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A DIRECT APPROACH TO THE DUALITY OF GRAND AND
SMALL LEBESGUE SPACES

GIOVANNI DI FRATTA AND ALBERTO FIORENZA

Abstract. In this paper we show, by elementary methods, that the quasinorms
of the grand and small Lebesgue spaces

[|f |]Lp) ≈ sup
0<t<1

(1− log t)−
1
p

(∫ 1

t

[f∗(s)]pds

) 1
p

, 1 < p <∞

[|f |]L(q ≈
∫ 1

0

(1− log t)−
1
q

(∫ t

0

f∗(s)qds

) 1
q dt

t
, q =

p

p− 1

found by Fiorenza and Karadzhov in [8], by using deeply extrapolation-interpolation
techniques, are associate each other. In other terms, the sharp Hölder’s type in-
equality: ∫ 1

0

fgdx ≤ c(p)[|f |]L(q [|g|]Lp)

is proven, where the sharpness means that [| · |]L(q is the smallest quasinorm (up
to equivalences) such that the inequality holds. The method is based entirely
on integral estimates, makes use of asymptotic properties of the Euler’s Gamma
function, and gives an explicit estimate of the constant c(p). All the results are
expressed in terms of the more general spaces Lp),θ and L(q,θ, θ > 0.

1. Introduction and preliminaries

In [17] the authors introduced the grand Lebesgue spaces, in connection with the
study of the integrability properties of the Jacobian determinant. Such spaces are
Banach Function Spaces (see e.g. [2], [18] for the definition), and play a key role in
PDE theory, as shown by various papers ([3], [9], [13], [15], [19], [20]). Moreover,
their abstract characterization given in [8] suggested a reasonable introduction of
the notion of grand Orlicz spaces, which again play a role in questions about the
integrability of the Jacobian determinant (see [5]).

Recently a special attention was given to the associate spaces to the grand Lebesgue
spaces, called small Lebesgue spaces. They were introduced by the second author
in [7], and the first properties which follow from their definition, along with some
applications, are in [10] and [4] (see also references therein). Their role in Calculus
of Variations (see [11]) stimulated the introduction of a more general class of spaces,
the GΓ spaces (see [12]). Moreover, for a quite general class of operators they look
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2 GIOVANNI DI FRATTA AND ALBERTO FIORENZA

as the appropriate spaces to be considered in the extrapolation process of families
of inequalities, see [6].

LetM0 be the set of all Lebesgue measurable functions in (0, 1) ⊂ R, whose values
lie in [−∞,+∞], finite a.e. in (0, 1). Also, let M+

0 be the class of functions in M0

whose values lie in [0,+∞].
Let 1 < p <∞. The grand Lebesgue spaces Lp) are defined (see [17]) by

Lp) = {f ∈M0 : ||f ||p) := sup
0<ε<p−1

(
ε

∫ 1

0

|f |p−εdx
) 1

p−ε

<∞}

It is easy to check that the expression || · ||p) is a function norm through which Lp)

becomes a Banach Function Space. It is called the grand Lp because of its evident
property to contain Lp (continuous embedding).

The associate spaces of the grand Lebesgue spaces Lp), denoted by L(q, q = p/(p−
1), are Banach Function Spaces, defined through the function norm

‖g‖(q = sup

{∫ 1

0

fgdx : f ∈M+
0 , ‖f‖p) ≤ 1

}
They are called small Lebesgue spaces, are evidently continuously embedded in Lq

and were first studied by the second author in [7], who found the following explicit
expression of the norm (see also [4]):

‖g‖(q = inf

g =
∞∑
k=1

gk

{
∞∑
k=1

inf
0<ε<p−1

ε−
1
p−ε

(∫ 1

0

|gk|
p−ε
p−ε−1dx

) 1
(p−ε)′

}

the functions gk, k ∈ N, being in M0. For digressions about embedding properties
of such spaces into standard Banach spaces, see e.g. [14, 16, 4].

In [8] the following much more simple equivalent expression for the norm was
found:

‖f‖(q ≈ [|f |](q :=

∫ 1

0

(1− log t)−
1
q

(∫ t

0

f ∗(s)qds

) 1
q dt

t
(1.1)

where by f ∗ we mean the decreasing rearrangement of f , defined by (for details
on this well known operator see e.g. [2])

f ∗(t) = inf{λ > 0 : |{x ∈ (0, 1) : |f(x)| > λ}| ≤ t} ∀t ∈ [0, 1]

(here the convention inf ∅ = +∞ is adopted; the symbol |E| denotes, for any mea-
surable set E ⊂ (0, 1), its Lebesgue measure). It is quite easy to prove the following
result (see [12]):

Proposition 1.1. The functional [| · |](q is equivalent to a function norm.

Notice that the expression [|f |](q reveals immediately the rearrangement invariant
nature of such spaces. The symbol ≈ in (1.1) means, as usual, that there exist two
positive constants such that

c1‖f‖(q ≤ [|f |](q ≤ c2‖f‖(q
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In the same paper [8] the associate expression of such norm (which therefore coincides
with a quasinorm for the grand Lebesgue spaces) was determined, and it was found
to be:

[|f |]p) = sup
0<t<1

(1− log t)−
1
p

(∫ 1

t

f ∗(s)pds

) 1
p

, 1 < p <∞. (1.2)

The expressions in (1.1) and (1.2) are not exactly function norms, but, exactly
like in the case of Lorentz spaces, they become function norms replacying f ∗ by f ∗∗

(for the definition and details see [12]).
It is clear that the expressions || · ||p) and (1.2) must be equivalent, but such

statement relies upon the duality between || · ||p) and || · ||(q shown in [7] and upon the
results in [8], whose proofs use deeply extrapolation-interpolation techniques. The
first main result of this paper is a direct proof of such equivalence, shown through
Theorems 3.1 and 3.2. As a byproduct, one more equivalent, new expression for the
norm of the grand Lebesgue spaces is obtained (see Proposition 3.1). The second
main result is Theorem 4.4, where we prove the Hölder’s type inequality:∫ 1

0

fgdx ≤ c(p)[|f |]p)[|g|](q , q =
p

p− 1
(1.3)

We stress that our arguments do not cover the very general context of the paper
[8], where the duality between grand and small Lebesgue spaces is shown in the
framework of the duality between grand and small abstract spaces. In fact, the log-

arithm in the factor (1− log t)−
1
p appearing in [| · |]p) seems crucial in our estimates.

Moreover, for the same reason it seems that our arguments cannot be easily gener-
alized in the context of the GΓ spaces studied in [12]. The problem to characterize
the dual of such spaces remains open. An attempt in this direction is made in the
same paper [12], where only partial estimates appear.

On the other hand, our proof is completely sharp and new. The sharpness here
is the fact that [| · |](q is the smallest quasinorm (up to equivalences) such that the
inequality (1.3) holds. This is an immediate consequence of Proposition 5.1 and the
Hölder’s inequality proven in [7].

The novelty of our approach is not only the fact that the result is direct and
based entirely on integral estimates, but also that at our knowledge for the first time
the asymptotic behaviour at infinity of the Euler’s Gamma function plays a role in
the study of this kind of function spaces. Moreover, our proof of (1.3) provides an
estimate of the constant c(p), missing in [8]. We believe that this new technique may
stimulate new ideas in the study of the grand and small Lebesgue spaces.

All the results of this paper are stated and proven in the slight more general

case when the factor (1 − log t)−
1
p appearing in [| · |]p) is replaced by (1 − log t)−

θ
p ,

where θ > 0 is a parameter. The corresponding quasinorm is denoted adding the
letter θ in the subscript. In Example 5.1 of [8] the corresponding quasinorm for the
small Lebesgue spaces has been computed, so that in the end we will work with the
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following positions (the model case can be obtained setting θ = 1):

[|f |]p),θ = sup
0<t<1

(1− log t)−
θ
p

(∫ 1

t

f ∗(s)pds

) 1
p

, 1 < p <∞

[|f |](q,θ :=

∫ 1

0

(1− log t)
θ
p
−1
(∫ t

0

f ∗(s)qds

) 1
q dt

t
, q =

p

p− 1
.

2. A few technical lemmas

The first two lemmas are already known (see respectively [1], 5.1.8 p. 228 and
6.1.39 p. 257), therefore we state them without proof.

Lemma 2.1. Let 1 < p <∞, 0 < β < 1. For every ε > 0 it is∫ +∞

1

td(θ+β)
p−ε
ε ee−

p−1
ε
tdt

=

⌈
(θ + β)

p− ε
ε

⌉
!

(
ε

p− 1

)d(θ+β) p−εε e+1

e−
p−1
ε

d(θ+β) p−εε e∑
i=0

(
p− 1

ε

)i
1

i!

where for every x ∈ R the symbol dxe denotes the smallest integer greater or equal
than x.

Lemma 2.2. Let 1 < p < ∞, 0 < β < 1, and let Γ be the classical Euler’s Gamma
function, defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt ∀x > 0

For ε > 0 sufficiently small it is

Γ

(
(θ + 1− β)

p− ε
ε

+ 2

)
≈
√

2πe−(θ+1−β) p
ε

(
(θ + 1− β)

p

ε

)(θ+1−β) p−ε
ε

+ 3
2

Lemma 2.3. If 0 < β < 1 and 0 < ε < min
(
p− 1, p (θ+β)

(θ+β)+1

)
, then(∫ +∞

1

t(θ+β)
p−ε
ε e−

p−1
ε
tdt

) ε
p

≤
(

Γ

(
(θ + β)

p− ε
ε

+ 2

)) ε
p
(

ε

p− 1

)(θ+β) p−ε
p

+ ε
p

Proof. For every t > 1 it is

t(θ+β)
p−ε
ε ≤ td(θ+β)

p−ε
ε e

and therefore ∫ +∞

1

t(θ+β)
p−ε
ε e−

p−1
ε
tdt ≤

∫ +∞

1

td(θ+β)
p−ε
ε ee−

p−1
ε
tdt
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By Lemma 2.1, taking into account that 0 < ε < p− 1, Γ(n + 1) = n! for all n ∈ N
and that x ≤ dxe for all x ∈ R, we get∫ +∞

1

t(θ+β)
p−ε
ε e−

p−1
ε
tdt ≤

⌈
(θ + β)

p− ε
ε

⌉
!

(
ε

p− 1

)d(θ+β) p−εε e+1

e−
p−1
ε e

p−1
ε

=

⌈
(θ + β)

p− ε
ε

⌉
!

(
ε

p− 1

)d(θ+β) p−εε e+1

≤ Γ

(⌈
(θ + β)

p− ε
ε

⌉
+ 1

)(
ε

p− 1

)(θ+β) p−ε
ε

+1

(2.1)

Since ε < p (θ+β)
(θ+β)+1

implies that
⌈
(θ + β)p−ε

ε

⌉
+ 1 > 2, and since Γ is increasing in

[2,∞[, it is

Γ

(⌈
(θ + β)

p− ε
ε

⌉
+ 1

)(
ε

p− 1

)(θ+β) p−ε
ε

+1

≤ Γ

(
(θ + β)

p− ε
ε

+ 2

)(
ε

p− 1

)(θ+β) p−ε
ε

+1

from which(∫ +∞

1

t(θ+β)
p−ε
ε e−

p−1
ε
tdt

) ε
p

≤
(

Γ

(
(θ + β)

p− ε
ε

+ 2

)) ε
p
(

ε

p− 1

)(θ+β) p−ε
p

+ ε
p

�

3. The equivalence ‖ · ‖p),θ ≈ [| · |]p),θ
Let 1 < p <∞, θ > 0. For all f ∈M0 we set

[|f |]p),θ = sup
0<t<1

(1− log t)−
θ
p

(∫ 1

t

f ∗(s)pds

) 1
p

‖f‖p),θ = sup
0<ε<p−1

(
εθ
∫ 1

0

|f(x)|p−εdx
) 1

p−ε

The following result, which is a simple remark, provides a new way to express the
quasinorm [| · |]p),θ and is the heart of our approach.

Proposition 3.1. Let υ be the function defined by

υ : ε ∈ ]0, p− 1[ 7→ υ(ε) = e1− p−1
ε

The following holds:

[|f |]p),θ = sup
0<ε<p−1

[(
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(s)pds

] 1
p

∀f ∈M+
0

Proof. Observe that υ(0+) = 0, υ ((p− 1)−) = 1 and that υ is strictly increasing.

Setting t = e1− p−1
ε , it is

(1− log t)−
θ
p =

(
p− 1

ε

)− θ
p

=

(
ε

p− 1

) θ
p
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and therefore the assertion follows. �

We begin with the following

Theorem 3.1. There exists c = c(p, θ) > 0 such that

‖f‖p),θ ≤ c [|f |]p),θ ∀f ∈M+
0

Proof. An immediate consequence of Proposition 3.1 is the following inequality:(
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(s)pds ≤ [|f |]pp),θ ∀ε ∈]0, p− 1[ . (3.1)

Let us fix now 0 < β < 1. From (3.1) we get(
ε

p− 1

)θ−β ∫ 1

υ(ε)

f ∗(s)pds ≤
(

ε

p− 1

)−β
[|f |]pp),θ ∀ε ∈]0, p− 1[

and therefore, for any t, 0 < t < p− 1, it is(
ε

p− 1

)θ−β ∫ υ(t)

υ(ε)

f ∗(s)pds ≤
(

ε

p− 1

)−β
[|f |]pp),θ ∀ε ∈]0, t[

Integrating in dε we obtain∫ t

0

dε

∫ υ(t)

υ(ε)

(
ε

p− 1

)θ−β
f ∗(s)pds ≤ (p− 1)β

t1−β

1− β
[|f |]pp),θ

and therefore, since the inverse function of υ is w(s) =: p−1
1−log s , 0 < s < 1,

∫ υ(t)

0

f ∗(s)p

(1− log s)θ−β+1
ds =

θ − β + 1

p− 1

∫ υ(t)

0

f ∗(s)p

(p− 1)θ−β(θ − β + 1)

(
p− 1

1− log s

)θ−β+1

ds

=
θ − β + 1

p− 1

∫ υ(t)

0

f ∗(s)pds

∫ p−1
1−log s

0

(
ε

p− 1

)θ−β
dε

=
θ − β + 1

p− 1

∫ υ(t)

0

ds

∫ p−1
1−log s

0

(
ε

p− 1

)θ−β
f ∗(s)pdε

=
θ − β + 1

p− 1

∫ t

0

dε

∫ υ(t)

υ(ε)

(
ε

p− 1

)θ−β
f ∗(s)pds

=
θ − β + 1

p− 1

∫ t

0

(
ε

p− 1

)−β [(
ε

p− 1

)θ ∫ υ(t)

υ(ε)

f ∗(s)pds

]
dε

≤ (θ − β + 1)(p− 1)β−1
∫ t

0

ε−β[|f |]pp),θdε

= (θ − β + 1)(p− 1)β−1
t1−β

1− β
[|f |]pp),θ
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Hence, writing ε in the place of t,∫ υ(ε)

0

f ∗(s)p

(1− log s)θ−β+1
ds ≤ (θ − β + 1)(p− 1)β−1

ε1−β

1− β
[|f |]pp),θ ∀ε ∈]0, p− 1[ (3.2)

We are now ready to estimate ‖ · ‖p),θ. We have∫ υ(ε)

0

f ∗(x)p−εdx =

∫ υ(ε)

0

[
f ∗(x)p

(1− log x)θ−β+1

] p−ε
p

(1− log x)(θ−β+1) p−ε
p dx

and by Hölder’s inequality∫ υ(ε)

0

f ∗(x)p−εdx ≤

(∫ υ(ε)

0

f ∗(x)p

(1− log x)θ−β+1
dx

) p−ε
p
(∫ υ(ε)

0

(1− log x)(θ−β+1) p−ε
ε dx

) ε
p

By (3.2) we get

εθ
∫ υ(ε)

0

f ∗(x)p−εdx ≤
(
θ − β + 1

1− β

) p−ε
p
(

1

p− 1

)(1−β) p−ε
p

ε(1−β)
p−ε
p

+θ

·

(∫ υ(ε)

0

(1− log x)(θ−β+1) p−ε
ε dx

) ε
p

[|f |]p−εp),θ

We will prove later that

sup
0<ε<p−1

ε(1−β)
p−ε
p

+θ

(∫ υ(ε)

0

(1− log x)(θ−β+1) p−ε
ε dx

) ε
p

= K(p, θ, β) < +∞ (3.3)

and therefore we can assert that

εθ
∫ υ(ε)

0

f ∗(x)p−εdx ≤ c(p, θ, β) · [|f |]p−εp),θ ∀ε ∈]0, p− 1[ (3.4)

On the other hand we observe that by Hölder’s inequality

εθ
∫ 1

υ(ε)

f ∗(x)p−εdx ≤ εθ
(∫ 1

υ(ε)

f ∗(x)pdx

) p−ε
p
(∫ 1

υ(ε)

dx

) ε
p

= εθ · ε−θ
p−ε
p

(
εθ
∫ 1

υ(ε)

f ∗(x)pdx

) p−ε
p

(1− υ(ε))
ε
p

≤ εθ(1−
p−ε
p )
(
εθ
∫ 1

υ(ε)

f ∗(x)pdx

) p−ε
p

By (3.1) we can conclude that

εθ
∫ 1

υ(ε)

f ∗(x)p−εdx ≤ ε
θε
p (p− 1)θ

p−ε
p [|f |]p−εp),θ ≤ c(p, θ) [|f |]p−εp),θ (3.5)
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Joining (3.4) and (3.5) we obtain

εθ
∫ 1

0

f(x)p−εdx = εθ
∫ υ(ε)

0

f(x)p−εdx+ εθ
∫ 1

υ(ε)

f(x)p−εdx

≤ c(p, θ, β) [|f |]p−εp),θ + c(p, θ)[|f |]p−εp),θ

= c(p, θ, β) [|f |]p−εp),θ

from which the assertion follows. In order to finish the proof we need to prove (3.3),
i.e. that

sup
0<ε<p−1

(
ε(1−β)

p−ε
ε

+ pθ
ε

∫ υ(ε)

0

(1− log x)(θ−β+1) p−ε
ε dx

) ε
p

= K(p, θ, β) < +∞

Setting x := e1− p−1
ε
t in the integral, the thesis reduces to the boundedness of the

following expression when ε > 0 is sufficiently small:

e
ε
p (p− 1)(θ+1−β) p−ε

p
+ ε
p ε(θ−1)

ε
p

(∫ +∞

1

t(θ+1−β) p−ε
ε e−

p−1
ε
tdt

) ε
p

which, by Lemma 2.3 applied replacing β by 1− β, is bounded by

e
ε
p (p− 1)(θ+1−β) p−ε

p
+ ε
p ε(θ−1)

ε
p

(
Γ

(
(θ + 1− β)

p− ε
ε

+ 2

)) ε
p
(

ε

p− 1

)(θ+1−β) p−ε
p

+ ε
p

When ε > 0 is sufficiently small, such quantity is equivalent to the following one,
which in turn can be transformed by using Lemma 2.2 :

εθ+1−β
(

Γ

(
(θ + 1− β)

p− ε
ε

+ 2

)) ε
p

≈ εθ+1−β
(√

2πe−(θ+1−β) p
ε

(
(θ + 1− β)

p

ε

)(θ+1−β) p−ε
ε

+ 3
2

) ε
p

= εθ+1−β(
√

2π)
ε
p e−(θ+1−β)

(
(θ + 1− β)

p

ε

)(θ+1−β) p−ε
p

+ 3
2
ε
p

≈ e−(θ+1−β) ((θ + 1− β)p)θ+1−β

�

We prove now the inequality in the opposite direction.

Theorem 3.2. There exists c = c(p, θ) > 0 such that

[|f |]p),θ ≤ c ‖f‖p),θ ∀f ∈M+
0

Proof. Setting, as before,

υ : ε ∈ [0, p− 1] 7→ υ(ε) = e1− p−1
ε
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we show first that there exists Kp > 0 such that

f ∗(υ(ε))ε ≤ Kp

(∫ 1

0

f ∗(s)p−εds

) ε
p−ε

∀ε ∈]0, p− 1[ (3.6)

From the monotonicity of f ∗ it follows that for every 0 < ε < p− 1 it is

f ∗(υ(ε)) ≤ f ∗(s) ∀s ∈ [
υ(ε)

2
, υ(ε)] ,

and by Hölder’s inequality:

υ(ε)

2
f ∗(υ(ε))ε ≤

∫ υ(ε)

υ(ε)
2

f ∗(s)εds ≤
(
υ(ε)

2

) p−2ε
p−ε
(∫ 1

0

f ∗(s)p−εds

) ε
p−ε

from which (3.6) follows, where Kp = sup
0<ε<p−1

(
υ(ε)

2

)− ε
p−ε

<∞.

At this point it is sufficient to observe that by Proposition 3.1

[|f |]p),θ = (p− 1)−
θ
p sup
0<ε<p−1

(
εθ
∫ 1

υ(ε)

f ∗(s)pds

) 1
p

= (p− 1)−
θ
p sup
0<ε<p−1

(
εθ
∫ 1

υ(ε)

f ∗(s)εf ∗(s)p−εds

) 1
p

≤ (p− 1)−
θ
p sup
0<ε<p−1

(
εθf ∗(υ(ε))ε

∫ 1

υ(ε)

f ∗(s)p−εds

) 1
p

and by (3.6)

≤ (p− 1)−
θ
p sup
0<ε<p−1

[
εθKp

(∫ 1

0

f ∗(s)p−εds

) ε
p−ε
∫ 1

υ(ε)

f ∗(s)p−εds

] 1
p

≤ c(p, θ) sup
0<ε<p−1

(
εθ
∫ 1

0

f ∗(s)p−εds

) 1
p−ε

= c(p, θ) ‖f‖p),θ
�

4. The Hölder’s type inequality

We begin with three lemmas, useful for the proof of the Hölder’s type inequality
(see next Theorem 4.4). The letter p will denote a fixed exponent in the interval
]1,∞[, q = p/(p−1) will denote its Hölder’s conjugate, θ will be a positive parameter
and υ, w will denote, as in the Theorem 3.1, the functions, inverse each to the other,

υ : ε ∈]0, p− 1[7→ υ(ε) = e1− p−1
ε



10 GIOVANNI DI FRATTA AND ALBERTO FIORENZA

and

w : t ∈]0, 1[7→ w(t) =
p− 1

1− log t

Observe that with this notation it is

[|g|](q,θ = (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p

(∫ t

0

g∗(x)qdx

) 1
q dt

t
∀g ∈M+

0 (4.1)

Lemma 4.1. The following inequality holds:

[|f |]p),θ ≥ (θ + 1)−
1
p (p− 1)−

θ
p sup
0<t<1

(
1

w(t)

∫ t

0

f ∗(x)pw(x)θ+1dx

) 1
p

∀f ∈M+
0

Proof. By Proposition 3.1 it is

[|f |]p),θ = sup
0<ε<p−1

[(
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(s)pds

] 1
p

therefore (
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(x)pdx ≤ [|f |]pp),θ ∀ε ∈]0, p− 1[.

Integrating in dε on the interval (0, t), 0 < t < p− 1, we get∫ t

0

(
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(x)pdxdε ≤ t[|f |]pp),θ

from which

t · [|f |]pp),θ ≥
∫ υ(t)

0

[∫ w(x)

0

(
ε

p− 1

)θ
f ∗(x)pdε

]
dx+

∫ 1

υ(t)

[∫ t

0

(
ε

p− 1

)θ
f ∗(x)pdε

]
dx

=
1

(θ + 1)(p− 1)θ

∫ υ(t)

0

f ∗(x)pw(x)θ+1dx +
tθ+1

(θ + 1)(p− 1)θ

∫ 1

υ(t)

f ∗(x)pdx .

Hence

[|f |]pp),θ ≥
1

(θ + 1)(p− 1)θt

∫ υ(t)

0

f ∗(x)pw(x)θ+1dx

therefore

[|f |]p),θ ≥ (θ + 1)−
1
p (p− 1)−

θ
p

(
1

t

∫ υ(t)

0

f ∗(x)pw(x)θ+1dx

) 1
p

.

Passing to the supremum in the right hand side we get

[|f |]p),θ ≥ sup
0<t<p−1

(θ + 1)−
1
p (p− 1)−

θ
p

(
1

t

∫ υ(t)

0

f ∗(x)pw(x)θ+1dx

) 1
p
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and setting t := w(t)

[|f |]p),θ ≥ sup
0<t<1

(θ + 1)−
1
p (p− 1)−

θ
p

(
1

w(t)

∫ t

0

f ∗(x)pw(x)θ+1dx

) 1
p

from which the assertion follows. �

Lemma 4.2. The following inequality holds:

[|g|](q,θ ≥ (p− 1)
θ
p
−1
∫ 1

0

w(t)1−θ−
1
q

(∫ t

0

g∗(x)qw(x)θ+1dx

) 1
q dt

t
∀g ∈M+

0

Proof. By (4.1) we have

[|g|](q,θ = (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p

(∫ t

0

g∗(x)qdx

) 1
q dt

t

= (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p

(∫ t

0

g∗(x)q
w(x)θ+1

w(x)θ+1
dx

) 1
q dt

t

and therefore, using the fact that w−(θ+1) is decreasing:

≥ (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p · 1

w(t)
θ+1
q

(∫ t

0

g∗(x)qw(x)θ+1dx

) 1
q dt

t

from which the assertion follows.
�

Lemma 4.3. The following inequality holds:

[|f |]p),θ ≥ (p− 1)−
θ
p2−

θ+1
p sup

0<t<1

[
t w(t)θ f ∗(t)p

] 1
p ∀f ∈M+

0

Proof. By Proposition 3.1 we have

[|f |]p),θ = sup
0<ε<p−1

[(
ε

p− 1

)θ ∫ 1

υ(ε)

f ∗(s)pds

] 1
p

= (p− 1)−
θ
p sup
0<ε<p−1

(
εθ
∫ 1

υ(ε)

f ∗(s)pds

) 1
p

= (p− 1)−
θ
p sup
0<t<2(p−1)

[(
t

2

)θ ∫ 1

υ( t
2
)

f ∗(x)pdx

] 1
p

≥ (p− 1)−
θ
p sup
0<t<p−1

[(
t

2

)θ ∫ 1

υ( t
2
)

f ∗(x)pdx

] 1
p

= (p− 1)−
θ
p sup
0<t<1

[(
w(t)

2

)θ ∫ 1

υ(
w(t)
2

)

f ∗(x)pdx

] 1
p
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and since υ(w(t)
2

) = exp[1− 2(1− log t)] = exp[−1 + log(t2)] = t2

e
< t

2
,

≥ (p− 1)−
θ
p sup
0<t<1

[(
w(t)

2

)θ ∫ t

t
2

f ∗(x)pdx

] 1
p

≥ (p− 1)−
θ
p sup
0<t<1

[(
w(t)

2

)θ
t

2
f ∗(t)p

] 1
p

�

We prove now the main result of this Section.

Theorem 4.4. Let 1 < p <∞, q = p/(p− 1). The following inequality holds:∫ 1

0

f(x)g(x)dx ≤
[
2
θ+1
p + (θ + 1)1+

1
p

]
[|f |]p),θ [|g|](q,θ ∀f, g ∈M0

Proof. By Lemma 4.3 and (4.1), we have

2
θ+1
p (p− 1)[|f |]p),θ [|g|](q,θ ≥

∫ 1

0

[t wθ(t)]
1
pf ∗(t)w(t)1−

θ
p

(∫ t

0

g∗(x)qdx

) 1
q dt

t

≥
∫ 1

0

t
1
pf ∗(t)w(t)t

1
q

(
1

t

∫ t

0

g∗(x)qdx

) 1
q dt

t

and since g∗ is decreasing:

≥
∫ 1

0

f ∗(t)g∗(t)w(t)dt .

On the other hand, by Lemmas 4.1 and 4.2:

(θ + 1)1+
1
p (p− 1)[|f |]p),θ [|g|](q,θ ≥ (θ + 1)

∫ 1

0

(
1

w(t)

∫ t

0

f ∗(x)pw(x)θ+1dx

) 1
p

· w(t)1−θ−
1
q

(∫ t

0

g∗(x)qw(x)θ+1dx

) 1
q dt

t

= (θ + 1)

∫ 1

0

w(t)−θ

t

(∫ t

0

f ∗(x)pw(x)θ+1dx

) 1
p

·
(∫ t

0

g∗(x)qw(x)θ+1dx

) 1
q

dt

and by Hölder’s inequality:

≥ (θ + 1)

∫ 1

0

w(t)−θ

t

∫ t

0

f ∗(x)g∗(x)w(x)θ+1dxdt

= (θ + 1)

∫ 1

0

f ∗(x)g∗(x)w(x)θ+1

∫ 1

x

w(t)−θ

t
dtdx .
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Recalling that the inner integral can be explicitly computed using the definition of
w, we find:

= (θ + 1)

∫ 1

0

f ∗(x)g∗(x)

(
p− 1

1− log x

)θ+1 ∫ 1

x

(p− 1)−θ(1− log t)θ

t
dtdx

=

∫ 1

0

f ∗(x)g∗(x)

[
p− 1− p− 1

(1− log x)θ+1

]
dx

≥
∫ 1

0

f ∗(x)g∗(x)

[
p− 1− p− 1

1− log x

]
dx

=

∫ 1

0

f ∗(x)g∗(x)(p− 1− w(x))dx

hence, summing the two relations obtained,[
2
θ+1
p + (θ + 1)1+

1
p

]
[|f |]p),θ [|g|](q,θ ≥

∫ 1

0

f ∗(x)g∗(x)dx

from which, by the well known Hardy-Littlewood’s inequality on rearrangements
(see e.g. [2]) [

2
θ+1
p + (θ + 1)1+

1
p

]
[|f |]p),θ [|g|](q,θ ≥

∫ 1

0

f(x)g(x)dx .

The theorem is therefore proven. �

5. Comparison of quasinorms

In order to simplify the volume of some formulas, in this Section for any 1 < r <∞
we will denote by r′ the exponent Hölder conjugate of r, namely, r′ = r/(r − 1).
Therefore, according to the notation of the previous Section, it is p′ = q.

Lemma 5.1. Let 1 < p < ∞, w(t) = p−1
1−log t , t ∈]0, 1[. There exists a constant Kp,θ

depending only on p and θ such that for every 0 < ε < p− 1 the following inequality
holds ∫ 1

0

w(t)1−
θ
p

t
t

1
p′−

1
(p−ε)′ dt ≤ Kp,θ ε

− θ
p−ε

Proof. Set

pε =
p(p− ε)

ε

so that
1

p′
− 1

(p− ε)′
=

ε

p(p− ε)
=

1

pε
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Substituting t := e1−pεt we get∫ 1

0

w(t)1−
θ
p

t
t

1
p′−

1
(p−ε)′ dt =

∫ 1

0

w(t)1−
θ
p t

1
pε
−1dt

= pε

∫ +∞

1
pε

(
p− 1

pεt

)1− θ
p

e(1−pεt)( 1
pε
−1)e1−pεtdt

= (p− 1)1−
θ
pp

θ
p
ε

∫ +∞

1
pε

t
θ
p
−1 e(1−pεt) 1

pε dt

= (p− 1)1−
θ
pp

θ
p
ε e

1
pε

∫ +∞

1
pε

t
θ
p
−1 e−tdt

= (p− 1)1−
θ
pp

θ
p
ε e

1
pε Γ

(
θ

p
;

1

pε

)
(5.1)

where by Γ(a; z) we denote the so-called incomplete Euler’s Gamma function defined
by:

Γ(a; z) =

∫ +∞

z

ta−1 e−tdt.

The term in (5.1) can be written as

(p− 1)1−
θ
p

[
p(p− ε)

ε

] θ
p

e
ε

p(p−ε) Γ

(
θ

p
;

ε

p(p− ε)

)
and when ε→ 0 it behaves as

(p− 1)1−
θ
pp

2θ
p Γ

(
θ

p

)
ε−

θ
p ≈ (p− 1)1−

θ
pp

2θ
p Γ

(
θ

p

)
ε−

θ
p−ε

The Lemma is proven. �

Proposition 5.1. Let 1 < p <∞. There exists a constant Jp,θ depending only on p
and θ such that for every g ∈M+

0 the following inequality holds

[|g|](p′,θ ≤ Jp,θ inf
g=

∑+∞
k=1 gk ,gk∈M

+
0

+∞∑
k=1

inf
0<ε<p−1

ε−
θ
p−ε

(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

Proof. Let (gk)k∈N, gk ∈M+
0 be a decomposition (a.e. convergence) of g:

g =
+∞∑
k=1

gk.

Then, for every 0 < t < 1, 0 < ε < p− 1, k ∈ N, we have∫ t

0

gp
′

k dx ≤
(∫ t

0

g
(p−ε)′
k dx

) p′
(p−ε)′

t
1− p′

(p−ε)′
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therefore, setting as usual w(t) = p−1
1−log t , t ∈]0, 1[, by (4.1)

[|gk|](p′,θ = (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p

(∫ t

0

g∗k(x)p
′
dx

) 1
p′ dt

t

by Hölder’s inequality

≤ (p− 1)
θ
p
−1
∫ 1

0

w(t)1−
θ
p

t

(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

t
1
p′−

1
(p−ε)′ dt

≤ (p− 1)
θ
p
−1
(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

∫ 1

0

w(t)1−
θ
p

t
t

1
p′−

1
(p−ε)′ dt

and by Lemma 5.1

≤ Kp,θε
− θ
p−ε

(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

so that

[|gk|](p′,θ ≤ Kp,θ inf
0<ε<p−1

ε−
θ
p−ε

(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

.

The functional [| · |](p′,θ satisfies the Fatou property (this follows easily from the cor-
responding properties of Lebesgue spaces along with the monotonicity properties of
the decreasing rearrangement, see [12]) and, by Proposition 1.1, up to a multiplica-
tive constant, satisfies the triangular inequality. In conclusion, there exist constants
Hp,θ, Jp,θ depending only on p and θ such that:

[|g|](p′,θ = [|
+∞∑
k=1

gk|](p′,θ ≤ Hp,θ

+∞∑
k=1

[|gk|](p′,θ

≤ Jp,θ

+∞∑
k=1

inf
0<ε<p−1

ε−
θ
p−ε

(∫ 1

0

g
(p−ε)′
k dx

) 1
(p−ε)′

.

Since (gk) is arbitrary, we get the assertion. �
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