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Abstract. The stochastic Gross-Pitaevskii equation is used as a model to describe Bose-Einstein
condensation at positive temperature. The equation is a complex Ginzburg Landau equation
with a trapping potential and an additive space-time white noise. Two important questions for
this system are the global existence of solutions in the support of the Gibbs measure, and the
convergence of those solutions to the equilibrium for large time. In this paper, we give a proof of
these two results in one space dimension. In order to prove the convergence to equilibrium, we
use the associated purely dissipative equation as an auxiliary equation, for which the convergence
may be obtained using standard techniques. Global existence is obtained for all initial data, and
not almost surely with respect to the invariant measure.

1. Introduction

In this paper, we will present a mathematical analysis of a model related to discussions on
the Gibbs equilibrium in the papers [1, 16]. In those papers, the authors consider the dynamics
of the wave function in Bose-Einstein condensation near the critical temperature Tc, using the
so called (projected) stochastic Gross-Pitaevskii equation :

dψ = P
{
− i

~
LGPψdt+

G(x)

kBT
(ν − LGP )ψdt+ dWG(x, t)

}
(1.1)

where

LGP = − ~2

2m
∇2 + V (x) + g|ψ|2, 〈dW ∗G(s, y), dWG(t, x)〉 = 2G(x)δt−sδx−y dt,
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whose derivation from the quantum mechanics system may be found in, e.g., [11, 13]. Here, m is
the mass of an atom, V (x) is the trapping potential, ν is the chemical potential, g characterizes
the strength of atomic interactions related to the s-wave scattering length. The second and third
terms in the right hand side of (1.1) represent growth processes, i.e., collisions that transfer
atoms from the thermal cloud to the classical field and vice versa. The form of G(x) may be
determined from kinetic theory, and is often taken as a constant, and dWG is the complex-valued
Gaussian noise associated with the condensate growth. Lastly, P is a projection which restricts
the dynamics to the low-energy region defined by the harmonic oscillator modes, or Fourier
modes, depending on the situation. At zero temperature T = 0, the statistics of the atoms
is well represented by a single condensate wave function, and the standard Gross-Pitaevskii
equation describes the coherent evolution of the wave function in a quite good manner since
all spontaneous and incoherent processes, like the effect of thermal cloud, may be neglected.
The effects of such incoherent elements are implemented by adding a dissipation and a noise to
the standard Gross Pitaevskii equation as above. This model was numerically shown in [22], to
be well suited for modeling the dynamics of evaporative cooling and vortex formation during
BEC. The authors in [1] propose a more detailed high-energy cut-off stochastic Gross-Pitaevskii
equation (which they call SPGPE), where in their model a rotation term and a multiplicative
noise are also considered.

The authors in [16] use (1.1) with V ≡ 0 and periodic boundary condition in 2d or 3d
for the purpose of classification of the phase transition in the system by means of well-known
universality class argument in thermal equilibrium. The phase transition accompanied with a
symmetry breaking leads to the formation of a topological defect, e.g., strings, vortices, and
the paper [16] tries to find some common properties between the strings at the beginning of
the Universe and the vortices in Bose-Einstein condensates by studying the thermal (Gibbs)
equilibrium and the stochastic dynamic evolution.

Our purpose in the present paper is the study of the stochastic partial differential equation
(1.1) with P = Id and G(x) constant (which we assume from now on). Using the mathematical
construction of the Gibbs equilibrium measure in dimension one in space studied in [3], together
with the strong Feller property of the stochastic evolution equation, we will prove the global
existence of solutions for the infinite dimensional system, and show that those solutions converge
exponentially to the Gibbs equilibrium. Note that this implies, for the finite dimensional system
(1.1), the exponential convergence with a rate which is uniform in term of the number of modes
taken into account in the projection P. Several related mathematical studies can be found; for
example, in [2] the author dealt with the equation (1.1) on a bounded domain D with V ≡ 0 (and
without the projection P), in both cases of defocusing and focusing nonlinearities. It was shown
there the existence and uniqueness of the invariant measure on Lp(D) for any p ≥ 2, but the
convergence to the Gibbs measure was not discussed. Recently, the authors in [4] considered an
equation close to (1.1) with a focusing nonlinearity (i.e. g < 0), V ≡ 0 and a regular noise, but
with a modified linear operator, on the 1d torus. They proved the existence and the invariance
of the grand-canonical Gibbs measure, and the exponential decay to equilibrium. The additional
term added in the dynamical equation in [4] may be viewed as a restoring term. The technics
we develop in the present paper allow to simplify the proof of the convergence to equilibrium in
this case, and to treat the case of the space-time white noise (see Remark 7.2).
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We will consider the stochastic Gross-Pitaevskii equation (1.1) on R, a defocusing nonlinearity
(g > 0), and a harmonic potential V (x) = |x|2. The invariance of the Gibbs measure, global
existence of solutions for all initial data, and the exponential decay to equilibrium will be proved.
The support of the Gibbs measure in our case will be on a Banach space, and this fact requires
a bit more complicated justification than the papers [2, 4] where the basic space was the Hilbert
space L2. Also, the paper [2] assumed that the dissipation was not too small to obtain a globally
defined strong solution, whereas our result covers any coefficient size of the dissipation. The
noise we will consider is a space-time white noise, and our proof for the convergence to the
Gibbs equilibrium, together with the global existence for all initial data thanks to the strong
Feller property are the first results for this kind of stochastic Ginzburg-Landau equations, as
far as we know. Also, due to the presence of the space-time white noise, the (more physical)
case of space dimension two or three requires the use of renormalization, and of much more
involved arguments, and will be the object of future work. The focusing case also needs some
investigations, as the technics of [4] would lead to a trivial measure in the presence of the
quadratic potential (see again Remark 7.2).

Lastly, let us introduce the results in [3] where the Hamiltonian case was studied, i.e., the case
of G = 0 in (1.1) with V (x) = |x|2 in one dimensional space. The authors in [3] constructed the
Gibbs measure, and making use of the invariance of that measure, they prove a globalization
of the local-in-time solution in a negative Sobolev space, for almost all initial data with respect
to this measure. We will sometimes make use of their deterministic results. Moreover, it was
recently proved (see [17]) that this Gibbs measure may be obtained as the mean field limit of
the (finite dimensional) quantum particle system.

2. Preliminaries and main results

We consider the following Gross-Pitaevskii equation (complex Ginzburg-Landau equation)
with a harmonic potential, driven by a space-time white noise in one spatial dimension.{

dX = (i+ γ)(HX + ηX − λ|X|2X)dt+
√

2γdW, t > 0, x ∈ R,
X(0) = X0,

(2.1)

where H = ∂2
x − x2, γ > 0 and η ≥ 0. In this paper we always assume that the nonlinearity is

defocusing, namely, we fix λ = 1. The unknown function X is a complex valued random field on
a probability space (Ω,F ,P) endowed with a standard filtration (Ft)t≥0. The stochastic process
(W (t))t≥0 is a cylindrical Wiener process on L2(R,C) associated with the filtration (Ft)t≥0, i.e.,
for any complete orthonormal system {ek}k∈N in L2(R,R), we can write

W (t, x) =
∑
k∈N

βk(t)ek(x).

Here, {βk}k∈N is a sequence of complex-valued independent Brownian motions on the stochastic
basis (Ω,F ,P, (Ft)t≥0).

It is known that the operator H has a self-adjoint extension on L2(R,C), which is still denoted
by H, and the resolvent of H is compact. Thus, the whole spectrum of H is discrete, and we
denote the (real-valued) eigenfunctions by {hn}n≥0 which form an orthonormal basis of L2(R,R).
They satisfy Hhn = −λ2

nhn with λn =
√

2n+ 1. In fact, those functions hn(x) are known as
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the Hermite functions. We denote by EN the complex vector space spanned by the Hermite
functions, EN = span{h0, h1, ..., hN}.

For 1 ≤ p ≤ +∞, and s ∈ R, we define the Sobolev space associated to the operator H.

Ws,p(R) = {v ∈ S ′(R), |v|Ws,p(R) := |(−H)s/2v|Lp(R) < +∞},

where S(R) denotes the Schwartz space. If I is an interval of R, E is a Banach space, and
1 ≤ r ≤ ∞, then Lr(I, E) is the space of strongly Lebesgue measurable functions v from I into
E such that the function t→ |v(t)|E is in Lr(I). We define similarly the spaces C(I, E), Cα(I, E)
or Lr(Ω, E). Sometimes, emphasis will be put in the notation on the measure we consider ; for
example if we write Lq((Lp, dρ),R), this means the space of real-valued, measurable functions
on the measure space (Lp, dρ), with integrable q-th power. For a complex Hilbert space E,
the inner product will be understood as taking the real part, i.e., for u = uR + iuI ∈ E and
v = vR + ivI ∈ E, then we set (u, v)E := (uR, vR)E + (uI , vI)E that is we use the identification
C ' R2.

Motivated by the physical background explained in the Introduction, our aim is first to show
mathematically that Eq.(2.1) has the same invariant Gibbs measure as the one described in [3]
which is formally described, up to a normalizing constant, by

ρ(du) = e−S(u)du, u ∈ Lp(R;C) (2.2)

where S is the Hamiltonian for the case γ = 0, i.e.,

S(u) =
1

2

∫
R
|(−H)1/2u|2dx− η

2

∫
R
|u|2dx+

1

4

∫
R
|u|4dx,

then to use this in order to prove the global existence of solutions and the exponential convergence
to this equilibrium as t→ +∞.

We may give a meaning to the measure (2.2) as follows. When u =
∑∞

n=0 cnhn, cn ∈ C, we
write cn = an + ibn with (an, bn) ∈ R2. For N ∈ N, we consider the probability measure on

R2(N+1) defined by

dµN :=
N∏
n=0

λ2
n

2π
e−

λ2n
2

(a2n+b2n)dandbn.

This measure defines a measure on EN through the map from R2(N+1) to EN defined by

(an, bn)Nn=0 7→
N∑
n=0

(an + ibn)hn,

and this measure will be again denoted by µN . Here,
∏N
n=0

λ2n
2π is the normalizing factor, i.e.,

µN (EN ) = 1. This measure µN can be seen as the law of the EN -valued random variable
ϕN (ω, x) defined on (Ω,F ,P) by

ϕN (ω, x) :=

N∑
n=0

√
2

λn
gn(ω)hn(x),
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where {gn(ω)}Nn=0 is a system of independent, complex-valued random variables with the law
NC(0, 1). It may be seen, using the asymptotic properties of the Lp norm of the Hermite
functions hn, i.e.

|hn|Lp(R) ≤ Cpλ
− 1

6
θ(p)

n ,

where

θ(p) =

{
1 if p ≥ 4,
2− 4

p if 2 ≤ p ≤ 4
(2.3)

(see Lemma 3.2 of [3]), that {ϕN}N≥0 is a Cauchy sequence in L2(Ω, Lp(R,C)) for any p > 2.
Thus, the limit ϕ := limN→∞ ϕN is well-defined and

ϕ(ω, x) =

∞∑
n=0

√
2

λn
gn(ω)hn(x).

We denote by µ the measure on Lp(R;C), with p > 2, induced by this random variable ϕ(ω),
that is, for any Borel set A ⊂ Lp,

µ(A) = P(ω ∈ Ω, ϕ(ω) ∈ A).

Note that the measure µ can be decomposed into

µ = µN ⊗ µ⊥N
where µ⊥N is the law of the random variable on E⊥N = {u ∈ Lp(R;C);∀v ∈ EN , (v, u)EN = 0},

∞∑
n=N+1

√
2

λn
gn(ω)hn(x).

In the case η = 0, recalling that supp µ ⊂ L4(R) ∩ Lp(R), for any p > 2, we see that
exp{−1

4 |u|
4
L4(R)} ∈ L

1(Lp(R), dµ) for any p > 2, and we can define the Gibbs measure ρ as

ρ(du) = Γ−1 exp
{
− 1

4
|u|4L4(R)

}
µ(du), for µ-a.e. u

where Γ is the normalizing constant, that is, Γ =
∫
Lp e

− 1
4
|u|4
L4µ(du). When η is positive (and

possibly large), we have to use a different decomposition. Consider the spectral projector

ΠN

( ∞∑
n=0

cnhn

)
:=

N∑
n=0

cnhn

which is bounded in L2 with a bound equal to 1, and let N0 = N0(η) be such that λ2
N0
≤ η <

λ2
N0+1, with the convention λ−1 = 0. Then the operator A := −H − η(I − ΠN0), with D(A) =
D(−H), is clearly a positive, definite, self-adjoint operator, and arguments similar to those above

show that e−
1
2

(Au,u)L2du defines, up to a normalizing constant, a Gaussian probability measure
µ̃η on Lp(R) for any p > 2. Setting then

Ṽη(u) = −η
2
|ΠN0u|2L2 +

1

4
|u|4L4

and

Γ̃η =

∫
Lp
e−Ṽη(u)µ̃η(du),
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and noting that there exists a constant CN0,η > 0 such that 1
4 |u|

4
L4 ≥ Ṽη(u) ≥ 1

8 |u|
4
L4 −CN0,η for

µ̃η- a.e. u ∈ Lp(R), we deduce that Ṽη ∈ L1(Lp, dµ̃η) and we may define the measure ρ as

ρ(du) = Γ̃−1
η e−Ṽη(u)µ̃η(du). (2.4)

Of course, both definitions coincide when η = 0.

Let us now consider the equation (2.1). We take {hk, ihk}k≥0 as a complete orthonormal
system in L2(R,C), namely our cylindrical Wiener process is now

W (t, x) =

∞∑
k=0

(βRk (t) + iβIk(t))hk(x).

Here, (βRk (t))t≥0 and (βIk(t))t≥0 are sequences of real-valued Brownian motions.

First, we introduce the linear equation

dZ = (i+ γ)HZdt+
√

2γdW, t ∈ R, x ∈ R. (2.5)

Note that we consider here that the process W has been extended to the negative time axis.
The stationary solution Z∞ of (2.5) can be written as

Z∞(t) =
√

2γ

∫ t

−∞
e(t−s)(i+γ)HdW (s), t ∈ R. (2.6)

Expanding W (t) as a series, we may write Z∞ as

Z∞(t) =
√

2γ

∞∑
k=0

∫ t

−∞
e−(t−s)(i+γ)λ2k(dβRk (s) + idβIk(s))hk(x).

Since Z∞ is stationary, √
2γ

∫ t

−∞
e−(t−s)(i+γ)λ2k(dβRk (s) + idβIk(s))

has the same law as √
2γ

∫ 0

−∞
es(i+γ)λ2k(dβRk (s) + idβIk(s))

which is NC

(
0, 2

λ2k

)
. Hence we may write

Z∞(t) =

∞∑
k=0

√
2

λk
gk(ω, t)hk(x)

where (gk(ω, t))k is a family of independent NC(0, 1), i.e. the law L(Z∞(t)) is equal to the
Gaussian measure µ.

The regurarity of Z∞(t) is given by the following Lemma.
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Lemma 2.1. Let T > 0 be fixed. Let p > 2, s ∈ [0, 1
6θ(p)) and α ∈ (0, 1

12θ(p)−
s
2). The stationary

solution Z∞ of (2.5) has a modification in Cα([0, T ],Ws,p(R)). Moreover, there exists a positive
constant Mp,T such that

E
(

sup
t∈[0,T ]

|Z∞(t)|Lp
)
≤Mp,T .

We will give a proof of this lemma in Appendix A. Note that this regularity may not be
optimal, but is enough for our purpose.

Using the regularity of Z∞ a.s. in C([0, T ], Lp(R)) for any p > 2 we establish the local
existence of the solution to the equation (2.1).

Proposition 1. Let γ > 0, η ≥ 0, λ = 1 and p ≥ 3. Let T > 0. Assume X0 ∈ Lp(R). Then
there exists a random stopping time T ∗ = T ∗X0,ω

> 0, a.s. and a unique solution X(t) adapted to

(Ft)t≥0 of (2.1) with X(0) = X0, almost surely in C([0, T ∗), Lp(R)). Moreover, we have almost
surely, T ∗ = T or lim sup

t→T ∗
|X(t)|Lp(R) = +∞.

Note that this proposition is also valid for the case λ = −1, but we focus on the defocusing
case λ = 1. The Gibbs measure ρ is, in fact, an invariant measure for (2.1). With the use of
this invariant measure, we obtain the global existence of the solution of (2.1) for ρ-a.e. X0 (or
equivalently for µη-a.e. X0) :

Theorem 1. Let γ > 0, η ≥ 0, λ = 1 and p ≥ 3. There exists a ρ-measurable set O ⊂ Lp(R)
such that ρ(O) = 1, and such that for X0 ∈ O there exists a unique solution of (2.1), X(·) ∈
C([0,∞), Lp(R)) a.s.

Let Pt be the transition semigroup associated with equation (2.1) which, thanks to Theorem 1,
is well defined and continuous on L2((Lp(R), dρ),R) for any t ≥ 0 and for p ≥ 3. We will actually
prove that Pt is defined on the set of Borelian bounded functions on Lp(R) for any p ≥ 3 and
that it is strong Feller and irreducible. As a consequence, we will obtain the following theorem.

Theorem 2. Let γ > 0, η ≥ 0, λ = 1 and p ≥ 3. For any X0 ∈ Lp(R), there exists a unique
solution of (2.1), X(·) ∈ C([0,∞), Lp(R)) a.s.

Finally, we will use the purely dissipative counterpart of equation (2.1) to prove the exponen-
tial convergence of the transition semi-group, as sated in the following theorem.

Theorem 3. Let γ > 0, η ≥ 0, λ = 1 and p ≥ 3. Let φ ∈ L2((Lp, dρ),R), and φ̄ρ =∫
Lp φ(y)dρ(y). Then u(t, ·) := Ptφ(·) converges exponentially to φ̄ρ in L2((Lp, dρ),R), as t→∞;

more precisely, ∫
Lp
|u(t, y)− φ̄ρ|2dρ(y) ≤ e−2γt

∫
Lp
|φ(y)− φ̄ρ|2dρ(y).

Remark 2.1. The statements in the theorems are restricted to the case p ≥ 3 although we only
need p > 2 for the support of the Gaussian measure µ̃η. This condition comes from the cubic
nonlinearity in (2.1); the results are still valid for more general nonlinear power |X|2σX under
the conditions p ≥ 2σ + 1 and p > 2.
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In the course of the proof of the above theorems, we will frequently use an approximation by
finite dimensional objects. We thus define here, as in [3], for any p ∈ [1,∞], a smooth projection
operator SN : Lp(R;C)→ EN by

SN

( ∞∑
n=0

cnhn

)
:=

∞∑
n=0

χ
( 2n+ 1

2N + 1

)
cnhn = χ

( H

2N + 1

)( ∞∑
n=0

cnhn

)
.

where χ is a cut-off function such that χ ∈ C∞0 (−1, 1), χ = 1 on [−1
2 ,

1
2 ]. We will make use

of Proposition 4.1 of [3] : SN is a bounded operator from Lp to Lp, uniformly in N , for any
p ∈ [1,∞]. Note that the usual spectral projector ΠN does not satisfy this property. On the
other hand, one can in fact check under the assumptions in Lemma 2.1 that

E
(

sup
t∈[0,T ]

|ΠNZ∞(t)|Lp
)
≤Mp,T , E

(
sup
t∈[0,T ]

|(I −ΠN )Z∞(t)|Lp
)
≤Mp,T ,

and ΠNZ∞(t), (I −ΠN )Z∞(t) make sense in Lp(R), a.s. if p > 2 (see the proof of Lemma 2.1).

Let E be a separable Hilbert space and K be a Banach space. Given a differentiable function
ϕ from E to K, we denote by Dϕ(x) its differential at x ∈ E. It is an element of L(E,K) and
if K = R it is identified with its gradient so that it is also seen as an element of E. If ϕ is twice
differentiable, D2ϕ is its second differential. Again, we identify D2ϕ(x), x ∈ E, with an element
of L(E,E) in case of K = R. If {ei}i∈N is a Hilbert basis in E, µ a probability measure on E,
and ϕ ∈ C1

b (E;R), then

|Dϕ|2L2((E,dµ),E) :=

∫
E
|Dϕ(x)|2Edµ(x) =

∫
E

∑
i∈N

(Dϕ(x), ei)
2
Edµ(x).

This paper is organized as follows. In Section 3, we will introduce the deterministic properties
of the equations including the kernel estimate for the deterministic linear part of equation (2.1).
The proof of proposition 1 will be an easy consequence of those estimates. A review for the
purely dissipative equation, i.e. equation (2.1) without the skew-symmetric part induced by
the imaginary unit i will be given in Section 4 concerning the existence and the uniqueness
of invariant measure, and the Poincaré inequality, for finite dimensional approximations of the
equation. The invariance for the finite dimensional approximations of equation (2.1) will also be
discussed in Section 4. Note that the results of Section 4 make use of rather standard techniques.
We will establish the global existence of solutions of (2.1) for a.e. initial data with respect to the
Gibbs measure in Section 5, together with the invariance of the (infinite dimensional) measure
ρ, while the strong Feller property and the global existence for all initial data will be proved in
Section 6. Using the purely dissipative equation as an auxiliary equation, the convergence to
the Gibbs equilibrium in (2.1) will be proved in Section 7. Note that, to our knowledge, it is the
first time that such an argument, is used in the infinite dimensional case. In order to simplify
the presentation, it will be assumed from Section 4 to Section 7 that η = 0. Section 8 will be
devoted to explain how the arguments can be adapted to the case η > 0 (and possibly large).
In the Appendix, we will show some regularity properties of the stochastic convolution needed
in the course of the proofs.
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3. Local existence of the strong solution

In this section we will give a proof of Proposition 1. Let T > 0 and fix p ≥ 3. Let z ∈
C([0, T ], Lp). Consider the following deterministic equation :{

∂tv = (i+ γ)(Hv + η(v + z)− |v + z|2(v + z)), t > 0, x ∈ R,
v(0) = v0.

(3.1)

Note that X is a solution of (2.1) if and only if X = v + z with

z(t) = Z∞(t)− e(i+γ)tHZ∞(0) =
√

2γ

∫ t

0
e(t−s)(i+γ)HdW (s),

and v solution of (3.1) with v0 = X0. Moreover, Lemma 2.1, and Lemma 3.1 below show that z
has paths a.s. in C([0, T ], Lp). Concerning v, we can prove the following local existence result.

Proposition 2. Let T > 0 and p ≥ 3, and let v0 ∈ Lp(R) and z ∈ C([0, T ], Lp). Then there
exist a time T ∗ = T ∗v0,z > 0 and a unique solution v of (3.1) in C([0, T ∗), Lp(R)). Moreover, we
have T ∗ = T or lim sup

t→T ∗
|v(t)|Lp(R) = +∞.

To prove Proposition 2, we need some estimates for the linear deterministic equation :{
∂tw = (i+ γ)Hw, t > 0, x ∈ R,
w(0) = f ∈ S(R).

(3.2)

Lemma 3.1. The solution w of equation (3.2) can be written as

w(t, x) = et(i+γ)Hf =

∫
R
Kt(x, y)f(y)dy, t > 0, x ∈ R,

with the kernel

Kt(x, y) :=
1√

−2πi sin(2(γi− 1)t)
exp

{ cos(2(γi− 1)t)

i sin(2(γi− 1)t)

x2 + y2

2
− 1

i sin(2(γi− 1)t)
xy
}
.

The kernel satisfies, for t > 0 sufficiently small,

|et(i+γ)Hf |Lr(R) ≤ Cγt−
1
2l |f |Ls(R), (3.3)

where

0 ≤ 1

r
≤ 1

r
+

1

l
=

1

s
≤ 1.

Remark 3.1. The constant Cγ in (3.3) is independent of t and diverges when γ is close to 0.

Proof. The form of the kernel is due to the Mehler formula (see e.g.[15]). For (3.3), we decompose
the kernel as follows.

Kt(x, y) =

√
δ

π
e−(β−δ)x2e−δ(x−y)2e−(β−δ)y2 ,

where we put

δ = −1

2

1

i sin(2(γi− 1)t)
, β = −1

2

cos(2(γi− 1)t)

i sin(2(γi− 1)t)
.
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Remark that Re(δ) > 0 for 0 < t < π
4 and Re(β − δ) > 0 for any 0 < t < π

4 ; indeed, we can
compute

i sin(2(γi− 1)t) = − sinh(2γt) cos(2t)− i cosh(2γt) sin(2t),

and thus, Re(i sin(2(γi − 1)t)) = − sinh(2γt) cos(2t) < 0 for 0 < t < π
4 . Therefore we get

Re(δ) > 0 for 0 < t < π
4 since

Re(δ) = −1

2
Re
( 1

i sin(2(γi− 1)t)

)
= −1

2

Re(i sin(2(γi− 1)t))

| sin(2(iγ − 1)t)|2
.

On the other hand,

β − δ = −1

2

cos(2(γi− 1)t)− 1

i sin(2(γi− 1)t)
.

Since

cos(2(γi− 1)t) = cosh(2γt) cos(2t) + i sinh(2γt) sin(2t),

we have,

cos(2(γi− 1)t)− 1

i sin(2(γi− 1)t)

= −(cosh(2γt) cos(2t)− 1 + i sinh(2γt) sin(2t))(sinh(2γt) cos(2t)− i cosh(2γt) sin(2t))

sinh2(2γt) cos2(2t) + cosh2(2γt) sin2(2t)
.

The real part of the numerator is

−(cosh(2γt) cos(2t)− 1)(sinh(2γt) cos(2t))− sinh(2γt) cosh(2γt) sin2(2t)

= − sinh(2γt)[− cos(2t) + cosh(2γt)]

< 0,

for 0 < t < π
4 since cosh(2γt) ≥ 1 > cos(2t). Accordingly, Re(β − δ) > 0 for any 0 < t < π

4 .

Then, we have,

|et(i+γ)Hf |Lr(R) ≤
{∫

R

(∫
R
|Kt(x, y)f(y)|dy

)r
dx
}1/r

≤
{∫

R

(∫
R

√
|δ|
π
e−Re(β−δ)x2e−Reδ(x−y)2e−Re(β−δ)y2 |f(y)|dy

)r
dx
}1/r

≤
√
|δ|
π

∣∣∣e−(Reδ)x2 ∗ |f |
∣∣∣
Lr(R)

≤
√
|δ|
π
|e−(Reδ)x2 |Ll′ (R)|f |Ls(R), with

1

r
+ 1 =

1

l′
+

1

s
,

where we have used the Young inequality in the last line. Then, it suffices to show that for
0 < t < π

4 , √
|δ|
π
|e−(Reδ)x2 |Ll′ (R) ≤ Ct

− 1
2l (3.4)
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for l ≥ 1 such that 1
l′ +

1
l = 1. Note first that there exists a constant C > 0 which is independent

of t ∈ (0, π4 ) such that ∣∣∣√ |δ|
π
e−(Reδ)x2

∣∣∣
L∞(R)

≤
√
|δ|
π
≤ Ct−1/2,

for 0 < t < π
4 . Next, note that for sufficiently small t > 0,∣∣∣ Imδ

Reδ

∣∣∣ =
sin 2t

sinh(2γt)

cosh(2γt)

cos 2t
≤ (e4γ2t + 1)(sin 2t)

16γ4t cos(2t)
≤ 1

2γ4

which is a positive constant if γ 6= 0, and we deduce from this that for some constant Cγ ,∣∣∣√ |δ|
π
e−(Reδ)x2

∣∣∣
L1(R)

=

√
|δ|

Reδ
≤ Cγ .

Inequality (3.4) follows by interpolation between the cases l = 1 and l = +∞. �

Proof. (of Proposition 2). We follow the arguments in [14]. Let T0 ≤ T be small enough for the
inequality (3.3) in Lemma 3.1 to be satisfied. We consider the closed ball in C([0, T0], Lp),

BR(T0) := {v ∈ C([0, T0], Lp), |v|C([0,T0],Lp) ≤ R}

with R := 2Cγ |v0|Lp and Cγ is the constant appearing in (3.3). We will check that the map T
defined by

T v(t) := et(i+γ)Hv0 − (i+ γ)

∫ t

0
e(t−s)(i+γ)H

[
|v + z|2 − η

]
(v + z)(s)ds

is a strict contraction on BR(T0), for a possibly smaller T0. For any v1, v2 ∈ BR(T0), taking
r = p and s = p/3 in (3.3),

|T (v1)− T (v2)|Lp ≤ Cγ

∫ t

0
|t− s|−

1
p |
[
|v1 + z|2(v1 + z)− |v2 + z|2(v2 + z)

]
(s)|Lp/3ds

+ Cγη

∫ t

0
|v1(s)− v2(s)|Lpds

≤ Cγ

∫ t

0

[
|t− s|−

1
p max
i=1,2

|vi(s) + z|2Lp + η

]
|v1(s)− v2(s)|Lpds,

where we have used Hölder inequality in the last inequality. Put θ := 1− 1
p > 0. Then

|T (v1)− T (v2)|C([0,T0],Lp) ≤ Cγ

[
T θ0 max

i=1,2
|vi + z|2C([0,T0],Lp) + ηT0

]
|v1 − v2|C([0,T0],Lp)

≤ Cγ

[
T θ0 (R2 + |z|2C([0,T ],Lp)) + ηT0

]
|v1 − v2|C([0,T0],Lp).

Using now the inequality (3.3) with r = s = p for the free term, we similarly have, for v1 ∈
BR(T0),

|T (v1)|C([0,T0],Lp) ≤ Cγ |v0|Lp + CγT
θ
0 (R3 + |z|3C([0,T0],Lp)) + ηT0

≤ R

2
+ CγT

θ
0 (R3 + |z|3C([0,T ],Lp)) + ηT0.
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We thus see that T is a contraction in BR(T0) provided T0 is sufficiently small, which gives a
unique solution in C([0, T0], Lp), and, thanks to classical extension arguments, a unique maximal
solution in C([0, T ∗), Lp), where T ∗ depends only on γ, η, v0 and z. �

Next, we introduce an approximation for the solution v of (3.1) defined above. We fix T > 0,
and p ≥ 3. For any z ∈ C([0, T ], Lp(R) ∩ L4(R)), let vN be the solution of

∂tv = (i+ γ)
(
Hv + η SN (v + z)− SN (|SN (v + z)|2SN (v + z))

)
, t > 0, x ∈ R, (3.5)

with initial data

vN (0) ∈ EN . (3.6)

This equation has an energy estimate, which is easily obtained by taking the L2- inner product
of (3.5) with vN and using the boundedness of SN in L4(R) and Young’s inequality (see also
[2, 14]):

1

2

d

dt
|vN (t)|2L2 + γ|vN (t)|2W1,2(R) − η|vN (t)|2L2(R) +

γ

2

∫
R
|vN (t, x)|4dx (3.7)

≤ Cγ
∫
R
|SNz(t)|4dx

≤ Cγ sup
t∈[0,T ]

|z(t)|4L4 ≤ Cγ,T .

Therefore, |vN (t)|L2 ≤ e2(η−λ20γ)T [|vN (0)|L2 + Cγ,T,z] for all t ∈ [0, T ]. Since vN (0) ∈ EN , any
norm of vN (0) is finite, i.e. |vN (0)|Lr ≤ CN,r for any r ∈ [1,∞], and for any p ≥ 1,

|vN (t)|Lp ≤ CN,p|vN (t)|L2 ≤ CN,pe2(η−λ20γ)T (|vN (0)|L2 + Cγ,T,z) ≤ Cp,N,γ,T,z
for all t ∈ [0, T ].

Remark also that by Proposition 4.1 of [3], the bound of SN from Lp to Lp is uniform in N ,
thus for z ∈ C([0, T ], Lp(R)),

lim
N→∞

|(SN − I)z|L∞(0,T,Lp(R)) = 0, 1 ≤ p ≤ +∞. (3.8)

We thus have the following proposition.

Proposition 3. Let p ≥ 3 and T > 0. Let z ∈ C([0, T ], Lp(R) ∩ L4(R)). Then there exists a
unique global solution in C([0, T ], EN ), denoted by vN , of (3.5)-(3.6). Moreover, for v0 ∈ Lp(R).
If vN (0) = SNv0, then vN converges to v in L∞(0, T, Lp(R)) as N →∞ for any T < T ∗.

We remark that the convergence of vN to v is a consequence of the fixed point argument seen
in the proof of Proposition 2 and of (3.8).

4. Purely dissipative case and Gibbs measure

We recall in this section a few results concerning the purely dissipative case that will be useful
in the following. Although those results are obtained thanks to fairly standard techniques, we
will give some details for the sake of completeness. As explained in Section 2, we assume from
now on that η = 0, in order that the arguments are simpler to state, and we refer to Section 8
for a description of the case η > 0.
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The purely dissipative equation is then

dY = γ(HY − |Y |2Y )dt+
√

2γdW. (4.1)

We first consider the following approximation :

dY = γ(HY − SN (|SNY |2SNY ))dt+
√

2γΠNdW, Y (0) = y ∈ EN . (4.2)

If we put uN := YN −ΠNZ∞ where YN satisfies (4.2), then uN verifies

∂tu = γ
(
Hu− SN (|SN (u+ Z∞)|2SN (u+ Z∞))

)
, x ∈ R. (4.3)

Recall that Z∞ is defined in (2.6), and note that SN ◦ ΠN = SN . By the same arguments as
for (3.5), replacing z by ΠNZ∞, and using Lemma 2.1, we have the energy estimate (3.7) for
uN , almost surely. It thus follows as in Proposition 3 that for any γ 6= 0 and p ≥ 3, there exists
a unique global solution uN ∈ C(R+, EN ) a.s. of equation (4.3) so that YN = uN + ΠNZ∞ ∈
C(R+, EN ), a.s. We denote by YN (t, 0, y) the solution of (4.2) with initial data YN (0, 0, y) = y.
In fact, since the noise has been extended to the negative time axis, by the same arguments as
above, we may consider YN (t,−t1, y) with a t1 > 0.

The dissipativity inequality, i.e. the inequality

(γH(y − z)− γSN (|SNy|2SNy − |SNz|2SNz), y − z)EN ≤ −γ|y − z|
2
EN
,

which holds for all y, z ∈ EN , and for all γ > 0, implies that for any y, z ∈ EN , and for any
t ≥ −t1,

|YN (t,−t1, y)− YN (t,−t1, z)|EN ≤ e
−γ(t+t1)|y − z|EN . (4.4)

Using (4.4) with z = 0 together with Lemma 2.1 (whose proof is valid also for negative time
intervals), one easily obtains for any y ∈ EN , and for any t ≥ −t1,

E(|YN (t,−t1, y)|EN ) ≤ C + |y|EN .

We deduce for all t ≥ −t1 ≥ −t2 with t1, t2 > 0,

E(|YN (t,−t1, y)− YN (t,−t2, y)|EN ) ≤ e−γ(t+t1)E(|YN (−t1,−t2, y)− y|EN )

≤ e−γ(t+t1)(2|y|EN + C).

It follows, in particular letting t = 0, that the family {YN (0, s, y), s ≤ 0} is a Cauchy family
in L1(Ω, EN ) as s → −∞, and there exists a random variable ξN ∈ L1(Ω, EN ) such that
ξN := lims→−∞ YN (0, s, y) in L1(Ω, EN ). Thus, as t→ +∞,

L(YN (0,−t, y))→ L(ξN ),

in the weak topology. Then, setting ρ̄N := L(ξN ), it follows that ρ̄N is the unique invariant
measure of the flow generated by (4.2).

More details for the purely dissipative case are found in, e.g., [10, 9, 18].

Remark 4.1. In the purely dissipative case, the solution Y of (4.1) can directly be shown to be
global, since one may prove a Lp-bound on u = Y − Z∞ for any γ > 0, p ≥ 4 (see [2, 14]) :

|u(t)|Lp(R) ≤ CT , t ∈ [0, T ] (4.5)

for any T > 0.
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Now let our attention turn to the Gibbs measure. Define for y ∈ EN ,

dρ̃N (y) := Γ̃−1
N e−

1
4
|SNy|4L4dµN (y), Γ̃N =

∫
EN

e−
1
4
|SNy|4L4dµN (y). (4.6)

The next proposition will state that ρ̃N is also an invariant measure for the flow generated
by (4.2), which implies ρ̄N = ρ̃N by the above uniqueness property. On the other hand, we will
see that the measure ρ̃N is also invariant for the flow of the approximation to (2.1) :

dX = (i+ γ)(HX − SN (|SNX|2SNX))dt+
√

2γΠNdW, X(0) ∈ EN . (4.7)

Remind that the solution of Equation (4.7) exists globally in C(R+, EN ) a.s.; such a solution
will be denoted by XN . Indeed, XN can be written as XN = vN + ΠNZ∞ where vN is the
solution of (3.5) with z = ΠNZ∞ and vN (0) = XN (0)−ΠNZ∞(0) ∈ EN in (3.6).

Proposition 4. The measure ρ̃N defined in (4.6) is invariant by the flow of (4.2) and by the
flow of (4.7).

Proof. Write Equation (4.7) in the form:

dX = −JDI(X)dt− γDI(X)dt+
√

2γΠNdW, X(0) = y ∈ EN

where

J =

(
0 −1
1 0

)
: R2 → R2,

and

I(y) =
1

2

∫
R
|(−H)1/2y|2dx+

1

4

∫
R
|SNy|4dx, y ∈ EN .

This proof will be valid also in the purely dissipative case (4.2), removing the term JDI(X)dt.
The generator of the transition semigroup for the flow of (4.7) is given by

(LNf)(y) = γTrD2f(y)− γ(Df(y), DI(y))EN − (Df(y), JDI(y))EN

for any f ∈ C2
b (EN ,R2). Here, if f = (f1, f2), then

TrD2f(y) =

N∑
k=0

[
(D2f1(y)hk, hk)EN + (D2f2(y)hk, hk)EN

]
.

We shall show that ρ̃N is invariant for (4.7), that is, for any f ∈ C2
b (EN ,R2),∫

EN

(LNf)(y)ρ̃N (dy) =

∫
EN

f(y)L∗N ρ̃N (dy) = 0.
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Indeed, by direct calculations,

Γ̃N

∫
EN

(LNf)(y)ρ̃N (dy)

=

∫
EN

[
γTrD2f(y)− γ(Df(y), DI(y))EN − (Df(y), JDI(y))EN

]
e−I(y)dy

= γ

∫
EN

TrD2f(y)e−I(y)dy + γ

∫
EN

(
Df(y), D(e−I(y))

)
EN
dy

−
∫
EN

f(y)Tr(DJD)(e−I(y))dy

= 0,

where we have used integrations by parts, and the fact that Tr(DJD) = 0. �

Proposition 5. For any φ ∈ C1
b (EN ) the following inequality is satisfied :∫

EN

|Dφ(y)|2ENdρ̃N (y) ≥
∫
EN

|φ(y)− φ̄ρ̃N |2dρ̃N (y), (4.8)

where φ̄ρ̃N =
∫
EN

φ(y)dρ̃N (y).

Remark 4.2. The important point here is the fact that the properties of the Gibbs measure ρ̃N ,
which is the invariant measure for (4.7) may be investigated through the equation (4.2).

Proof. (of Proposition 5.) Note that we may assume, replacing if necessary φ by φ − φ̄ρ̃N ,
that φ̄ρ̃N = 0. Let YN be the unique global solution of (4.2), and let RNt be the transition
semigroup on EN for (4.2), i.e., RNt φ(y) := E(φ(YN (t, y))) for any φ ∈ Cb(EN ,R). Recall that
y = YN (0) ∈ EN . Assume now that φ ∈ C1

b (EN ,R). Then, for h ∈ EN and y ∈ EN ,

(D(RNt φ)(y), h)EN = E(Dφ(YN (t, y)), ηhN )EN ,

where ηhN := DyYN (t, y).h ∈ EN satisfies{
dη
dt = γHη − γSN (|SNYN |2SNη)− 2γSN (Re(SNYNSNη)SNYN ),
η(0) = h ∈ EN .

Taking the scalar product in EN with ηhN , we have

1

2

d

dt
|ηhN |2EN + γλ2

0|ηhN |2EN ≤ −γ(|SNYN |2SNηhN , SNηhN )EN − 2γ

∫
R

{
Re(SNYNSNη)

}2
dx

≤ 0.

Thus

|ηhN (t)|2EN ≤ e
−2ωt|h|2EN , ω = γλ2

0 = γ, (4.9)

which leads to

|(DRNt φ(y), h)EN | ≤ E
(
|(Dφ(YN (t, y)), ηhN )EN |

)
≤ E(|Dφ(YN (t, y))|EN |η

h
N |EN )

≤ e−γt|h|ENE(|Dφ(YN (t, y))|EN ).
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Put g(t, y) := RNt φ(y) = E(φ(YN (t, y))), and ψ(y) := |Dφ(y)|EN for any y ∈ EN . Then
ψ ∈ Cb(EN ,R) and (Dyg)(t, y) = D(RNt φ)(y). By the above computation, |Dg(y)|EN ≤
e−γt|RNt ψ(y)|. Therefore, we obtain∫

EN

|Dyg(t, y)|2ENdρ̃N (y) ≤ e−2γt

∫
EN

|RNt ψ(y)|2dρ̃N (y)

≤ e−2γt

∫
EN

RNt ψ
2(y)dρ̃N (y)

= e−2γt

∫
EN

ψ2(y)dρ̃N (y)

= e−2γt

∫
EN

|Dφ(y)|2ENdρ̃N (y), (4.10)

where we have used Cauchy-Schwarz inequality, and the invariance of the measure ρ̃N for the
transition semigroup RNt . On the other hand,

d

dt
|g(t, y)|2L2(EN ,dρ̃N ) = −2γ

∫
EN

|Dg(y)|2ENdρ̃N (y); (4.11)

indeed, let MN be the generator of RNt , so that d
dtg = MNg ; then for y ∈ EN , by the

Kolmogorov equation,

(MNg)(y) = γ(TrD2g)(y) + (Dg(y), γ(Hy − SN (|SNy|2SNy))EN .

Therefore,

MNg
2(y) = 2γ|Dg(y)|2EN + 2g(y)(MNg)(y).

Then, we have

0 =

∫
EN

g2(y)M∗N ρ̃N (dy) =

∫
EN

MNg
2(y)ρ̃N (dy)

= 2γ

∫
EN

|Dg(y)|2ENdρ̃N (y) + 2

∫
EN

g(y)(MNg)(y)dρ̃N (y)

= 2γ

∫
EN

|Dg(y)|2ENdρ̃N (y) +
d

dt

∫
EN

|g(t)|2dρ̃N (y),

so that (4.11) holds. Integrating (4.11) on [0, t], and using (4.10) we have

|g(t, ·)|2L2(EN ,dρ̃N ) − |g(0)|2L2(EN ,dρ̃N ) ≥ −(1− e−2γt)

∫
EN

|Dφ(y)|2ENdρ̃N (y). (4.12)

Note that |g(0)|2L2(EN ,dρ̃N ) = |φ|2L2(EN ,dρ̃N ). We conclude the proof of (4.8) by letting t tend

to +∞ in (4.12), using the following Lemma, whose proof easily follows from the dissipative
inequality (4.4). �

Lemma 4.1. Let φ ∈ C1
b (EN ,R), then there is a constant CN such that

|RNt φ− φ̄ρ̃N |L2(EN ,dρ̃N ) ≤ CNe−γt|φ|Lip.
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Proof. Since ρ̃N is invariant for RNt and ρ̃N (EN ) = 1, we have for any y ∈ EN ,

|E(φ(YN (t, y)))− φ̄ρ̃N | = |E(φ(YN (t, y)))−
∫
EN

φ(z)dρ̃N (z)|

= |E(φ(YN (t, y)))−
∫
EN

RNt φ(z)dρ̃N (z)|

= |E
∫
EN

(φ(YN (t, y))− φ(YN (t, z)))dρ̃N (z)|

≤ e−γt|φ|Lip

∫
EN

|y − z|ENdρ̃N (z),

by (4.4) with t1 = 0. Thus, using Cauchy-Schwarz inequality,

|RNt φ− φ̄ρ̃N |2L2(EN ,dρ̃N ) ≤ |φ|2Lipe
−2γt

∫
EN

∫
EN

|y − z|2ENdρ̃N (y)dρ̃N (z)

≤ 2|φ|2Lipe
−2γt

∫
EN

∫
EN

(|y|2EN + |z|2EN )dρ̃N (y)dρ̃N (z).

The integral on the right hand side is finite, since µN is a Gaussian measure on EN , dρ̃N =
Γ−1
N exp(−|SNy|4L4/4)dµN and exp(−|SNy|4L4/4) ≤ 1. The result follows. �

5. Almost sure global existence

A similar idea to [5] will be used to prove Theorem 1. Let X0 ∈ Lp with p ≥ 3 be given.
Consider a particular decomposition for the solution X of (2.1), given by X(t) = v(t) +Z∞(t)−
Z∞(0), where v is the solution of (3.1) with z(t) = Z∞(t) − Z∞(0), v0 = X0. Recall that Z∞
is the stationary solution for (2.5), which is written as (2.6). Recall also that the law of Z∞(t),
supported on Lp if p > 2, is equal to µ. We will see that the measure ρ in (2.4) should be
invariant for the flow of X, as the limit of

dρN (u) = Γ−1
N exp

{
− 1

4
|SNu|4L4

}
dµN (ΠNu)dµ⊥N ((I −ΠN )u), u ∈ Lp(R), (5.1)

where p ≥ 3 and

ΓN =

∫
Lp

exp
{
− 1

4
|SNu|4L4

}
dµ(u).

This probability measure ρN is an invariant measure for the flow of a certain approximation XN

to X. Making use of this invariance, we will show that X exists globally in Lp(R) for p ≥ 3.

Let us first consider the approximation XN given by the solution of (4.7), which may be
written as XN (t) = vN (t) + ΠNZ∞(t) − ΠNZ∞(0). Here, vN is the solution of (3.5) choosing

vN (0) = SNX0. Namely, XN (0) = SNX0. Now, we define XN (t) = XN (t) + Z̃N (t), where Z̃N
satisfies {

dZ = (i+ γ)HZ +
√

2γ(I −ΠN )dW,
Z(0) = (I − SN )X0.

Then, noting that SN Z̃N = 0, one sees that XN satisfies the following equation with initial data
XN (0) = X0 :

dX = (i+ γ)
(
HX − SN (|SNX|2SNX)

)
dt+

√
2γdW. (5.2)
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It follows from Proposition 3 that XN is globally defined on Lp(R) if p ≥ 3, and depends
continuously on the initial data X0. We remark that the results in Section 2 also lead to the
convergence of XN to X in C([0, T ], Lp) for any T < T ∗. Consider now the transition semigroup
for the equation (5.2) and denote it by PNt for t > 0. Notice that ρN is an invariant measure
for the transition semigroup PNt for the same reason as in Proposition 4.

Proof of Theorem 1. Let any T > 0. We wish to prove that there exists a constant CT such
that ∫

Lp
E
(

sup
t∈[0,T ∗∧T ]

|X(t, y)|Lp
)
dρ(y) ≤ CT . (5.3)

If this bound is true, we may say that there exists a ρ-measurable set O ⊂ Lp such that ρ(O) = 1,
and for each y ∈ O, supt∈[0,T ∗∧T ) |X(t, y)|Lp < +∞ a.s.; the fixed point argument then implies

that T ∗(y) ≥ T , a.s.

In order to derive rigorously the estimate (5.3), we will use the approximation XN . Thus the
first step here is to show that there exists a constant CT which does not depend on N , such that∫

Lp
E
(

sup
t∈[0,T ]

|XN (t, y)|Lp
)
dρN (y) ≤ CT . (5.4)

We write the equation of XN in the mild form.

XN (t,X0) = et(i+γ)HX0 − et(i+γ)HZ∞(0)

−(i+ γ)

∫ t

0
e(t−s)(i+γ)HSN (|SNXN |2SNXN )(s)ds+ Z∞(t).

Taking the supremum in time on [0, T ], using Lemma 3.1 and the boundness of SN in Lp(R) ∩
L3p(R), we have

sup
t∈[0,T ]

|XN (t,X0)|Lp ≤ |X0|Lp + 2 sup
t∈[0,T ]

|Z∞(t)|Lp + Cγ

∫ T

0
|SN (|SNXN (s)|2SNXN (s))|Lpds

≤ |X0|Lp + 2 sup
t∈[0,T ]

|Z∞(t)|Lp + Cγ

∫ T

0
|SNXN (s)|3L3pds

≤ |X0|Lp + 2 sup
t∈[0,T ]

|Z∞(t)|Lp + Cγ

∫ T

0
|XN (s)|3L3pds.

We then take the expectation, and we have

E
(

sup
t∈[0,T ]

|XN (t,X0)|Lp
)
≤ |X0|Lp + 2E

(
|Z∞|L∞(0,T ;Lp)

)
+ CγE

∫ T

0
|XN (s)|3L3pds.
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The second term is bounded by a constant Mp,T which does not depend on X0 thanks to Lemma
2.1. Integrating in ρN thus gives,∫

Lp
E
(

sup
t∈[0,T ]

|XN (t,X0)|Lp
)
dρN (X0)

≤
∫
Lp
|X0|LpdρN (X0) +Mp,T + Cγ

∫
Lp

∫ T

0
E|XN (s)|3L3pds dρN (X0).

The third term in the right hand side is written as follows :∫ T

0
E
∫
Lp
|XN (s,X0)|3L3pds dρN (X0) = T

∫
Lp
|X0|3L3pdρN (X0);

indeed, let Φm(v) = |v|3L3p ∧m for any v ∈ Lp, which is a bounded Borel function on Lp.∫ T

0
E
∫
Lp
|XN (s,X0)|3L3pds dρN (X0) =

∫ T

0
lim
m→∞

E
∫
Lp

Φm(XN (s,X0))dρN (X0) ds

=

∫ T

0
lim
m→∞

∫
Lp
PNs Φm(X0)dρN (X0) ds

=

∫ T

0
lim
m→∞

∫
Lp

Φm(X0)dρN (X0) ds

= T

∫
Lp
|X0|3L3pdρN (X0).

Here, we have used the invariance of ρN in the third equality. We shall show that∫
Lp
|X0|3L3pdρN (X0)

is bounded independently of N . This can be seen as follows. Recalling the definition (5.1),
noting that for all t ≥ 0, L(Z∞(t)) = L(Z∞(0)) = µ, with suppµ ⊂

⋂
p>2 L

p, and Lemma 2.1,
we have ∫

Lp
|X0|3L3pdρN (X0) = Γ−1

N

∫
Lp
|X0|3L3pe

− 1
4
|SNX0|4

L4dµ(X0)

≤ Γ−1
N E(|Z∞(0)|3L3p) ≤ Γ−1

N M3
3p,T .

As for the normalizing constant ΓN , the bound |SNX0|L4 ≤ C|X0|L4 with a constant C inde-
pendent of N implies

ΓN =

∫
Lp
e−

1
4
|SNX0|4

L4dµ(X0) ≥
∫
Lp
e−

C
4
|X0|4

L4dµ(X0) > 0, (5.5)

i.e. ΓN is bounded from below independently of N.
For the same reason, the first term is bounded independently of N since∫

Lp
|X0|LpdρN (X0) ≤ Γ−1

N Mp,T ,

with (5.5). This concludes the bound (5.4).



20 ANNE DE BOUARD, ARNAUD DEBUSSCHE, AND REIKA FUKUIZUMI

Recall that if p ≥ 3, then by Proposition 3, XN (·, X0)→ X(·, X0) in C([0, T ∧ T ∗), Lp(R)) as

N →∞ for any X0 ∈ Lp ∩L4. Since e−
1
4
|SNX0|4

L4 → e−
1
4
|X0|4

L4 as N →∞ for any X0 ∈ Lp ∩L4,
we obtain by Fatou’s lemma∫
Lp

E
(

sup
t∈[0,T∧T ∗]

|X(t,X0)|Lp
)
dρ(X0) =

∫
Lp

E
(

sup
t∈[0,T∧T ∗]

|X(t,X0)|Lp
)
e−

1
4
|X0|4

L4dµ(X0)

≤ lim inf
N→∞

∫
Lp

E
(

sup
t∈[0,T∧T ∗]

|XN (t,X0)|Lp
)
e−

1
4
|SNX0|4

L4dµ(X0)

= lim inf
N→∞

∫
Lp

E
(

sup
t∈[0,T∧T ∗]

|XN (t,X0)|Lp
)
dρN (X0)

≤ CT ,

which concludes (5.3).
In conclusion, for a fixed T > 0, there exists a ρ - measurable set OT ⊂ Lp(R) for any p ≥ 3

such that ρ(OT ) = 1 and that for X0 ∈ OT , the solution X exists a.s. up to time T . For each
Tn, n ∈ N such that Tn → +∞ as n→∞, consider OTn and set Ō :=

⋂
nOTn . Then, ρ(Ō) = 1.

The proof is completed. �

Now, we can define the transition semi-group (Pt)t≥0 associated with (2.1) : for all t ≥ 0 and
any ϕ ∈ Cb(Lp,R) with p ≥ 3, and for ρ - a.e. y (i.e., for y ∈ Ō), let

Ptϕ(y) = E(ϕ(X(t, y))).

We end this section with the proof of the invariance of the measure ρ for the semi-group (Pt)t≥0.
Let ϕ ∈ Cb(Lp,R) and let us prove that∫

Lp
ϕ(y)dρ(y) =

∫
Lp
Ptϕ(y)dρ(y). (5.6)

First, by the invariance of ρN , we have∫
Lp
ϕ(y)dρN (y) =

∫
Lp
PNt ϕ(y)dρN (y).

Next,

∣∣∣ ∫
Lp
ϕ(y)dρN (y)−

∫
Lp
ϕ(y)dρ(y)

∣∣∣ ≤ ∣∣∣Γ−1
N

(∫
Lp
ϕ(y)e−

1
4
|SNy|4L4dµ(y)−

∫
Lp
ϕ(y)e−

1
4
|y|4
L4dµ(y)

)∣∣∣
+
∣∣∣(Γ−1

N − Γ−1)

∫
Lp
ϕ(y)e−

1
4
|y|4
L4dµ(y)

∣∣∣
≤ C(1 + |φ|L∞)|Γ− ΓN |,
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where we have used (5.5), and the right hand side above tends to zero by the dominated con-
vergence theorem. On the other hand,∣∣∣ ∫

Lp
PNt ϕ(y)dρN (y)−

∫
Lp
Ptϕ(y)dρ(y)

∣∣∣ ≤ ∣∣∣ ∫
Lp

E(ϕ(X(t, y)))dρN (y)−
∫
Lp

E(ϕ(X(t, y)))dρ(y)
∣∣∣

+
∣∣∣ ∫

Lp
[E(ϕ(XN (t, y)))− E(ϕ(X(t, y)))]dρN (y)

∣∣∣
≤ |ϕ|L∞

∫
Lp

∣∣e− 1
4
|SNy|4L4 − e−

1
4
|y|4
L4
∣∣dµ(y)

+

∫
Lp
|E(ϕ(XN (t, y)))− E(ϕ(X(t, y)))|dµ(y),

and we conclude thanks to the dominated convergence theorem and the fact that XN (·, y)
converges to X(·, y) a.s. in C([0, T ], Lp) for any y ∈ Ō. �

6. Strong Feller property and global existence for all initial data

We first prove the strong Feller property for the semigroups (PNt )t≥0, associated with equation
(5.2), uniformly in N . We denote by Bb(E) the space of borelian bounded real valued functions
on a Banach space E and, for ϕ ∈ Bb(E), ‖ϕ‖0 = supx∈E |ϕ(x)|.

Proposition 6. Let p ≥ 3 and N ∈ N. For any ϕ ∈ Bb(Lp(R)), and any t > 0, PNt ϕ is
a continuous function on Lp(R). Moreover, for any T > 0, there exists a constant cγ(T ),
independent of N , such that for any X0 ∈ Ō, h ∈ Lp(R) such that X0 + h ∈ Ō, and any T > 0,

|PNT ϕ(X0 + h)− PNT ϕ(X0)| ≤ cγ(T )‖ϕ‖0
(
T
−1+ 1

p + 1
) (
|X0|Lp(R) + 1

)2 |h|Lp(R). (6.1)

Proof. We use a classical coupling argument, based on a control problem and Girsanov Theorem
(see e.g. [20]). Let p ≥ 3, T > 0, h ∈ Lp(R) and define for t ∈ [0, T ] :

k(t) = − 1

T
e(i+γ)Hth,

and

h̄(t) =
T − t
T

e(i+γ)Hth.

Then
d

dt
h̄ = (i+ γ)Hh̄+ k, h̄(0) = h, h̄(T ) = 0.

Let θ ∈ C∞0 (R) be a cut-off function such that θ(t) = 1 for t ∈ [0, 1] and θ(t) = 0 for t ≥ 2.

Define, for y ∈ Lp(R), FR(y) = θ

(
|SNy|pLp(R)

R

)
SN (|SNy|2SNy). We consider the truncated

version of (5.2) :

dX = (i+ γ) (HX − FR(X)) dt+
√

2γdW (6.2)

with initial data X(0) = X0. We denote by XR(·, X0) its solution, whose existence and unique-
ness in C([0, T ];Lp(R)) follows from the arguments of Section 3, and the Lipschitz property of
FR (note that FR(y) = 0 if |SNy|pLp ≥ 2R). For ε > 0, define Y ε(t) = XR(t,X0) + εh̄(t). Then

dY ε = (i+ γ) (HY ε − FR(Y ε)) dt+
√

2γ (Gεdt+ dW )
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with

Gε(t) =
(i+ γ)√

2γ
[FR(Y ε(t))− FR(XR(t,X0))] + εk(t).

Since FR is bounded and k ∈ L2(0, T ;Lp(R)), we may use Girsanov’s transform and deduce for
each ϕ ∈ C1

b (Lp(R))
E[ϕ(Y ε(T ))] = E [ϕ(XR(T, y))ρε(T )] ,

where

ρε(T ) = exp

{
−γ
∫ T

0
|Gε(t)|2L2(R) dt−

√
2γ

∫ T

0
(Gε(t), dW (t))L2(R)

}
,

and y = X0 + εh. Clearly Y ε(T ) = XR(T,X0) and we obtain

E[ϕ(XR(T,X0))] = E[ϕ(XR(T,X0 + εh))ρε(T )]. (6.3)

On the other hand, noting that for ε = 0 we have Gε = 0 and ρε = 1,

DεGε(t)|ε=0 = k(t) +
(i+ γ)√

2γ
F ′R(XR(t,X0)) · h̄(t)

and

Dερε(T )|ε=0 = −
√

2γ

∫ T

0

(
k(t) +

(i+ γ)√
2γ

F ′R(XR(t,X0)) · h̄(t), dW (t)
)
L2(R)

.

Since ϕ ∈ C1
b (Lp(R)) , h̄, k ∈ L2(0, T ;Lp(R)), we may differentiate (6.3) with respect to ε and

take ε = 0. we obtain :

E[Dϕ(XR(T,X0)) · (DXR(T,X0) · h)]

=
√

2γ E
[
ϕ(XR(T,X0))

∫ T

0

(
k(t) +

(i+ γ)√
2γ

F ′R(XR(t,X0)) · h̄(t), dW (t)
)
L2(R)

]
.

By the chain rule, the left hand side above is equal to

D [E (ϕ(XR(T,X0)))] · h = DPRT ϕ(X0) · h,
where (PRt )t≥0 is the transition semigroup associated to equation (6.2). Note that PRt ϕ(X0)
tends to PNt ϕ(X0) when R goes to infinity, for any X0 ∈ Lp(R). On the other hand, the right
hand side may be bounded using the Itô isometry and the Cauchy Schwarz inequality, to get

DPRT ϕ(X0) · h ≤ Cγ‖ϕ‖0
(∫ T

0
|k(t)|2L2(R) + E |F ′R(XR(t,X0)) · h̄(t)|2L2(R)dt

)1/2

(6.4)

We need the following result.

Lemma 6.1. Let p ∈ [2,∞], then, for t > 0, e(i+γ)tH maps Lp(R) into L2(R) and there exists
a constant Cγ,p such that for all t > 0, and all f ∈ Lp(R),

|e(i+γ)tHf |L2(R) ≤ Cγ,p t
− 1

2
+ 1
p |f |Lp(R).

Proof. Let f ∈ L∞(R) and u = (−H)−1f , then −∂2
xu+ x2u = f and

|(−H)−1/2f |2L2(R) = |(−H)1/2u|2L2(R) =

∫
R
|∂xu(x)|2 + x2u2(x)dx

=

∫
R
f(x)u(x)dx ≤ |f |L∞

∫
R
|u(x)|dx.
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Note that∫
R
|u(x)|dx ≤

(∫
R

1

1 + x2
dx

)1/2 (
|u|2L2(R) + |xu|2L2(R)

)1/2
=
√
π|(−H)1/2u|L2(R),

and it follows :

|(−H)−1/2f |L2(R) ≤
√
π|f |L∞ . (6.5)

On the other hand, writing v =
∑∞

k=0(v, ek)L2ek, we have for any v ∈ L2(R),

|(−H)1/2e(i+γ)tHv|2L2(R) =

∞∑
k=0

λ2
k|e−(i+γ)tλ2k |2(v, ek)

2
L2 ≤

Cγ
t
|v|2L2 ,

so that (6.5) implies

|e(i+γ)tHf |L2(R) = |(−H)1/2e(i+γ)tH(−H)−1/2f |L2(R) ≤ Cγt−1/2|(−H)−1/2f |L2(R)

≤
√
πCγt

−1/2|f |L∞(R).

This is the result for p = ∞. For p = 2, the result is clear and the general case follows by
interpolation. �

Remark 6.1. This result is not optimal. The exponent in t can actually be taken as −β for
any β > 1

4 −
1
2p .

To end the proof of Proposition 6, we need to bound the right hand side of (6.4). First, we
write ∫ T

0
|k(t)|2L2(R)dt =

1

T 2

∫ T

0
|e(i+γ)Hth|2L2(R)dt

≤ c

T 2

∫ T

0
t
−1+ 2

p |h|2Lp(R)dt

≤ cT
2
p
−2|h|2Lp(R), (6.6)

thanks to Lemma 6.1. Next, we compute, for x, y ∈ Lp(R),

F ′R(x) · y =
p

R
θ′
(
|SN (x)|pLp

R

)
Re
(
|SNx|p−2SNx, SNy

)
L2 SN

(
|SNx|2SNx

)
+ θ

(
|SN (x)|pLp

R

)
SN
(
|SNx|2SNy

)
+ θ

(
|SN (x)|pLp

R

)
SN
(
2Re(SNx · SNy)SNx

)
.
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Hence, the second term in (6.4) is bounded as follows, using Hölder inequality and Lemma 3.1 :

E
∫ T

0
|F ′R(XR(t,X0)) · h̄(t)|2L2(R)dt ≤

C

R2
E
∫ T

0
|SN (XR(t,X0)|2(p−1)

Lp |h̄(t)|2Lp |SN (XR(t,X0))|6L6dt

+C E
∫ T

0
|SN (XR(t,X0))|4L4 |h̄(t)|2L∞dt

≤ C

R2/p
E
∫ T

0
|SN (XR(t,X0))|6L6 |h|2Lpdt

+C E
∫ T

0
t
− 1
p |SN (XR(t,X0))|4L4 |h|2Lpdt. (6.7)

Next, we decompose XR(t,X0) = vRN (t, 0) + Z(t), with

Z(t) = e(i+γ)tHX0 +
√

2γ

∫ t

0
e(i+γ)(t−s)HdW (s). (6.8)

If 3 ≤ p ≤ 4, we use Lemma 3.1 to get |e(i+γ)tHX0|4L4 ≤ Cγt
−2/p+1/2|X0|4Lp ; if p > 4, we

interpolate the inequality of Lemma (6.1) (with p = ∞) and the boundedness of the operator

e(i+γ)tH in Lq(R) for any q with 4 < q < p to get |e(i+γ)tHX0|4L4 ≤ Cγt4/p−1|X0|4Lp . In both case,
this and Lemma 2.1 imply, since Z is Gaussian, and for any integer m,

E|Z|4mL4(0,T ;L4(R)) ≤ c
[∫ T

0

∣∣e(i+γ)tHX0

∣∣4
L4(R)

dt

]m
+Mγ,p,T,m ≤ Cγ,p,T (|X0|Lp(R) + 1)4m. (6.9)

Since moreover the energy inequality (3.7) (with η = 0), which is easily seen to hold also for the
cut-off equation satisfied by vRN , implies

sup
t∈[0,T ]

|vRN (t)|2L2(R) ≤ Cγ,T |Z|
4
L4(0,T ;L4(R))

and ∫ T

0
|∂xvRN (t)|2L2(R)dt ≤ Cγ,T |Z|

4
L4(0,T ;L4(R)),

we deduce from (6.9) and the Gagliardo-Nirenberg inequalities :

|vRN (t)|4L4(R) ≤ C|v
R
N (t)|3L2(R)|∂xv

R
N (t)|L2(R)

and

|vRN (t)|6L6(R) ≤ C|v
R
N (t)|4L2(R)|∂xv

R
N (t)|2L2(R),

that

E|vRN |4L8(0,T ;L4(R)) ≤ Cγ,TE|Z|
8
L4(0,T ;L4(R)) ≤ Cγ,p,T (|X0|Lp(R) + 1)8,

and

E|vRN |6L6(0,T ;L6(R)) ≤ Cγ,TE|Z|
12
L4(0,T ;L4(R)) ≤ Cγ,p,T (|X0|Lp(R) + 1)12.

Plugging these inequalities into the right hand side of (6.7), after using Cauchy-Schwarz inequal-
ity, shows that

E
∫ T

0
|F ′R(XR(t,X0)) · h̄(t)|2L2(R)dt ≤ Cγ,p,T (|X0|Lp + 1)8

[
1 +

1

R2/p
(|X0|+ 1)4

]
|h|2Lp(R). (6.10)
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Finally, (6.4), (6.6), and (6.10) imply after taking the limit R→∞ :

DPNT ϕ(X0) · h ≤ Cγ,T,p‖ϕ‖0
(
|X0|Lp(R) + 1

)4 |h|Lp(R).

It remains only to approximate ϕ ∈ Bb(Lp(R)) by a sequence (ϕn)n∈N in C1
b (Lp(R)), which

converges pointwise to ϕ and are uniformly bounded, to end the proof. �

Now, in order to prove Theorem 2, we use the fact that there exists a set O ⊂ Lp(R) such
that ρ(O) = 1 and for any X0 ∈ O we have supt∈[0,T ] |X(t,X0)|Lp(R) < ∞ a.s. Note that this
holds in any probability space since we have constructed strong solutions. Letting N → ∞ in
(6.1) for X0, X0 +h ∈ O, we deduce that (Pt)t≥0 can be extended uniquely into a semigroup on
Lp(R;C) which has the strong Feller property. This is possible since we know that the support
of ρ in the topology of Lp(R) is Lp(R).

Let us now choose X0 ∈ Lp(R) and take a sequence (X0,n)n∈N in O such that X0,n → X0 in
Lp(R). Considering the corresponding solution XN (t,X0,n) of (5.2), we use again the splitting:
XN (t,X0,n) = vN,n + Zn, with vN,n satisfying (3.5) with

z(t) = Zn(t) := e(i+γ)tHX0,n +
√

2γ

∫ t

0
e(t−s)(i+γ)HdW (s).

Clearly, Zn → Z in C([0, T ];Lp(R)) a.s. where Z is defined in (6.8). Moreover, using (3.7)
for vN,n and letting N → ∞, we deduce that vn = X(·, X0,n) − Zn is bounded uniformly
in n in L2(Ω;L∞(0, T, L2(R)) ∩ L2(0, T ;W1,2(R)))∩L4(Ω;L4(0, T ;L4(R))). By standard argu-
ments, using again equation (3.5), it follows that, for any negative s, the sequence of laws
of (X(·, X0,n))n∈N is tight in C([0, T ];Ws,2(R)) ∩ L2(0, T ;W1+s,2(R)) ∩ C1([0, T ];Ws−2,2(R)) +
C([0, T ];Lp(R)). It is then standard to check that any limit point is the law of a martingale

solution to (2.1). Let us denote by X̃(·, X0) such a solution, which is defined on a probability

space (Ω̃, F̃ , P̃). Take a function ϕ ∈ Cb(Lp(R))∩Cb(Ws,2(R)) ; then we can write for any t > 0

Ptϕ(X0) = lim
n→∞

Ptϕ(X0,n) = lim
n→∞

E(ϕ(X(t,X0,n))) = Ẽ(ϕ(X̃(t,X0)).

This proves that the law of X̃(t,X0) is in fact P ∗t δX0 .
Now, we make use of the following result, which is proved as in [6] Lemma 7.7 (see also [12]

for the original idea).

Proposition 7. The semigroup (Pt)t≥0 is irreducible on Lp(R).

This and Proposition 6 mean that (Pt)t>0 is regular and that all the measures P ∗t δX0 are
equivalent and are also equivalent to the invariant measure ρ, which is the unique invariant
measure of (Pt)t≥0 (see [9], chapter 4). It follows that for any X0 ∈ Lp(R) and any t0 > 0,

P̃(X̃(t0, X0) ∈ O) = ρ(O) = 1

so that

sup
t∈[t0,T ]

|X̃(t,X0)|Lp(R) <∞, P̃ a.s.

By the construction of local solutions, we know that there exists a stopping time τ∗(X0) with
0 < τ∗(X0) ≤ T , a.s. such that

sup
t∈[0,τ∗(X0))

|X̃(t,X0)|Lp(R) <∞, P̃ a.s.
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It follows, since τ∗(X0) > 0, a.s., that

sup
t∈[0,T ]

|X̃(t,X0)|Lp(R) <∞, P̃ a.s.,

and we have constructed a global solution in Lp(R) for any X0 ∈ Lp(R). This solution is clearly
pathwise unique in C([0, T ];Lp(R)) and either using Yamada-Watanabe theorem or Gyongy,
Krylov method we may deduce global existence and uniqueness of a strong solution (in the
probabilistic sense) in any probabilistic space. �

7. Convergence to equilibrium

We recall that XN (., yN ) is the solution of (4.7) with initial data XN (0) =: yN ∈ EN . By
Proposition 4, the measure ρ̃N is invariant by the flow of XN , and by Proposition 5, it satisfies
the Poincaré inequality (4.8). Let (P̃Nt )t≥0 be the transition semigroup corresponding to (4.7).
Using the above properties, we have

Proposition 8. Let φN ∈ Cb(EN ,R). Then, for t ≥ 0 and γ > 0,

d

dt

∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y) + 2γ

∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y) ≤ 0,

i.e., ∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y) ≤ e−2γt

∫
EN

|φN (y)− φ̄ρ̃NN |
2dρ̃N (y),

where φ̄ρ̃NN =
∫
EN

φN (y)dρ̃N (y).

Proof. Using a density argument, we may assume φ̄ρ̃NN = 0, and φN ∈ C1
b (EN ,R). Let LN be

the generator of P̃Nt , associated with (4.7). As was seen in the proof of Proposition 5 for the
generator MN , using the Kolmogorov equation and the invariance of the measure ρ̃N ,

0 =

∫
EN

LN (P̃Nt φN )2dρ̃N =
d

dt

∫
EN

|P̃Nt φN |2dρ̃N + 2γ

∫
EN

|DP̃Nt φN |2ENdρ̃N .

The use of inequality (4.8) implies the desired result. �

Now taking the limit N →∞, we shall show the following proposition.

Proposition 9. Let p ≥ 3 and let φ ∈ Cb(Lp(R);R). Then there exists φN ∈ Cb(EN ,R) such
that for all t ≥ 0,

lim
N→∞

∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y) =

∫
Lp
|Ptφ(y)− φ̄ρ|2dρ(y), and lim

N→∞
φ̄ρ̃NN = φ̄ρ,

where φ̄ρ =
∫
Lp φ(y)dρ(y).

Note that the proof of Theorem 3 follows immediately from Proposition 8 and Proposition 9.
The proof of Proposition 9 makes use of the next Lemma.

Lemma 7.1. Let 1 ≤ p ≤ +∞. Let ψ ∈ Cb(L
p(R);R) and let ψ|EN

(u) := ψ(SN (u)) for u ∈
Lp(R). Then, for any q with 1 ≤ q < +∞,

∣∣ψ|EN − ψ∣∣Lq(Lp,dρ)
tends to 0 as N goes to infinity.
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Proof. Note that SN is continuous from Lp(R) to Lp(R), so ψ|EN
is continuous from Lp(R) to

R. Also ψ|EN
is bounded uniformly in N . Moreover, since SNu → u as N → ∞, we deduce

ψ|EN
(u) → ψ(u) for any u ∈ Lp(R). Thus, by Lebesgue’s dominated convergence theorem,∣∣ψ|EN − ψ∣∣Lq(Lp,dρ)

tends to 0. �

Proof. (of Proposition 9) Let φ ∈ Cb(L
p(R);R). Then, φ is continuous and bounded on EN

since EN ⊂ Lp(R). Thus, if we choose φN := φ|EN
, with the notation of Lemma 7.1, then

P̃Nt φN (y) = E(φN (XN (t, y))) is well-defined for y ∈ EN . Hence∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y) =

∫
EN

|P̃Nt φN (ΠNy)− φ̄ρ̃NN |
2dρ̃N (ΠNy)

∫
E⊥N

dµ⊥N ((I −ΠN )y)

=

∫
Lp
|P̃Nt φN (ΠNy

′)− φ̄ρ̃NN |
2dρN (y′)

=

∫
Lp
|P̃Nt φN (y′)− φ̄ρ̃NN |

2dρN (y′)

where we have used the following equalities:

φN (ΠNy
′) = φ|EN

(ΠNy
′) = φ(SNΠNy

′) = φ(SNy
′) = φ|EN

(y′) = φN (y′).

Thus, it follows that∣∣∣ ∫
EN

|P̃Nt φN (y)− φ̄ρ̃NN |
2dρ̃N (y)−

∫
Lp
|Ptφ(y)− φ̄ρ|2dρ(y)

∣∣∣
=

∣∣∣ ∫
Lp
|P̃Nt φN (y)− φ̄ρ̃NN |

2dρN (y)−
∫
Lp
|Ptφ(y)− φ̄ρ|2dρ(y)

∣∣∣
≤
∫
Lp
|P̃Nt φN (y)− Ptφ(y)|2dρN (y)

+
∣∣∣ ∫

Lp
|Ptφ(y)− φ̄ρ|2dρN (y)−

∫
Lp
|Ptφ(y)− φ̄ρ|2dρ(y)

∣∣∣+
∣∣∣φ̄ρ − φ̄ρ̃NN ∣∣∣2.

Similar arguments as in the proof of (5.6) imply that all terms in the right hand side converge
to zero as N → +∞. Indeed, note that |Ptφ(y)− φ̄ρ|2 ≤ 4|φ|2L∞ ; thus, the second term on the
right hand side of the last inequality is estimated by

4Γ|Γ−1
N − Γ−1||φ|2L∞ + 4|φ|2L∞Γ−1

N

∫
Lp

∣∣e− 1
4
|SNy|4L4 − e−

1
4
|y|4
L4
∣∣dµ(y),

and this quantity tends to zero by (5.5) and the dominated convergence Theorem. The last term
is estimated as follows, using the same computation as above.∣∣∣φ̄ρ − φ̄ρ̃NN ∣∣∣ ≤

∣∣∣ ∫
Lp

(φ(y)− φN (y))dρ(y)
∣∣∣

+Γ|Γ−1
N − Γ−1||φ|L∞ + |φ|L∞Γ−1

N

∫
Lp

∣∣e− 1
4
|SNy|4L4 − e−

1
4
|y|4
L4
∣∣dµ(y),

which tends to zero when N → +∞, applying Lemma 7.1 with q = 1. Lastly, the choice
of approximation XN defined in Section 5 allows us to apply Proposition 3 to conclude that
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XN (·, y)→ X(·, y) in C([0, T ], Lp(R)) with p ≥ 3 a.s., for any y ∈ Ō. Therefore, the first term∫
Lp
|P̃Nt φN (y)− Ptφ(y)|2dρN (y) ≤

∫
Ō
|E(φ(XN (t, SNy))− φ(X(t, y)))|2dµ(y)

converges to zero as N → +∞ by Lebesgue’s dominated convergence. �

Remark 7.1. Using the argument in [19], we could use the strong Feller property (Proposition
6) and a coupling argument to prove that exponential convergence to equilibrium holds for any
initial data. This may seem better than the result of Theorem 3 but, contrary to Theorem 3, the
convergence rate given in the proof with such a coupling argument is difficult to write explicitly
and is very small.

Remark 7.2. Note that if we consider, as in [2], the same problem but posed on a bounded
interval D of R, without quadratic potential, that is

dX = (i− γ)(−∂2
xX + λ|X|2X)dt+

√
2γdW,

then the corresponding Gibbs measure is supported in L2(D) (see [2]). All the arguments above
may obviously be adapted to this case if λ > 0. Moreover, in the focusing case λ = −1, one may
proceed as in [4], with p = 4, r = 3 and σ = Id, that is considering the modified dynamics

dX = (i− γ)(−∂2
xX − |X|2X + 6κ|X|4L2X)dt+

√
2γdW (7.1)

corresponding to the Hamiltonian

S(X) =
1

2
|∂xX|2L2 −

1

4
|X|4L4 + κ|X|6L2 .

For the associated purely dissipative dynamics

dX = γ(∂2
xX + |X|2X − 6κ|X|4L2X)dt+

√
2γdW, (7.2)

it is not difficult to check that ηh(t) = DX0X(t,X0)h formally satisfies, for κ large enough, an
estimate similar to (4.9), which allows to prove the Poincaré inequality for finite dimensional
approximations of the Gibbs measure, uniformly in the approximation parameter. All the other
arguments seem to work in this case, and this indicates that we easily recover with our method
the convergence result of [4], at least in the case p = 4. Now, in our situation, where the domain
is the whole space, with the addition of the quadratic potential V (x) = x2, one has to take
account of the fact that µ(L2) = 0 (where we recall that µ is the Gaussian measure defined by
the quadratic part of the Hamiltonian) so that the natural Gibbs measure given by

e−κ|X|
6
L2+ 1

4
|X|4

L4µ(dX)

is actually equal to the trivial measure δ0.

8. The case of general chemical potential η

In this section, we explain how to treat the case where the chemical potential η in (2.1) is
positive, and possibly larger than λ0 = 1. We use the notations of Section 2, and in particular,
the measure ρ is defined by (2.4). It is clear that Proposition 4 applies also to such a Gibbs
measure through a finite dimensional approximation (see the arguments below) and we infer the
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invariance of the measure under the flow given by (2.1). Now, in order to prove the Poincaré
inequality (4.8) in this case, we write S(u) in the following way :

S(u) =
1

2

∫
R
|(−H)1/2u|2dx+ V1(u) + V2(u)

with

V1(u) =

∫
R
F1(x, |u(x)|2)dx, V2(u) =

∫
R
F2(x, |u(x)|2)dx,

where F1 and F2 are defined by

F1(x, y) :=


1
4y

2 − η
2y, y ≥ η,

Θ(x)
(

1
4y

2 − η
2y
)

+ (1−Θ(x))
(
− η2

4

)
, 0 ≤ y < η,

and

F2(x, y) :=
1

4
y2 − η

2
y − F1(x, y)

= (1−Θ(x))
(1

4
y2 − η

2
y +

η2

4

)
1l0≤y<η.

Here, Θ(x) is a cut-off function satisfying

Θ ∈ C∞(R), 0 ≤ Θ(x) ≤ 1, Θ(x) = 1 for |x| ≥
√

2η, Θ(x) = 0 for |x| ≤
√

3η/2.

Note that F1(x, y) is a convex function of y ∈ R+, for all x ∈ R. With these definitions, the
Gibbs measure is rewritten under the following form :

ρ(du) = Γ−1e−V1(u)e−V2(u)µ(du), with Γ =

∫
Lp
e−V1(u)e−V2(u)dµ(u),

and µ is the Gaussian measure defined in Section 2. Note that V2(u) satisfies e−Cη ≤ e−V2(u) ≤ 1

for some constant Cη > 0 depending only on η, so that e−V2(u)µ(du) makes sense. Indeed,

0 ≤ V2(u) =

∫
R
F2(x, |u|2)dx =

∫
R

(1−Θ(x))
(1

4
|u|4 − η

2
|u|2 +

η2

4

)
1l|u|2<ηdx

≤ η2

2

∫
R

(1−Θ(x))dx ≤
∫
|x|≤
√

2η

η2

2
dx =

√
2η

5
2 .

Note that the finiteness of ρ implies e−V1(u) is integrable with respect to e−V2(u)dµ; then the
boundedness of V2 implies that the measure e−V1(u)µ(du) is also finite.

Let us consider, for a large N ∈ N satisfying 2N0+1
2N+1 ≤

1
4 , the measures defined on EN :

ρ̃′N (du) := (Γ̃′N )−1e−V2(SNu)e−V1(SNu)µN (du), and πN (du) := e−V1(SNu)µN (du),

where Γ̃′N =
∫
EN

e−V1(SNu)e−V2(SNu)dµN (u), and µN is defined in Section 2. We will see that

πN satisfies the Poincaré inequality, i.e. for any φ ∈ C1
b (EN ,R)∫

EN

|Dφ(y)|2ENdπN (y) ≥
∫
EN

|φ(y)− φ̄πN |2dπN (y), (8.1)



30 ANNE DE BOUARD, ARNAUD DEBUSSCHE, AND REIKA FUKUIZUMI

which implies a Poincaré inequality for ρ̃′N . Indeed, assuming that (8.1) holds,

eCη
∫
EN

|Dφ(y)|2ENdρ̃
′
N (y) = eCη(Γ̃′N )−1

∫
EN

|Dφ(y)|2EN e
−V2(SNy)dπN (y)

≥ (Γ̃′N )−1

∫
EN

|Dφ(y)|2ENdπN (y) ≥ (Γ̃′N )−1

∫
EN

|φ(y)− φ̄πN |2dπN (y)

≥ (Γ̃′N )−1

∫
EN

|φ(y)− φ̄πN |2e−V2(SNy)dπN (y) =

∫
EN

|φ(y)− φ̄πN |2dρ̃′N (y),

and the Poincaré inequality for ρ̃′N follows from the obvious fact that∫
EN

|φ(y)− φ̄ρ̃′N |2dρ̃′N (y) = inf
C∈R

∫
EN

|φ(y)− C|2dρ̃′N (y).

For (8.1), the following two points are essential according to Section 4. The first point is the
dissipative inequality (4.4), with Equation (4.2) replaced by the equation

dY = γ(HY − 2SN (∂yF1(x, |SNY |2)SNY ))dt+
√

2γΠNdW,

and the second point is the exponential decay of ηhN := DyY (t, y).h. One may check for all
w, z ∈ EN and γ > 0,

(γH(w − z)− 2γSN (∂yF1(·, |SNw|2)SNw − ∂yF1(·, |SNz|2)SNz), w − z)EN (8.2)

= −γ|(−H)1/2(w − z)|2L2 − γRe

∫
R

{
∂yF1(x, |SNw|2) + ∂yF1(x, |SNz|2)

}
|SNw − SNz|2dx

−γRe

∫
R

{
∂yF1(x, |SNw|2)− ∂yF1(x, |SNz|2)

}
(SNw + SNz)(SNw − SNz)dx.

The second term on the right hand side above can be estimated as follows.

−γRe

∫
R
∂yF1(x, |SNw|2)|SNw − SNz|2dx

= −γRe

∫
R

1l|SNw|2≥η

(1

2
|SNw|2 −

η

2

)
|SNw − SNz|2dx

−γRe

∫
R

1l|SNw|2<ηΘ(x)
(1

2
|SNw|2 −

η

2

)
|SNw − SNz|2dx.

Note that the first term on the right hand side above is non positive while the second term is
bounded by

γη

2

∫
R

Θ(x)|SNw − SNz|2dx ≤ γ

2

∫
|x|≥

√
3η
2

η|SNw − SNz|2dx

≤ γ

3

∫
R
|x|2|(SNw − SNz)(x)|2dx ≤ γ

3

∫
R
|(−H)1/2(SNw − SNz)|2dx

≤ γ

3
|(−H)1/2(w − z)|2L2 .

Thus

−γRe

∫
R

{
∂yF1(x, |SNw|2) + ∂yF1(x, |SNz|2)

}
|SNw − SNz|2dx ≤

2γ

3
|(−H)1/2(w − z)|2L2 ,
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and this term can be absorbed by the first term on the right hand side of (8.2). On the other
hand, the third term, which is equal to

−γRe

∫
R

{
∂yF1(x, |SNw|2)− ∂yF1(x, |SNz|2)

}
(|SNw|2 − |SNz|2)dx

is clearly non positive, thanks to the convexity of F1(x, ·). Hence, the dissipative inequality
holds.

Consider now ηhN := DyY (t, y).h which is the solution of{
∂tη = γHη − 2γSN

[
∂yF1(x, |SNY |2)SNη + 2∂2

yF1(x, |SNY |2)Re(SNY SNη)SNY
]

η(0) = h ∈ EN .

Similarly as above, taking the product with ηhN ,

1

2

d

dt
|ηhN |2EN + γ(−HηhN , ηhN )EN = −2γRe

∫
R
∂yF1(x, |SNY |2)|SNηhN |2dx

−4γ

∫
R
∂2
yF1(x, |SNY |2)

{
Re(SNY SNη

h
N )
}2
dx

≤ 2γ

3

∫
R
|(−H)1/2ηhN |2dx,

and the exponential decay of ηhN follows. Thus, all the results of Section 4 also hold in the case
η > 0.

Next, the results of Sections 5 and 6 are proved exactly in the same way as in the case η = 0.
It remains to obtain the convergence of the measure ρ̃′N (Section 7); for that purpose, consider N

large enough such that 2N0+1
2N+1 ≤

1
4 , define AN := −H−η(SN −ΠN0) and consider the associated

Gaussian measure µ̃N on EN which, up to a normalizing constant, is equal to e−
1
2

(ANu,u)EN du,
and converges to µ̃η as N → +∞. Note that we may write

ρ̃′N (du) = (Γ̃N )−1e−Ṽ (SNu)dµ̃N (du),

with Γ̃N =
∫
EN

e−Ṽ (SNu)dµ̃N (du). We have ρ̃′N ⊗ µ̃⊥N → ρ as N → +∞, for p > 2, provided

lim
N→+∞

µ̃η(u ∈ Lp(R), |Ṽ (SNu)− Ṽ (u)| > δ) = 0,

for any δ > 0. This may be shown similarly as in Lemma 3.3 in [3].

9. Appendix

Here we give a proof of Lemma 2.1.
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Proof of Lemma 2.1. We apply the Kolmogorov test (see [8]) in order to investigate the
regularity of Z∞(t). For t, s ∈ [−T ′, T ], with s < t,

Z∞(t, x)− Z∞(s, x) =
√

2γ
∑
k∈N

[ ∫ t

s
e−λ

2
k(i+γ)(t−σ)(dβRk (σ)hk(x) + idβIk(σ)hk(x))

+

∫ s

−∞
(e−λ

2
k(i+γ)(t−σ) − e−λ2k(i+γ)(s−σ))(dβRk (σ)hk(x) + idβIk(σ)hk(x))

]
.

We set

f1,t,s(ω, x) :=
∑
k

∫ t

s
e−λ

2
k(i+γ)(t−σ)(dβRk (σ)hk(x) + idβIk(σ)hk(x)),

f2,t,s(ω, x) :=
∑
k

∫ s

−∞
(e−λ

2
k(i+γ)(t−σ) − e−λ2k(i+γ)(s−σ))(dβRk (σ)hk(x) + idβIk(σ)hk(x)),

and we will make use of the Minkowski inequality; for q ≥ p,

|fj,t,s(ω, x)|LqωLpx ≤ |fj,t,s(ω, x)|LpxLqω , j = 1, 2, t, s ∈ [0, T ].

We calculate first

E
(∣∣∣∑

k

∫ t

s
e−λ

2
k(i+γ)(t−σ)(dβRk (σ)hk(x) + idβIk(σ)hk(x))

∣∣∣2)
≤ 2E

∑
k

∫ t

s
e−2γλ2k(t−σ)dσ|hk(x)|2

≤
∑
k

1

γλ2
k

(1− e−2γλ2k(t−s))|hk(x)|2

≤ Cα,γ
∑
k

λ
2(α−1)
k |t− s|α|hk(x)|2,

for any α ∈ [0, 1], and γ > 0. Since moreover {f1,t,s(ω, x)}t∈[0,T ] is a Gaussian process, we deduce
that for any m ∈ N \ {0},

E
(∣∣∣∑

k

∫ t

s
e−λ

2
k(i+γ)(t−σ)(dβRk (σ)hk(x) + idβIk(σ)hk(x))

∣∣∣2m)
≤ (Cα,γ)m|t− s|αm

(∑
k

λ
2(α−1)
k |hk(x)|2

)m
.

Therefore, for q = 2m ≥ p, and α ∈ [0, 1],

E
(
|f1,t,s(x)|2mLp(R)

) 1
2m

= |f1,t,s|L2m
ω Lpx

≤ |f1,t,s|LpxL2m
ω

≤ (Cα,γ)1/2|t− s|α/2
∣∣∣(∑

k

λ
2(α−1)
k (hk(x))2

) 1
2
∣∣∣
Lpx
.
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On the other hand,∣∣∣(∑
k

λ
2(α−1)
k |hk(x)|2

)1/2∣∣∣
Lpx

=
∣∣∣∑
k

λ
2(α−1)
k |hk(x)|2

∣∣∣1/2
L
p/2
x

≤
(∑

k

λ
2(α−1)
k |hk|2Lpx

)1/2
.

Here we remark that for all p ≥ 4, there exists Cp > 0 such that |hk|Lp(R) ≤ Cpλ
− 1

6
k (see [21],

Lemma 3.2), and by interpolation, if 2 ≤ p ≤ 4, |hk|Lp(R) ≤ Cpλ
− 1

6
(2− 4

p
)

k . Therefore, using the
notation θ(p) in (2.3),

|
(∑

k

λ
2(α−1)
k |hk(x)|2

)1/2
|Lpx ≤ Cp

(∑
k

λ
2(α−1− 1

6
θ(p))

k

)1/2

and the series converges if p > 2 and α < θ(p)/6. Namely,

E(|f1,t,s|2mLpx ) ≤ Cp,α,γ,m|t− s|αm (9.1)

for α < θ(p)/6 and p > 2. Similarly, for the second term f2,t,s(ω, x),

E(|
∑
k

∫ s

−∞
(e−λ

2
k(i+γ)(t−σ) − e−λ2k(i+γ)(s−σ))(dβRk (σ)hk(x) + idβIk(σ)hk(x))|2)

≤ 2E
∑
k

∫ s

−∞
|e−λ2k(i+γ)(t−σ) − e−λ2k(i+γ)(s−σ)|2dσ|hk(x)|2

≤ 2
∑
k

∫ s

−∞
e−2λ2kγ(s−σ)|e−λ2k(i+γ)(t−s) − 1|2dσ|hk(x)|2

≤
∑
k

1

γλ2
k

|e−λ2k(i+γ)(t−s) − 1|2|hk(x)|2.

Here, we note that

|e−λ2k(i+γ)(t−s) − 1| ≤ Cα,γλ2α
k |t− s|α,

if t− s ≥ 0 and 0 ≤ α ≤ 1. Thus,

E(|
∑
k

∫ s

−∞
(e−λ

2
k(i+γ)(t−σ) − e−λ2k(i+γ)(s−σ))(dβRk (σ)hk(x) + idβIk(σ)hk(x))|2)

≤ C ′γ,α
∑
k

λ
2(2α−1)
k |t− s|2α|hk(x)|2

for all α ∈ [0, 1], and we conclude with the same arguments as for the first term f1,t,s(ω, x) that
for m ≥ p

2 > 1 and α < θ(p)/12,

E(|f2,t,s|2mLpx ) ≤ Cp,α,γ,m|t− s|2αm.

We conclude by the Kolmogorov test that Z∞ has a modification in Cα
′
([0, T ], Lp(R)) for any

α′ < θ(p)/12 and p > 2. In particular,

E
(

sup
t∈[0,T ]

|Z∞(t)|Lp(R)

)
≤MT,p.

Note that the same calculation with Lp(R) replaced by Ws,p(R) can be performed, and shows

that Z∞(t) has a modification in Cα
′
([0, T ],Ws,p(R)) for p > 2, 0 ≤ s < θ(p)/6, and α′ <
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θ(p)/12 − s/2. Futhermore, the arguments above imply the same estimates for ΠNZ∞ and
(I −ΠN )Z∞. �
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