Anti-de Sitter strictly GHC-regular groups which are not lattices - Archive ouverte HAL Access content directly
Journal Articles Transactions of the American Mathematical Society Year : 2019

Anti-de Sitter strictly GHC-regular groups which are not lattices

Abstract

For $d=4, 5, 6, 7, 8$, we exhibit examples of $\mathrm{AdS}^{d,1}$ strictly GHC-regular groups which are not quasi-isometric to the hyperbolic space $\mathbb{H}^d$, nor to any symmetric space. This provides a negative answer to Question 5.2 in [9A12] and disproves Conjecture 8.11 of Barbot--Mérigot [BM12]. We construct those examples using the Tits representation of well-chosen Coxeter groups. On the way, we give an alternative proof of Moussong's hyperbolicity criterion [Mou88] for Coxeter groups built on Danciger--Guéritaud--Kassel [DGK17] and find examples of Coxeter groups $W$ such that the space of strictly GHC-regular representations of $W$ into $\mathrm{PO}_{d,2}(\mathbb{R})$ up to conjugation is disconnected.
Fichier principal
Vignette du fichier
quasi_fuchsian_lorentz_Final.pdf (611.19 Ko) Télécharger le fichier
disconnected.pdf (148.94 Ko) Télécharger le fichier
disconnected.ps (1.51 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-01579212 , version 1 (30-08-2017)
hal-01579212 , version 2 (28-02-2018)

Identifiers

Cite

Gye-Seon Lee, Ludovic Marquis. Anti-de Sitter strictly GHC-regular groups which are not lattices. Transactions of the American Mathematical Society, 2019, 372 (1), pp.153-186. ⟨10.1090/tran/7530⟩. ⟨hal-01579212v2⟩
291 View
158 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More