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Abstract—Self organized networks has been one of the first
concrete implementations of autonomic network management
concept. Currently, several Self-Organizing-Network (SON) func-
tions are developed by Radio Access Network (RAN) vendors and
already deployed in many networks all around the world. These
functions have been designed independently to replace different
operational tasks. The concern of making these functions work
together in a coherent manner has been studied later in particular
in SEMAFOUR project where a Policy Based SON Management
(PBSM) framework has been proposed to holistically manage a
SON enabled network, namely a network with several individual
SON functions. Enriching this PBSM framework with cognition
capability is the next step towards the realization of the initial
promise of SON concept: a unique self-managed network that
responds autonomously and efficiently to the operator high level
requirements and objectives. This paper proposes a cognitive
PBSM system that enhances the SON management decisions
by learning from past experience using Q-learning approach.
Our approach is evaluated by simulation on a SON enabled
Long-Term Evolution Advanced (LTE-A) network with several
SON functions. The paper shows that the decisions are enhanced
during the learning process and discusses the implementation
options of this solution.

I. INTRODUCTION

The automation of (Radio Access Network) RAN manage-

ment and operation has been brought to the field reality with

the standardization of Self Organizing Networks (SON) by

the 3rd Generation Partnership Project (3GPP). Today several

autonomic functions, also called SON functions, are developed

by RAN vendors and deployed in many networks all around

the world. A SON function is basically a control loop that au-

tonomously tunes RAN parameters to adapt the RAN to vari-

ations of the environment and of the traffic according to op-

erator objectives. Hence time consuming manual optimization

tasks can be replaced allowing the reduction of Operational

Expenditure (OPEX). Typically, a SON function replaces a

given operational task, and is designed independently from

other SON functions. The concern of making these functions

work together in a coherent manner came in a later step.

Even though, the initial promise of the SON concept has been

to provide the operator with a Self Organized Network that

responds autonomously as a whole to the operator objectives.

However, the actual implementation consists in a network with

several SON functions operating independently, that we can

qualify as a SON enabled network, but not as a Self-Organized

Network. The main challenge is then to transform a SON

enabled network into a Self-Organized Network.

To this end, a Policy Based SON Management (PBSM) sys-

tem has been defined in the framework of Semafour European

project [1]. The PBSM determines for each SON function the

appropriate policy to follow so that all the SON functions

achieve together the high level operator objectives. The SON

functions are considered to be designed by RAN vendors in

a proprietary manner, namely as almost black boxes. The

PBSM uses the limited leverage given by the vendor, i.e.
the SON control parameters, to control the behavior of the

SON functions. This paper is a first investigation on cognitive

SON management. The objective of the paper is to assess the

feasibility and the performance of a Q-learning enabled PBSM.

The first section explains in more details the main ideas and

challenges in global SON management and motivates the need

for cognition. The next section introduces Markov Decision

Processes (MDPs) and Reinforcement Learning (RL), partic-

ularly Q-learning algorithm that we will apply later to PBSM

decision making. Section 4 presents the Q-learning PBSM

use case considered in this work and section 5 discusses

the simulation results. The considered framework is based on

Long-Term Evolution Advanced (LTE-A) SON features and it

will be extended in the future to 5G related features. Section

6 concludes the paper and explains the next steps.

II. TOWARDS COGNITIVE SON MANAGEMENT

The automation of operational RAN management tasks,

initiated by the definition of SON functions, was first intended

to reduce operational costs. The experience in the last few

years has shown that enabling a network with SON enhances

the operational efficiency, reflected by OPEX gain, but it also

enhances the network performances compared to a manually

operated network. Obviously, SONs have gained the operators’

trust and SON solutions are deployed in several countries all

over the world. On the one hand, distributed SON solutions

provided by the RAN vendors as part of the RAN release

are becoming more commonly adopted by the operators. On

the other hand, SON solutions that can be deployed in a cen-

tralized manner (so called centralized SON), in the Network

Management System (NMS) of the operator independently

from the RAN vendor network, are gaining momentum. It has

been shown in the Infonetics report [2] that the deployment



of SON solutions as well as the use of advanced network

optimization tools has kept the OPEX at the same level

even while the network is required to handle more radio

access technologies (2G, 3G, 4G), more traffic, and a higher

diversity of users and services. As the network complexity

is drastically increasing, due to network heterogeneity, the

traffic growth and the high user expectation, the automation

of RAN operation has become a necessity. Hence, automation

is gaining momentum, and it is commonly agreed today that

SON is required for an efficient RAN operation. It is also

expected to fully realize the initial promise of SON concept: to

provide the operator with a Self Organized Network, capable

of reaching as a whole the operator high level objectives.

These high level objectives reflect the operator strategy in

terms of e.g. network capacity, user satisfaction... As stated

before, PBSM framework defined in Semafour project aims

at building a Self Organized Network out of a RAN enabled

with different SON functions. This PBSM system is supposed

to be independent from the SON functions, i.e., considering

SON functions as black boxes and acting only on the SON

configuration parameters. These parameters are supposed to be

provided by RAN vendors to orient the behavior of the SON,

whereas the internal SON optimization algorithm remains

proprietary [1].

The PBSM approach proposed in Semafour relies on SON

function models, that consists in modeling for each SON func-

tion the impact of the SON Configuration parameter Values

(SCV) on the targeted Key Performance Indicators (KPIs).

This modeling is performed through exhaustive simulations

[3] and enhanced through network feedback [4]. We propose

in this paper a different approach which does not model

the individual SON functions behavior, but learns the most

efficient global decision to be made for the the whole SON

system directly from the real network, hence enabling PBSM

with cognition capabilities.

Empowering radio components with cognition capability

is a concept which has been first introduced in the radio

communication field by Mitola III [5] since 1999 under the

Cognitive Radio paradigm. The cognition cycle involves Ob-

serve, Orient, Plan, Learn, Decide, and Act phases. Cognitive

radios are radio components that mimic the human cognitive

behavior. They are aware of the user/network needs and can

adapt their functioning accordingly, also learning from past

experience. In this work we focus on the learning phase of the

cognitive cycle. For this purpose, we propose a RL PBSM, and

particularly, a Q-learning based PBSM. In fact, what makes the

the Q-learning an interesting method in our case, is that it does

not require a knowledge of the environment, and learn directly

from experience. RL has already been studied for several SON

functions. To name a few, load balancing and traffic steering

[6], interference mitigation techniques [7], power saving [8]

etc. It was shown that SON algorithms based on RL lead to

higher SON efficiency, hence improving network performance

related to the objectives of the considered functionality. RL

turned out to be also a reasonable solution for SON coordina-

tion in [9] and [10].

This paper presents the first results on learning empowered

PBSM, as a component of a global cognitive RAN man-

agement system, to pave the way towards building cognitive

management for the next generation 5G RAN. Extensive

research is currently ongoing in several 5G-PPP phase 1

projects, for example, 5G-NORMA [11], METIS II [12], and

FANTASTIC-5G [13], to define the basics of the Radio Access

Network (RAN) architecture, as well as new data link and

physical layer concepts for the air interface. In addition, the

corresponding standardization activities have started in 3GPP

[14]. 5G RAN will be enriched by a plethora of new features

and technologies such as Device-to-Device (D2D), Vehicular-

to-Anything (V2X), Massive-MIMO (M-MIMO), Internet of

Things (IoT), Machine Type Communication or new spectrum.

5G will also be vertical driven [15] with a multitude of

different requirements corresponding to the specific needs of

the vertical industries (e.g. Automotive, e-Health, Multime-

dia and entertainment,...) in addition to the classic operator

objectives (e.g. network capacity and operational efficiency).

5G is characterized by an unprecedented level of flexibility.

But high flexibility translates into a tremendous number of

possible network configurations. The role of the management

system is to choose for each state the optimal configuration.

In this context, the management system should be intelligent

and continuously enhance its decisions by learning from its

past experience.

In the following section we introduce MDPs and RL,

particularly the Q-learning algorithm that we will apply later

to PBSM decision making.

III. MARKOV DECISION PROCESSES AND

REINFORCEMENT LEARNING

A MDP is a mathematical framework that permits to model

a decision making process. It is defined by the tuple M =
(S,A, p, r) where:

• S is the set of states of the system

• A is the set of possible action

• p is the state transition probability p : S×A → Prob(S)
(For each state and action we specify a probability

distribution over next states)

• r is the reward function r : S ×A → R

An important assumption in the MDP framework is that the

current state st and action at are a sufficient statistics for

the next state st+1. This assumption translates through the

following transition model:

Pss′
a = Pr{st+1 = s′|st = s, at = s} (1)

Another important assumption is the stationarity i.e. the re-

wards and transitions do not change over time. The objective

of MDPs is to find a policy for the decision maker or agent. A

policy π is a mapping from the states space to actions space:

π : S → A (2)



In other words, a policy tells the agent what action to take

when in a certain state s. An optimal policy is a policy π∗

that maximizes a long term reward that is defined as:

Rt =

T∑
k=0

γkrt+k+1 (3)

Where γ < 1 is a discount factor that reflects the weight of

future rewards at time t. In other words the reward Rt is a

cumulative function of the instantaneous rewards perceived at

each iteration.

One way to find the optimal policy is through RL. As

defined in [16], RL is learning what to do, how to map

situations to actions, so as to maximize a numerical reward

signal. The process is portrayed in figure 1:

Fig. 1: Reinforcement Learning [16]

A RL process is an MDP if it satisfies the assumptions

mentioned before (1) and (2). RL algorithms are based on

estimates of the value and the action-value of a state, under a

policy π. The value of a state reflects how good it is to be in

a certain state in terms of the expected rewards in the future

iterations, following a policy π. It is defined as:

V π(s) = Eπ{Rt|st = s} = Eπ{
∞∑
k=0

γkrt+k+1|st = s} (4)

The optimal value function is hence:

V ∗(s) = max
π

V π(s) (5)

Respectively, the action value (Q-function) reflects how good

it is to be in an action state pair, in terms of the expected

rewards in the future iterations, following a policy π:

Qπ(s, a) = Eπ{Rt|st = s, at = a}

= Eπ{
∞∑
k=0

γkrt+k+1|st = s, at = a} (6)

And the optimal action value function is:

Q∗(s, a) = max
π

Qπ(s, a) (7)

There exists several methods to solve the RL problem. In

our work, we chose the temporal difference approach and

more precisely the Q-learning [17]. As stated in section II, Q-

learning has the property of learning the best policy without

any a priori knowledge of its environment, making it thus a

suitable approach for our problem. The algorithm is described

in the following.

Q-learning Algorithm

Initialize Q(s,a) arbitrarily

Initialize s

for t=1,...,T

- pick action a for state s according to ε-greedy policy:

a =

⎧⎨
⎩
argmax

a∈A
{Q(s, a)} with probability 1− ε

rand(A) with probability ε
(8)

- observe new state s′

- observe perceived reward r(s, a)
- update Q function as follows:

Q(s, a) ← Q(s, a) + α[r + γmax
a′∈A

Q(s′, a′)−Q(s, a)]

(9)
Until convergence

It can be shown that this algorithm converges to the optimal

policy Q∗ with probability 1 so long as all actions are

repeatedly sampled in all states and if the step size α is

decremented properly [17].

In the next section we introduce our PBSM based on Q-

learning. We then present and analyze our results.

IV. PBSM BASED ON Q-LEARNING

Q-learning algorithm can be used to find an optimal policy

for the PBSM. We consider a section of a heterogeneous

LTE(-A) mobile network of N cells, where the following

decentralized SON functions are deployed:

• Mobility Load Balancing (MLB): Deployed on each

macro cell. It iteratively tunes the cell individual offset

parameter (CIO) between each neighbor macro cell pairs

in order to balance the load between macro cells.

• Cell Range Expansion (CRE): This function is similar

to the MLB, excepts that it tunes the CIO of pico cells

in order to balance the load between the slave pico cell

and the macro cell where it is deployed.

• Enhanced Inter Cell Interference Coordination
(eICIC): Protects pico cell edge users that are attached

to a pico cell because of CRE’s offset. These users suffer

high downlink interference from the macro cell (because

the power received from the macro is higher than the

one received from the pico). The eICIC protects these

edge users by tuning the number of Almost Blank Sub-

frames (ABS) in a frame of the macro cell (in LTE, a

frame consists of 10 sub-frames, each having a duration

of 1ms). ABS include only control and cell-specific

reference signals, transmitted at reduced power. The pico

cell edge users will take advantage of these sub-frames,

either by the use of a proportional fairness scheduler or

by informing the pico cell of the ABS pattern, to transmit

in better channel conditions.

Each function can be configured through different SCV sets.

Let C be the set of all possible SCV sets combinations in the

network for all the deployed SON functions. The PBSM is

hence faced with |C| different possible configurations in the

network. Let ln ∈ [0, 1] be the load indicator of a cell n ∈ N .



Furthermore we consider 3 load states for each cell: low load,

mid load and high load. A cell n is in a load state Ln according

to the following rules:

Ln =

⎧⎪⎨
⎪⎩

low load if ln < Tlow

mid load if ln ∈ [Tlow, Thigh]

high load if ln > Thigh

(10)

Where Tlow and Thigh are load thresholds thoroughly defined

by the users through the observation of the system’s dynamics.

Now we define the considered MDP:

• The set of actions: The objective is to chose which

configuration maximizes a reward function. Hence the

set of actions is the set of all SCV combinations C.

• State space S = C×LN : A state is defined by the applied

configuration in the overall SON deployed functions and

the Load distribution in the network.

• Reward: The considered KPIs for the reward are:

– LDi,c,t is the load of cell i
– Ti,c,t is the average user throughput in cell i
– Ti,c,t

e is the average pico cell edge user throughput

of pico cell i

Moreover, L̂Dc,t, T̂c,t and T̂ e
c,t are respectively the aver-

age load, average user throughput and average pico cell

edge user throughput in the whole considered network

section. wi ∈ [0, 1] are weights that sum up to 1. They

reflect the operator’s priority to optimize the correspond-

ing KPI. The instantaneous reward is hence defined as:

rt = ω1(1− σt) + ω2T̂t + ω3T̂
e
t (11)

Where the load variance σt is:

σc,t =

∑|N |
i=0 (LDi,c,t − L̂Dc,t)

2

|N |
The objective is to find a policy that maximizes the long term

reward defined in equations 3 and 11 i.e. the best SCV sets

combination c ∈ C for each state s ∈ S. To do so we apply

the Q-learning algorithm introduced above.

We consider the scenario represented in figure 2. The

algorithm is tested on an LTE(-A) system level simulator based

on the 3GPP specifications. It is a semi-dynamic simulator

that performs correlated snapshots with a time resolution of

1 second. We take into account path loss and shadowing.

Users arrive in the network according to a Poisson arrival

and have pre-defined mobility parameters. We consider only

down-link: users arrive and request to download a file. They

are either successfully served and leave the network or they

are dropped. The traffic is considered stationary, unequally

distributed between the macro cells. High loaded macro cells

(Macro 2 & 3) contain each an extra traffic hotspot served

by a pico cell (Pico 2 & 3). In this network section there

are 3 macro cell borders. Load balancing is only required

on 2 of them (between Macros 1 and 2 and Macros 1 and

3), we have 2 CIO pairs to be tuned. We hence consider

2 MLB for the considered borders (the MLB between the

equally loaded cells (Macro 2 & 3) is considered to be turned

Fig. 2: Heterogeneous Network Model With Unbalanced Traf-

fic Distribution

off), 1 CRE and 1 eICIC deployed on each of the pico

cells. We have a total of 6 instances of 3 different SON

functionalities. Each function can be configured with SCV

sets so as to achieve certain performances. Among the many

various possible configurations, the ones we consider in our

study are summed up in table 1.

SON SCV Sets

MLB

Off: Function is turned off

SCV1: Soft configuration

SCV2: Aggressive configuration

CRE
SCV1 Soft configuration

SCV2 Aggressive configuration

eICIC

Off Function is turned off

SCV1 Reduces throughput gap between macro and
pico cell edge users

TABLE I: SCV sets behavior description

By soft configuration we mean a configuration that reduces

the load gap (without allowing the CIO of the cells to reach

high levels) and by aggressive we designate a configuration

that seeks to equilibrate the load as much as possible (by

allowing higher levels of CIO). We have thus 144 possible

combinations of SCV sets in this section of the network i.e.

|C| = 144 ((3 × 3) × (2 × 2) × (2 × 2)). In order to reduce

the complexity of the algorithm, we consider intuitively 2

cell classes: macro cell class and pico cell class. So the SCV

combination becomes per cell class and not per cell (i.e. SON

functions on the macro cells have the same configuration.

Same for the functions on the pico cells), leaving us with

only 12 possible SON configurations described in Table II.

Figure 3 represents a hierarchical view of the system: the

RL agent applies a configuration c to the SON instances,

who consequently apply parameter changes in the network



Combination Description

1 MLB: Off , CRE: SCV1, eICIC: Off

2 MLB: SCV1, CRE: SCV2, eICIC: Off

3 MLB: SCV2, CRE: SCV1, eICIC: Off

4 MLB: Off , CRE: SCV2, eICIC: Off

5 MLB: SCV1, CRE: SCV1, eICIC: Off

6 MLB: SCV2, CRE: SCV2, eICIC: Off

7 MLB: Off , CRE: SCV1, eICIC: On

8 MLB: SCV1, CRE: SCV2, eICIC: On

9 MLB: SCV2, CRE: SCV1, eICIC: On

10 MLB: Off , CRE: SCV2, eICIC: On

11 MLB: SCV1, CRE: SCV1, eICIC: On

12 MLB: SCV2, CRE: SCV2, eICIC: On

TABLE II

Fig. 3: PBSM based on RL

dynamically according to their configuration and the network

status (provided through feedback information by the inner

loops). After a certain time (sufficient for the SON functions

to converge), the RL agent in its turn receives network KPIs

through the outer loop, evaluates the instantaneous reward,

then applies the Q-learning algorithm and takes a new decision

(configuration) to be applied, and so on.

V. SIMULATION RESULTS

After running Q-learning for the described scenario, we

test the optimal policy provided by the algorithm, which is a

mapping between each visited state and the best corresponding

action (configuration). Note that the output policy is obtained

through learning, by running the Q-learning algorithm, as

described in section III. This is the exploration or learning

phase. The output policy is then evaluated in the exploitation

phase (no exploration). Figure 4 represents the action selection

statistics of the output policy during the exploitation phase.

It shows that only 2 configurations are picked according to

the optimal policy. One of them (configuration 9) is picked

almost all the time. This means that the same configuration

is optimal for all the visited system states. This is validated

in figure 5, where we test successively the 12 configurations.

Note that configurations 8 and 9 have very close rewards. This
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explains why figure 4 shows that configuration 8 is picked,

although very rarely. We conclude that Q-learning finds the

optimal action, and the policy indeed succeeds in maximizing

the perceived reward.

Concerning the convergence time, from figure 6 we notice

that the algorithm converges after a number of iterations supe-

rior to 150000, which is reasonable for Q learning algorithms.

On another hand, figure 3 shows that the learning is performed

through an outer loop, that is much slower than the inner loops

of the individual SONs. Indeed, Learning through the outer

loop is a slow process, because the agent has to wait for all

the SON functions to converge before collecting the KPIs. This
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Fig. 6: Average perceived reward in the learning phase



leads to a quite considerable convergence time. For example,

if we consider the RL iteration to be around 30min i.e. all

the SONs converge in no more than 30min, then the process

takes in the order of several hundreds of days to converge (real

network time). Because of such convergence time, it would be

unreasonable to learn from the real network. A solution would

be to perform offline pre-training before starting to learn from

the real network. This way, the algorithm does not have to

learn from scratch, hence improving the convergence.

Furthermore, the considered approach can be extended,

with the same logic, to bigger network sections with more

SON functions and configurations. In that case, the state and

action space will increase considerably, hence increasing the

convergence time. Several solutions can be envisaged to tackle

this problem e.g. by reducing the states space through fuzzy

RL algorithms [18], or by distributing the learning process

using a cooperative multi-agent RL approach [19].

VI. CONCLUSION AND FURTHER WORKS

In this paper we have introduced a PBSM based on RL.

More precisely we have used the Q-learning algorithm to find

an optimal policy. We have shown that after a training phase,

the algorithm succeeds in finding the optimal policy. The

PBSM hence configures the deployed SONs in the network

according to this policy. This approach does not require

any models and leads consequently to more accurate results.

We have also discussed the possibilities of extending this

approach to larger network sections with more SON functions.

However, Q-learning requires a considerable training time.

Plus, in order to find the optimal policy, the system explores

many actions during the learning phase, which may lead to

performance degradation if this phase is applied on the real

network. This issue is known in the RL framework as the

exploration/exploitation dilemma.

Besides, since it looks like the optimal policy consists in

one optimal action in all states (figure 4), then our problem

reduces to a special case of MDPs where there is only a single

state. Thus, there might be a possibility to study and analyze

the problem using a different approach, that still lies in the

RL framework: the Multi-Armed Bandits (MAB) [20].

Finally, the extension of this cognitive PBSM approach for

5G networks and use cases is also an important axis for our

future research.
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