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In this paper we extend the Brown's fundamental theorem on ne ferromagnetic particles to the case of a general ellipsoid. By means of Poincaré inequality for the Sobolev space H 1 (; R 3 ), and some properties of the induced magnetic eld operator, it is rigorously proven that for an ellipsoidal particle, with diameter d, there exists a critical size (diameter) d c such that for d < d c the uniform magnetization states are the only global minimizers of the Gibbs-Landau free energy functional G L . A lower bound for d c is then given in terms of the demagnetizing factors.
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Introduction

Theoretical discussions of the coercivity of magnetic materials make considerable use of the following idea [Brown]: whereas a ferromagnetic material in bulk (in zero applied eld) possesses a domain structure, the same material in the form of a suciently ne particle is uniformly magnetized to (very near) the saturation value, or in other words consists of a single domain. On the other hand, as Brown points out in [Brown]: the idea as thus expresses, scarcely is to be called a theorem, for it is not a proved proposition nor a strictly true one.

The rst rigorous formulation of this idea is due to Brown himself who, in his fundamental paper [Brown] rigorously proved for spherical particles what is known as Brown's fundamental theorem of the theory of ne ferromagnetic particles. This fundamental theorem states the existence of a critical radius r c of the spherical particle such that for r < r c and zero applied eld the state of lowest free energy (the ground state) is one of uniform magnetization.

The physical importance of Brown's fundamental theorem is that it formally explains, although in the case of spherical particles, the high coercivity that ne particles materials have, compared with the same material in bulk [Brown]. In fact, if the particles are ne enough to be single domain, and magnetic interactions between particles have a negligible eect, each particle can reverse its magnetization only by rigid rotation of the magnetization vector of the particle as a whole, a process requiring a large reversed eld (rather than by domain wall displacement, which is the predominant process in bulk materials at small elds) [Brown]. The main limitation of the theorem is that it applies to spherical particles whereas, real particles are most of the time elongated [Aharoni]. Motivated by this, Aharoni [Aharoni], by using the same mathematical reasoning as Brown, was able to extend the Fundamental Theorem to the case of a prolate spheroid.

The main objective of this paper is to extend, using the Poincaré inequality for the Sobolev space H 1 (; R 3 ) [Payne, Bebe] and some properties of the magnetostatic selfenergy [START_REF] Brown | Magnetostatic Principles in Ferromagnetism[END_REF][START_REF] Brown | Approximate Calculation of Magnetostatic Energies[END_REF][START_REF] Friedman | Mathematical study of the nonlinear singular integral magnetic eld equation. I[END_REF][START_REF] Aharoni | Useful Upper and Lower Bounds to the Magnetostatic Self-Energy[END_REF], the fundamental theorem of Brown to the case of a general ellipsoid. In the sequel, it is rigorously proven that for an ellipsoidal particle, with diameter d, there exists a critical size (diameter) d c such that for d < d c the uniform magnetization states are the only global minimizers of the micromagnetic free energy functional. A lower bound for d c is then given in terms of the demagnetizing tensor eigenvalues [DeSim] (the so called demagnetizing factors [Osborn]), which completely characterize the induced magnetic eld inside ellipsoidal particles, thanks to Payne and Weinberger result on the best Poincaré constant [Payne, Bebe].

Formal theory of micromagnetic equilibria

We start our discussion by recalling basic facts about micromagnetic theory. According to micromagnetics, the local state of magnetization of the matter is described by a vector eld, the magnetization m, dened over which is the region occupied by the body.

The stable equilibrium states of magnetization are the minimizers of the so called Gibbs-Landau free energy functional associated with the magnetic body. In dimensionless form, and for zero applied eld, this functional can be written as [START_REF] Brown | The Fundamental Theorem of the Theory of Fine Ferromagnetic Particles[END_REF][START_REF] Desimone | Hysteresis and Imperfections Sensitivity in Small Ferromagnetic Particles[END_REF][START_REF] Aharoni | Introduction to the Theory of Ferromagnetism[END_REF][START_REF] Mayergoyz | Nonlinear magnetization dynamics in nanosystems[END_REF]:

G L (m; ) = 1 jj Z `ex 2 2 jrmj 2 ¡ 1 2 h d [m] m d ; (1)
where m: ! S 2 is a vector eld taking values on the unit sphere S 2 of R 3 , and jj denotes the volume of the region , and `ex 2 is a positive material constant. The constraint on the image of m is due to the following fundamental assumption of the micromagnetic theory: a ferromagnetic body well below the Curie temperature is always locally saturated. This means that the following constraint is satised: jmj = 1 a.e. in :

(2)

Global micromagnetic minimizers correspond to vector elds which minimize the Gibbs-Landau energy functional (1) in the class of vector elds which take values on the unit sphere S 2 .

The variational formulation for the demagnetizing field

The energy functional G L given by ( 1) is the sum of two terms: the exchange energy and the Maxwellian magnetostatic self-energy (the second term).

The magnetostatic self-energy is the energy due to the (dipolar) magnetic eld h d [m] generated by m. From the mathematical point of view, assuming to be open, bounded and with a Lipschitz boundary, a given magnetization m 2 L 2 (R 3 ; R 3 ) generates the stray eld h d [m] = ru m where the magnetostatic potential u m solves:

u m = ¡div (m) in S 0 (R 3 ): (3) 
A straightforward application of Lax-Milgram lemma guarantees that equation (3) has a unique solution into the Beppo-Levi space (cf. [Dautray-Lions])

W 1 (R 3 ) = fu 2 S 0 (R 3 ) : u! 2 L 2 (R 3 ); ru 2 L 2 (R 3 ; R 3 )g; with !(x) = 1 1 + jxj 2 p ; (4)
which is a Hilbert space when endowed with the norm kuk

W 1 (R 3 ) 2 = kruk 2 . The quantity h d [m] := ru m
is what is referred to as the demagnetizing eld, and it is a linear and continuous operator from

L 2 (R 3 ; R 3 ) into L 2 (R 3 ; R 3 ). In particular, m 2 L 2 (R 3 ) for every m 2 L 2 () and therefore h d is a bounded linear operator also from L 2 (; R 3 ) into L 2 (R 3 ; R 3 ).
It is straightforward to check that the operator ¡h d is self-adjoint and positive semidenite:

(h d [m]; u) = (m; h d [u]) ; ¡ (h d [m]; m) = kh d [m]k 2 0: (5)
Obviously, the semidenite positiveness of the induced magnetic eld assures the positiveness of the Gibbs-Landau free energy functional.

Finally let us recall the following Brown lower bound to the magnetostatic selfenergy [START_REF] Brown | The Fundamental Theorem of the Theory of Fine Ferromagnetic Particles[END_REF][START_REF] Brown | Magnetostatic Principles in Ferromagnetism[END_REF][START_REF] Brown | Approximate Calculation of Magnetostatic Energies[END_REF] as reported by Brown in [Brown]: Consider an arbitrary irrotational vector eld h which is dened over the whole space R 3 and is regular at innity. Under these assumptions, Brown proved that:

¡ Z h m d ¡ 1 2 Z R 3 jhj 2 d ¡ 1 2 Z h d [m] md ; (6)
the equality holding if and only if h = h d [m]. In other terms, for every irrotational and regular at innity vector eld h: R 3 !R 3 , the left hand side of ( 6) does not exceed the magnetostatic self-energy and becomes equal to it only when h is everywhere equal to

h d [m].
It is worthwhile emphasizing that the vector eld h in this inequality needs not be related in any way to m [Aharoni].

A very useful particular case of this lower bound can be obtained by letting h = h d [u] with u 2 L 2 (; R 3 ). In this way we arrive at the following form of the Brown lower bound which we state here as a lemma:

Lemma 1. Let R 3 be open, bounded and with Lipchitz boundary. For every u; m 2 L 2 (; R 3 ):

¡(h d [u]; m) + 1 2 (h d [u]; u) ¡ 1 2 (h d [m]; m) ; (7)
with equality if and only if u = m.

The case of ellipsoidal geometry. Demagnetizing tensor

Since h d is a linear operator, the restriction of h d to the subspace U (; R 3 ) of constant in space vector elds can be identied with a second order tensor known as the eective demagnetizing tensor of and dened by [DeSim, Osborn]:

N e [m] = ¡ Z h d [m] d = ¡jjhh d [m]i ; ( 8 
)
where m 2 U (; R 3 ) and for all u 2 L 2 (; R 3 ) we have denoted by

hui = 1 jj Z u d (9)
the average of u over . The tensor N e is known in the literature as the eective demagnetizing tensor of , where the qualier eective is used as a reminder of the fact that N e is related to the average of h d [m] over [DeSim, Osborn].

In addition to that, a well known result of potential theory, states that when is an ellipsoid and m 2 U (;

R 3 ) also h d [m] 2 U (; R 3 ); i.e. if is an ellipsoid and m is constant, then h d [m] is also constant in .
In physical terms, this means that uniformly magnetized ellipsoids induce uniform magnetic elds in their interiors. In this case, the eective demagnetizing tensor N e is pointwise related to m since the relation (8) becomes:

N e [m] = ¡h d [m]: (10) 
In the rest of the present paper, we will indicate with N d the demagnetizing tensor associated to an ellipsoidal particle . Obviuosly, from (5) we get that the quadratic form

Q d (m) = N d [m] m is a denite positive quadratic form We will indicate with 2 = inf u2R 3 ¡f0g Q d (u) juj 2 (11)
the rst eigenvalue associated to this quadratic form, i.e. the minimum demagnetizing factor for the ellipsoid . This quantity can be expressed analytically in terms of elliptic integrals [Osborn].

It is important to stress that the eigenvalues of the quadratic form Q d are shapedependent but not size-dependent so that, when the volume jj is changed by preserving the shape of the ellipsoid, 2 does not change.

The exchange energy and the Poincaré inequality. Null average micromagnetic minimizers

The exchange energy (the rst term in eq. ( 1)), energetically penalize spatially nonuniform magnetization states: it takes into account the presence of the microscopic exchange interactions which tends to align the atomic magnetic moments.

A natural space in which to look for minimizers of the Gibbs-Landau functional is one in which the energy (1) is nite. Since the induced magnetic eld operator h d has a meaning in L 2 (; R 3 ), and the exchange energy has a meaning in the Sobolev space H 1 (; R 3 ) we will assume m 2 H 1 (; R 3 ) and we will write m 2 H 1 (; S 2 ) to emphasize that the magnetization eld satises the local saturation constraint given by jmj = 1 a.e. in .

We recall that H 1 (; R 3 ) is the space of square summable vector elds m 2 L 2 (; R 3 ) whose rst order weak partial derivatives @ i m belong to L 2 (; R 3 ). We also recall that in the Sobolev space H 1 (; R 3 ) the following Poincaré inequality holds [Payne, Bebe]:

Lemma 2. Let be a bounded connected open subset of R 3 with a Lipschitz boundary. Then there exists a constant C P (the so called Poincaré constant), depending only on , such that for every vector eld m 2 H 1 (; R 3 ):

km ¡ hmi k C p krmk ( 12 
)
where hmi denotes the spatial average of m over (see eq: ( 9)).

For practical purposes is important to know an explicit expression for the Poincaré constant. The main result is this direction concerns the special case of a convex domain [Payne, Bebe].

Lemma 3. Let be a convex domain with diameter diam(). Then for every vector eld m 2 H 1 (; R 3 ):

km ¡ hmi k diam() krmk : (13)
In terms of the L 2 (; R 3 ) norm and scalar product the Gibbs-Landau functional (1) reads as:

G L (m; ) = `ex 2 2jj krmk 2 ¡ 1 2jj (h d [m]; m) : ( 14 
)
We now observe that if m 0 2 H 1 (; S 2 ) is a global minimizer of the Gibbs-Landau energy functional ( 14) then for every u 2 U R 3 ) such that juj = 1 a.e. in , we have

kruk 2 = 0. Thus G L (m 0 ) ¡ 1 2jj (h d [u]; u) ; ( 15 
)
and hence:

G L (m 0 ) 1 2 inf juj=1 Q d (u) = 1 2 2 : (16)
From this simple observation and the use of Poincaré inequality ( 12) we get that if m 0 is a null average magnetization state, then

2 2 G L (m 0 ) `ex 2 C P 2 (17) 
and therefore C P `ex ¡1 . Thus we proved the following lemma:

Lemma 4. Let R be an ellipsoid and let m 0 2 H 1 (; S 2 ) be a global minimizer of the Gibbs-Landau energy functional (1).

If hm 0 i = 0 then diam() `ex ¡1 (18)
where we have indicated with diam() the diameter of the ellipsoid .

We recall that diam() is dened as the largest distance between couples of points in , and in the case of an ellipsoid it coincides with two times the largest semiaxis.

By letting jj decrease by keeping the shape of ellipsoid invariant, so that is constant, we arrive to a violation of the the inequality (18) which implies that zeroaverage global minimizers cannot exist when the dimension of the particle is reduced below the critical diameter `ex ¡1 .

From the physical point of view, this result is interesting in its own right when one interprets zero-average global minimizers as the usual demagnetized states of a magnetic particle. The above Lemma implies that there is no unmagnetized ground state in ne particles.

The generalization of the fundamental theorem of Brown to the case of ellipsoidal particles

Consider a homogeneous ferromagnetic particle occupying the region of space which is assumed to be a general ellipsoid in R 3 and let m 2 H 1 (; S 2 ). From ( 7) we have that for every constant in space vector eld u 2 U (; R 3 ):

jj N d [u] hmi ¡ 1 2 jj Q d (u) ¡ 1 2 (h d [m]; m) : (19) 
In particular, letting u = hmi we get that for all m 2 L 2 (; R 3 ):

jjQ d (hmi ) ¡(h d [m]; m) : (20)
From Lemma 4 we get that if C P < `ex ¡1 then the global minimizer m 0 cannot be null average (hm 0 i = / 0) and so after dividing and multiplying the left hand side of ( 20) by jhm 0 i j 2 , passing to the inf we get:

jhm 0 i j 2 2 ¡(h d [m]; m) : (21) 
From ( 16) and ( 21) we infer that if m 0 is a global minimizer for G L then:

2 2 G L (m 0 ) `ex 2 C P 2 (1 ¡ jhm 0 i j 2 ) + jhm 0 i j 2 2 ; ( 22 
)
where the rst lower bound is due to Poincaré inequality (12).

Thus we arrive at the conclusion that if m 0 is a global minimizer for G L then:

(1 ¡ jhm 0 ij 2 ) `ex 2 C P 2 ¡ 2 0: (23) 
As a consequence, if C P < `ex ¡1 , then jhm 0 ij 2 = 1 and hence m 0 is contant a.e. in .

We have in this way proved the following generalization of Brown's fundamental theorem for ne ferromagnetic particles: Theorem 5. Let R be an ellipsoid and let m 0 2 H 1 (; S 2 ) be a global minimizer of the Gibbs-Landau energy functional (1). If C P < `ex ¡1 then m 0 2 U (; R 3 ), i.e. m 0 is constant a.e. in . Thus a sucient condition for m 0 to be constant is that diam() < `ex ¡1 (24)

where diam() is twice the largest semi-axis of the ellipsoid .

The inequality ( 24) means that if we consider particles of given ellipsoidal shape (given ratio of semi-axes) with decreasing volume, there is a critical dimension below which the global minimizers (ground states) are uniform.

It is interesting to consider the case of very slender ellipsoid, i.e. an ellipsoid with semiaxis a b c). In this case, the asymptotic behavior of 2 is given by [Osborn]:

2 b c a 2 log 4 a b + c ¡ 1 : (25)
Now, by using the notation = b/a and = c/a, and the fact that diam() = 2a, the inequality (24) can be read as

a < a c = 2 `ex 1 p log 4 + ¡ 1 ¡1/2 ; ( 26 
)
which provides a more explicit lower bound for the critical size to have spatially uniform ground in ellipsoidal particles.

Some remarks on the value of the critical size. The best Poincaré constant in the case of a spherical particle

It is well known that the best Poincaré constant in H 1 (; R 3 ), in the class of all convex domains having the same diameter, is given by C P = diam()/ [Payne, Bebe]. However, it is also well known that once xed the domain (not just the diameter), the best Poincaré constant is given by C P = 1 ¡1 where 1 is the smallest positive eigenvalue associated with the following Neumann problem for the Helmholtz equation [Salo]:

¡ ' = ' in @ n ' = 0 on @ : (27)
Thus a better estimate of (24) can be obtained by solving equations ( 27) when the geometry of is that of the general ellipsoid under consideration.

For the case of a spherical particle (a ball of radius r) the rst eigenvalue of ( 27) is given by 1 = x 11 r , where x 11 is the rst positive root of the equation:

2 x J 1+ 1 2 0 (x) ¡ J 1+ 1 2 (x) = 0; (28) 
and where we have indicated with J the Bessel functions of the rst kind [Polyanin, Lizorkin]. Equivalently the factor x 11 can be found computing the rst positive root of the equation j 1 0 (x) = 0 where we have indicated with j 1 the spherical Bessel function [Lizorkin], related to J by the equation:

j 1 (x) = 1 2x/ p J 1+ 1 2 (x): (29) 
A numerical computation gives for this rst positive root the following approximated value x 11 2.0816. Thus recalling that in the case of a sphere [START_REF] Brown | Magnetostatic Principles in Ferromagnetism[END_REF][START_REF] Desimone | Energy minimizers for large ferromagnetic bodies[END_REF]:

2 = inf juj=1 Q d (u) = 1 3 ; (30)
we get, from theorem 5, that m 0 is constant in space when C P = r x 11 < `ex ¡1 , and this inequality holds if and only if: r < r c ; r c 3.6055 `ex :

(31)

Thus, for the special case of a spherical particle, we arrive at the same estimate found by Brown in [Brown].

Final considerations

We have extended the Brown's fundamental theorem on ne ferromagnetic particles to the case of a general ellipsoid, and given (by means of Poincaré inequality for the Sobolev space H 1 (; R 3 )) an upper bound to the critical size (diameter) under which the uniform magnetization states are the only global minimizers of the Gibbs-Landau free energy functional G L . Although for the sake of clarity we have neglected any anisotropy energy term in the expression of the Gibbs-Landau functional (1), it is straightforward to extend the result to the case when (for example) uniaxial anisotropy of the easyaxis type is present. The problem of local minimizers of the Gibbs-Landau functional is currently under investigation and will be presented in future publications.
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