Yoann Dupont

Marco Dinarelli

Isabelle Tellier

Christian Lautier

Structured Named Entity Recognition by Cascading CRFs

Keywords: machine learning, structured named entity recognition, CRF, Quaero

NER is an important task in NLP, often used as a basis for further treatments. A new challenge has emerged in the last few years: structured named entity recognition, where not only named entities must be identied but also their hierarchical components. In this article, we describe a cascading CRFs approach to address this challenge. It reaches the state of the art while remaining very simple on a structured NER challenge. We then oer an error analysis of our system based on a detailed, yet simple, error classication.

Introduction

In this paper, we present a linear CRF cascade approach for structured named entity recognition (SNER) on Quaero v1 and v2 corpora, used in the ETAPE evaluation campaigns [START_REF] Gravier | The etape corpus for the evaluation of speech-based tv content processing in the french language[END_REF]. Named Entity Recognition (NER) is a fundamental NLP task, its structured variant being increasingly popular. We can overall distinguish two main approaches used to address this task, the rst one being cascading multiple annotations with either the same or dierent methods. In this respect, we can cite [START_REF] Maurel | Cascades de transducteurs autour de la reconnaissance des entités nommées[END_REF], which cascaded rules in order to gradually build the structure. We can also cite [START_REF] Dinarelli | Models cascade for tree-structured named entity detection[END_REF], where a CRF and a PCFG were used, the former giving the leaves while the latter built the rest of the tree. And nally [START_REF] Raymond | Robust tree-structured named entities recognition from speech[END_REF], the winner of ETAPE, used one CRF per entity type, for a total of 68 CRFs, and then aligned their annotations. The second approach to annotate tree-structured named entities is to directly retrieve the structure, as was done by [START_REF] Nouvel | Fouille de règles d'annotation partielles pour la reconnaissance des entités nommées[END_REF], who used partial annotation rules for predicting beginnings and ends of entities and then built the tree in one pass. Finally, we can cite [START_REF] Finkel | Nested named entity recognition[END_REF], who used a tree-CRF to learn nested biomedical entities on the GENIA corpus [START_REF] Kim | ichi Tsujii: Genia corpusa semantically annotated corpus for bio-textmining[END_REF].

Cascading linear CRFs have also been applied for syntactic parsing, as did [START_REF] Tsuruoka | Fast full parsing by linearchain conditional random elds[END_REF]. At each step, they retrieved chunks and then only kept their respective heads for the next iteration until only one chunk covering the whole sentence was found (with the class sentence). The tree was then reconstructed by simply unfolding chunks at each step. In this paper, we design a new, more general and eective cascade of CRFs adapted to the ETAPE evaluation campaign (sections 2 and 3), evaluate its eciency and analyse its errors (section 4) and nally conclude (section 5).

2 Structured Named Entity Recognition

Named Entity Recognition

NER is a very important NLP task, often used as the starting point of many others, such as relation extraction [START_REF] Razvan | A shortest path dependency kernel for relation extraction[END_REF], entity linking and coreference resolution [START_REF] Denis | Global joint models for coreference resolution and named entity classication[END_REF][START_REF] Durrett | A joint model for entity analysis: Coreference, typing, and linking[END_REF][START_REF] Hajishirzi | Joint coreference resolution and named-entity linking with multi-pass sieves[END_REF].

Since their denition in the MUC-6 [START_REF] Grishman | Message understanding conference-6: A brief history[END_REF], named entities have been integrated

into more and more rened classications, covering more elements of dierent nature and/or rening the grain of already dened typologies [START_REF] George R Doddington | The automatic content extraction (ace) program-tasks, data, and evaluation[END_REF][START_REF] Sekine | Denition, dictionaries and tagger for extended named entity hierarchy[END_REF]. The need for structuration in named entities appeared early. The rst available corpora where this need was taken into account came out with an imbrication structure where the same entity set was used along dierent annotation layers, applied to longer and longer sequences. It is for instance the case for the SemEval'2007 [START_REF] Màrquez | Semeval-2007 task 09: Multilevel semantic annotation of catalan and spanish[END_REF] task 9 corpora. To our knowledge, one of the rst corpus providing real structured named entities is Quaero [START_REF] Rosset | Entités nommées structurées: guide d'annotation Quaero[END_REF], which we will use for our experiments.

Quaero Corpus

The Quaero corpus is made of French transcribed oral broadcast news. Two annotation variants (v1 and v2) have been applied to the same data. Their main characteristics are given in the table 1, from which we can see that there are 60% more annotations in Quaero v2 compared to Quaero v1 (v1 annotations thus probably keep silent on many entities). The specicity of the Quaero typology is that it integrates two kinds of annotations: types (that we will call entities for sake of clarity) and components. Entities follow the common named entity denition: they can be a location, a person, an organisation, an amount, etc.

The dierent Quaero entities are shown in gure 1. Components, as their name suggests, are parts of an entity. For example, a person has a rst and/or last name, an absolute date may have a year and/or a day and/or a month. This means that a component cannot be at the top level of the hierarchy. There are 27 of them, 10 of which are transversal, meaning that they can be components of dierent entity types.

The main Quaero diculties lie in its wide coverage named entity denition, Quaero considering a lot of common nouns as named entities, its tree structure named entity and the fact that it is oral transcription.

Some dierences between the typologies of Quaero v1 and v2 are shown in Figure 2. Amongst the most notable dierences between the two versions, there is the disappearance of organisation sub-types, namely org.ent (companies), org.adm (organisations) and org.other (other organisations), replaced by org.ind (individual organisation) and org.coll (a collection of organisations). Many kind components were rened: functions, for example, are components on their own in v2. Some changes go along those previously cited: in v1, function and person were two dierent entities, in v2 they are one. This echoes the change of some The generic nature of some entities make them sometimes hard to grasp.

While most Quaero entities have a depth of 2, there is no limit in Quaero's denitions of how deep an entity can be: we found that the deepest Quaero entity was of depth 9 (we cannot show it here for space issues). We also checked for overlapping entities having the same type, which is an argument for using cascading annotations. We found about 300 examples in the training set, a little more than 1 per thousand annotations. The system used by the winner of the 3

Linear-chain CRF cascade

Linear-chain CRFs [START_REF] Laerty | Conditional random elds: Probabilistic models for segmenting and labeling sequence data[END_REF] are discriminative probabilistic graphical models modeling sequential dependencies. One of the most eective implementations of linearchain CRFs is Wapiti [START_REF] Lavergne | Practical very large scale CRFs[END_REF], which was used for our experiments.

The principle of a linear-chain CRF (or of any other linear-chain model) cascade for structured annotation is very simple, yet has proven to be eective for syntactic parsing [START_REF] Ratnaparkhi | A linear observed time statistical parser based on maximum entropy models[END_REF][START_REF] Tsuruoka | Fast full parsing by linearchain conditional random elds[END_REF]. A basic overview is that one or multiple chunking models are used repeatedly until no more additional information is found. Taking syntactic parsing as an example, it means that, at each step, one chunk if found (NP, VP, etc.), until there is only one chunk called "S" (for sentence) left, that spans over the entire sequence. Our contribution is an adaptation of this CRF parsing technique for structured named entities to better t the particularities of the task at hand. The main problem a classic parsing algorithm has to deal with when applied to named entities is the overabundance of "out" labels (words that are not part of an entity). Using previous algorithms as they are, a lot of passes would consist in parsing "out" labels, which would be suboptimal. We adapted the algorithm as follows: since we do not want to fully parse the sentence, we will stop as soon as no new entities are found at a given step. For the Quaero corpus, the simplest instance of cascade would consist in training two CRFs, one for components and the other one for types, used alternatively to annotate entities layer by layer. An example of a layered annotation is illustrated in Figure 2.

This approach can be generalized to any number of CRFs. This approach was not proposed by any ETAPE constestant. The closest systems would be: 1. one constestant used xed-depth CRF for entities and retrieved components using a rule-based approach and 2. the system of ETAPE's winner, who used binarized CRFs (one per type). Neither system use any kind of recursion, making ours more general and closer to Quaero's entity structure.

Our method is cumulative, being in this respect somewhat comparable to the ones described in [START_REF] Ratnaparkhi | A linear observed time statistical parser based on maximum entropy models[END_REF][START_REF] Tsuruoka | Fast full parsing by linearchain conditional random elds[END_REF]. At each step, when an entity of length two or more is found, it is merged into a single token. Previous methods, typically used for syntactic parsing, substitute the sequence of tokens by the head of the chunk, so they only keep the most relevant token. For named entity chunking, the concept of head word does not seem so natural and useful information could easily be lost. For an overview of heuristics used for cumulating tokens, see section 4.1.

Quaero entities may be very deep, we then need some recursion in our annotation scheme. The simplest way to achieve this is to have one model that would annotate components and one that would annotate entities. However, entities may be components of other entities. To model full annotations, we use two main passes: the rst one being a no context annotation, where a rst annotation has to be made with no additional information. The second one is a context aware annotation, where a context can be seen by the current CRF.

Quaero entities also have the property that a component will always have a type as an ancestor in a parse tree. To model this property, we divide each pass into two annotations, each one being done with a specic CRF. This gives us a total of four CRFs that will be launched, following the the algorithm 1 (for sake of simplicity, we left out the entity aggregation to one token and rebuilding of base text). The rst two CRFs (leaf) are called once to give a starting context to the other two (upper), which will be successively called until there is no more additional annotation. For specic features used in our models, see section 4.1.

We have observed in our experiments that using this approach we were able to manage annotations up to a depth of 6. Our approach is thus able to model In this section, we present the results reached with our method. We will rst compare the results we obtained on Quaero v1 with those of the contestants of the ETAPE evaluation campaign, as a rst evaluation of our method. We will then analyse the errors it made on Quaero v2, for which no other result has been published yet.

Features and Performances

Every feature detailed here is applied on a window of two words before to two words after. We considered dierent sets of features to evaluate the importance that some have compared to others.

For our baseline, we only used word-specic features: not a single lexicon is used, no tagging or lemmatisation is performed. The features used are the shapes of the words, their prexes and suxes up to a length 5 and a variety of boolean features such as does the word start with an uppercase? or is the word a number?. This baseline will then be enriched with other (more or less specic) features, to measure their impact.

We rst added the outputs of basic syntactic analyses, namely lemmatisation, PoS and chunking. This model is called "+syntax". As can be seen, adding this information leads to an important quality loss. This is probably due to the fact that they do not provide any new information (lemmas) or are not precise enough (PoS, chunking).

It is commonly known that the verb is the most important syntactic unit of a sentence. Verbs could be used to disambiguate between various entities and help improving recall on unknown entities, as the same verbs could be used for entities of the same type. We added, for each word, the previous and next verb found in the sentence. French uses auxiliaries in some tenses, which precede the verb: in this case, we took the rst non-auxiliary verb. This provides the "+verb" model.

We then used a full set of features, containing all the previous features described above. We also added "word classes": these classes are obtained by substituting uppercase letters by A, lowercase letters by a, numbers by 0 and everything else by x. The brief alternative version of this feature consists in applying the same substitutions, but on contiguous sequences of characters of the same class. For example, the rst name Jean-Pierre would become Aaaax-Aaaaaa as a word classe and AaxAa as brief word class. This allows to represent words in a condensed fashion that is far more general than lemmas. We also have some basic chunk-based patterns (sequences of prepositional phrases following some keyword) which simulate rules-based entity recognizers. We used some gazetteers extracted either from Wikipedia or from internal tools, mainly rst names, last names, locations and companies. Quaero being an oral corpus, we also removed discourse markers using the list dened by [START_REF] Chanet | Fréquence des marqueurs discursifs en français parlé: quelques problèmes de méthodologie[END_REF], but only the non ambiguous ones such as euh 7 or enn bref 8 . We did not remove, for example, ben 9 as it could also be a part of an Arab name. We removed repeated words with the exception of nous nous 10 or consecutive numbers. We considered those markers as part of an entity if they were in the middle of it, but not otherwise.

When doing accumulation, a lot of interesting information may be lost. To limit this loss, we dened some heuristic rules based on which information the feature is supposed to extract. Examples of such rules are given in table 2 We also tried a top-down approach: nding entities rst, then components.

While it is relatively easy to retrieve entities when their components have been identied, components themselves may be dicult to identify: some components, such as kind, name, extractor, range-mark, object, tend to be ambiguous as they can either cover entities of very dierent natures, or be very contextual and appear in conjunction with others (an extractor is never isolated, for example).

Their identication could be eased by rst retrieving the entities that cover them, The metric used to measure performances in ETAPE evaluation campaign is a modied version of the Slot Error Rate (SER) [START_REF] Makhoul | Performance measures for information extraction[END_REF], which is the ratio between errors made by the system and the number of slots in the reference (N). The errors in the original SER are divided into three categories: substitutions (S), deletions (D) and insertions (I). Deletions measure the silence of a system (slots in the reference which cannot be aligned to suggestions of the system), while insertions measure its noise (slots in the system's suggestions which cannot be aligned to a reference slot), substitutions are the rest of precision errors. ETAPE used a weighted SER: pure type errors (S t) and pure boundary errors (S b) were counted as half an error, while type and boundary errors (S t+b) were counted as a full error, which gives the equation 1. It is the measure we used.

giving

SER

= D + I + S t+b + 0.5 * (S t + S b) N (1)
The results reached with our cascade of CRFs with dierent sets of features are compared with those of the top 5 contestants of the ETAPE campaign in the 7 French for err 8 French for anyway 9 which can stand for "well" in French oral discourses 10 which can be a correct sequence in French tables 3 (SER being an error rate, the lower the best). Had we participated in ETAPE campaign, our model would have reached second position with our baseline CRF cascade, which does not include any kind of morphosyntactic analysis, dictionary or any other external resource. Top competitors in the ETAPE campaign used some external tools. [START_REF] Dinarelli | Models cascade for tree-structured named entity detection[END_REF] used WMatch [START_REF] Bernard | The limsi participation in the qast 2009 track: experimenting on answer scoring[END_REF][START_REF] Galibert | Approches et méthodologies pour la réponse automatique à des questions adaptées à un cadre interactif en domaine ouvert[END_REF], ETAPE's winner [START_REF] Raymond | Robust tree-structured named entities recognition from speech[END_REF] used dictionaries along mined trigger words (words that have high mutual information with output classes) and a number discretiser. Our approach is competitive, as our baseline would have ranked second without using any such resource. We also have a signicant quality improvement using our cascade compared to using only a naive two levels CRF cascade. We did not manage to improve our baseline on Quaero v1, going from slightly worse to signicantly worse, the worst being when the full set of features was used. That last experiment had roughly twice the noise of the baseline. As seen in section 2. As can be seen in table 4, we obtain better results on Quaero v2 than on Quaero v1, due to improved typology and a more thorough human annotation.

We also see that adding neighboring verbs has a detrimental eect on the quality of the annotation, no matter the experiment. Dictionaries, surprisingly, also had a detrimental eect on our results, but far smaller on Quaero v2 than on Quaero v1, which shows that a lot of the noise induced by dictionaries in Quaero v1

were actually entities missed by the annotators (SER penalizes more systems that are noisy). Looking at macro F1-scores in Table 4, we can see that the full set of features yields better results, and that the lower micro F1-score is due to the imbalance in data set, as told in section 2.2. Table 5 shows some examples of dierence in terms of F1-scores between the baseline and the other experiments, displaying why using the full set leads to worse results: the quality on amount, which is disproportionately represented, decreased signicantly.

+verbs full set town -0.6 +7.1 org.ind -1.4 +1 amount +0.8 -2.2

Table 5. Some Entity-specic F1-score Dierences Compared to the Baseline Despite these results, it is obvious that our system can still be improved.

Since SER as a unique measure is not very informative, we make a more detailed analysis in the next section, trying to nd some hints on where we can get improvements. Since there are some papers on Quaero v1, but none to our knowledge on Quaero v2, we will focus our error analysis on the latter.

Error analysis

SER, as well as micro F1-score, is a measure that tends to favor most frequent entities as they carry more weight on the global metric than less frequent ones.

Displaying scores by entity may allow to know on which ones the system performs better, but does not give an accurate view on where best gains can be made.

To make up for this, we suggest a quantication of the shortfalls of our system in Table 6. These shortfalls are the number of F1-score points the system would gain if it were 100% accurate on a specic entity.

We see in the tables that shortfalls gather on leaves or on major types (amount, org, pers). If we perfectly annotated the entities of these tables, we would obtain about 90 in absolute F1-score. We can see that gains are hard to make by focusing on a single entity: if we wanted to gain a single F1-score point that way, this would equate to gaining 10 points on name components, 20 on org.ind or 24 or kind. However, just as errors propagate, corrections would also propagate: name being a component of multiple entities, corrections on that component would also spread on the entities above it and would improve scores on multiple entities (for example org, loc and pers where most ambiguities happen at the component level).

To ease error analysis, we capitalized on the Quaero renements on SER, giving us 5 kinds of errors: type errors, boundary errors, type+boundary errors, noise and silence.

As illustrated on the table of table 7, the main problem of our system is its silence, amounting to more than 50% of the system's errors, 19% of reference annotations not having a suggestion made by the CRF. Now, we detail the most common errors made by our system. First, examples of such errors are given in the As illustrated on the chart of Figure 3, most type errors involve either func, kind or name. Going from Quaero v1 to Quaero v2, some kind components have been replaced by func (cf. Figure 2): they are closely related but there are also some possible human errors which could explain in part the confusion between the two. Some errors come from name morphing into kind in presence of other components (ex: a country's government). CRFs seem to have trouble modeling this isolation phenomenon. Still on the government example, there is a volume 11 de and des in French may be partitive, possessive (not annotated) or complement (annotated). disparity between gold annotations and what the CRF yields: while it is mostly annotated name, this annotation only amounts to 20% of the CRF's output.

Maybe some post-processing rules could help correct this kind of errors.

Silence errors are mainly made on Quaero components, amounting to nearly 60% of all silence errors. They are mainly made on val, object, kind and qualier. Object being an amount component, it is accompanied with a val, most likely those errors are linked to each other, even though we did not manage to quantify the phenomenon. Errors on qualier are nearly always contextual, as it never appears alone. Most silent qualiers are so because the component they qualify was not identied either. This allows to think that the CRF managed to understand this structural constraint, meaning that those silences will most likely be corrected if we manage to catch the component they qualify.

Boundary errors on components are usually of length 1 or 2 and seem equally distributed between additions and deletions, they mostly are adjectives or prepositional phrases. When it comes to entities, boundary errors tend to be larger on overall, this is due to the propagation of two kinds of errors: rst the boundary errors on some components will cause an entity to have a boundary error also.

Second, a silence error on a component can lead to a boundary error in an entity, for example when a rst/last name is not identied at a component level, but the person is still identied.

Most noise errors are on components such as val, object, kind, qualier and name. Nearly 80% of those noise errors are on components whose form was observed on the training corpus. While some are most likely human errors, such as countries and proper names, some others are more contextual and may indicate an overtting of the CRF, that just took those components at face value. As previously showed, most errors on entities seem to originate from errors made on previous levels. To check this assertion, we tried a run using the reference components instead of using a CRF to annotate leaf level components in algorithm 1: the SER dropped to 6.3%, a result coherent with the one stated by [START_REF] Dinarelli | Models cascade for tree-structured named entity detection[END_REF], who made the same test (Table 4). We plan to isolate non-propagated type-specic errors to analyse them specically in further research. This last test provides a strong proof that we should focus more on components of the rst level, especially for common nouns that tend to be more ambiguous than proper nouns. We also need to model some horizontal structuration better: some components work symbiotically with others, such as val and object. Type errors also showed the need for a better disambiguation between the dierent name components.

Conclusion

In this article, we have described a general method for structured named entity recognition using a cascade of linear-chain CRFs. We have given a generic procedure that we adapted to best t the architecture of Quaero named entities. We showed why this specic architecture was justied; it gave promising results, while remaining simple. While we did not manage to improve the current state-of-the-art on Quaero v1, we nonetheless showed that our approach has competitive performances.

We tried to characterize the most common errors and quantied the dierent shortfalls of our system, which gave us some insights on how to improve it and even found potential human errors. This process sadly lacks in automation. We could compute an estimation of the propagated errors on types by checking if a component below it has the same error type. We could also check the merits of our approach by comparing it to a single CRF that would learn only the top-level entities: by comparing the two, we could see errors made by one and not the other, or by both of them. We could also compare the SER score with a recent metric named Entity Tree Error Rate (ETER) [START_REF] Ben | a new metric for the evaluation of hierarchical named entity recognition[END_REF], a metric based on the SER but aims to better take into account structuration.

We plan to continue our research, especially by integrating more ecient models, by focusing on annotating common nouns and how to model context, which we think are the two most important tasks if we want to improve results on Quaero. We also plan to use the hierarchy of the Quaero entity types to our advantage: we could rst learn a coarse grain CRF (ex: pers instead of pers.ind and pers.coll) which would be followed by a ne grain CRF that would assign the various subclasses. This could improve the disambiguation between the dierent subtypes of name.

Fig. 4 .

 4 Fig. 4. Type on Entities

Table 1 .

 1 Statistics on the Quaero Train and Test Sets

	kind components to function, a function being a component of a person in v2,
	whose spans were enlarged accordingly.

many entities being noun phrases without a proper name. It is for example the case for amounts, like in deux incendies 4 or des historiens 5 , but not in sport results or administrative language (e.g. armation 22 6 in Quaero guidelines).

Table 2 .

 2 more useful context to the CRF. Examples of Heuristic Rules of Accumulation

	feature	example
	word	12 January → 12_January
	character classes 00 Aaaaaaa → 00_Aaaaaaa
	rst is upper?	12 January → false
	has number?	12 January → true
	is number?	12 January → false

Table 3 .

 3 2, this noise may actually be corrections of the silence due to incomplete annotations. On the left, results of ETAPE contestants. On the right, our results.

	Contestant 3 8 10 5 4	method CRF CRF+PCFG 36.4 SER 33.8 rules 42.9 CRF 43.6 rules 55.6			Our results SER baseline 35.5 +syntax 37.0 +verbs 37.4 full set 43.3 two levels 37.0 top-down 37.1
		experience	SER micro F1 macro F1
		our baseline 33.2	73.1	54.2
		+verb	33.7	72.9	51.4
		full set	34.8	72.3	53.2

Table 4 .

 4 Our Best Results on Quaero v2.

Table 8

 8

	for components. Errors on entities being

Table 6 .

 6 Entities with the Highest Shortfalls on Global F1-scores

	error kind	proportion (%)
	type	8.0
	boundary	11.7
	type+boundary	6.2
	noise	21.6
	silence	52.5

Table 7 .

 7 Raw Percentage of the Various Errors

	error	description
	boundary unfrequent variation of frequent entity
		adjective or prepositional phrase
	type	kind vs func (+human errors?) name / kind : some name become kind with other compo-
		nents (in gold)
	noise	val: wrong PoS on des, de et d' 11 (+human errors?) object: common nouns and sports results
		name: known components → country, val (numbers), relative
		time
	silence	val : not numbered amounts qualier : missed if qualied component is missed
		name : forgotten on relative times
		kind : polysemic common nouns

Table 8 .

 8 Error overview on components