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ABSTRACT

The  performance  assessment  of  dams  is  of  major  importance  for  optimizing  maintenance
management. A methodology is provided here to assess the risk of dam failure using data collected
during in-situ inspections and from the design and follow-up files. This assessment takes into account
uncertainty associated  with  the  data  and the  assessment  process.  The  result  of  this  assessment  is
introduced in a fuzzy frame. This paper presents the approach taken to choose defuzzification methods
that allow extracting the information necessary from this possibility distribution so that dam experts
can both rank dam maintenance actions and communicate the results of this assessment.
This  paper  first  presents  the  process  used to  assess  dam performance after  which  it  presents  the
defuzzification methods available. A sensitivity analysis is then performed to select the methods most
relevant for our case study. The last part presents the development of a tool useful for the application
of defuzzification methods to our problematic and describes a real case study in which the selected
defuzzification methods are used.

HIGHLIGHTS

We propose an approach for selecting appropriate defuzzification methods that fulfills the 
requirements of a group of experts.
We propose a sensitivity analysis of defuzzification methods.
We apply this approach to the assessment of dam performance.
Methods were chosen in relation to the objectives (decision-support and communication) defined by a 
group of dam experts. 
The approach is applied to a real case.
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1. Introduction

Hundreds of thousands of dams are now in use throughout the world and some of them have been
operating for several centuries. Dams are facilities that represent important economic stakes due to the
numerous roles they fulfill: storing water for irrigation, producing hydroelectricity, supplying water to
towns and businesses, etc. In 1997, the ICOLD (International Committee of Large Dams) counted
150,000 dams from 10 to 30 m high. However, dams can be sources of hazards for their environment
and the surrounding population: annually, the average number of failures worldwide is from 1 to 2,
and  160  cases  of  dam  failures  are  well-documented.  In  addition  to  casualties,  both  natural  and
economic environments are affected by dam failures, with possible domino effects if the wave caused
by the failure reaches sensitive structures such as chemical or nuclear plants.  In addition to these
dramatic events, the deterioration of dam components due to accelerated aging can lead to economic
losses caused by repairs, excessive water losses or the need to maintain the water at levels lower than
normal  reservoir  level.  Consequently,  it  is  very  important  to  assess  the  performance  of  dams.
Performance is defined as the capability of an infrastructure or a component to perform the functions
for which it was designed.
Different methods are available in the literature for assessing dam safety: physical models, records of
failures and accidents (Foster et al., 2000a; Foster et al., 2000b; Kreuzer, 2000), systemic methods
(Peyras et al.,2000; Serre et al., 2007), and knowledge-based methods (Andersen et al., 2001; Chou et
al., 2001; Curt et al., 2010). At present, all over the world the assessment of dam performance and
safety and their diagnoses are carried out and proposals for corrective actions are made by expert
engineers  during  dam  reviews.  These  assessments  rely  on  multiple,  heterogeneous  inputs:  visual
observations,  instrument data,  and outputs of mathematical  models.  That  is  why knowledge-based
systems are relevant for the assessment of dam performance as they are especially well-adapted to
cases  where  information  is  provided  by  multiple,  heterogeneous  sources  with  different  levels  of
granularity, and to the representation of expert knowledge. 
The  input  data  of  assessment  models  are  frequently  concerned  with  imperfections:  uncertainty,
imprecision, incompleteness (Ben Armor and Martel, 2004; Bouchon-Meunier, 1999). It is essential to
represent and propagate these imperfect data in the performance assessment model in order to better
represent reality. More specifically, in the domain of civil engineering, several approaches have been
used in imprecise and uncertain situations in order to better model the behavior of civil engineering
works through time and then deduce their levels of performance. These are probability approaches,
statistical approaches, approaches based on evidence and possibility theories. This article deals with
the possibility theory that allows representing uncertainty and imprecision for all types of data frames
and thus taking into account all the available data, whatever their frame or geometrical scale (Talon et
al.,  2014).  A possibility  approach is  usually composed of three steps:  fuzzification,  which allows
expressing  the  data  as  possibility  distributions,  the  propagation  of  possibility  distributions  in  the
assessment  model,  and  finally  defuzzification  to  provide  usable  output  forms  (graphs,  linguistic
variables, crisp values, etc.).  Zeleznikov and Nolan (2001) claimed that soft computing techniques
such as fuzzy reasoning can be integrated with symbolic techniques to provide efficient  decision-
making in knowledge-based systems. We have developed such a method for the assessment of dam
performance (Curt et al. 2011, Curt and Talon 2013; Curt and Gervais, 2014).
This  article  is  dedicated  to  the  defuzzification  step.  It  presents  the  approach  used  to  select  the
appropriate defuzzification methods for our application. Indeed, numerous defuzzification methods
have been described in the literature (Roychowdhury and Pedrycz, 2001; Leekwijck and Kerre, 1999).
However,  applications usually rely on standard methods,  centroids or means of maxima (Runkler,
1997;  Wang  2009;  Rouhparvar  and Panahi  2015)  but  very  few works  deal  with  the  problem of
choosing  defuzzification  methods.  For  example,  an analysis  of  several  defuzzification  methods  is
proposed for the automatic control of temperature and flow in heat exchangers (Amaya et al., 2009),
for route selection for public bus routing (Nurcahyo et al., 2003), and to assess the quality of fuzzy
control of a nuclear reactor (Zeleznikow and Nolan, 2001). The question of defuzzification method is
raised in the case of dam performance assessment with two intentions: that of proposing corrective
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actions and that of communicating the results to those responsible for safety, namely the dam owner or
reservoir operator.

The article is organized as follows: Section 2 presents the model developed for the assessment of dam
performance, the representation of imperfections and propagation. This section aims at describing the
whole model used to assess dam performance and the space reserved for the defuzzification method.
Indeed, this paper focuses on the selection of the relevant defuzzification method to be employed for
the whole model. Section 3 is dedicated to the approach taken to select defuzzification methods based
on steps in interaction with the future users. In brief, the approach taken consists in studying all the
defuzzification methods  available  and,  step  by  step  (collecting expert  requirements,  pre-selection,
sensitivity analysis of pre-selected methods), selecting the relevant methods and validating this choice
in real case studies. In Section 4, this approach is applied to the assessment of dam performance: the
interpretation  of  expert  requirements,  study  of  the  main  defuzzification  methods  relevant  for  the
problematic, the selection of methods adapted to the requirements, and the development of a calculus
tool.  This  section  is  dedicated  to  the  sensitivity  analysis  of  defuzzification  methods:  methods
providing real value, methods providing a real interval, methods allowing the ranking or comparison
of possibility distributions and dispersion assessment methods. The justification for the selection of
relevant dam performance assessment methods is also provided. Section 5 focuses on the application
of the approach on a real dam. This section presents an example of how the defuzzification step is
used in the whole model of dam performance assessment to propose relevant maintenance actions.
The  main  contribution  of  this  study  is,  finally,  to  select  relevant  defuzzification  methods  for
operational requirements in the context of dam performance assessments, by performing an analysis of
all defuzzification methods and a sensitivity analysis of those short-listed.

2. Assessment of dam performance

2.1. The issue of dam performance assessment

Performance assessment is a difficult task, in particular for dams; the loss of dam performance is the
result of a succession of phenomena stemming from miscellaneous and complex sources that lead to as
many  miscellaneous  and  complex  consequences,  ranging  from  the  deterioration  of  one  or  more
functions to complete dam failure. To perform dam reviews, experts handle multiple heterogeneous
data: visual observations, instrumental data and computations from mathematical models. These data
usually present  imperfect features: imprecision, uncertainty and incompleteness.  We combined the
knowledge-based method and possibility theory for assessing dam performance (Curt, 2013; Curt and
Gervais, 2014). The system developed is capable of modeling, aggregating heterogeneous imperfect
information, and representing expert knowledge.

2.2. Model description

The  formalizations and models were built during elicitation sessions carried out with a panel of 6
experienced  engineers  from  Irstea  (National  Research  Institute  of  Science  and  Technology  for
Environment and Agriculture). More details can be found in (Curt, 2013; Curt et al., 2010).
The model  inputs are  the data handled by experts  during reviews:  visual  observations,  data from
monitoring devices and outputs of mathematical models. They are formalized in a format that allows
obtaining the information necessary to correctly use these data: repeatability and reproducibility must
be achieved. We propose a formal description (grid) in the form of “indicators” ( I i) (Curt et al., 2010).
The  grid  is  made  up  of  a  definition,  a  measurement  scale  and  anchorage  points  on  the  scale
(photographs,  diagrams and linguistic  descriptions),  spatial  characteristics  (sampling,  measurement
location) and time characteristics (measurement frequency, analysis frequency, etc.). The fields of the
grid  are  justified  in  (Curt  et  al.,  2010).  A measurement  scale  was  formulated  by  the  experts:  it
comprises  six  scores  ranging  from “excellent”  (0)  to  “unacceptable”  (10),  through “good”  (1-2),
“passable” (3-4), “poor” (5-6), “bad” (7-8-9). Table 1 presents various types of indicator. 
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Indicator Type Indicator examples

Visual
Detection of leakage
Presence of sinkhole
Visual state of drain outlet

Monitoring
Piezometry
Flow
Crack measurements

Calculated

Hydraulic gradient
Seismic resistance
Spillway capacity
Sliding index

Table 1. Examples of indicators for dam performance assessment

Table 2 gives the description for the indicator “Leakage on the downstream embankment”.

Name Leakage on the downstream embankment
Definition Water flow through the downstream embankment revealing a deterioration of

the drainage system
Scale (0-10) and references 0-2: absence of leakage – the embankment is dry

5: presence of a leakage halfway up the embankment
10: presence of a leakage at the normal operating level

Location Downstream embankment
Time characteristic Assessment carried out during visual inspection

Table 2. Description of the indicator “Leakage on the downstream embankment”

The model  relies on IF-THEN rules and arithmetic operators (maximum, weighted sum).  The IF-
THEN rules are the formalization of expert knowledge.  For example,  the infiltration phenomenon
depends on the watertightness function and drainage function. Thus, if the value of the watertightness
function is from 0 to 2, then the infiltration phenomenon takes this value; however, it in fact takes the
value  of  the  drainage  function.  It  is  a  hierarchical  model:  a  global  assessment  of  dam  safety
deterioration  related  to  different  failure  modes  (denoted  μMRk)  along  with  assessments  of  the
performance of the different technical functions such as sealing, drainage, internal erosion protection
and sliding protection (denoted  μFj) are obtained (cf.  Figure 1). Intermediate assessments are called
Phenomenon.  A model  was  developed for  each  deterioration  mode.  For  instance,  9  models  were
produced for embankment dams. They are related to: Internal Erosion through the Embankment (IEE),
Internal Erosion initiated around or near the Spillway (IES), Internal Erosion initiated around or near
the Gallery (IEG), Shoulder Sliding (ShS), Overtopping (Ov), Foundation Settlement (FS), Internal
Erosion through the Foundation (IEF), Sliding of Embankment and Foundation (SEF), Foundation
Plane Sliding (FPS).
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Figure 1. Performance assessment using the hierarchical model - Simplistic representation –I i indicator i

–μFj= Performance of Function j –μMRk= Performance related to failure mode MRk – φ p= phenomenon

Experts  use  performance  assessment  to  monitor  dam safety  and recommend corrective  actions  if
necessary. Corrective actions are of various types and concern both the technical components of the
dam and the measurement system (Curt and Talon, 2013; Curt and Gervais, 2014): emergency action
(partial or complete emptying of the reservoir), major reconstruction, rehabilitation or safety projects,
maintenance actions (scraping of the dowstream slope, drain outlet cleaning, renewal of monitoring
equipment and so forth), upgrading dam performance monitoring (increasing measurement frequency,
performing laboratory tests  and  so  forth).  The  objective is  twofold:  to  improve  the measurement
system (for instance, the scraping of the downstream shoulder allows better visual observations, the
renewal  of  an  monitoring  device  allows  obtaining  reliable  data,  etc.)  and  to  guarantee  that  the
performance criteria are satisfied (for instance, the construction of a toe weight allows lengthening
water flow and improving performance relative to internal erosion).

2.3. Representation and propagation of imperfections – Expression of outputs

Taking  imperfections  into  account  in  the  assessment  procedure  is  crucial  as  it  leads  to  better
perception than a precise numerical value would do. Indeed, obliging experts to provide precise scores
in the case of uncertainty can lead them to give a very bad score in order to conform to the principle of
caution. Consequently, corrective actions may be more drastic than they should be.
Three  stages  are  necessary  to  cope  with  imperfections:  the  representation  of  input  imperfections
(fuzzification),  the  propagation  in  the  performance  assessment  models,  and  the  expression  of  the
outputs (defuzzification).
In the approach developed, the model inputs are indicators. These data are frequently “imperfect”.
They contain uncertainty, imprecision, and incompleteness. The fuzzification stage corresponds to the
representation of the indicator score and its imperfections as a possibility distribution (cf. Figure 2). A
possibility distribution is equivalent to a normalized fuzzy subset (Dubois and Prade, 1988; Zadeh,
1978). The possibility distribution is expressed by the core Cor() and the support Supp(). They
are defined by:
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Cor (π I )= { x∈ X|π I (x )=1 } (0)

Supp (π I )={ x∈ X|π I ( x )>0} (0)

For instance, in Figure 2, the core of the trapezoidal distribution is the interval (4; 5) and the support
the interval (2; 7).
The  distributions  are  declared  by  experts  on  the  basis  of  the  indicator  grid  and  photos,  in-situ
measurement, monitoring curves, etc.

Figure 2. Example of possibility distribution – Most usual frame in the domain of dams

The propagation of possibility distributions via operation f obeys Zadeh’s extension principle (Zadeh,
1978):

πF (SF )=¿
(S1 ,… Sn )|f (S1 ,…Sn )=SF

(min (π I 1 (S1 ) ,…, π¿ (Sn )) ) (0)

with S1,…,Sn being the degradation indicator score and SF, the technical function degradation score. A
model  was  described  for  each  failure  mode  (internal  erosion  through  the  embankment,  shoulder
sliding, etc.). At the end of the assessment process, there are as many possibility distributions as there
are failure modes.
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Figure 3. Example of imperfection propagation in a global dam assessment model – case of internal
erosion through the embankment for a homogeneous embankment

The defuzzification phase ends the process. It involves the extraction of a concise and relevant result
from the outputs of the performance assessment model. These could be possibility distributions like
those presented in Figure 3. As these methods can lead to different results, it is important to make the
relevant choice by integrating the future use of the results. Indeed, the final decision is made on the
basis of the results obtained.
In our case, the results obtained at the end of imperfection propagation are useful for communication
and decision-making concerning dam safety. Experts have to communicate results concerning dam
safety to other actors involved in safety, for instance, the dam owner or reservoir operator. They also
use these results in view to decision-making: corrective actions must be proposed to restore the dam to
standard  operating  conditions.  Consequently,  it  is  essential  to  properly  define  the  defuzzification
method that will be used.
Now that the whole model of dam performance assessment has been described, the next section will
focus on the approach taken to develop the last step of this model: defuzzification limited to defining
maintenance actions on dams.
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3. Approach for the selection of appropriate defuzzification methods

The selection of the most relevant defuzzification methods for application to dams was done with a
group of dam experts and an observer responsible for the elicitation and proposal of defuzzification
methods. The approach relies on the five phases described in  Figure 4; the stages that involve the
experts are indicated. They can be iterative:

- Analysis of available defuzzification methods. The first stage aims at identifying the various
types of defuzzification approaches (associated with the mean, minimum value, etc.) presented
in the literature;

- Collection  of  the  experts’  requirements.  A collective  session  was  organized.  During  this
session, the various defuzzification types and methods were presented. The experts broadly
expressed  their  needs  and requirements.  To refine  these  proposals,  each  expert  was  then
invited individually to graphically represent the value that best expresses their requirements
for the various possibility distributions proposed;

- Pre-selection of methods on the basis of the two previous stages and, if several methods are
candidates, performing a sensitivity analysis for each of them. The objective of the sensitivity
analysis  is  to  conserve  the  most  discriminative  methods,  i.e.  the  methods  that  allow  the
greatest difference between two possibility distributions. The sensitivity analysis considers
different  experimental  possibility  distributions  that  are  defuzzified  using  the  pre-selected
methods. An experimental design is set up with different values assigned to the parameters of
the pre-selected methods if  necessary.  Finally,  an analysis of  the dispersion of the results
produced by the different  methods is  performed.  Firstly,  the  effect  of  the  parametrization
(when  necessary)  is  determined,  which  leads  to  choosing  the  most  discriminative  set  of
parameters  for  each  method.  Secondly,  the  methods  can  be  classified  regarding  their
discriminative ability;

- The proposal of methods in a plenary session, on the basis of the two previous stages. Finally,
the appropriate defuzzification methods are selected and the parameters of the methods chosen
are determined;

- Development of a calculus tool; validation on simplified cases.
The method can then be used on real cases.

Figure 4. Main stages of the approach – Stages involving experts are indicated – Reference of sections
dedicated to the explanation of each stage are done

It  is  noteworthy  that  the  approach can  be  used  for  other  applications.  The  following  paragraphs
describe the various phases of the approach for the assessment of dam performance.
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4. Application of the approach to the performance assessment

4.1. Analysis of available defuzzification methods

This stage is totally generic and can be used for other applications. Defuzzification methods can be
ranked into four categories: providing a real value, providing a real interval, allowing the ranking of
possibility distributions, and methods that assess dispersion.

4.1.1. Methods providing a real value

The purpose of these methods is to extract one relevant value from a fuzzy set. A set of methods was
developed and described in (Chandramohan et al., 2006; Leekwijck and Kerre, 1999; Leekwijck and
Kerre,  2001;  Liu,  2007;  Roychowdhury and Pedrycz,  2001).  They are listed in  Table 3.  One can
mainly distinguish methods associated with a mean, minimum or maximum value. Methods associated
with the mean of the surface or a part of this surface allow representing the global distribution of the
fuzzy  set;  on  the  contrary,  methods  associated  with  a  core  mean  or  support  mean,  or  with  the
minimum or maximum value, only take into account a part of this fuzzy set. Methods associated with
the surface mean can be divided into methods using native fuzzy sets and methods in which the fuzzy
sets are weighted. The descriptions of each of these methods are given in Appendix A.

Class Subclass Method
Methods associated 
to the mean

Surface mean Center of Gravity (COG)
Center of Area (COA)
Midpoint of Area (MOA)
Weighting Function of Center of Gravity (WFCOG)
Maximum  Entropy  of  the  Weighting  Function  of  Center  of
Gravity (MEWFCOG)
Maximum  Entropy  Weighting  Function  of  the  Basic
Defuzzification Distribution (MEWFBADD)
Fuzzy Mean (FM)
Weighted Fuzzy Mean (WFM)
Quality Method (QM)
Extended Quality Method (EQM)

A part of the 
surface mean

Indexed Center of Gravity (ICOG)

Support mean Mean of Support (MOS or MeOS)
Core mean Mean of Maxima or Middle of Maximan (MOM or MeOM)

Continuity Focused Choice Of Maxima (CFCOM)
Center of Mean (COM)

Surface or core or
support mean 
(depending of 
parameter value)

Extended Center of Area (ECOA)
Basic Defuzzification Distribution (BADD)
Generalized Level Set Defuzzification (GLSD)
Random Generation (RAGE)
Semi-linear Defuzzification (SLIDE)

Methods associated 
to the minimum

First of Maxima (FOM)
First of Support (FOS)

Methods associated 
to the maximum

Last of Maxima (LOM)
Last of Support (LOS)

Other methods Constraint Decision Defuzzification (CDD)
Root Mean Square 1 (RMS1)
Root Mean Square 2 (RMS2)
Fuzzy Cluster-Means (FCM)
Random Choice of Maxima (RCOM) 

Table 3. List of defuzzification methods associated with a real value
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4.1.2. Methods providing a real interval

The aim of defuzzification methods that provide a real interval is to achieve the best representation of
the dispersion of the fuzzy set. Five defuzzification methods are available (detailed in Appendix B):
the formulation of Dubois and Prade (1987), the formulation of Carlson and Fuller (2002), that of
Bodjanova (2005), that of Grzegorzewski (2002), and that of Chanas (2001). 
These  methods  are  interesting  as  they  allow  representing  all  the  information  of  a  fuzzy  set;
nevertheless, the resulting interval is very wide. Indeed, it generally fills the width of several units
while the decision-making basis for our case study is the unit or possibly the score (including two or
three units).

4.1.3. Methods allowing the ranking or comparison of possibility distributions

In the context of our case study the aim of possibility distribution ranking methods is to both order the
set of fuzzy sets and assign a membership class to them. Three kinds of fuzzy set ranking methods are
available.
The first  type of  ranking  method proceeds  with  defuzzification,  leading to  a  real  value  and then
ranking the fuzzy sets using the real values obtained. Methods used to obtain a real value have been
presented previously. Then, the real values are ranked in increasing or decreasing order. The results
are necessarily strongly linked to the choice of the initial defuzzification method. This first type of
method allows ordering a set of fuzzy sets.
The  second type  of  method compares  fuzzy  sets  to  one  (or  several)  reference  fuzzy  sets.  Major
references of these methods are (Chen and Lu, 1999; Fortemps and Roubens, 1996; Wang and Kerre,
2001a; Wang and Kerre, 2001b). We consider that only two methods are relevant for our case study:
standard compatibility degree (Curt, 2013) and distance minimization (Fortemps and Roubens, 1996).
The first method allows obtaining a percentage of membership to a class and the second provides a
partial order between two probability distributions. The other methods are quite similar to either one or
the other of these two methods, though they do not possess parameters that allow comparing their
sensitivity.  Appendix  C gives  more  details  on  each  of  them.  These kinds of  method provide the
membership of a fuzzy set to a class but do not directly order the fuzzy sets.
The third type of method compares fuzzy sets two by two. Major references of these methods are
(Abbasbandy et al. 2006; Asady and Zendehnam, 2007; Dubois and Prade, 1983; Wang and Kerre,
2001a; Wang and Kerre, 2001b). Only one method seems to be relevant for our case study, namely
distance minimization by sign (Abbasbandy et al. 2006). Indeed, other methods have been developed
for a particular application but are very difficult to apply to our problematic. This type does not take
into account the whole membership function. Equivalence between several fuzzy sets can appear but
these methods do not provide a total order.

4.1.4. Dispersion assessment methods

The aim of fuzzy set dispersion assessment methods, in the context of our application, is to distinguish
several fuzzy sets having the same real value of defuzzification but a distinct frame and therefore
distinct uncertainty. Three kinds of methods can be distinguished: relative entropy, based on Shannon’
entropy (Shannon, 1948), relative surface, and mean distance to the gravity center (Appendix D). 
In the context of our study, entropy is used to assess the certainty that one can assign to a datum (a
possibility distribution). The certainty of a datum is considered as proportional to the dispersion of its
membership in the discernment frame; that is to say that a datum centered on a value will present more
certainty  than  an  interval  that  includes  this  value  (that  introduces  more  uncertainty  into  the
assessment).
The aim of the methods based on relative surface is to assess the surface of a fuzzy set in comparison
with the surface of the whole scale of assessment.
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4.2. Collection of expert requirements and pre-selection of methods

Here, the objective is to propose methods that meet experts’ requirements. Experts need several kinds
of information that allow interpreting the performance of a dam, regarding a failure mode, expressed
as a fuzzy frame:

- For  decision-making:  there  are  as  many possibility  distributions  as  there  are  models  (one
model  per  failure  mode).  To  conduct  their  reasoning,  the  experts  want  to  have  all  the
information, that is to say the graphic representation of the resulting fuzzy set, and they want
to  order  the  fuzzy  sets  in  relation  to  each  other,  as  the  distributions  are  expressed  on
commensurable  scales.  Methods  used  for  comparing  fuzzy  sets  to  reference  fuzzy  sets
(standard compatibility degree and distance minimization) do not allow ordering fuzzy sets in
relation to each other. However, methods that proceed from a combination of two steps, i.e.
defuzzication  to  obtain  a  real  value  and  ordering  are  particularly  interesting  from  the
quantitative point of view and are thus selected.

- Regarding the transmission of information to dam managers, the requests are the following:
representation  of  the  whole  distribution  and  an  expression  of  its  dispersion.  Methods
providing a  real  value or  a  real  interval  are  pertinent  for  representing all  the  information
included  in  the  distribution.  Finally,  all  the  methods  used  to  calculate  dispersion  seem
convenient for our application. To facilitate information transmission, it is also proposed that a
qualitative  expression  be  associated  with  the  quantitative  values  extracted  by  the
defuzzification methods. This last step completes the defuzzification process: for instance, the
modification of the defuzzified value on a qualitative scale ranging from “no dispersion” to
“very high dispersion”. This process is carried out for each model output.

Thus the various methods of the four types of defuzzification process can be candidates. An initial
selection can be performed for methods providing real value. Since a request of experts is to consider
the whole distribution, attention is given to the methods associated with the whole part of the mean,
while  the  other  approaches (associated  with the  minimum and maximum, and the  other  methods
presented in Table 3) are not considered. Some methods associated with the mean are similar to each
other. The following presents the equivalences: the COG, COA and MOA methods are equivalent and
take into account the whole native fuzzy set. The WFCOG method allows weighting the x values of a
fuzzy set. The MEWFCOG method calculates the maximum entropy of function f ( x ) that shows the

weighting of the x values of the fuzzy set, with ∫
a

b

f ( x )dx=1 where a and b are the limits of the given

fuzzy set. In addition to the WFCOG method, functionf ( x ), with coefficient  λ, allows showing the
decision-maker’s point of view: 0 for a pessimistic point of view, 0.5 for a neutral point of view and >
0.5 for an optimistic point of view (which lead to the highest weights). The MEWBADD method is
similar to the NEWFCOG method.
FM method corresponds to an optimization of the COG method. The WFM method allows taking into
account weights associated with each value x of the fuzzy set. The QM method is close to the WFM
method where the weights are equal to the opposite of the support width. The EQM method is an
expansion of QM where  ξ∈¿ allow influencing the importance assigned to support. For  ξ=0, the
EQM method is similar to the FM method (support width is not taken into account), for  ξ=1, the
EQM method is similar to the QM method and for ξ>1, the support width takes a very high value.
Two main methods deal with a part of the surface mean: the ICOG method corresponds to the COG
method where only the values higher than a given -cut are taken into account. 
Some methods lead to using the mean (complete or part) and the core of the support as a function of
the value of a parameter. The ECOA method is an extension of the COA method where the factor
γ ∈¿ helps to take into account the confidence assigned to the fuzzy set. For a value γ=0 the support
mean will be taken; for γ=1 the mean of the whole fuzzy set will be taken and for γ →∞ the core
mean will be taken. The SLIDE method allows taking into account values under a given  -cut and
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higher or lower values above this -cut by using a parameter β∈ [ 0 ;1 ]. The SLIDE method is similar
to:

- COG method for α=0∧∀ β∈ [0 ;1 ] and for β=0∧∀α∈ [0 ;h ( A ) ] where A is a fuzzy set;

- ICOG method for β=1∧∀ α∈ [0 ;h (A ) ];
- MeOM method for β=1∧α=h (A ).

The BADD and GLSD methods are similar to the ECOA method. The RAGE method is close to the
BADD and SLIDE methods.
Methods that allow weighting the weight granted to the different values of the membership function
allow stressing  the importance granted to  the  more probable  values  (-cuts  nearest  the  core,  i.e.
nearest to μ ( x )=1). 
To go further in the selection, a sensitivity analysis is performed for categories for which different
methods are candidates, i.e. methods providing a real value, methods providing an interval, methods
allowing ranking or comparing possibility distributions and dispersion assessment.

4.3. Sensitivity analysis of defuzzification methods

The sensitivity analysis relies on different experimental possibility distributions and an experimental
design set up with different values assigned to the parameters of the pre-selected methods if necessary:
several cases are defined. Finally, an analysis of the dispersion of the results produced by the different
methods is performed.

4.3.1. Experimental possibility distributions

The sensitivity analysis is performed using six characteristic possibility distributions (PD) presented in
Figure  5.  They  are  termed  characteristic  as  they  represent  the  frames  (rectangular,  triangular  or
trapezoidal)  encountered  in  our  dam  application;  as  possibility  distributions,  their  height  is
standardized to 1. Moreover, they allow representing the two main variable parameters: the width of
the support and the width of the core. Possibility distributions 1 to 3 allow representing the variation of
core  width  with  the  same  support  width.  Possibility  distributions  1  and  4,  2  and  6,  3  and  5,
respectively, have the same core widths and distinct support widths.

Possibility distribution 1 Possibility distribution 2

Possibility distribution 3 Possibility distribution 4
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Possibility distribution 5 Possibility distribution 6

Figure 5. Possibility distributions used for the sensitivity analysis – These are the most usual frames used
in dam assessment – The possibility distributions vary from their core widths and support widths

4.3.2. Experimental design: methods providing a real value

Methods providing a real value integrate intrinsic parameters that are distinct from the variation of the
support  and core  widths.  This  sensitivity  analysis  also consists  in  studying the variation of  these
parameters.
These intrinsic parameters are:  f ( x ) (function of weight associated with each value of membership),
-cuts,  w i (weight associated with each  -cut),   (given  -cut),  ,  ,  ,   (parameters that allow
influencing the importance assigned to certain membership values of a fuzzy set). The parameters to
be defined for each defuzzification method, in addition to the membership function, are listed in Table
4. COG, COA, MOM, MOS only require the membership function. The MOA, RAGE and COM
methods were not studied, as they are similar to the COG, BADD and MOM methods, respectively.
Also, the CDD and FCM methods were not studied as they do not correspond to the type of method
sought (constraints are not considered and the number of data handled is relatively low). For the root
mean square (1 and 2) methods, RMS1 provides the membership value of RMS2. Consequently, only
RMS2 is comparable to the other method results,  and so only the sensitivity of RMS2 is studied.
Along the same lines, the RCOM method provides the probability that a chosen value x0 is included in
the core of the fuzzy set. Consequently, this method is of no interest to us.

Parameters Methods

f ( x ) WFCOG, MEWFCOG, MEWFBADD
-cuts GLSD, FM, WFM, QM, EQM, CFCOM
w i WFM
 ICOG, SLIDE
 SLIDE
 EQM
 MEWFCOG
 ECOA, BADD, MEWFBADD, GLSD

Table 4. The parameters needed to define the defuzzification methods and corresponding methods

The experimental design applied to the six possibility distributions of Figure 5 is summarized in Table
5. This experimental design was chosen to exploit all the possibilities of the different defuzzification
methods.

Parameters Values Methods

f ( x ) Case 1: f ( x )=0.1 for x∈ [ 0;10 ] WFCOG,
MEWFBADD
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Case 2: f ( x )={0.25 for x∈ [ 4 ;8 ]
0otherwise

Case 3: f ( x )={0.5 for x∈ [ 5 ;7 ]
0otherwise

-cuts

Case 1:α 1=0.5,

Case 2: α 1=0.33,α2=0.67, 
Case 3: α 1=0.25,α2=0.5,α3=0.75,

Case 4: α 1=0.2,α2=0.4,α3=0.6,α 4=0.8,
Case 5:
α 1=0.1,α2=0.2,α3=0.3,α 4=0.4,α5=0.5,α 6=0.6,α 7=0.7,α 8=0.8,α9=0.9,α10=1

GLSD, FM, 
WFM, QM, 
EQM, CFCOM

w i

Case 1: w1=w2=w3=w4 ¿w5=w6=w7=w8=w9=w10=1,
Case 2:
w1=0.1,w2=0.2,w3=0.3,w4 ¿0.4,w5=0.5,w6=0.6,w7=0.7,w8=0.8,w9=0.9,w10=1,
Case 3: w1=w2=w3=w4 ¿w5=w6=w7=1,w8=w9=w10=10

WFM


Case 1: 0.1; Case 2: 0.2; Case 3: 0.3; Case 4: 0.4; Case 5: 0.5; Case 6: 
0.6; Case 7: 0.7; Case 8: 0.8; Case 9: 0.9; Case 10: 1

ICOG, SLIDE

 Case 1: 0.1; Case 2: 0.2; Case 3: 0.5; Case 4: 0.8; Case 5: 1 SLIDE


Case 1: 0.1; Case 2: 0.2; Case 3: 0.5; Case 4: 0.8; Case 5: 1; Case 6:10; 
Case 7: 100

EQM


Case 1: 0.1; Case 2: 0.2; Case 3: 0.5; Case 4: 0.8; Case 5: 1; Case 6: 2; 
Case 7: 4

MEWFCOG


Case 1: 0.1; Case 2: 0.2; Case 3: 0.5; Case 4: 0.8; Case 5: 1; Case 6: 2; 
Case 7: 10

ECOA, BADD,
MEWFBADD, 
GLSD

Table 5. Cases studied to analyze the variation of the defuzzification method parameters – All the
possibilities of deffuzification methods to be tested

4.3.3. Results concerning methods providing a real value

The results obtained by the methods providing a real value referenced in Appendix A are given in
Table 6. Table 6 provides the mean value of the different cases tested for the methods of the Table 5.
For each possibility distribution, the minimum value, the maximum value, the mean value and the
standard deviation value of all the methods analyzed are also given.

Possibility distribution PD 1 PD 2 PD 3 PD 4 PD 5 PD 6
COG 6.33 6.20 6.00 6.67 6.00 6.50
COA 6.45 6.25 6.00 6.74 6.00 6.50
MOS 6.00 6.00 6.00 6.50 6.00 6.50
MOM 7.00 6.50 6.00 7.00 6.00 6.50
RMS2 6.39 6.26 6.07 6.70 6.03 6.51
Mean of WFCOG 6.39 6.23 6.00 6.63 6.00 6.50
Mean of MEWFCOG 6.96 6.76 6.63 7.02 5.70 6.41
Mean of MEWBADD 6.39 6.22 6.00 6.62 6.00 6.50
Mean of FM 6.59 6.29 6.00 6.79 6.00 6.50
Mean of WFM 6.63 6.31 6.00 6.81 6.00 6.50
Mean of QM 6.64 6.31 6.00 6.82 6.00 6.50
Mean of EQM 6.64 6.32 6.00 6.82 6.00 6.50
Mean of ICOG 6.62 6.33 6.00 6.81 6.00 6.50
Mean of CFCOM 6.74 6.37 6.00 6.87 6.00 6.50
Mean of ECOA 6.41 6.23 6.00 6.71 6.00 6.50
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Mean of BADD 6.33 6.19 6.00 6.66 6.00 6.50
Mean of GLSD 6.43 6.23 6.00 6.72 6.00 6.50
Mean of SLIDE 6.43 6.26 6.00 6.72 6.00 6.50
Min value 6.00 6.00 6.00 6.50 5.70 6.41
Max value 7.00 6.76 6.63 7.02 6.03 6.51
Mean value 6.52 6.29 6.04 6.76 5.98 6.50
Standard deviation value 0.24 0.15 0.15 0.13 0.07 0.02

Table 6. Results of methods providing a real value: mean for each method, min, max, mean and
standard deviation of all the methods – The PDi correspond to the possibility distributions given

in Figure 5

The different methods provide a homogeneous result for possibility distributions 5 and 6 except for
RMS2 and NEWFCOG that have a difference of 0.03 and 0.3, respectively, for possibility distribution
5 and 0.01 and 0.09 for possibility distribution 6. Regarding the possibility distributions from 1 to 4,
the method that provides the most optimistic value (the nearest to 0 on our scale from 0 to 10) is MOS.
On the  contrary,  the  method that  provides  the  most  pessimistic  value  is  MOM for  the  PD1 and
MEWFCOG for PD2 to PD4. PD1, 2 and 3 have the same support but different cores, the core of PD1
is centered on 7, the core of PD2 is centered on 6-7 and the core of PD3 is centered on 5-7. The
certainty of going from PD1 to PD3 extends to the lowest values. This aspect is well represented by
the different methods as the mean value of defuzzification for PD1 (6.52) is higher than for PD2 (6.29)
which is higher than that of PD3 (6.04). For PD1 and PD4, the core is the same (7) and the support is
larger for PD4 (4-8) than for PD4 (5-8) while the uncertainty for PD1 extends to the optimistic values
in comparison to PD4. This aspect is well represented by the different methods as the mean value of
defuzzification for PD4 (6.76) is higher than for PD1 (6.52). By comparing the results for PD3 and
PD5, the different methods allow taking into account the “symmetric” uncertainty associated with PD3
by assigning a defuzzification value on average higher (6.04) than for PD5 (5.98).

By comparing the results for PD2 and PD6, the different methods tend to extend the defuzzification
value on average to the higher uncertainties: 6.29 for PD2 which has a support of 4-8 in comparison to
6.5 for PD3 which has a support of 5-6. Both PDs have the same core (5-6). In every case, the standard
deviation values are very low and therefore all the methods tested provide the precision expected by
the experts, i.e. close to the unit.

Table 7 provides the mean defuzzification values, their extents and their standard deviations (SD) for
the six possibility distributions when the parameters of Table 5 vary.

PD1 PD2 PD3 PD4 PD5 PD6

WFCOG
Mean 6.39 6.23 6.00 6.63 6.00 6.50
Extent 0.17 0.09 0.00 0.11 0.00 0.00

SD 0.10 0.05 0.00 0.06 0.00 0.00

MEWFCOG
Mean 6.96 6.76 6.63 7.02 5.70 6.41
Extent 0.81 0.84 1.12 0.51 0.72 0.26
SD 0.34 0.32 0.46 0.20 0.26 0.09

MEWFBADD
Mean 6.39 6.22 6.00 6.62 6.00 6.50
Extent 0.80 0.42 0.00 0.61 0.00 0.00
SD 0.24 0.13 0.00 0.17 0.00 0.00

FM
Mean 6.59 6.29 6.00 6.79 6.00 6.50
Extent 0.20 0.10 0.00 0.10 0.00 0.00
SD 0.07 0.04 0.00 0.04 0.00 0.00
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WFM
Mean 6.63 6.31 6.00 6.81 6.00 6.50
Extent 0.37 0.18 0.00 0.18 0.00 0.00
SD 0.11 0.05 0.00 0.05 0.00 0.00

QM
Mean 6.64 6.31 6.00 6.82 6.00 6.50
Extent 0.27 0.14 0.00 0.13 0.00 0.00
SD 0.10 0.05 0.00 0.05 0.00 0.00

EQM
Mean 6.64 6.32 6.00 6.82 6.00 6.50
Extent 0.40 0.25 0.00 0.20 0.00 0.00
SD 0.11 0.06 0.00 0.05 0.00 0.00

ICOG
Mean 6.62 6.33 6.00 6.81 6.00 6.50
Extent 0.66 0.30 0.00 0.33 0.00 0.00
SD 0.23 0.10 0.00 0.11 0.00 0.00

CFCOM
Mean 6.74 6.37 6.00 6.87 6.00 6.50
Extent 0.50 0.25 0.00 0.25 0.00 0.00
SD 0.18 0.09 0.00 0.09 0.00 0.00

ECOA
Mean 6.41 6.23 6.00 6.71 6.00 6.50
Extent 0.81 0.41 0.00 0.41 0.00 0.00
SD 0.28 0.14 0.00 0.14 0.00 0.00

BADD Mean 6.33 6.19 6.00 6.66 6.00 6.50
Extent 0.78 0.42 0.00 0.40 0.00 0.00
SD 0.27 0.14 0.00 0.14 0.00 0.00

GLSD
Mean 6.43 6.23 6.00 6.72 6.00 6.50
Extent 0.77 0.43 0.00 0.39 0.00 0.00
SD 0.18 0.09 0.00 0.09 0.00 0.00

SLIDE
Mean 6.43 6.26 6.00 6.72 6.00 6.50
Extent 0.57 0.30 0.00 0.28 0.00 0.00
SD 0.13 0.07 0.00 0.06 0.00 0.00

Table 7. Results of methods providing a real value: mean, extent and standard deviation for the
variation of parameters of Table 5 – The PDi correspond to the possibility distributions given in

Figure 5

For almost all the methods (except MEWFCOG) the variation of parameters has no influence on the
defuzzification value when the possibility distributions are symmetrical: possibility distributions 3, 4
and 6. For WFCOG and MEWFBADD and PD1, 2 and 4, the defuzzification value is attracted by the
larger values of function  f ( x ). For GLSD, FM, WFM, QM, EQM and CFCOM and PD1, PD2 and
PD4, the defuzzification value increases as the -cuts number increases. For WFM, the variation of
w i has little influence on the variation of the defuzzification value. For ICOG and PD1, 2 and 4, the
defuzzification value increases as  increases. For SLIDE and PD1, 2 and 4, the defuzzification value
varies little  with the variation of  ;  on the contrary,  it  increases as   increases.  For EQM, the
variation of ξ  has little influence on the variation of the defuzzification value. For MEWFCOG, the
defuzzification value increases from the COG value to the upper bound of the support when the value
of  λ increases. For MEWFBADD, ECOA, BADD and GLSD and PD1, 2 and 4, the defuzzification
values increase as the value of γ  increases.

4.3.4. Results of methods providing a real interval

The results obtained by the methods providing a real interval referenced in Appendix B are given in
Table  8.  The resulting interval  for  each method and each possibility  distribution of  Figure  5 are
provided. Moreover, for each possibility distribution, the mean values of the lower and upper bounds
of the intervals of all the methods and their standard deviations are calculated.
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Possibility distribution PD 1 PD 2 PD 3 PD 4 PD 5 PD 6
Dubois and Prade (5.5 ; 7.5) (5 ; 7.5) (4.5 ; 7.5) (6 ; 7.5) (5 ; 7) (6 ; 7)
Carlson and Fuller (6 ; 7.33) (5.33 ; 7.33) (4.67 ; 7.33) (6.33 ; 7.33) (5 ; 7) (6 ; 7)
Bodjnova (6.12 ; 7.29) (5.41 ; 7.29) (4.71 ; 7.29) (6.41 ; 7.29) (5 ; 7) (6 ; 7)
Grzegorzewski (5.5 ; 7.5) (5 ; 7.5) (4.5 ; 7.5) (6 ; 7.5) (5 ; 7) (6 ; 7)
Chanas (5.5 ; 7.5) (5 ; 7.5) (4.5 ; 7.5) (6 ; 7.5) (5 ; 7) (6 ; 7)
Mean value of lower bound 5.72 5.15 4.58 6.15 5 6
Mean value of upper bound 7.42 7.42 7.42 7.42 7 7
Standard deviation of lower
bound

0.31 0.20 0.11 0.20 0 0

Standard deviation of upper
bound

0.11 0.11 0.11 0.10 0 0

Table 8. Results of methods providing a real interval: interval of values for each method, mean
and standard deviation for the lower and upper bounds of all the methods – The PDi correspond

to the possibility distributions given in Figure 5

The methods providing an interval are interesting in order to take into account the dispersion of fuzzy
sets. For our application the scale of discrimination between two values is in the range of the unit. The
standard deviation of the mean values of the lower and upper bounds of the intervals obtained by the
different methods are at most equal to 0.31. From our viewpoint, these different methods are therefore
equivalent.

4.3.5. Results of methods used to rank or compare possibility distributions 

The  results  obtained  with  methods  used  to  rank  or  compare  possibility  distributions  detailed  in
Appendix  C  for  the  six  possibility  distributions  of  Figure  5  are  given  in  Table  9.  Ranking  by
increasing order of values is performed: the value nearest 0 corresponds to a dam in “very good state”,
which is preferred to a dam in “unacceptable state” (score of 10).

Method Ranking by increasing order
Ranking by
real value

PD 3 (6) = PD 5 (6) > PD 2 (6.4) > PD 6 (6.5) > PD 1 (6.8) > PD 4 (6.9)

Standard
compatibility

degree

PD 1 PD 2 PD 3 PD 4 PD 5 PD 6
2% Passable

75% Poor
23% Bad

2% Passable
67% Poor
31% Bad

3% Passable
73% Poor
24% Bad

42% Poor
58% Bad

84% Poor
16% Bad

58% Poor
42% Bad

Minimization
of the

distance

PD 1 PD 2 PD 3 PD 4 PD 5 PD 6
PD 1 >

Passable
PD 1 > Poor
PD 1 < Bad

PD 2 >
Passable

PD 2 > Poor
PD 2 < Bad

PD 3 >
Passable

PD 3 > Poor
PD 3 < Bad

PD 4 > Poor
PD 4 < Bad

PD 5 >
Poor

PD 5 <
Bad

PD 6 > Poor
PD 6 < Bad

Minimization
of the

distance by
sign

p = 1 PD 4 > PD 1  PD 6 > PD 2 > PD 3  PD 5

p = 2 PD 4  PD 5 > PD 1 > PD 6 > PD 2 > PD 3

Table 9. Results of methods of ranking or comparing possibility distributions – The PDi correspond to the
possibility distributions given in Figure 5

For the calculation of the ranking method by real values, the method selected is the mean of the -cut
at 0.8. The explanation for choosing this method is given in 4.4. In Table 9, the number between
brackets near the case number corresponds to the defuzzified value (mean of the -cut at 0.8).
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The selected reference fuzzy sets are presented in Figure 6. These classes are those commonly used by
experts for characterizing the state of dams. 

Methods of comparing fuzzy sets to reference fuzzy sets (standard compatibility degree and distance
minimization) do not allow ordering fuzzy sets in relation to each other. The standard compatibility
degree method is used to quantify the membership of a fuzzy set in the reference classes (defined with
the  reference  fuzzy  sets),  contrary  to  the  distance  minimization  method.  Except  for  possibility
distribution 5, the ranking obtained with the distance minimization method by sign is similar even if p
is equal to 1 or to 2. 

Although ranking by real value is inverted when applying the distance minimization method by sign,
the ranking obtained is similar. This inversion stems from the fact that the scale of our case study (and
thus the method of ranking by real value) is better for a score of 0 than for a score of 10.

4.3.6. Results of dispersion assessment methods

The  results  obtained  with  dispersion  assessment  methods  described  in  Appendix  D  for  the  six
possibility distributions of Figure 5 are given in Table 10.

Possibility Distribution PD 1 PD 2 PD 3 PD 4 PD 5 PD 6
Relative entropy 0.52 0.53 0.55 0.39 0.30 0.00
Relative surface 2.00 2.50 3.00 1.50 2.00 1.00

Mean distance to the center of gravity 1.00 1.25 1.50 0.75 1.00 0.50

Table 10. Results of dispersion methods – The PDi correspond to the possibility distributions given in
Figure 5

In our context, when the experts provide fuzzy sets, possibility distributions 1 to 4 correspond to a
dispersion that is rather considerable when possibility distributions 5 and 6 represent knowledge of
relative  certainty for  the  values  given to  the  indicators.  Only  the relative  entropy method allows
making this distinction. Indeed, regarding the methods of relative surface and mean distance to the
center of gravity, the values obtained for possibility distributions 1 and 5 are the same whereas the
signification associated with these two possibility distributions is different for the experts.

Once the pre-selected defuzzification methods have been subjected to a sensitivity analysis, it is then
possible to select the relevant methods for our application of dam performance assessment.

4.4. Selection of methods and parameterization

The selected defuzzification methods are presented in Table 11.

The value of 0.8 for the  -cut was chosen by the experts for decision-making and communication
purposes.  This  was  done  considering  the  correspondence  between  the  percentiles  (probability
approach) and membership values (possibility approach) as defined in (Baudrit  et  al.,  2003; Vick,
1997) and presented in Table 12. Indeed, the experts chose a defuzzification value that corresponds to
a value between “averagely probable” and “probable”. The mean of the  -cut at 0.8 was chosen to
correspond to the experts’ requests: a value to the right of the COG and as far from it as the dispersion
is high.

Type of result Type of information Method selected
Decision making Qualitative Graphic representation

Quantitative Defuzzification with real value by the mean
-cut at 0.8 and ranking by increasing order
(from the lowest value, nearest to 0, to the
highest  value,  nearest  to  10)  of  the  real
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values.

Communication

Quantitative – score
Defuzzification by the upper limit of the -
cut at 0.8

Quantitative – dispersion Relative entropy

Qualitative – dispersion

Interpretation  of  the  relative  entropy  (no
dispersion, low dispersion, high dispersion,
very high dispersion) regarding the entropy
value.

Qualitative – membership
Calculus  of  the percentage  of  membership
to  the  assessment  classes  of  indicators  by
the standard compatibility degree.

Table 11. Defuzzification methods Selected by expert group for the assessment of dam performance –
There are sets of qualitative and quantitative methods for both objectives: decision-making and

communication to dam managers
Linguistic meaning Percentiles Membership values
Practically impossible 1% 0.02
Very improbable 10% 0.20
Improbable 15% 0.30
Rather improbable 25% 0.50
Averagely probable 50% 1.00
Probable 75% 0.50
Rather probable 80% 0.40
Very probable 90% 0.20
Practically certain 99% 0.02

Table 12. Correspondence between percentiles (probability approach) and membership values (possibility
approach) based on the works of (Baudrit et al., 2003; Vick, 1997)

For the purposes of communication, the expected values must be to the right of the center of gravity in
order to take into account the safety aspect; the distance to the center of gravity must be as large as the
dispersion is high. The upper limit of the -cut at 0.8 was chosen in order to ensure a correspondence
between this approach and the approach selected for the expert reasoning, but with a higher level of
safety (indeed, the upper limit of the -cut must be higher than or equal to the mean of the -cut).
Relative entropy was chosen to quantify the dispersion of the fuzzy set as it evolves proportionally as
its dispersion increases, contrary to the other methods. In particular, in the context of our case study,
there is a big difference between the support and the core, characterizing high uncertainty for the
expert during their assessment.
We propose to facilitate the transmission of information using a qualitative expression associated with
the quantitative values extracted by defuzzification methods.
The approach used to translate the quantitative score into a qualitative one is performed by projecting
the precise score obtained onto the scale presented in Figure 6.
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Figure 6. Fuzzy sets describing the qualitative scale associated with the quantitative score. This scale is
used for the calculus of the percentage of membership of the classes of indicators used in the assessment

by the standard compatibility degree

A qualitative interpretation of the dispersion value for communication is also provided through four
qualitative classes: no dispersion, poor dispersion, high dispersion, very high dispersion.
The quantitative limits of these qualitative classes are set using the fuzzy sets “of reference” presented
in Table 13. The associated values of relative entropy are also indicated in Table 13.

Class Fuzzy set of reference
Value of 
relative 
entropy

No
dispersion

0

Poor
dispersion

0 – 0.30

High
dispersion

0.30  –
0.44

Very  high
dispersion

Beyond > 0.44

Table 13. Class limits of the qualitative interpretation of dispersion – The fuzzy sets of reference were
defined by experts. A class (like“High dispersion”) is associated with these fuzzy sets of reference and then

the correspondence is made from the qualitative interpretation and the value of relative entropy

4.5. Development of a calculus tool and validation on simplified cases

A tool was developed with Visual Basic that allows calculating the results of the methods selected by
the experts (cf. 4.4) by implementing all the indicators relevant to a dam in the framework of fuzzy
sets.
The tool was tested on a set of academic cases (dams with few indicators) in order to present its
outputs to the experts and to validate its pertinence regarding with their expectations.

5. Application to a real case study

This  section  describes  how  the  defuzzification  stage  takes  place  in  the  whole  model  of  dam
performance assessment. The case study is presented, then the outputs of the model are indicated –
those useful for the defuzzification phase – and finally the results of the deffuzication phase are given.

5.1. Description of the case study

The dam considered (called Example Dam) is a homogeneous dam, 15.5 m high, impounding a 3.6
hm3 lake, with an upstream embankment built of dirty, silty sand and a downstream embankment built
of clean, silty sand. The upstream shoulder is covered with rip-rap protection placed on a geotextile.
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The downstream embankment is  protected by grass.  The dam has a vertical  drain and a drainage
blanket at the interface of the foundation with the downstream embankment. It is equipped with a
reinforced concrete,  frontal  spillway.  The foundation has a granite arena structure.  It  is  sealed by
grouting.
The monitoring system is composed of 18 survey points built on the work and 4 benchmarks on the
left side to control altimetry displacements, 7 pressure cells, 13 piezometers located on the left and
right  sides,  completed later  with 3 piezometers  placed on the downstream embankment  (after  the
occurrence of a leak in this zone), and drain monitoring (6 measurements).
4  years  after  the  reservoir  was  filled,  a  wet  area  without  apparent  leakage  was  observed  at  the
downstream toe. During the following years, the damp patch grew larger, and localized slides and
seepages could be observed on the upstream shoulder. The assessment presented below was performed
on the data collected 20 years after the reservoir was filled, on the occasion of a full review of the
dam.

5.2. Assessment indicators and calculation of performances related to failure mode
The indicators are assessed on the basis of the report written by an expert at the end of the full review.
Once the indicators have been assessed, the performances related to each failure mode are calculated
using models such as that presented in Figure 1. The detailed results obtained to assess internal erosion
through the embankment are represented as a graph in  Figure 3. Three indicators are assessed as
triangular  distributions  (flow decrease,  seepage  of  clean  water,  piezometry);  one  as  an  imprecise
interval  (differential  settlement)  and  the  seven  others  as  precise  scores.  Possibility  distributions
representing the indicator scores are propagated in the model: two functions (Drainage and Erosion
Defense) are computed as possibility distributions and the other (Sealing) as a precise score. Finally,
the assessment of internal erosion through the embankment is an imprecise interval.  Figure 3 shows
that the Drainage and the Erosion Defense Functions dysfunction.

Failure mode Model output
Internal erosion through the embankment (IEE) 1 

0.75 
0.5 

0.25 

2 4 6 8 10 0 

Shoulder sliding (ShS) 1 

0.75 
0.5 

0.25 

2 4 6 8 10 0 

Internal erosion initiated around or near the spillway (IES) 1 

0.75 
0.5 

0.25 

2 4 6 8 10 0 

Internal erosion initiated around or near the gallery (IEG) 1 

0.75 
0.5 

0.25 

2 4 6 8 10 0 

Internal erosion through the foundation (IEF)
Sliding of embankment and foundation (SEF)
Overtopping (Ov)
Foundation Settlement (FS)
Foundation Plane Sliding (FPS)

Table 14. Assessment of performances related to failure mode for the Example Dam – qualitative
representation for decision-making
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The same process is applied for the whole set of failure modes. The results of these calculations are
listed in Table 14. Three out of nine are calculated as possibility distributions, IEE, IES, ShS while the
others are precise scores.

5.3. Defuzzification

The defuzzified data are presented in Table 15.
Four model outputs are higher than 2, corresponding to the class “Good” on the assessment scale: IEE,
IES, ShS and IEG. These results express abnormal behavior; they are explained in particular by the
detection of seepages (on the downstream embankment, near the spillway and in the gallery) and the
presence  of  local  surface  creep  on  the  downstream  embankment.  The  other  functions  perform
properly. Table 14 and Table 15 show that the situation is critical concerning IEE and serious for ShS.
Dispersion is low for all the results. This is a particularly interesting result of the study: it means that
the conclusions concerning the situation relative to IEE and ShS are fair. 

Aims Type of results Results
Decision-making Quantitative representation 

(QR)
Ranking from the most deteriorated function to the less 
one
Symbol ≈ means the functions present same performance
QR IEE > QR ShS > QR IES > QR IEG > QR IEF ≈ QR SEF ≈ QR 
Ov ≈ QR FS ≈ QR FPS

Communication Quantitative score (QtS) QtS IEE = 9; QtS ShS = 5.8; QtS IES = 4; QtS IEG = 3
QtS IEF = QtS SEF = QtS Ov = QtS FS = QtS FPS = 2

Quantitative dispersion 
(QtD)

QtD IEE = QtD IES = 0.1
QtD ShS = 0.05
QtD IEG = QtD IEF = QtD SEF =  QtD Ov = QtD FS = QtD FPS = 0

Qualitative dispersion 
(QlD)

QlD IEE = QlD ShS =  QlD IES = “Low dispersion”
QlD IEG = QlD IEF = QlD SEF = QlD Ov = QlD FS = QlD FPS = “No 
dispersion”

Qualitative membership 
(QlM)

QlM IEE = 100% “Bad”
QlM ShS = 100% “Poor”
QlM IES = QlS IEG = 100% “Passable”
QlM IEF =  QlS SEF = QlS Ov =  QlS FS = QlS FPS = 100 % “Good” 

Table 15. Results of the defuzzification process for the example dam of Table 14

At the end of the review, emergency corrective actions were proposed by experts:  they concerned
lowering the reservoir. Works have to be performed on the drainage system that was identified as the
origin  of  the  IEE and ShS problems.  The  measurement  system was  not  concerned by  corrective
actions.

6. Conclusion

This article proposed an approach for the selection of a defuzzification method to provide usable
output forms. The first section described the dam performance assessment model. The outputs of this
model are fuzzy sets that have to be defuzzified so that the dam experts can decide the maintenance
actions to be carried out and communicate their decision to the dam managers. The second section is
dedicated  to  the  approach  taken  to  select  relevant  defuzzification  methods:  the  analysis  of  all
defuzzification  methods,  the  collection  of  expert  requirements,  the  pre-selection  of  methods,
sensitivity analysis of pre-selected methods, the development of a tool to facilitate the analysis. Then,
the sensitivity analysis and the justification for selecting the methods were described. Finally, a real
case study was presented to illustrate the use of the defuzzification methods selected in the whole dam
performance assessment model. Although numerous defuzzification methods have been described in
the literature, they have usually been applied using standard methods, centroids or means of maxima.
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Few works deal  with the  problem of choosing defuzzification methods and our approach to  their
selection is new: the methodology strongly involved experts. Experts were involved in the definition
of the objectives of defuzzification: two were defined, i.e.  communication and decision-making to
propose corrective actions. They were also asked to choose from the defuzzication methods collected
in the literature. Moreover, our methodology relied on a sensitivity analysis to improve the choice
between different methods of the same type. The approach developed here for the sensitivity analysis
was performed on quite  a  large number  of  preselected methods,  but  it  could be applied to  other
defuzzication methods. The research was applied to the assessment of dam performance based on dam
failure modes but it can be applied to other systems, notably through the possible use of a sensitivity
analysis of the different defuzzication methods presented here and of methodological reasoning.
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8. Appendices

8.1. Appendix A - Methods providing a real value

Considering a set A and μA :X→ [ 0,1 ] its membership function on the universe X.
The support of A is given by: 
supp (A )= {x∈X|μA (x )>0 } (A. 0)

The core of A is given by:
core ( A )={ x∈ X|μA ( x )=suppx∈ X μA ( x ) } (A. 0)

An -cut of A, Aα  is given by:

Aα= { x∈ X|μ A ( x )≥α } (A. 0)

8.2. Appendix B - Methods providing a real interval

Method Reference
Dubois and Prade (Dubois and Prade, 1987)
Carlson and Fuller (Carlsson and Fuller, 2002)

Bodjanova (Bodjanova, 2005)
Grzegorzewski (Grzegorzewski, 2002)

Chanas (Chanas, 2001)

Table 16. Methods providing a real interval

8.3. Appendix C - Methods used to rank possibility distributions

8.3.1. Methods by comparison to a reference fuzzy set 

The non-standard compatibility degree of a fuzzy set, SEFi, with regard to assessment class Cj is given
by (Curt et al., 2011):

DCSEF i

C j =
SI

SSEFi
+SC j

−S I

×100 (C. 0)

Where:
S I represents the intersection surface between the fuzzy set SEFi and assessment class C j, SSEF i

 

represents fuzzy set surface SEFi, SC j
 represents the surface of assessment class C j.

The standard compatibility degree of a fuzzy set, SEFi, with regard to assessment class C j is given by:

´DCSEF i

C j =
DC SEF i

C j ×100

∑
j=1

6

DCSEFi

C j
(C. 0)

Regarding the distance minimization method, Fortemps and Roubens (1996) defined three kinds of
available relations between two fuzzy sets A and B:
A≥B if and only if C ¿

(A≥ B )=0 (C. 0)
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A>B  if and only if C ¿
(A≥ B )>0 (that implies C ¿

(B≥ A )=0) (C. 0)

A B if and only if C ¿
(A≥ B )=C ¿

(B≥ A )=0 (C. 0)

With:

C ¿
(A≥ B )={

1
2

{SL (A ≥B )+SR (A≥ B )−SR (B≥ A ) } if positive

0otherwise
 (C. 0)

SL (A ≥B )= ∫
U ( A, B)

❑

[aα−bα ]dα (C. 0)    and     SR (A≥ B )= ∫
V ( A, B )

❑

[aα−bα ]dα (C. 0)

U (A ,B )={α|0≤α ≤1,aα≥bα }(C. 0)

V (A ,B )={α|0≤α≤1,aα≥bα} (C. 0)

8.3.2. Methods by comparison of fuzzy sets two by two

Abbasbandy et al. (2006), with the distance minimization method, defined three kinds of available
relations between two fuzzy set u and v:
d p (u ,u0 )>d p (v ,u0 ) if and only if u>v (C. 0)

d p (v ,u0 )>dp (u ,u0 ) if and only if u<v (C. 0)

d p (u ,u0 )=d p (v ,u0) if and only if u v (C. 0)

With:

d p (u ,u0 )= y (u ) ∙D p (u ,u0 ) (C. 0)

D p (u ,u0 )=[∫
0

1

(|u (r )|
p
+|u (r )|

p
) ∙ dr ]

1
p

and p = 1 or 2 (C. 0)

u ( x )={
1
σ
∙ (x−x0+σ ) x0−σ ≤ x≤ x0

1x∈ [ x0 , y0 ]
1
β
∙ ( y0−x+β ) y0≤ x≤ y0+β

Otherwise

(C. 16)

u (r )=x0−σ+σ ∙ r (C. 17)        and       u (r )= y0+β−β ∙ r (C. 18)



Author-produced version of the article published in Expert Systems with Applications, 2017, 70, 160-174.
The original publication is available at http://www.sciencedirect.com/science/article/pii/S0957417416304821
DOI: 10.1016/j.eswa.2016.09.004

y (u )={
1if sign(∫

0

1

(u+u ) (r )dr )≥0

1 if sign(∫
0

1

(u+u ) (r )dr)<0

(C. 19)

8.4. Appendix D - Dispersion assessment methods

8.4.1. Relative entropy

Regarding our symbolics,  the relative entropy of a data is  given by (Nanda and Paul,  2006) and
(Shannon, 1948):

H=

− ∑
x∈ [ 0; 10 ]

μ (x ) ∙ ln (μ ( x ) )

−ln( 1
10 )

(D. 0)

The entropy formula applicable to a discrete variable and not to a continuity variable is taken as the
membership function  μ ( x ) and does not validate the continuity condition on the whole discernment
frame as described in (Liu, 2007).

8.4.2. Relative surface

The relative surface is given by ([0; 10]) assessment scale):

S=
∫
x=0

10

μ ( x ) dx

10

(D. 0)

8.4.3. Mean distance to the center of gravity 

The mean distance to the center of gravity center is given by:

DM=

∫
α=0

1

(
∫
x=0

10

x ∙ μ ( x ) ∙ dx

∫
x=0

10

μ ( x) ∙ dx

− xL (α )) ∙ dα+ ∫
α=0

1

( xR (α )−

∫
x=0

10

x ∙ μ (x ) ∙ dx

∫
x=0

10

μ (x ) ∙ dx )∙ dα
∫
α=0

1

4α ∙ dα

(D. 0)
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