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Abstract. Magnetic resonance electric properties tomography is a non-destructive

imaging modality that maps the spatial distribution of the electrical conductivity and

permittivity of the human body using standard clinical magnetic resonance imaging

systems. From the B+
1 magnetic field maps and the local form of the Maxwell

equations, several schemes have been derived to provide direct approximated formulas

but they suffer from instabilities. In this paper, we propose to address it as an inverse

problem solved by a constrained optimization algorithm where we exploit the weak

formulation of the electric Helmholtz equation and a Lagrangian approach. We derive

the associated adjoint field equation and employ a Quasi-Newton minimization scheme.

We also take advantage of a regularisation strategy based on geometrical a priori

information for defining large zones into which the electric parameters are known to

be piece-wise constant.

Keywords: inverse problem, magnetic resonance, MRI, non-linear optimization,

Lagrangian approach, adjoint field, Helmholtz equation, Quasi-Newton, MR-EPT,
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1. Introduction

Magnetic resonance imaging (MRI) scans are nowadays routinely ordered to visualize

the anatomy of the inside of the human body. In addition to these morphological

maps, MRI systems can also provide quantitative mapping of the dielectric permittivity

and conductivity properties inside the human body [1, 2, 3]. Such technique could

help in the diagnostic of pathologies which induce an important variation of the

dielectric permittivity. For example, it has been shown that cancerous tissues may

have different electromagnetic values than normal tissues over a wide electromagnetic

frequency spectrum [4] [5]. It could also provide a more accurate and personalized
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prediction of the Specific Absorption Rate (SAR) that is encountered in high-field and

ultra high-field magnetic resonance imaging, typically above 3 Tesla (3T) [6].

The idea behind MRI-Based Electric Properties Tomography (MREPT) is to use

the standard MRI system, with no extra equipment, and to employ ad-hoc post-

processing techniques to measure the distorted transmit magnetic field B+
1 by means of

a so-called B1 mapping technique [7, 8]. Indeed, besides the static magnetic field B0

from the main magnet, the radiofrequency (RF) magnetic field B1 generated by RF coils

with a sinusoidal time dependence at the Larmor frequency, reorients the magnetization

of the spins so that a signal is induced and detected by the receiver coil [9, 10]. The

problem of the amplitude |B+
1 | mapping has been studied in a number of contributions,

see for example [11, 12, 13]. Nevertheless, recovering the absolute phase of B+
1 seems

more difficult to perform [14]. For certain coil arrangements or object geometries, it can

be directly estimated [15] or the acquisition sequences must be modified specifically to

that aim [14]. In this work, we will assume that we have access to the full mapping of

the magnitude and the phase of the B+
1 field. As the distortions of the RF magnetic field

are directly linked with the conductivity σ and permittivity εr of the human tissues,

the measurement of such variations allows the reconstruction of the tissue’s electric

properties.

Several schemes have been derived to provide approximated solutions based on

the local Maxwell equations. Indeed, with the B1 mapping technique, the magnetic

field B+
1 value is provided in a limited region of the human body. If one can derive

a local inverse function linking the electric parameters to B+
1 , one can provide spatial

distributions of these parameters inside the probed area. One possibility is to assume

that the spatial variations of the complex permittivity m = εr+jσ/(ωε0) are small which

enables to directly express them in terms of a local ratio between the Laplacian of the

magnetic field and the magnetic field itself [7, 15, 16, 17, 18, 19]. Further simplifications

lead to magnitude-based permittivity imaging and phase-based conductivity imaging.

Unfortunately, such local inverse formulas suffer from instabilities, in particular at the

boundaries from different tissues where the assumption that the spatial variations are

small is no longer valid. Some weighted formulas have been introduced to compensate

in parts for such effects [20]. As well, completely different schemes have been proposed,

based on the introduction of a convection-reaction equation [21] linking the complex

permittivity variations to the magnetic field variations. It is, however, relevant to

propose new ways to recover the dielectric properties of human tissues from B+
1 mapping.

Following the recent works detailed in [22] and [23], we rather formulate this

problem as an inverse problem where one aims at recovering the permittivity and

conductivity maps from the B+
1 mapping. The underlying idea is that the permittivity

and conductivity variations do not solely contribute to the local value of the magnetic

field perturbation but instead they affect the magnetic field in a wider manner. Let

us mention that similar approaches have been developed in quantitative magnetic

susceptibility (QSM) where the inverse problem aims at recovering the magnetic

susceptibility from magnetic fields mapping [24]. We recast the MREPT inverse
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problem into a constrained optimization algorithm, where we can incorporate the

Maxwell equations in a global way as well as additional experimental knowledge, such

as measurement noise and a priori information. Indeed, the data misfit at each local

point can be weighted according to the signal to noise ratio which may vary from one

measurement point to the other one. As well, anatomical images based on classical

magnetic resonance maps combined with tissues segmentation techniques, which are

now routinely used, can be incorporated into the human body description as geometrical

priors.

Our work differs from [22] or [23] on several aspects. Firstly, we take advantage

of the weak formulation of the electric Helmholtz equation. We thus do not need to

compute several Green’s tensors as done in [23] nor do we need to tackle the magnetic

Helmholtz equation as done in [22]. Indeed, the magnetic Hemholtz equation involves

terms in ∇ logm, while the electric Helmholtz equation involves terms in m only. The

main drawback is that, in our case, the cost function derivation is more arduous to

differentiate. It nevertheless ends up in the definition of an adjoint problem, which is the

solution of the weak formulation of a similar Helmholtz equation. Secondly, contrarily

to the contrast-source (CS) method employed in [23], we ensure that the Karush-Kuhn-

Tucker (KKT) conditions [25, 26] are always fulfilled thus computing the forward solver

at each iteration. There is thus no need of the additional unknowns introduced by the

CS algorithm. The computational burden associated to the forward problem is quite

manageable as, at the Larmor frequency, the head size is only of few wavelengths, the

wavelength being in the decimetre range. Thirdly, we take advantage of a regularisation

strategy based on a priori information using image segmentation and classification in

order to define the zones into which the electric parameters are known to be piece-wise

constant. This enables to reduce the number of unknowns and thus render less ill-posed

this inverse problem. Finally, we employ a Quasi-Newton minimization algorithm to

recover the quantitative permittivity and conductivity distribution maps [27].

This paper is organized as follows. In Section 2, the forward problem is described

and the finite element method which is used to compute the magnetic field distribution

everywhere is briefly recalled in Section 3. The inverse problem is stated in Section 4.

It is reformulated as a non-linear optimization problem with constraints whose saddle-

point conditions are formally expressed to introduce an adjoint field and the data misfit

derivative. Section 5 describes how the inversion scheme is numerically implemented

as it requires specific amendments. Two cases are considered: either the complex

permittivity is unknown in each cell of the discretized human body or the complex

permittivity is only unknown by zones, which are already predefined from anatomical

maps of the human body. In Section 6, numerical results are presented to illustrate the

efficiency of the proposed method. In particular, a study on the influence of the initial

guess, the number of measurements, the signal to noise ratio and the zones classification

is provided. Concluding remarks follow.
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2. Definition of the configuration

We consider a two-dimensional (2D) simplified MRI scanner configuration (Figure 1)

where the relative permittivity εr(~r) and conductivity σ(~r) vary at the Larmor frequency

within each human tissue (Table 1) [28]. A set of ideal line sources ~S(~r;~rs) = S(~r;~rs)~ez

y
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x

∂W

Receivers
z

y

x

( )x ,y
s s

( )x ,y
r r

Figure 1. Geometry of the problem

positioned at Ns different places ~rs = (xs, ys) simulate the antenna elements of the RF

coil [29]. The sources emit one after the other, generating an electric field ~E(~r;~rs)

coupled to a RF magnetic field ~B(~r;~rs) By summing a weighted contribution of all

antenna elements, one could also simulate the behaviour of more complex antenna

structures, such as for example planar strip array [30]. For the sake of simplicity, we

restrict ourselves to a sequential dipolar-like excitation.

Due to the invariance along the z axis, the electric field is always parallel to the z

axis, and can be expressed as

~E(~r;~rs) = E(x, y;xs, ys)~ez (1)

whereas

~B(~r;~rs) = Bx(x, y;xs, ys)~ex +By(x, y;xs, ys)~ey. (2)

According to Maxwell’s equation, under the exp(−jωt) time convention, the

electromagnetic fields satisfy (see Appendix A)

∇× ~B = − j
ω

[
k2m(~r) ~E(~r;~rs)− ~S(~r;~rs)

]
and ∇× ~E = jω ~B (3)

where k is the wave number in air and the complex permittivity is defined by

m(~r) = εr(~r) + j
σ(~r)

ωε0

(4)

where ω = 2πf , f being the Larmor frequency and ε0 the vacuum permittivity.
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In the MREPT literature, several modelling approaches have been proposed. For

example, in [2, 22, 18], the Helmholtz equation for the RF magnetic field B is exploited.

At first glance, such a formulation could seem natural as it only involves the magnetic

field. Nevertheless, it is a vectorial equation which does not fully benefit from the

fact that the configuration can be considered as a two-dimensional one. Moreover, the

dependency with respect to the electromagnetic properties m(~r) is expressed in a highly

non-linear way. In [23], the electromagnetic fields are obtained by two Fredholm integral

representations, involving the computation of two Green’s tensors: the electric current

to magnetic field tensor and the electric current to electric field tensor.

In the present work, we instead favour the Helmholtz equation for the electric field

∆E(~r;~rs) + k2m(~r)E(~r;~rs) = S(~r;~rs) in Ω, (5)

E(~r;~rs) = 0 on ∂Ω. (6)

as it is a scalar equation much simpler to solve. A Dirichlet boundary condition has

been expressed here but any other type of boundary condition may also apply.

Due to the relationship between the electrical field and the magnetic field, it follows

that

~B(~r;~rs) =
1

jω
rot ~E(~r;~rs) =

1

jω

(
∂E

∂y
~ex −

∂E

∂x
~ey

)
. (7)

An MRI system offers the unique situation in which the magnetic fields within the

object of interest can be measured. It means that any point ~rr = (xr, yr), r = 1, · · · , Nr

within the human body can be considered as a virtual receiving antenna. Unfortunately,

the MRI setup can give access to some mixed components of the RF transmit field ~B,

but not necessarily to the full components of the magnetic field itself. Let us thus focus

on one of them, that is

B+
1 (E) =

1

2
(Bx + jBy) =

1

2jω

(
∂E

∂y
− j ∂E

∂x

)
. (8)

The previous expression is a linear expression with respect to the component E of the

electric field.

3. Numerical field simulations

For computing the electromagnetic field everywhere in space, a finite element method

(FEM) is implemented [31, 32]. This method is briefly recalled here as it will be needed

to correctly explain the way the inversion scheme has been implemented.

The space domain Ω is subdivided into Ne small triangular elements Ωe with a mesh

generator [33] (see Figure 2). We have taken the same configuration as the one described

in [15], where the human head is placed in a 7T resonant birdcage coil. The associated

Larmor frequency of 298 MHz was thus selected for performing the computations. A

circular metallic shield surrounds the scene at r = 18.6 cm while the transmitters ~rs are

equally spaced on a circle of radius r = 15 cm. Their number will differ depending on

the considered configuration.



MRI-Based Electric Properties Tomography with a Quasi-Newton approach 6

Classical P1 element are used, leading to

E =
Ne∑
e=1

3∑
i=1

Ei
eT

i
e(~r), (9)

where Ie(~r) is the indicator function for Ωe and the basis functions are given by

T ie(~r) =
1

2∆e

(aie + biex+ ciey) (10)

where ∆e is the area of Ωe [31]. Once the weak form of the Helmholtz equation (5) is

discretized, a linear system can be written compactly as

K E = b (11)

where K is the stiffness matrix, E is obtained from assembling {Ei
e} and the right-hand-

side b is assembled from {bie} with

bie =

∫
Ωe

S(~r;~rs)T
i
e(~r) d~r i = 1, 2, 3.

The sparse linear system is solved thanks to a LU decomposition algorithm [34].

Human tissue εr σ (S/m)

Cancellous bone 23.1 0.21

Cortical bone 13.4 0.082

Cerebrum 49.6 0.51

Brain stem 60.0 0.69

Cerebellum 59.7 0.97

Cerebrospinal fluid 72.7 2.22

Eye 69.0 1.51

Muscle 59.5 0.78

Spinal 36.9 0.42

Table 1. Description of the various brain constituents and their dielectric properties

at 298 MHz, the Larmor frequency at 7T.

An example of a permittivity map distribution within a brain slice can be seen in

Figure 3 while the associated RF magnetic B+
1 field is visible in Figure 4.

4. Inverse problem formulation

The inverse problem is stated as finding the permittivity distribution corresponding to

a measured B+,meas
1 field distribution. The difficulty here is twofold: (i) the value is

obtained everywhere within each voxel of the brain leading to a large number of virtual

receivers and (ii) this quantity is a by-product of the electrical field which requires an

extra step in our simulation procedure which relies on the electrical field propagation

equation.
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Figure 2. Mesh distribution in the cavity and the brain, with approximatively 34 000

node points and 68 000 triangles. In the brain area, the mesh length is of 0.1 cm as

shown on the right in the excerpt. The mesh is conformal to the external geometry of

the head, as well as the eyes and the nasal cavity. The red dot indicates one position

for the transmitter.

(a) Relative permittivity εr = Re(m) (b) Conductivity σ = ωε0Im(m)

Figure 3. Electromagnetic parameters distribution within a slice of the brain at

298 MHz.

4.1. Constrained optimization formulation

This problem can be recasted as a non-linear optimization problem with constraints.

Indeed, from these measurements B+,meas
1 , we define a cost function F which corresponds

to the discrepancy between the measured quantities and the simulated ones at any point

in space,

F =
Ns∑
s=1

Fs =
ω2

2Ns

Ns∑
s=1

Nr∑
r=1

|B+
1 (E)(~rr;~rs)−B+,meas

1 (~rr;~rs)|2 (12)

=
ω2

2Ns

Ns∑
s=1

Nr∑
r=1

∫
Ω

|B+
1 (E)(~r;~rs)−B+,meas

1 (~r;~rs)|2δ(~r − ~rr)d~r. (13)
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Figure 4. Amplitude in dB (left) and phase in radian (right) of the B+
1 magnetic field

distribution within the brain, at 298 MHz.

The sought-after permittivity distribution must minimize this cost function while the

associated electromagnetic field must satisfy the Helmholtz equation. A Lagrangian

formalism is thus introduced to incorporate these constraints

L(E,U,m) =
Ns∑
s=1

Ls(E(·;~rs), U(·;~rs),m) (14)

with

Ls(E(·;~rs), U(·;~rs),m) = Fs(E(·;~rs)) + ReHs(E(·;~rs), U(·;~rs),m) (15)

where the Helmholtz constraints is expressed with

Hs(E,U,m) = 〈∆E(·;~rs) + k2m(·)E(·;~rs)− S(·;~rs) | U(·;~rs)〉Ω. (16)

Here, U(·;~rs) are the Lagrange multipliers and 〈u | v〉Ω =
∫

Ω
uv is the classical scalar

product on Ω.

In order to be able to extract some information related to the dielectric permittivity

maps from the measured quantities, it is of interest to establish the derivative of the

previous cost function with respect to m. For this, we construct the Karush-Kuhn-

Tucker (KKT) conditions [25, 26] to find the saddle-point, which requires that

∂L
∂E(·;~rs)

=
∂L

∂U(·;~rs)
= 0. ∀E(·;~rs), U(·;~rs) (17)

At that saddle-point, it is well-known that

∂L
∂m

=
∂F
∂m

. (18)

4.2. Derivative expressions with respect to the fields

It can be shown (see Appendix B.1) that the derivative of the Lagrangian functional

with respect to U(·;~rs) is given by

lim
t→0

L(E,U + tv,m)− L(E,U,m)

t
= Re〈∆E + k2mE − S(·;~rs) | v〉Ω.(19)
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Therefore, at the saddle-point, we need to satisfy the classical Helmholtz equation for

the electrical field.

The derivative with respect to E(·, ~rs) is less straight-forward (see Appendix B.2).

Nevertheless, as the function B+
1 is linear, we have

lim
t→0

L(E + tv, U,m)− L(E,U,m)

t
= Re〈∆v + k2mv | U(·;~rs)〉Ω

+Re
ω2

Ns

Nr∑
r=1

∫
Ω

[
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)δ(~r − ~rr)d~r. (20)

At the saddle-point, based from (20), the KKT conditions (17) and the first Green

formula, we obtain while noting P = U ,∫
Ω

[
−∇v(~r)∇P (~r;~rs) + k2m(~r)P (~r;~rs)v(~r)

]
d~r

= −ω
2

Ns

Nr∑
r=1

∫
Ω

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)B

+
1 (v)δ(~r − ~rr)d~r. (21)

The left-hand side of this equation is nothing but the left-hand side of the weak form of

the Helmholtz equation (5). This is a classical result as the Helmholtz equation is auto-

adjoint in the present configuration. The right-hand side differs from the one dictating

the electrical field behaviour. In (21), the source distribution is weighted according to

the local discrepancy at each virtual receiver point between the measured magnetic field

B+,meas
1 and the simulated one B+

1 . Unfortunately, due to the B+
1 (v) term, which is

defined in (8), it seems not possible to derive a strong formulation similar to (5) for (21).

This is not an issue here as we are employing the finite element method which definitely

requires the weak formulation. Thus (21) is perfectly adapted for our simulation tool

in order to compute P (·;~rs). The specific implementation for computing B+
1 (v) will be

detailed in Section 5.1.

4.3. Derivative expressions with respect to the permittivity

It can be shown (see Appendix C) that the derivative of the Lagrangian functional with

respect to m is given by

lim
t→0

L(E,U,m+ tv)− L(E,U,m)

t
= Re 〈k2

Ns∑
s=1

E(·;~rs)P (·;~rs) | v〉Ω. (22)

Using the definition of complex derivatives of real-valued functions [35, 36], it follows

from (22) that the gradient of the cost functional is

∇mF = k2

Ns∑
s=1

E(·;~rs)P (·;~rs), (23)

where the electrical field E satisfies the Helmholtz equation (5) with some source terms

distributed at the transmitters locations and the adjoint field P satisfies a similar

equation (21) with some source terms which are distributed at each virtual receiver

point.
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4.4. Regularization strategy

The first output of an MRI procedure is a qualitative mapping of the human body.

It thus automatically provides some a priori knowledge on the geometrical features of

the head worth exploiting in the inverse problem in order to reduce its ill-posedness.

Therefore, advanced image processing tools can be applied to the MRI image for

segmenting and classifying the various components of the brain. The resulting zones Ωg

will be considered as spatial priors. It is not required for a zone to be simply connected,

i.e., made of adjacent elements.

Depending on the regularization choice, the unknown permittivity distribution is

interpolated and assumed to be piece-wise constant either on each triangle Ωe (for an

element-based inversion without a priori knowledge) or on each zone Ωg (for a zone-

based inversion with a priori geometrical knowledge),

m(~r) =
Ne∑
e=1

meIe(~r) or m(~r) =

Ng∑
g=1

mgIg(~r). (24)

We can express the derivatives with respect to each set of unknowns, using the chain

rule derivation,

∇m•F = k2

Ns∑
s=1

∫
Ω•

E(~r;~rs)P (~r;~rs)d~r, (25)

with • = e or g depending on the regularization strategy.

5. Numerical implementation of the inversion scheme

In the following, we will describe how the adjoint field has been computed as well as the

minimization scheme that has been implemented to obtain the numerical results shown

in Section 6.

5.1. Adjoint field computation

Due to the specific form of the adjoint equation, it is worth detailing the way the right-

hand-side term of (21) is computed. As in (9), let us assume that

P =
Ne∑
e=1

3∑
i=1

P i
eT

i
e(~r)

Since T ie(~r) vanishes outside of Ωe, the right-hand-side of (21) is reduced to, when v = P ,

−ω
2

Ns

Nr∑
r=1

∫
Ω

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)B

+
1

(
Ne∑
e=1

3∑
i=1

P i
eT

i
e(~r)

)
δ(~r − ~rr)d~r

= −ω
2

Ns

Nr∑
r=1

3∑
i=1

P i
e

∫
Ωe

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)B

+
1 (T ie(~r))δ(~r − ~rr)d~r.
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taking into account that B+
1 is a linear operator. Following the Ritz method [31], we

derivate with respect to P i
e to obtain the local right-hand-side term which will appear

in the linear system,

RHSie = −ω
2

Ns

Nr∑
r=1

∫
Ωe

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)B

+
1 (T ie(~r))δ(~r − ~rr)d~r

= −ω
2

Ns

Nr∑
r=1

∫
Ωe

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)

1

2jω

[
∂T ie
∂y
− j ∂T

i
e

∂x

]
(~r)δ(~r − ~rr)d~r.

Due to the choice of the basis functions (see (10)), we have

∂T ie
∂x

=
bie

2∆e

and
∂T ie
∂y

=
cie

2∆e

.

When we replace into the right-hand-side, we obtain

RHSie = − ω

4jNs

cie − jbie
∆e

Nr∑
r=1

∫
Ωe

[
B+

1 (E)−B+,meas
1

]
(~r;~rs)δ(~r − ~rr)d~r. (26)

The B+
1 (E) magnetic field value is simulated at the virtual receiver points ~rr via an

interpolation based on the values at the adjacent nodes points. To compute the adjoint

field, we must solve the following sparse linear system

K P = RHS (27)

where K is the same stiffness matrix as in (11) and RHS =
∑

e {RHSe} is assembled

from the local right-hand-side terms.

Contrarily to (5), in (21), there are a lot of points in space where the right-hand-

side term is taking non-null values. In the forward problem computations, the number

of transmitters Ns is limited and thus we solve sequentially the linear system (11)

for each transmitter location ~rs. In the adjoint problem, there are a large number of

virtual receivers Nr, maybe as many as the number of elements in the MRI image.

Computationally speaking, it is worthless to compute (27) for each virtual receiver ~rr
separately and sum them up afterwards. Instead, we gather all the contributions as

expressed in (26) to obtain the right-hand-side for a given transmitter ~rs. We thus have

for the adjoint problem as many right-hand-sides as there are transmitters.

5.2. Minimization algorithm

Once the adjoint and total fields have been computed, the gradient is easily derived

thanks to (25), where the integral has been approximated with a mid-point rule. The

unknown parameters m = {m•} are weighted according to the area of Ω•, with • = e

or g depending on the regularization strategy.

An iterative scheme based on a Quasi-Newton algorithm is implemented in order

to estimate the minimum of (13)

m(n+1) = m(n) + α(n)d(n). (28)



MRI-Based Electric Properties Tomography with a Quasi-Newton approach 12

The descent direction d(n) is obtained via a limited-memory Broyden-Fletcher-Goldfarb-

Shanno (LM-BFGS) algorithm [25, 37, 38]

d(n) = −H(n)
{
∇mF(m(n))

}
(29)

where H(n) is an approximation of the inverse of the Hessian. The limited-version is of

interest here in particular when we try to estimate the values of the permittivity in each

triangular cell as in that case, the number of unknowns Ne is large and the approximated

Hessian matrices can be dense. An additional constraint is introduced when selecting

the descent direction. Indeed, such a descent direction is projected in order to ensure

that Re(m) ≥ 1 and Im(m) ≥ 0. The bound constraints are then ensured with an active

set algorithm fully detailed in [37]. The algorithm stops if: (i) the maximum number

of iterations N is reached, (ii) the relative variation of the cost function between two

subsequent iterations is lower than a given threshold η, or (iii) the norm of the gradient

is smaller than a given threshold ξ.

6. Numerical results

In this section, we present numerical results to illustrate the efficiency of the inversion

algorithm proposed in the previous sections. To that end, we have played with three

parameters: (i) the initial guess, (ii) the noise which is added to the simulated fields

and (iii) the number of transmitters.

6.1. Numerical configuration

The configuration was partially described in Section 3. The B+
1 mapping is performed

by virtual receivers which are equally spaced with a spacing of ∆x = 0.66 cm and

∆y = 0.52 cm, slightly larger than the mesh length inside the brain. They are only

positioned within the head, leading to Nr = 597. There is thus no correspondence

between the finite element mesh and the virtual receiving points locations. The number

Ns of transmitters varies between 1 and 32.

In the element-based inversion, the inverse problem is under-determined as the

number of acquired data is very low with respect to the number of unknowns (here

Ne ≈ 62 000). In the zone-based inversion, the inverse problem is over-determined

as Ng = 5. Indeed, in the considered brain slice, only the following human tissues are

searched for: Cancellous bone, Cerebrum, Brain stem, Cerebellum and Muscle. We have

arbitrarily decided that the nasal cavity, the eyes as well as the surrounding medium

are already known and their permittivities are thus kept constant during the inversion

procedure.

Numerical experiments were carried out to minimize the functional defined in

(13) under the constraints (5)-(6) using the LM-BFGS algorithm. In all the following

examples, the initial guess m(0) is chosen as described in Section 6.2. For the stopping

criteria, we have selected N = 100, η ≈ 0.2 10−8 (corresponding to an average tolerance
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value) and ξ = 10−8|∇F(m(0))|. The true distribution map mtrue is the one described

in Figure 3.

6.2. Input parameters

The initial guess is randomly chosen, with a Gaussian distribution centred on a mean

value and a given variance vm for each elementary unknown,

m(0) = mtrue + {N (0, vm)}+ j {N (0, vm)} (30)

The value of the variance vm is not directly given but provided in dB via the input

parameter Signal-to-Noise Ratio SNRm, with the following correspondence

vm =
1

2
10−SNRm/10Pm (31)

where Pm =< |mtrue|2 > is the average power value.

The simulated fields are as well corrupted by additive Gaussian white noise. The

measurement fields which are thus considered as input data to the inversion algorithm

are described by

B+,meas
1 = B+

1 (mtrue) + {N (0, vB)}+ j {N (0, vB)} (32)

The value of the variance vB is provided in dB via the input parameter Signal-to-Noise

Ratio SNRB, with the following correspondence

vB(~rs) =
1

2
10−SNRB/10PB(~rs) (33)

with PB(~rs) =< |B+
1 (·;~rs)|2 > the average power value of the B+

1 magnetic field. It is

worth mentioning that SNRB = 20 log10 SNRMRI , where SNRMRI is the signal-to-noise

ratio traditionally provided in MRI systems [39].

Several numerical tests have been performed with SNRB ranging from 20 dB to

100 dB , the latter one corresponding to a case with no noise. In practice, we do not

encounter SNRB values which cover such a large range (see for example the SNRB values

estimated with actual 7T setups [40] which are of the order of 40 to 70 dB). Nevertheless,

we have explored it in order to understand the limitations and robustness aspects of the

proposed inversion scheme.

6.3. Inversion outputs

As usual, the evolution of the cost function (Figure 5) is the key parameter in order

to control the behaviour of the inversion algorithm. Each time the algorithm stops, we

also plot the final reconstructed complex permittivity map m(∗), as shown in Figure 6.

Unfortunately, while looking at Figure 6, it is rather difficult to distinguish the

differences between the final reconstructed maps, even if they were generated from two

different initial guesses. Therefore, we also compute the discrepancy between the final

reconstructed complex permittivity maps m(∗) and the true one mtrue. In order to have
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Figure 5. Cost function F evolution along the iterations for various SNRm and SNRB

(Ns = 1, element-based inversion).

(a) SNRB = 60 dB, SNRm = 40 dB (b) SNRB = 60 dB, SNRm = 40 dB

(c) SNRB = 60 dB, SNRm = 60 dB (d) SNRB = 60 dB, SNRm = 60 dB

Figure 6. Final reconstructions for two different initial guesses: (a)(c) εr = Re(m(∗))

and (b)(d) σ = ωε0Im(m(∗)). (Ns = 1, element-based inversion).

a more comprehensible comparison of the influence of the various input parameters, we
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plot the average values 〈m〉 = {〈m〉g} per zone, which are defined by

〈m〉g =
1

N g
e

Ne∑
e=1

meIg(~re) or 〈m〉g = mg (34)

depending if one is considering the element-based or the zone-based inversion version.

N g
e corresponds to the number of elements which are indeed in the g-th zone,

N g
e =

Ne∑
e=1

Ig(~re) (35)

The relative quantities

bεr =

〈
ε

(∗)
r − εtrue

r

εtrue
r

〉
=

〈
Re(m(∗) −mtrue)

Re(mtrue)

〉
(36)

bσ =

〈
σ(∗) − σtrue

σtrue

〉
=

〈
Im(m(∗) −mtrue)

Im(mtrue)

〉
(37)

are thus good indicators of eventual biases which might be introduced by the inversion

algorithm. These biases will be displayed in form of vertical bars (see for example

Figure 7) and their height should be as close as possible to 0. We also compute the

standard deviations sεr and sσ in each zone, defined separately for the real and imaginary

part of m(∗),

sεr =

〈[
Re
(
m(∗) − 〈m(∗)〉

)
Re(mtrue)

]2〉1/2

and sσ =

〈[
Im
(
m(∗) − 〈m(∗)〉

)
Im(mtrue)

]2〉1/2

(38)

These standard deviations are a good indicator of the spreading of the reconstructed

values with respect to the expected values. These standard deviations are reported

thanks to error bars, which should be as small as possible.

6.4. Signal-to-noise ratio influence

In Figure 5, one can see the evolution of the cost functional for various Signal-to-Noise

Ratio (SNR) values. The first conclusion that can be drawn is that whatever the values

of SNRb and SNRm, the inversion algorithm behaves in a correct way as it always

minimize the cost functional. In very few iterations, there is also a significant reduction

(of several dB) of the discrepancy between the measured and simulated magnetic field.

The further the initial guess m(0) is from the true solution mtrue (namely, the smaller

SNRm is), the higher the cost functional stays, even at the end of the minimisation

process. It means that, as expected, it is always more efficient to start with initial

values which are close to the realistic ones.

The higher the noise level is (namely, the smaller SNRB is), the higher the cost

functional stays. In particular, the final values of F directly depend on SNRB. As

shown in Figure 5, the offsets between the final F values are directly proportional to

the offsets between the considered SNRB. The value of SNRB thus provides a minimal

threshold that the cost functional F cannot overcome.
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Figure 7 shows the average biases and standard deviations within each zone for

various SNR values. There is no bias for the eye zone as the characteristics of this

zone are assumed to be already known. One can see that whatever the SNR values

and whatever the zone, the biases bεr and bσ are quite small (less than 10% in relative

error) even if they slightly increase when the initial guess is far from the true solution

(for small SNRm values). This is a clear indication of the robustness of the proposed

algorithm.

The biases do not seem to be really affected by an increase of the measurement noise

level, that is, a decrease of SNRB. On the contrary, the standard deviations sεr and sσ

increase when SNRB decreases. This behaviour is normal and expected as the errors in

the measurement are directly translated into spatial fluctuations of the reconstructed

dielectric parameters. If the inverse problem was an over-determined linear problem, it

would even be possible to provide a proportional relationship between sεr , sσ and SNRB.

In any case, the observed levels of sεr and sσ are rather low and give good confidence

in the relevance of this type of approach for MREPT applications.

6.5. Initial guess influence

As the inverse problem is an under-determined non-linear problem, there is no guarantee

that the minimization algorithm cannot be trapped in local minima. In order to

investigate the influence of the initial guess, we have performed 100 runs where the

initial guess has been selected randomly according to (30) but for fixed values of SNRm

and SNRB. The values of SNRm and SNRB have been selected in order to positioned

ourselves in an plausible scenario, given the SNRs provided in [40]. We have then

gathered these 100 final reconstructions values m(∗) and computed their average over

these 100 runs. Figure 8 shows the resulting biases and standard-deviations for each

zone.

Whatever the zone, the algorithm always find the correct values as there are nearly

no biases (less than 1% in relative error). There is also nearly no spreading in the

final biases and standard deviations. It means that, in the considered configuration,

the algorithm always converges towards the same local minimum which corresponds to

the true solution. One reason for this nice behaviour could be explained by the fact

that the virtual receivers are located directly inside the area for which we are searching

the dielectric parameters. Compared to classical microwave imaging setups where the

receivers are outside of the area to characterize, the inverse problem might be here better

conditioned.

6.6. Transmitters influence

Figure 9 shows the evolution of the cost functional when the number of transmitters Ns

increases. As the cost functional is weighted according to Ns and as SNRB is constant,

the final F values are the same whatever the values of Ns. As compared to Figure 5
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where Ns = 1, one can directly see that an increase in the number of transmitters leads

to a faster convergence rate.

Figure 10 shows the final biases and standard deviations for several Ns. It seems

that changing Ns has little effect on the systematic errors. This is in accordance with

the previous comments regarding the behaviour of the biases, which appear unaffected

by the parameters choices. When Ns increases, the standard deviations decrease, as

one could expect. One might have also hoped for a direct relationship between Ns and

s. Unfortunately, doubling Ns does not reduce by half the standard deviations, it only

decreases them as the inverse problem is non-linear.

6.7. Regularisation influence

Finally, we investigate the effects of incorporating a-priori information. The cost

functionals associated to the element-based inversion and the zone-based inversion can

be seen in Figure 11. Definitely, as the problem is over-determined, it requires very few

iterations when the geometrical priors are used. Figure 12 shows the final reconstructed

map m(∗) which is nearly identical to the one shown in Figure 3. A quantitative appraisal

of the difference between these two maps has shown that there were no biases in the

reconstructed maps. As expected, sεr = sσ = 0 as we have assumed the permittivity

and conductivity to be constant in each zone. Another interesting point is that the

biases are smaller than in the element-based inversion, even at very low SNRm.

Of course, the segmentation algorithm might have an effect on the zone-based

inversion results but one should recall that the spatial resolution of high-field MRI

images is in the millimetre range while a classical RF microwave imaging system has a

spatial resolution close to λ/2, where the wavelength λ in the brain is in the decimetre

range at the Larmor frequency of 298 MHz.

7. Conclusion

In this paper, we have investigated a MREPT gradient-based inversion algorithm to

quantitatively recover the permittivity values of brain tissues based on B+
1 mapping,

which can be acquired in MRI setups. Such an inversion has been performed with

an electric field formulation and an ad-hoc adjoint field derivation. The possibility of

incorporating geometrical priors has also been offered.

The numerical tests have shown the robustness and the correct behaviour of the

proposed algorithm, even at low SNR. As expected, adding more transmitters or

increasing the SNR reduces the standard deviations of the reconstructed maps. As well,

the use of a priori information leads to faster convergence rate and smaller estimation

biases. Moreover, the algorithm does not seem to converge towards unwanted local

minima.

It would interesting to investigate the implementation of such an inversion scheme

considering a full three-dimensional configuration and of course, to confront it to



MRI-Based Electric Properties Tomography with a Quasi-Newton approach 18

experimental dataset. As well, it would be worth comparing the results that could be

obtained with |B+
1 | mapping with respect to the ones obtained here with an amplitude

and phaseB+
1 mapping. This would require some modifications in the cost functional but

mainly in the adjoint field expression [41]. Finally, it would be interesting to compare

the degree of non-linearity and ill-posedness of this MREPT problem with the one

of a classical microwave imaging system, where the electromagnetic field can only be

measured out of the human body.
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Appendix A. Electromagnetic equations

According to Maxwell’s equations, under the exp(−jωt) time convention, the

electromagnetic fields satisfy

∇× ~B = −jωεr(~r)ε0µ0
~E + µ0

~J and ∇× ~E = jω ~B,

where µ0 is the vacuum magnetic permeability as all the materials are non-magnetic.

The current density ~J can be decomposed as ~J = ~Johm + ~Jsource, where ~Johm = σ ~E.

Thus

∇× ~B = −jωεr(~r)ε0µ0
~E + µ0σ ~E + µ0

~Jsource (A.1)

= −jωε0µ0

(
εr(~r) + j

σ(~r)

ωε0

)
︸ ︷︷ ︸

m(~r)

~E + µ0
~Jsource

= − j
ω

[
ω2ε0µ0m(~r) ~E + jµ0ω ~Jsource

]
= − j

ω

[
k2m(~r) ~E − ~S

]
This corresponds to (3), where k = ω

√
ε0µ0 is the wave number in air and the excitation

source term is defined as ~S = −jµ0ω ~Jsource.

Appendix B. Gâteaux derivative for the fields

Appendix B.1. Derivation with respect to the Lagrange multipliers

We apply the definition of the Gâteaux derivative with respect to U(·;~rs) to the

Lagrangian functional (14), that is,

lim
t→0

L(E,U + tv,m)− L(E,U,m)

t
(B.1)
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= lim
t→0

Ns∑
s=1

Ls(E,U + tv,m)− Ls(E,U,m)

t

= lim
t→0

Ls(E,U + tv,m)− Ls(E,U,m)

t
(using (15))

= lim
t→0

1

t
Re [Hs(E(·;~rs), U(·;~rs) + tv,m)−Hs(E(·;~rs), U(·;~rs),m)]

= lim
t→0

1

t
Re
[
〈∆E + k2mE − S(·;~rs) | U(·;~rs) + tv〉Ω (using (16))

−〈∆E + k2mE − S(·;~rs) | U(·;~rs)〉Ω
]

= lim
t→0

Re
〈∆E + k2mE − S(·;~rs) | tv〉Ω

t
= Re〈∆E + k2mE − S(·;~rs) | v〉Ω.

In that case, we end up with a Fréchet derivative for the Lagrange multipliers (19).

Appendix B.2. Derivation with respect to the electrical field

We apply the definition of the Gâteaux derivative with respect to E(·;~rs) to the

Lagrangian functional (14), that is,

lim
t→0

L(E + tv, U,m)− L(E,U,m)

t
(B.2)

= lim
t→0

Ns∑
s=1

Ls(E + tv, U,m)− Ls(E,U,m)

t

= lim
t→0

Ls(E + tv, U,m)− Ls(E,U,m)

t
(using (15))

= lim
t→0

1

t
[Fs(E(·;~rs) + tv)−Fs(E(·;~rs))]

+ lim
t→0

1

t
Re [Hs(E(·;~rs) + tv, U(·;~rs),m)−Hs(E(·;~rs), U(·;~rs),m)]

= lim
t→0

1

t
[Fs(E(·;~rs) + tv)−Fs(E(·;~rs))] + Re〈∆v + k2mv | U〉Ω

thanks to the definition of Hs in (16). Let us now focus on the first term in brackets in

the previous equation

lim
t→0

1

t
[Fs(E(·;~rs) + tv)−Fs(E(·;~rs))] (B.3)

= lim
t→0

1

t

ω2

2Ns

Nr∑
r=1

∫
Ω

|B+
1 (E + tv)(~r;~rs)−B+,meas

1 (~r;~rs)|2δ(~r − ~rr)d~r

− lim
t→0

1

t

ω2

2Ns

Nr∑
r=1

∫
Ω

|B+
1 (E)(~r;~rs)−B+,meas

1 (~r;~rs)|2δ(~r − ~rr)d~r.

As B+
1 is a linear operator with respect to E (see (8)), we have

|B+
1 (E + tv)−B+,meas

1 |2 = |B+
1 (E)−B+,meas

1 + tB+
1 (v)|2 (B.4)

= |B+
1 (E)−B+,meas

1 |2 + t2|B+
1 (v)|2

+ 2tRe
(

[B+
1 (E)−B+,meas

1 ]B+
1 (v)

)
.
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Replacing (B.4) into (B.3), we obtain

lim
t→0

1

t
[Fs(E(·;~rs) + tv)−Fs(E(·;~rs))] (B.5)

= lim
t→0

1

t

ω2

2Ns

Nr∑
r=1

∫
Ω

{
t2|B+

1 (v)|2

+2tRe
([
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)
)}

δ(~r − ~rr)d~r

=
ω2

Ns

Re
Nr∑
r=1

∫
Ω

[
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)δ(~r − ~rr)d~r

Finally, by substituing (B.5) into (B.2), we get (20), that is,

lim
t→0

L(E + tv, U,m)− L(E,U,m)

t
= Re〈∆v + k2mv | U(·;~rs)〉Ω

+
ω2

Ns

Re
Nr∑
r=1

∫
Ω

[
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)δ(~r − ~rr)d~r.

Unfortunately B+
1 can not be further decomposed and the previous derivative can not

fully written in terms of a Fréchet derivative. This is nevertheless not an issue, as it is

still possible to impose a saddle-point condition based on such expression. Indeed, (17)

implies that

〈∆v + k2mv | U(·;~rs)〉Ω

= −ω
2

Ns

Nr∑
r=1

∫
Ω

[
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)δ(~r − ~rr)d~r. (B.6)

Applying the first Green formula, we transform the left side of (B.6) as follows

〈∆v + k2mv | U(·;~rs)〉Ω =

∫
Ω

(
∆v + k2mv

)
U(·;~rs)d~r

= −
∫

Ω

∇v∇U(·;~rs)d~r +

∫
∂Ω

∂v

∂n
U(~r;~rs)ds+

∫
Ω

k2mU(·;~rs)vd~r

=

∫
Ω

(
−∇v∇U(·;~rs) + k2mvU(~r;~rs)

)
d~r.

if U is assumed to be null on the boundary of the computational domain. Taking into

account the last expression in (B.6) and by noting P (·;~rs) = U(·;~rs), we obtain (21),

that is,∫
Ω

(
−∇v∇P (·;~rs) + k2mvP (·;~rs)

)
d~r

= −ω
2

Ns

Nr∑
r=1

∫
Ω

[
B+

1 (E)(~r;~rs)−B+,meas
1 (~r;~rs)

]
B+

1 (v)δ(~r − ~rr)d~r.
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Appendix C. Fréchet derivative for the complex permittivity m

As done previously in Appendix B, we get

lim
t→0

L(E,U,m+ tv)− L(E,U,m)

t
= lim

t→0

Ns∑
s=1

Ls(E,U,m+ tv)− Ls(E,U,m)

t

= lim
t→0

1

t
Re

Ns∑
s=1

[
Hs(E(·;~rs), U(·;~rs),m+ tv)−Hs(E(·;~rs), U(·;~rs),m)

]
= lim

t→0

1

t
Re

Ns∑
s=1

[
〈∆E + k2(m+ tv)E − S(·;~rs) | U(·;~rs)〉Ω − 〈∆E + k2mE − S(·;~rs) | U(·;~rs)〉Ω

]
= lim

t→0

1

t

[
tRe

Ns∑
s=1

〈k2vE | U(·;~rs)〉Ω

]
= Re

Ns∑
s=1

〈k2vE(·;~rs) | U(·;~rs)〉Ω

= Re
Ns∑
s=1

〈v | k2E(·;~rs)U(·;~rs)〉Ω = Re
Ns∑
s=1

〈k2E(·;~rs)U(·;~rs) | v〉Ω

= Re
Ns∑
s=1

〈k2E(·;~rs)P (·;~rs) | v〉Ω = Re 〈k2

Ns∑
s=1

E(·;~rs)P (·;~rs) | v〉Ω.

as P = U and Re〈u | v〉Ω = Re〈v | u〉Ω. Using the definition of complex derivatives of

real-valued functions [35, 36], from the last expression, we obtain the gradient of the

cost functional (23).
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Figure 7. Biases bεr and bσ (represented by the vertical bars) combined with standard

deviations sεr and sσ (represented by the error bars) for various SNRm (Ns = 1,

element-based inversion).
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Figure 8. Average over 100 inverse problems runs of the final biases and standard

deviations (SNRm = 40 dB, SNRB = 60 dB, Ns = 1, element-based inversion).
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Figure 9. Cost function F evolution along the iterations for various SNRm and

number of transmitters Ns (SNRB = 60 dB, element-based inversion).
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Figure 10. Biases bεr and bσ combined with standard deviations sεr and sσ for

various SNRm and Ns (SNRB = 60 dB, element-based inversion).
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(a) Element-based inversion
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(b) Zone-based inversion

Figure 11. Cost function F evolution along the iterations for various SNRm for two

different regularization strategies (Ns = 1, SNRB = 60 dB).
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(a) SNRB = 60 dB, SNRm = 40 dB (b) SNRB = 60 dB, SNRm = 40 dB

Figure 12. Final reconstructions: (a) εr = Re(m(∗)) and (b) σ = ωε0Im(m(∗)).

(Ns = 1, zone-based inversion).


