑛) , 𝑦𝑦 ��, 𝑦𝑦 �, 𝑦𝑦, 𝑃𝑃[𝑦𝑦, 𝑥𝑥], 𝑥𝑥〉 forms a cycle of every odd length l with 4 -