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Magnetic resonance electric properties tomography is a non-destructive imaging modality that maps the spatial distribution of the electrical conductivity and permittivity of the human body using standard clinical magnetic resonance imaging systems. From the B + 1 magnetic field maps and the local form of the Maxwell equations, several schemes have been derived to provide direct approximated formulas but they suffer from instabilities. In this paper, we propose to address it as an inverse problem solved by a constrained optimization algorithm where we exploit the weak formulation of the electric Helmholtz equation and a Lagrangian approach. We derive the associated adjoint field equation and employ a Quasi-Newton minimization scheme. We also take advantage of a regularisation strategy based on geometrical a priori information for defining large zones into which the electric parameters are known to be piece-wise constant.

Introduction

Magnetic resonance imaging (MRI) scans are nowadays routinely ordered to visualize the anatomy of the inside of the human body. In addition to these morphological maps, MRI systems can also provide quantitative mapping of the dielectric permittivity and conductivity properties inside the human body [START_REF] Katscher | Recent Progress and Future Challenges in MR Electric Properties Tomography[END_REF][START_REF] Seo | Electro-Magnetic Tissue Properties MRI[END_REF][START_REF] Zhang | Magnetic-resonance-based electrical properties tomography: A review[END_REF]. Such technique could help in the diagnostic of pathologies which induce an important variation of the dielectric permittivity. For example, it has been shown that cancerous tissues may have different electromagnetic values than normal tissues over a wide electromagnetic frequency spectrum [START_REF] Lazebnik | A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries[END_REF] [START_REF] Conceicao | An introduction to microwave imaging for breast cancer detection[END_REF]. It could also provide a more accurate and personalized prediction of the Specific Absorption Rate (SAR) that is encountered in high-field and ultra high-field magnetic resonance imaging, typically above 3 Tesla (3T) [START_REF] De Greef | Specific Absorption Rate Intersubject Variability in 7T Parallel Transmit MRI of the Head[END_REF].

The idea behind MRI-Based Electric Properties Tomography (MREPT) is to use the standard MRI system, with no extra equipment, and to employ ad-hoc postprocessing techniques to measure the distorted transmit magnetic field B + 1 by means of a so-called B 1 mapping technique [START_REF] Haacke | Extraction of conductivity and permittivity using magnetic resonance imaging[END_REF][START_REF] Akoka | Radiofrequency map of an NMR coil by imaging[END_REF]. Indeed, besides the static magnetic field B 0 from the main magnet, the radiofrequency (RF) magnetic field B 1 generated by RF coils with a sinusoidal time dependence at the Larmor frequency, reorients the magnetization of the spins so that a signal is induced and detected by the receiver coil [START_REF] Hoult | The principle of reciprocity in signal strength calculations -A mathematical guide[END_REF][START_REF] Brown | Magnetic Resonance Imaging: Physical Principles and Sequence Design[END_REF]. The problem of the amplitude |B + 1 | mapping has been studied in a number of contributions, see for example [START_REF] Yarnykh | Actual flip-angle imaging in the pulsed steady state: a method for rapid threedimensional mapping of the transmitted radiofrequency field[END_REF][START_REF] Morrell | A phase-sensitive method of flip angle mapping[END_REF][START_REF] Sacolick | B1 mapping by Bloch-Siegert shift[END_REF]. Nevertheless, recovering the absolute phase of B + 1 seems more difficult to perform [START_REF] Choi | A modified multi-echo AFI for simultaneous b + 1 magnitude and phase mapping[END_REF]. For certain coil arrangements or object geometries, it can be directly estimated [START_REF] Van Lier | b + 1 phase mapping at 7 T and its application for in vivo electrical conductivity mapping[END_REF] or the acquisition sequences must be modified specifically to that aim [START_REF] Choi | A modified multi-echo AFI for simultaneous b + 1 magnitude and phase mapping[END_REF]. In this work, we will assume that we have access to the full mapping of the magnitude and the phase of the B + 1 field. As the distortions of the RF magnetic field are directly linked with the conductivity σ and permittivity ε r of the human tissues, the measurement of such variations allows the reconstruction of the tissue's electric properties.

Several schemes have been derived to provide approximated solutions based on the local Maxwell equations. Indeed, with the B 1 mapping technique, the magnetic field B + 1 value is provided in a limited region of the human body. If one can derive a local inverse function linking the electric parameters to B + 1 , one can provide spatial distributions of these parameters inside the probed area. One possibility is to assume that the spatial variations of the complex permittivity m = ε r +jσ/(ωε 0 ) are small which enables to directly express them in terms of a local ratio between the Laplacian of the magnetic field and the magnetic field itself [START_REF] Haacke | Extraction of conductivity and permittivity using magnetic resonance imaging[END_REF][START_REF] Van Lier | b + 1 phase mapping at 7 T and its application for in vivo electrical conductivity mapping[END_REF][START_REF] Katscher | Determination of electric conductivity and local SAR via B1 mapping[END_REF][START_REF] Voigt | Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography[END_REF][START_REF] Seo | Electrical tissue property imaging using MRI at DC and Larmor frequency[END_REF][START_REF] Borsic | An inverse problems approach to MR-EPT image reconstruction[END_REF]. Further simplifications lead to magnitude-based permittivity imaging and phase-based conductivity imaging. Unfortunately, such local inverse formulas suffer from instabilities, in particular at the boundaries from different tissues where the assumption that the spatial variations are small is no longer valid. Some weighted formulas have been introduced to compensate in parts for such effects [START_REF] Nachman | A local formula for inhomogeneous complex conductivity as a function of the RF magnetic field[END_REF]. As well, completely different schemes have been proposed, based on the introduction of a convection-reaction equation [START_REF] Hafalir | Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)[END_REF] linking the complex permittivity variations to the magnetic field variations. It is, however, relevant to propose new ways to recover the dielectric properties of human tissues from B + 1 mapping. Following the recent works detailed in [START_REF] Ammari | Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency[END_REF] and [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF], we rather formulate this problem as an inverse problem where one aims at recovering the permittivity and conductivity maps from the B + 1 mapping. The underlying idea is that the permittivity and conductivity variations do not solely contribute to the local value of the magnetic field perturbation but instead they affect the magnetic field in a wider manner. Let us mention that similar approaches have been developed in quantitative magnetic susceptibility (QSM) where the inverse problem aims at recovering the magnetic susceptibility from magnetic fields mapping [START_REF] Deistung | Overview of quantitative susceptibility mapping[END_REF]. We recast the MREPT inverse problem into a constrained optimization algorithm, where we can incorporate the Maxwell equations in a global way as well as additional experimental knowledge, such as measurement noise and a priori information. Indeed, the data misfit at each local point can be weighted according to the signal to noise ratio which may vary from one measurement point to the other one. As well, anatomical images based on classical magnetic resonance maps combined with tissues segmentation techniques, which are now routinely used, can be incorporated into the human body description as geometrical priors.

Our work differs from [START_REF] Ammari | Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency[END_REF] or [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF] on several aspects. Firstly, we take advantage of the weak formulation of the electric Helmholtz equation. We thus do not need to compute several Green's tensors as done in [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF] nor do we need to tackle the magnetic Helmholtz equation as done in [START_REF] Ammari | Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency[END_REF]. Indeed, the magnetic Hemholtz equation involves terms in ∇ log m, while the electric Helmholtz equation involves terms in m only. The main drawback is that, in our case, the cost function derivation is more arduous to differentiate. It nevertheless ends up in the definition of an adjoint problem, which is the solution of the weak formulation of a similar Helmholtz equation. Secondly, contrarily to the contrast-source (CS) method employed in [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF], we ensure that the Karush-Kuhn-Tucker (KKT) conditions [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] are always fulfilled thus computing the forward solver at each iteration. There is thus no need of the additional unknowns introduced by the CS algorithm. The computational burden associated to the forward problem is quite manageable as, at the Larmor frequency, the head size is only of few wavelengths, the wavelength being in the decimetre range. Thirdly, we take advantage of a regularisation strategy based on a priori information using image segmentation and classification in order to define the zones into which the electric parameters are known to be piece-wise constant. This enables to reduce the number of unknowns and thus render less ill-posed this inverse problem. Finally, we employ a Quasi-Newton minimization algorithm to recover the quantitative permittivity and conductivity distribution maps [START_REF] Voznyuk | Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method[END_REF].

This paper is organized as follows. In Section 2, the forward problem is described and the finite element method which is used to compute the magnetic field distribution everywhere is briefly recalled in Section 3. The inverse problem is stated in Section 4. It is reformulated as a non-linear optimization problem with constraints whose saddlepoint conditions are formally expressed to introduce an adjoint field and the data misfit derivative. Section 5 describes how the inversion scheme is numerically implemented as it requires specific amendments. Two cases are considered: either the complex permittivity is unknown in each cell of the discretized human body or the complex permittivity is only unknown by zones, which are already predefined from anatomical maps of the human body. In Section 6, numerical results are presented to illustrate the efficiency of the proposed method. In particular, a study on the influence of the initial guess, the number of measurements, the signal to noise ratio and the zones classification is provided. Concluding remarks follow.

Definition of the configuration

We consider a two-dimensional (2D) simplified MRI scanner configuration (Figure 1) where the relative permittivity ε r ( r) and conductivity σ( r) vary at the Larmor frequency within each human tissue (Table 1) [START_REF] Gabriel | The dielectric properties of biological tissues: I. literature survey[END_REF]. A set of ideal line sources S( r; r s ) = S( r; r s ) e z [START_REF] Van Den Bergen | Ultra fast electromagnetic field computations for RF multi-transmit techniques in high field MRI[END_REF]. The sources emit one after the other, generating an electric field E( r; r s ) coupled to a RF magnetic field B( r; r s ) By summing a weighted contribution of all antenna elements, one could also simulate the behaviour of more complex antenna structures, such as for example planar strip array [START_REF] Lee | Planar strip array (PSA) for MRI[END_REF]. For the sake of simplicity, we restrict ourselves to a sequential dipolar-like excitation.

Due to the invariance along the z axis, the electric field is always parallel to the z axis, and can be expressed as

E( r; r s ) = E(x, y; x s , y s ) e z (1) 
whereas B( r; r s ) = B x (x, y; x s , y s ) e x + B y (x, y; x s , y s ) e y .
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According to Maxwell's equation, under the exp(-jωt) time convention, the electromagnetic fields satisfy (see Appendix A)

∇ × B = - j ω k 2 m( r) E( r; r s ) -S( r; r s ) and ∇ × E = jω B ( 3 
)
where k is the wave number in air and the complex permittivity is defined by

m( r) = ε r ( r) + j σ( r) ωε 0 (4) 
where ω = 2πf , f being the Larmor frequency and ε 0 the vacuum permittivity.

In the MREPT literature, several modelling approaches have been proposed. For example, in [START_REF] Seo | Electro-Magnetic Tissue Properties MRI[END_REF][START_REF] Ammari | Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency[END_REF][START_REF] Seo | Electrical tissue property imaging using MRI at DC and Larmor frequency[END_REF], the Helmholtz equation for the RF magnetic field B is exploited. At first glance, such a formulation could seem natural as it only involves the magnetic field. Nevertheless, it is a vectorial equation which does not fully benefit from the fact that the configuration can be considered as a two-dimensional one. Moreover, the dependency with respect to the electromagnetic properties m( r) is expressed in a highly non-linear way. In [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF], the electromagnetic fields are obtained by two Fredholm integral representations, involving the computation of two Green's tensors: the electric current to magnetic field tensor and the electric current to electric field tensor.

In the present work, we instead favour the Helmholtz equation for the electric field

∆E( r; r s ) + k 2 m( r)E( r; r s ) = S( r; r s ) in Ω, (5) 
E( r; r s ) = 0 on ∂Ω. ( 6 
)
as it is a scalar equation much simpler to solve. A Dirichlet boundary condition has been expressed here but any other type of boundary condition may also apply. Due to the relationship between the electrical field and the magnetic field, it follows that

B( r; r s ) = 1 jω rot E( r; r s ) = 1 jω ∂E ∂y e x - ∂E ∂x e y . (7) 
An MRI system offers the unique situation in which the magnetic fields within the object of interest can be measured. It means that any point r r = (x r , y r ), r = 1, • • • , N r within the human body can be considered as a virtual receiving antenna. Unfortunately, the MRI setup can give access to some mixed components of the RF transmit field B, but not necessarily to the full components of the magnetic field itself. Let us thus focus on one of them, that is

B + 1 (E) = 1 2 (B x + jB y ) = 1 2jω ∂E ∂y -j ∂E ∂x . (8) 
The previous expression is a linear expression with respect to the component E of the electric field.

Numerical field simulations

For computing the electromagnetic field everywhere in space, a finite element method (FEM) is implemented [START_REF] Jin | The Finite Element Method in Electromagnetics[END_REF][START_REF] Voznyuk | Scattered field computation with an extended FETI-DPEM2 method[END_REF]. This method is briefly recalled here as it will be needed to correctly explain the way the inversion scheme has been implemented. The space domain Ω is subdivided into N e small triangular elements Ω e with a mesh generator [START_REF] Geuzaine | GMSH: A three dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF] (see Figure 2). We have taken the same configuration as the one described in [START_REF] Van Lier | b + 1 phase mapping at 7 T and its application for in vivo electrical conductivity mapping[END_REF], where the human head is placed in a 7T resonant birdcage coil. The associated Larmor frequency of 298 MHz was thus selected for performing the computations. A circular metallic shield surrounds the scene at r = 18.6 cm while the transmitters r s are equally spaced on a circle of radius r = 15 cm. Their number will differ depending on the considered configuration.

Classical P1 element are used, leading to

E = Ne e=1 3 i=1 E i e T i e ( r), (9) 
where I e ( r) is the indicator function for Ω e and the basis functions are given by

T i e ( r) = 1 2∆ e (a i e + b i e x + c i e y) (10) 
where ∆ e is the area of Ω e [START_REF] Jin | The Finite Element Method in Electromagnetics[END_REF]. Once the weak form of the Helmholtz equation ( 5) is discretized, a linear system can be written compactly as

K E = b ( 11 
)
where K is the stiffness matrix, E is obtained from assembling {E i e } and the right-handside b is assembled from

{b i e } with b i e = Ωe S( r; r s )T i e ( r) d r i = 1, 2, 3.
The sparse linear system is solved thanks to a LU decomposition algorithm [START_REF] Amestoy | Multifrontal parallel distributed symmetric and unsymmetric solvers[END_REF]. An example of a permittivity map distribution within a brain slice can be seen in Figure 3 while the associated RF magnetic B + 1 field is visible in Figure 4.
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Inverse problem formulation

The inverse problem is stated as finding the permittivity distribution corresponding to a measured B +,meas 1 field distribution. The difficulty here is twofold: (i) the value is obtained everywhere within each voxel of the brain leading to a large number of virtual receivers and (ii) this quantity is a by-product of the electrical field which requires an extra step in our simulation procedure which relies on the electrical field propagation equation.
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Mesh distribution in the cavity and the brain, with approximatively 34 000 node points and 68 000 triangles. In the brain area, the mesh length is of 0.1 cm as shown on the right in the excerpt. The mesh is conformal to the external geometry of the head, as well as the eyes and the nasal cavity. The red dot indicates one position for the transmitter. 

Constrained optimization formulation

This problem can be recasted as a non-linear optimization problem with constraints. Indeed, from these measurements B +,meas 1 , we define a cost function F which corresponds to the discrepancy between the measured quantities and the simulated ones at any point in space, The sought-after permittivity distribution must minimize this cost function while the associated electromagnetic field must satisfy the Helmholtz equation. A Lagrangian formalism is thus introduced to incorporate these constraints

F = Ns s=1 F s = ω 2 2N s Ns s=1 Nr r=1 |B + 1 (E)( r r ; r s ) -B +,meas 1 ( r r ; r s )| 2 (12) = ω 2 2N s Ns s=1 Nr r=1 Ω |B + 1 (E)( r; r s ) -B +,meas 1 ( r; r s )| 2 δ( r -r r )d r. ( 13 
)
L(E, U, m) = Ns s=1 L s (E(•; r s ), U (•; r s ), m) (14) 
with

L s (E(•; r s ), U (•; r s ), m) = F s (E(•; r s )) + ReH s (E(•; r s ), U (•; r s ), m) (15)
where the Helmholtz constraints is expressed with

H s (E, U, m) = ∆E(•; r s ) + k 2 m(•)E(•; r s ) -S(•; r s ) | U (•; r s ) Ω . (16) 
Here, U (•; r s ) are the Lagrange multipliers and u | v Ω = Ω uv is the classical scalar product on Ω. In order to be able to extract some information related to the dielectric permittivity maps from the measured quantities, it is of interest to establish the derivative of the previous cost function with respect to m. For this, we construct the Karush-Kuhn-Tucker (KKT) conditions [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] to find the saddle-point, which requires that

∂L ∂E(•; r s ) = ∂L ∂U (•; r s ) = 0. ∀E(•; r s ), U (•; r s ) (17) 
At that saddle-point, it is well-known that

∂L ∂m = ∂F ∂m . (18) 

Derivative expressions with respect to the fields

It can be shown (see Appendix B.1) that the derivative of the Lagrangian functional with respect to U (•; r s ) is given by

lim t→0 L(E, U + tv, m) -L(E, U, m) t = Re ∆E + k 2 mE -S(•; r s ) | v Ω . ( 19 
)
Therefore, at the saddle-point, we need to satisfy the classical Helmholtz equation for the electrical field.

The derivative with respect to E(•, r s ) is less straight-forward (see Appendix B.2). Nevertheless, as the function B + 1 is linear, we have

lim t→0 L(E + tv, U, m) -L(E, U, m) t = Re ∆v + k 2 mv | U (•; r s ) Ω +Re ω 2 N s Nr r=1 Ω B + 1 (E)( r; r s ) -B +,meas 1 ( r; r s ) B + 1 (v)δ( r -r r )d r. ( 20 
)
At the saddle-point, based from [START_REF] Nachman | A local formula for inhomogeneous complex conductivity as a function of the RF magnetic field[END_REF], the KKT conditions [START_REF] Voigt | Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography[END_REF] and the first Green formula, we obtain while noting

P = U , Ω -∇v( r)∇P ( r; r s ) + k 2 m( r)P ( r; r s )v( r) d r = - ω 2 N s Nr r=1 Ω B + 1 (E) -B +,meas 1 ( r; r s )B + 1 (v)δ( r -r r )d r. (21) 
The left-hand side of this equation is nothing but the left-hand side of the weak form of the Helmholtz equation ( 5). This is a classical result as the Helmholtz equation is autoadjoint in the present configuration. The right-hand side differs from the one dictating the electrical field behaviour. In [START_REF] Hafalir | Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)[END_REF], the source distribution is weighted according to the local discrepancy at each virtual receiver point between the measured magnetic field B +,meas 1 and the simulated one B + 1 . Unfortunately, due to the B + 1 (v) term, which is defined in [START_REF] Akoka | Radiofrequency map of an NMR coil by imaging[END_REF], it seems not possible to derive a strong formulation similar to [START_REF] Conceicao | An introduction to microwave imaging for breast cancer detection[END_REF] for [START_REF] Hafalir | Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)[END_REF]. This is not an issue here as we are employing the finite element method which definitely requires the weak formulation. Thus ( 21) is perfectly adapted for our simulation tool in order to compute P (•; r s ). The specific implementation for computing B + 1 (v) will be detailed in Section 5.1.

Derivative expressions with respect to the permittivity

It can be shown (see Appendix C) that the derivative of the Lagrangian functional with respect to m is given by

lim t→0 L(E, U, m + tv) -L(E, U, m) t = Re k 2 Ns s=1 E(•; r s )P (•; r s ) | v Ω . ( 22 
)
Using the definition of complex derivatives of real-valued functions [START_REF] Remmert | Theory of Complex Functions[END_REF][START_REF] Kreutz-Delgado | The Complex Gradient Operator and the CR-Calculus[END_REF], it follows from [START_REF] Ammari | Magnetic resonance-based reconstruction method of conductivity and permittivity distributions at the Larmor frequency[END_REF] that the gradient of the cost functional is

∇ m F = k 2 Ns s=1 E(•; r s )P (•; r s ), (23) 
where the electrical field E satisfies the Helmholtz equation ( 5) with some source terms distributed at the transmitters locations and the adjoint field P satisfies a similar equation ( 21) with some source terms which are distributed at each virtual receiver point.

Regularization strategy

The first output of an MRI procedure is a qualitative mapping of the human body.

It thus automatically provides some a priori knowledge on the geometrical features of the head worth exploiting in the inverse problem in order to reduce its ill-posedness. Therefore, advanced image processing tools can be applied to the MRI image for segmenting and classifying the various components of the brain. The resulting zones Ω g will be considered as spatial priors. It is not required for a zone to be simply connected, i.e., made of adjacent elements.

Depending on the regularization choice, the unknown permittivity distribution is interpolated and assumed to be piece-wise constant either on each triangle Ω e (for an element-based inversion without a priori knowledge) or on each zone Ω g (for a zonebased inversion with a priori geometrical knowledge),

m( r) = Ne e=1 m e I e ( r) or m( r) = Ng g=1 m g I g ( r). (24) 
We can express the derivatives with respect to each set of unknowns, using the chain rule derivation,

∇ m• F = k 2 Ns s=1 Ω• E( r; r s )P ( r; r s )d r, (25) 
with • = e or g depending on the regularization strategy.

Numerical implementation of the inversion scheme

In the following, we will describe how the adjoint field has been computed as well as the minimization scheme that has been implemented to obtain the numerical results shown in Section 6.

Adjoint field computation

Due to the specific form of the adjoint equation, it is worth detailing the way the righthand-side term of ( 21) is computed. As in ( 9), let us assume that

P = Ne e=1 3 i=1 P i e T i e ( r)
Since T i e ( r) vanishes outside of Ω e , the right-hand-side of ( 21) is reduced to, when v = P ,

- ω 2 N s Nr r=1 Ω B + 1 (E) -B +,meas 1 ( r; r s )B + 1 Ne e=1 3 i=1 P i e T i e ( r) δ( r -r r )d r = - ω 2 N s Nr r=1 3 i=1 P i e Ωe B + 1 (E) -B +,meas 1 ( r; r s )B + 1 (T i e ( r))δ( r -r r )d r.
taking into account that B + 1 is a linear operator. Following the Ritz method [START_REF] Jin | The Finite Element Method in Electromagnetics[END_REF], we derivate with respect to P i e to obtain the local right-hand-side term which will appear in the linear system,

RHS i e = - ω 2 N s Nr r=1 Ωe B + 1 (E) -B +,meas 1 ( r; r s )B + 1 (T i e ( r))δ( r -r r )d r = - ω 2 N s Nr r=1 Ωe B + 1 (E) -B +,meas 1 ( r; r s ) 1 2jω ∂T i e ∂y -j ∂T i e ∂x ( r)δ( r -r r )d r.
Due to the choice of the basis functions (see ( 10)), we have

∂T i e ∂x = b i e 2∆ e and ∂T i e ∂y = c i e 2∆ e .
When we replace into the right-hand-side, we obtain

RHS i e = - ω 4jN s c i e -jb i e ∆ e Nr r=1 Ωe B + 1 (E) -B +,meas 1 ( r; r s )δ( r -r r )d r. ( 26 
)
The B + 1 (E) magnetic field value is simulated at the virtual receiver points r r via an interpolation based on the values at the adjacent nodes points. To compute the adjoint field, we must solve the following sparse linear system

K P = RHS ( 27 
)
where K is the same stiffness matrix as in [START_REF] Yarnykh | Actual flip-angle imaging in the pulsed steady state: a method for rapid threedimensional mapping of the transmitted radiofrequency field[END_REF] and RHS = e {RHS e } is assembled from the local right-hand-side terms. Contrarily to [START_REF] Conceicao | An introduction to microwave imaging for breast cancer detection[END_REF], in [START_REF] Hafalir | Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)[END_REF], there are a lot of points in space where the right-handside term is taking non-null values. In the forward problem computations, the number of transmitters N s is limited and thus we solve sequentially the linear system [START_REF] Yarnykh | Actual flip-angle imaging in the pulsed steady state: a method for rapid threedimensional mapping of the transmitted radiofrequency field[END_REF] for each transmitter location r s . In the adjoint problem, there are a large number of virtual receivers N r , maybe as many as the number of elements in the MRI image. Computationally speaking, it is worthless to compute [START_REF] Voznyuk | Efficient combination of a 3D Quasi-Newton inversion algorithm and a vector dual-primal finite element tearing and interconnecting method[END_REF] for each virtual receiver r r separately and sum them up afterwards. Instead, we gather all the contributions as expressed in [START_REF] Bertsekas | Constrained Optimization and Lagrange Multiplier Methods[END_REF] to obtain the right-hand-side for a given transmitter r s . We thus have for the adjoint problem as many right-hand-sides as there are transmitters.

Minimization algorithm

Once the adjoint and total fields have been computed, the gradient is easily derived thanks to [START_REF] Nocedal | Numerical Optimization[END_REF], where the integral has been approximated with a mid-point rule. The unknown parameters m = {m • } are weighted according to the area of Ω • , with • = e or g depending on the regularization strategy.

An iterative scheme based on a Quasi-Newton algorithm is implemented in order to estimate the minimum of ( 13)

m (n+1) = m (n) + α (n) d (n) . ( 28 
)
The descent direction d (n) is obtained via a limited-memory Broyden-Fletcher-Goldfarb-Shanno (LM-BFGS) algorithm [START_REF] Nocedal | Numerical Optimization[END_REF][START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF][START_REF] Zhu | Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization[END_REF]]

d (n) = -H (n) ∇ m F(m (n) ) (29) 
where H (n) is an approximation of the inverse of the Hessian. The limited-version is of interest here in particular when we try to estimate the values of the permittivity in each triangular cell as in that case, the number of unknowns N e is large and the approximated Hessian matrices can be dense. An additional constraint is introduced when selecting the descent direction. Indeed, such a descent direction is projected in order to ensure that Re(m) ≥ 1 and Im(m) ≥ 0. The bound constraints are then ensured with an active set algorithm fully detailed in [START_REF] Byrd | A limited memory algorithm for bound constrained optimization[END_REF]. The algorithm stops if: (i) the maximum number of iterations N is reached, (ii) the relative variation of the cost function between two subsequent iterations is lower than a given threshold η, or (iii) the norm of the gradient is smaller than a given threshold ξ.

Numerical results

In this section, we present numerical results to illustrate the efficiency of the inversion algorithm proposed in the previous sections. To that end, we have played with three parameters: (i) the initial guess, (ii) the noise which is added to the simulated fields and (iii) the number of transmitters.

Numerical configuration

The configuration was partially described in Section 3. The B + 1 mapping is performed by virtual receivers which are equally spaced with a spacing of ∆x = 0.66 cm and ∆y = 0.52 cm, slightly larger than the mesh length inside the brain. They are only positioned within the head, leading to N r = 597. There is thus no correspondence between the finite element mesh and the virtual receiving points locations. The number N s of transmitters varies between 1 and 32.

In the element-based inversion, the inverse problem is under-determined as the number of acquired data is very low with respect to the number of unknowns (here N e ≈ 62 000). In the zone-based inversion, the inverse problem is over-determined as N g = 5. Indeed, in the considered brain slice, only the following human tissues are searched for: Cancellous bone, Cerebrum, Brain stem, Cerebellum and Muscle. We have arbitrarily decided that the nasal cavity, the eyes as well as the surrounding medium are already known and their permittivities are thus kept constant during the inversion procedure.

Numerical experiments were carried out to minimize the functional defined in (13) under the constraints ( 5)-( 6) using the LM-BFGS algorithm. In all the following examples, the initial guess m (0) is chosen as described in Section 6.2. For the stopping criteria, we have selected N = 100, η ≈ 0.2 10 -8 (corresponding to an average tolerance value) and ξ = 10 -8 |∇F(m (0) )|. The true distribution map m true is the one described in Figure 3.

Input parameters

The initial guess is randomly chosen, with a Gaussian distribution centred on a mean value and a given variance v m for each elementary unknown,

m (0) = m true + {N (0, v m )} + j {N (0, v m )} ( 30 
)
The value of the variance v m is not directly given but provided in dB via the input parameter Signal-to-Noise Ratio SNR m , with the following correspondence

v m = 1 2 10 -SNRm/10 P m ( 31 
)
where P m =< |m true | 2 > is the average power value. The simulated fields are as well corrupted by additive Gaussian white noise. The measurement fields which are thus considered as input data to the inversion algorithm are described by

B +,meas 1 = B + 1 (m true ) + {N (0, v B )} + j {N (0, v B )} (32) 
The value of the variance v B is provided in dB via the input parameter Signal-to-Noise Ratio SNR B , with the following correspondence v B ( r s ) = 1 2 10 -SNR B /10 P B ( r s ) [START_REF] Geuzaine | GMSH: A three dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF] with P B ( r s ) =< |B + 1 (•; r s )| 2 > the average power value of the B + 1 magnetic field. It is worth mentioning that SNR B = 20 log 10 SNR M RI , where SNR M RI is the signal-to-noise ratio traditionally provided in MRI systems [START_REF] Scott | Sensitivity of magnetic-resonance current-density imaging[END_REF].

Several numerical tests have been performed with SNR B ranging from 20 dB to 100 dB , the latter one corresponding to a case with no noise. In practice, we do not encounter SNR B values which cover such a large range (see for example the SNR B values estimated with actual 7T setups [START_REF] Pohmann | Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays[END_REF] which are of the order of 40 to 70 dB). Nevertheless, we have explored it in order to understand the limitations and robustness aspects of the proposed inversion scheme.

Inversion outputs

As usual, the evolution of the cost function (Figure 5) is the key parameter in order to control the behaviour of the inversion algorithm. Each time the algorithm stops, we also plot the final reconstructed complex permittivity map m ( * ) , as shown in Figure 6.

Unfortunately, while looking at Figure 6, it is rather difficult to distinguish the differences between the final reconstructed maps, even if they were generated from two different initial guesses. Therefore, we also compute the discrepancy between the final reconstructed complex permittivity maps m ( * ) and the true one m true . In order to have 

depending if one is considering the element-based or the zone-based inversion version.

N g e corresponds to the number of elements which are indeed in the g-th zone,

N g e = Ne e=1 I g ( r e ) (35) 
The relative quantities

b εr = ε ( * ) r -ε true r ε true r = Re(m ( * ) -m true ) Re(m true ) (36) 
b σ = σ ( * ) -σ true σ true = Im(m ( * ) -m true ) Im(m true ) (37) 
are thus good indicators of eventual biases which might be introduced by the inversion algorithm. These biases will be displayed in form of vertical bars (see for example Figure 7) and their height should be as close as possible to 0. We also compute the standard deviations s εr and s σ in each zone, defined separately for the real and imaginary part of m ( * ) ,

s εr = Re m ( * ) -m ( * ) Re(m true ) 2 1/2 and s σ = Im m ( * ) -m ( * ) Im(m true ) 2 1/2 (38) 
These standard deviations are a good indicator of the spreading of the reconstructed values with respect to the expected values. These standard deviations are reported thanks to error bars, which should be as small as possible.

Signal-to-noise ratio influence

In Figure 5, one can see the evolution of the cost functional for various Signal-to-Noise Ratio (SNR) values. The first conclusion that can be drawn is that whatever the values of SNR b and SNR m , the inversion algorithm behaves in a correct way as it always minimize the cost functional. In very few iterations, there is also a significant reduction (of several dB) of the discrepancy between the measured and simulated magnetic field.

The further the initial guess m (0) is from the true solution m true (namely, the smaller SNR m is), the higher the cost functional stays, even at the end of the minimisation process. It means that, as expected, it is always more efficient to start with initial values which are close to the realistic ones.

The higher the noise level is (namely, the smaller SNR B is), the higher the cost functional stays. In particular, the final values of F directly depend on SNR B . As shown in Figure 5, the offsets between the final F values are directly proportional to the offsets between the considered SNR B . The value of SNR B thus provides a minimal threshold that the cost functional F cannot overcome.

Figure 7 shows the average biases and standard deviations within each zone for various SNR values. There is no bias for the eye zone as the characteristics of this zone are assumed to be already known. One can see that whatever the SNR values and whatever the zone, the biases b εr and b σ are quite small (less than 10% in relative error) even if they slightly increase when the initial guess is far from the true solution (for small SNR m values). This is a clear indication of the robustness of the proposed algorithm.

The biases do not seem to be really affected by an increase of the measurement noise level, that is, a decrease of SNR B . On the contrary, the standard deviations s εr and s σ increase when SNR B decreases. This behaviour is normal and expected as the errors in the measurement are directly translated into spatial fluctuations of the reconstructed dielectric parameters. If the inverse problem was an over-determined linear problem, it would even be possible to provide a proportional relationship between s εr , s σ and SNR B . In any case, the observed levels of s εr and s σ are rather low and give good confidence in the relevance of this type of approach for MREPT applications.

Initial guess influence

As the inverse problem is an under-determined non-linear problem, there is no guarantee that the minimization algorithm cannot be trapped in local minima. In order to investigate the influence of the initial guess, we have performed 100 runs where the initial guess has been selected randomly according to [START_REF] Lee | Planar strip array (PSA) for MRI[END_REF] but for fixed values of SNR m and SNR B . The values of SNR m and SNR B have been selected in order to positioned ourselves in an plausible scenario, given the SNRs provided in [START_REF] Pohmann | Signal-to-noise ratio and MR tissue parameters in human brain imaging at 3, 7, and 9.4 tesla using current receive coil arrays[END_REF]. We have then gathered these 100 final reconstructions values m ( * ) and computed their average over these 100 runs. Figure 8 shows the resulting biases and standard-deviations for each zone.

Whatever the zone, the algorithm always find the correct values as there are nearly no biases (less than 1% in relative error). There is also nearly no spreading in the final biases and standard deviations. It means that, in the considered configuration, the algorithm always converges towards the same local minimum which corresponds to the true solution. One reason for this nice behaviour could be explained by the fact that the virtual receivers are located directly inside the area for which we are searching the dielectric parameters. Compared to classical microwave imaging setups where the receivers are outside of the area to characterize, the inverse problem might be here better conditioned.

Transmitters influence

Figure 9 shows the evolution of the cost functional when the number of transmitters N s increases. As the cost functional is weighted according to N s and as SNR B is constant, the final F values are the same whatever the values of N s . As compared to Figure 5 where N s = 1, one can directly see that an increase in the number of transmitters leads to a faster convergence rate.

Figure 10 shows the final biases and standard deviations for several N s . It seems that changing N s has little effect on the systematic errors. This is in accordance with the previous comments regarding the behaviour of the biases, which appear unaffected by the parameters choices. When N s increases, the standard deviations decrease, as one could expect. One might have also hoped for a direct relationship between N s and s. Unfortunately, doubling N s does not reduce by half the standard deviations, it only decreases them as the inverse problem is non-linear.

Regularisation influence

Finally, we investigate the effects of incorporating a-priori information. The cost functionals associated to the element-based inversion and the zone-based inversion can be seen in Figure 11. Definitely, as the problem is over-determined, it requires very few iterations when the geometrical priors are used. Figure 12 shows the final reconstructed map m ( * ) which is nearly identical to the one shown in Figure 3. A quantitative appraisal of the difference between these two maps has shown that there were no biases in the reconstructed maps. As expected, s εr = s σ = 0 as we have assumed the permittivity and conductivity to be constant in each zone. Another interesting point is that the biases are smaller than in the element-based inversion, even at very low SNR m .

Of course, the segmentation algorithm might have an effect on the zone-based inversion results but one should recall that the spatial resolution of high-field MRI images is in the millimetre range while a classical RF microwave imaging system has a spatial resolution close to λ/2, where the wavelength λ in the brain is in the decimetre range at the Larmor frequency of 298 MHz.

Conclusion

In this paper, we have investigated a MREPT gradient-based inversion algorithm to quantitatively recover the permittivity values of brain tissues based on B + 1 mapping, which can be acquired in MRI setups. Such an inversion has been performed with an electric field formulation and an ad-hoc adjoint field derivation. The possibility of incorporating geometrical priors has also been offered.

The numerical tests have shown the robustness and the correct behaviour of the proposed algorithm, even at low SNR. As expected, adding more transmitters or increasing the SNR reduces the standard deviations of the reconstructed maps. As well, the use of a priori information leads to faster convergence rate and smaller estimation biases. Moreover, the algorithm does not seem to converge towards unwanted local minima.

It would interesting to investigate the implementation of such an inversion scheme considering a full three-dimensional configuration and of course, to confront it to experimental dataset. As well, it would be worth comparing the results that could be obtained with |B + 1 | mapping with respect to the ones obtained here with an amplitude and phase B + 1 mapping. This would require some modifications in the cost functional but mainly in the adjoint field expression [START_REF] Litman | Two-dimensional inverse profiling problem using phaseless data[END_REF]. Finally, it would be interesting to compare the degree of non-linearity and ill-posedness of this MREPT problem with the one of a classical microwave imaging system, where the electromagnetic field can only be measured out of the human body.

= lim
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In that case, we end up with a Fréchet derivative for the Lagrange multipliers [START_REF] Borsic | An inverse problems approach to MR-EPT image reconstruction[END_REF].

Appendix B.2. Derivation with respect to the electrical field

We apply the definition of the Gâteaux derivative with respect to E(•; r s ) to the Lagrangian functional [START_REF] Choi | A modified multi-echo AFI for simultaneous b + 1 magnitude and phase mapping[END_REF], that is,

lim t→0 L(E + tv, U, m) -L(E, U, m) t (B.2) = lim t→0 Ns s=1 L s (E + tv, U, m) -L s (E, U, m) t = lim t→0 L s (E + tv, U, m) -L s (E, U, m) t (using (15)) = lim t→0 1 t [F s (E(•; r s ) + tv) -F s (E(•; r s ))] + lim t→0 1 t Re [H s (E(•; r s ) + tv, U (•; r s ), m) -H s (E(•; r s ), U (•; r s ), m)] = lim t→0 1 t [F s (E(•; r s ) + tv) -F s (E(•; r s ))] + Re ∆v + k 2 mv | U Ω
thanks to the definition of H s in [START_REF] Katscher | Determination of electric conductivity and local SAR via B1 mapping[END_REF]. Let us now focus on the first term in brackets in the previous equation lim 
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Appendix A. Electromagnetic equations

According to Maxwell's equations, under the exp(-jωt) time convention, the electromagnetic fields satisfy ∇ × B = -jωε r ( r)ε 0 µ 0 E + µ 0 J and ∇ × E = jω B, where µ 0 is the vacuum magnetic permeability as all the materials are non-magnetic. The current density J can be decomposed as J = J ohm + J source , where J ohm = σ E. Thus

This corresponds to [START_REF] Zhang | Magnetic-resonance-based electrical properties tomography: A review[END_REF], where k = ω √ ε 0 µ 0 is the wave number in air and the excitation source term is defined as S = -jµ 0 ω J source .

Appendix B. Gâteaux derivative for the fields

Appendix B.1. Derivation with respect to the Lagrange multipliers

We apply the definition of the Gâteaux derivative with respect to U (•; r s ) to the Lagrangian functional [START_REF] Choi | A modified multi-echo AFI for simultaneous b + 1 magnitude and phase mapping[END_REF], that is,

Replacing (B.4) into (B.3), we obtain lim

Finally, by substituing (B.5) into (B.2), we get [START_REF] Nachman | A local formula for inhomogeneous complex conductivity as a function of the RF magnetic field[END_REF], that is,

Unfortunately B + 1 can not be further decomposed and the previous derivative can not fully written in terms of a Fréchet derivative. This is nevertheless not an issue, as it is still possible to impose a saddle-point condition based on such expression. Indeed, [START_REF] Voigt | Quantitative conductivity and permittivity imaging of the human brain using electric properties tomography[END_REF] implies that

Applying the first Green formula, we transform the left side of (B.6) as follows

if U is assumed to be null on the boundary of the computational domain. Taking into account the last expression in (B.6) and by noting P (•; r s ) = U (•; r s ), we obtain [START_REF] Hafalir | Convection-reaction equation based magnetic resonance electrical properties tomography (cr-MREPT)[END_REF], that is,

Appendix C. Fréchet derivative for the complex permittivity m

As done previously in Appendix B, we get

Using the definition of complex derivatives of real-valued functions [START_REF] Remmert | Theory of Complex Functions[END_REF][START_REF] Kreutz-Delgado | The Complex Gradient Operator and the CR-Calculus[END_REF], from the last expression, we obtain the gradient of the cost functional [START_REF] Balidemaj | CSI-EPT: A contrast source inversion approach for improved MRI-based electric properties tomography[END_REF].