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In this paper, we present an ecient algorithm for the certication of numeric solutions to eigenproblems. The algorithm relies on a mixture of ball arithmetic, a suitable Newton iteration, and clustering of eigenvalues that are close.

Introduction

Let F be the set of oating point numbers for a xed precision and a xed exponent range. We will denote F > = fx 2 F: x > 0g. Consider an n n matrix M 2 F[i] nn with complex oating entries. The numeric eigenproblem associated to M is to compute a transformation matrix T 2 F[i] nn and a diagonal matrix D 2 F[i] nn such that D T ¡1 M T :

(

The entries of D are the approximate eigenvalues and the columns of T are the approximate eigenvectors of M . In addition, we might require that T is normalized. For instance, each of the columns might have unit norm. Alternatively, the norm of the i-th column may be required to be the same as the norm of the i-th row of T ¡1 , for each i. There are several well-known algorithms for solving the numeric eigenproblem [START_REF] Golub | Matrix Computations[END_REF]. Unfortunately, (1) is only an approximate equality. It is sometimes important to have rigourous bounds for the distance between the approximate eigenvalues and/or eigenvectors and the genuine ones. More precisely, we may ask for a diagonal matrix D r 2 (F > ) nn and a matrix T r 2 (F > ) nn of radii such that there exists a matrix T 0 2 C nn for which D 0 = (T 0 ) ¡1 M T is diagonal and jD i;i 0 ¡ D i;i j 6 (D r ) i;i jT i;j 0 ¡ T i;j j 6 (T r ) i;j for all i; j. This task will be called the certication problem of the numeric solution (D; T ) to the eigenproblem for M . It will be convenient to rely on ball arithmetic [START_REF] Van Der Hoeven | Ball arithmetic[END_REF][START_REF] Johansson | Arb: A c library for ball arithmetic[END_REF], which is a systematic technique for bound computations. When computing with complex numbers, ball arithmetic is more accurate than more classical interval arithmetic [START_REF] Moore | Interval Analysis[END_REF][START_REF] Alefeld | Introduction to interval analysis[END_REF][START_REF] Neumaier | Interval methods for systems of equations[END_REF][START_REF] Jaulin | Applied interval analysis[END_REF][START_REF] Kulisch | Computer Arithmetic and Validity. Theory, Implementation, and Applications[END_REF][START_REF] Rump | INTLAB -INTerval LABoratory[END_REF], especially in multiple precision contexts. We will write B = B(F[i]; F > ) for the set of balls z = B(z c ; z r ) = fz 2 C: jz ¡ z c j 6 z r g with centers z c in F[i] and radii z r in F > . In a similar way, we may consider matricial balls

M = B(M c ; M r ) 2 B(F[i] nn ; (F > ) nn ): given a center matrix M c 2 F[i] nn and a radius matrix M r 2 (F > ) nn , we have M = B(M c ; M r ) = fM 2 C nn : 8i; j ; j(M c ) i;j ¡ M i;j j 6 (M r ) i;j g:
Alternatively, we may regard B(M c ; M r ) as the set of matrices in B nn with ball coecients:

B(M c ; M r ) i;j = B((M c ) i;j ; (M r ) i;j ):
Standard arithmetic operations on balls are carried out in a reliable way. For instance, if u; v 2 B, then the computation of the product w = u v using ball arithmetic has the property that u v 2 w for any u 2 u and v 2 v. Given a ball z 2 B, it will nally be convenient to write bzc 2 F > and dze 2 F > for certied lower and upper bounds of jz j in F > .

In the language of ball arithmetic, it is natural to allow for small errors in the input and replace the numeric input M 2 F[i] nn by a ball input B(M c ; M r ) 2 B nn . Then we may still compute a numeric solution In absence of multiple eigenvalues, known algorithms for solving this problem such as [START_REF] Yamamoto | Error bounds for computed eigenvalues and eigenvectors[END_REF][START_REF] Rump | Guaranteed inclusions for the complex generalized eigenproblem[END_REF] proceed by the individual certication of each eigenvector, which results in an O(n 4 ) running time. Extensions to a cluster of eigenvalues and the corresponding eigenvectors have been considered in [START_REF] Dongarra | Improving the accuracy of computed eigenvalues and eigenvectors[END_REF][START_REF] Rump | Computational error bounds for multiple or nearly multiple eigenvalues[END_REF], with similar O(n 4 ) complexity bounds. Fixed points theorem based on interval arithmetic are used to prove the existence of a matrix with a given Jordan block in the matrix interval domain. Such an approach has been exploited for the analysis of multiple roots in [START_REF] Graillat | A new algorithm for computing certied numerical approximations of the roots of a zero-dimensional system[END_REF][START_REF] Rump | Veried error bounds for multiple roots of systems of nonlinear equations[END_REF]. A test that provides an enclosing of all the eigenvalues has been proposed in [START_REF] Miyajima | Fast enclosure for all eigenvalues in generalized eigenvalue problems[END_REF]. Its certication relies on interval and ball arithmetics. The complexity of the test is in O(n 3 ) but no iteration converging to the solution of the eigenproblem is described.

D c T c ¡1 M c T c ; (2) 
In this paper, we present a new algorithm of time complexity O(n 3 ) for certifying and enclosing clusters of eigenvectors and eigenvalues in a single step. We also provide an iterative procedure that converges geometrically to clusters of solutions. This convergence is quadratic in the case of single eigenvalues. Our algorithm extends a previous algorithm from [START_REF] Van Der Hoeven | Ball arithmetic[END_REF] to the case of multiple eigenvalues. This yields an ecient test for approximate eigenvalues in the sense of the -theory [START_REF] Blum | Complexity and real computation[END_REF].

We recall that it is very unlikely that the numeric matrix M c 2 F[i] nn with complex oating point coecients has multiple eigenvalues. Indeed, small perturbations of matrices with multiple eigenvalues, as induced by rounding errors, generically only have simple eigenvalues. Consequently, we may assume without loss of generality that the numeric eigenproblem (2) has a reasonably accurate solution (if necessary, we may slightly perturb M c and increase M r accordingly). Using ball arithmetic, it is straightforward to compute the matricial ball

B(N c ; N r ) = B(T c ; 0) ¡1 B(M c ; M r ) B(T c ; 0):
If our numerical algorithm is accurate, then the non diagonal entries of B(N c ; N r ) tend to be small, whence B(N c ; N r ) can be considered as a small perturbation of a diagonal matrix. If we can estimate how far eigenvalues and eigenvectors of diagonal matrices can drift away under small perturbations, we thus obtain a solution to the original certication problem.

Section 2 introduces notations. In Section 3, we perform a detailed study of the eigenproblem for small perturbations M of diagonal matrices. We exhibit a Newton iteration for nding the solutions. This iteration has quadratic convergence in the absence of multiple eigenvalues and is also an ecient tool for doubling the precision of a solution. However, in the case of multiple eigenvalues, the eigenproblem is ill-posed. Indeed, by a well-known observation, any vector occurs as the eigenvector of a small perturbation of the 2 2 identity matrix. The best we can hope for is to group eigenvectors with close eigenvalues together in clusters (see also [START_REF] Rump | Computational error bounds for multiple or nearly multiple eigenvalues[END_REF]) and only require T ¡1 M T to be block diagonal. For this reason, we present our Newton iteration in a suciently general setting which encompasses block matrices. We will show that the iteration still admits geometric convergence for suciently small perturbations and that the blockwise certication is still sucient for the computation of rigourous error bounds for the eigenvalues. In Section 4, we will present explicit algorithms for clustering and the overall certication problem.

Notations

Matrix norms

Throughout this paper, we will use the max norm for vectors and the corresponding matrix norm. More precisely, given a vector v 2 C n and an n n matrix M 2 C nn , we set kvk = max fjv 1 j; :::; jv n jg kM k = max kvk=1 kMv k:

For a second matrix N 2 C nn , we clearly have

kM + N k 6 kM k + kN k kM N k 6 kM k kN k:
Explicit machine computation of the matrix norm is easy using the formula kM k = max fjM i;1 j + + jM i;n j:

1 6 i 6 ng: (3) 
In particular, when changing certain entries of a matrix M to zero, its matrix norm kM k can only decrease.

Clustering

Assume that we are given a partition f1; :::; ng = I 1 q q I p : (

Such a partition will also be called a clustering and denoted by I. Two indices i; j are said to belong to the same cluster if there exists a k with fi; j g I k and we will write i j. Two entries M i;j and M i 0 ;j 0 of a matrix M 2 C nn are said to belong to the same block if i j and i 0 j 0 . We thus regard M as a generalized block matrix, for which the rows and columns of the blocks are not necessarily contiguous inside M . A matrix M 2 C nn is said to be block diagonal (relative to the clustering) if M i;j = 0 whenever i j. Similarly, we say that M is o block diagonal if M i;j = 0 whenever i j. For a general M 2 C nn , we dene its block diagonal and o block diagonal projections (M ) = I (M ) and (M ) = I (M ) by

(M ) i;j = M i;j if i j 0 otherwise (M ) i;j = 0 if i j M i;j otherwise
By our observation at the end of section 2.1, we have

k(M)k 6 kM k k(M)k 6 kM k:
For the trivial clustering I k = fkg, the matrices (M ) and (M ) are simply the diagonal and o diagonal projections of M . In that case we will also write = and = .

Diagonal matrices

Below, we will study eigenproblems for perturbations of a given diagonal matrix

D = 0 @ 1 n 1 A : (5) 
It follows from (3) that the matrix norm = kD k of a diagonal matrix D is given by = max fj 1 j; :::; j n jg:

It will also be useful to dene the separation number = (D) by = min fj i ¡ j j: i = / j g:

More generally, given a clustering as in the previous subsection, we also dene the block separation number = (D) = I (D) by

= min fj i ¡ j j: i j g
This number remains high if the clustering is chosen in such a way that the indices i; j of any two close eigenvalues i and j belong to the same cluster. In particular, if > 0, then i = j implies i j.

Eigenproblems for perturbed diagonal matrices

The linearized equation

Let D be a diagonal matrix [START_REF] Graillat | A new algorithm for computing certied numerical approximations of the roots of a zero-dimensional system[END_REF]. Given a small perturbation

M = D + H of D,
where H is an o diagonal matrix, the aim of this section is to nd a small matrix E 2 C nn for which

M 0 = (1 + E) ¡1 M (1 + E)
is block diagonal. In other words, we need to solve the equation

((1 + E) ¡1 (D + H) (1 + E)) = 0:
When linearizing this equation in E and H, we obtain

([D; E] + H) = 0:
If E is strongly o diagonal, then so is [D; E], and the equation further reduces to

[D; E] = ¡(H):
This equation can be solved using the following lemma:

Lemma 1. Given a matrix A 2 C nn and a diagonal matrix D with entries 1 ; :::; n , let B = (D; A) 2 C nn be the strongly o diagonal matrix with

B i;j = 8 < 
:

0 if i j A i; j j ¡ i otherwise
Then kB k 6 ¡1 kAk and

[D; B] = ¡(A): (6) 
Proof. The inequality follows from (3) and the denition of . One may check (6) using a straightforward computation.

The fundamental iteration

In view of the lemma, we now consider the iteration

(D; H) 7 ¡! (D 0 ; H 0 );
where

E = (D; H) M 0 = (1 + E) ¡1 (D + H) (1 + E) D 0 = (M 0 ) H 0 = (M 0 )
In order to study the convergence of this iteration, we introduce the quantities

= kDk 0 = kD 0 k = (D) 0 = (D 0 ) 1 = k(H)k 1 0 = k(H 0 )k 2 = k(H)k 2 0 = k(H 0 )k = min 6 ; 1 4 : Lemma 2. For 2 (0; 1], assume that 1 + 2 6 2 6 :
Then kD 0 ¡ D k 6 2 and

0 6 + 2 0 > ¡ 2 2 1 0 6 1 + 2 2 0 6 2 :
Proof. We have

M 0 ¡ D = H + [D; E] + R = (H) + R;
where

R = E 2 (1 + E) ¡1 (D + H) (1 + E) ¡ E (D + H) E + [H ; E]: Setting " = kE k 6 ¡1 2 6 6 1 4
, the remainder R is bounded by

kRk 6 " 2 1 1 ¡ " (1 + ) (1 + ") + " (1 + ) " + 2 ( 1 + 2 ) " = 2 " 2 1 ¡ " (1 + ) + 2 ( 1 + 2 ) " 6 (4 " + 2 ) " 6 6 ¡1 2 6 2 :
Consequently,

kD 0 ¡ Dk = k (M 0 ¡ D)k = k (R)k 6 kRk 6 2 1 0 = k(H 0 )k = k ((M 0 ))k = k ((H + R))k 6 kH + Rk 6 1 + 2 2 0 = k(H 0 )k = k(M 0 )k = k(R)k 6 2 :
The inequalities 0 6 + 2 and 0 > ¡ 2 2 follow from kD 0 ¡ Dk 6 2 .

Convergence of the fundamental iteration

Theorem 3. Assume that

1 + 2 6 1 8 2 6 1 8 :
Then the sequence (D; H); (D 0 ; H 0 ); (D 00 ; H 00 ); ::: converges geometrically to a limit (M (1) ; H (1) ) with kD (1) ¡ M k 6 2 and kH (1) k 6

1 + 2 . The matrix D (1) + H (1) is block diagonal and there exists a matrix E ^with kE ^k 6 3 ¡1 2 , such that

D (1) + H (1) = (1 + E ^)¡1 (D + H) (1 + E ^):
Proof. Let (D (i) ; H (i) ) stand for the i-th fundamental iterate of (D; H) and

E (i) = (H (i) ; D (i) ). Denote (i) = kD (i) k, (i) = (D (i) ), 1 (i) = k(H (i) )k and 2 (i) = k(H (i) )k. Let us
show by induction over i that

kD (i) ¡ D k 6 (1 ¡ 1 2 i ) 2 (i) 6 + (1 ¡ 1 2 i ) 2 (i) > 1 2 (1 + 1 2 i ) 1 (i) 6 1 + (1 ¡ 1 2 i ) 2 2 (i) 6 1 2 i 2 :
This is clear for i = 0. Assume that the induction hypothesis holds for a given i and let

(i) = min ( (i) 6 (i) ; 1 4 ) Since (1 ¡ 1 2 i ) 2 6
1 32 , the induction hypothesis implies

(i) 6 2 (i) > 1 2 (i) > 1 4 :
Applying Lemma 2 for (D (i) ; H (i) ) and = 1 2 , we thus nd

kD (i+1) ¡ Dk 6 kD (i) ¡ Dk + kD (i+1) ¡ D (i) k 6 (1 ¡ 1 2 i ) 2 + 1 2 i+1 2 6 (1 ¡ 1 2 i+1 ) 2 (i+1) 6 (i) + 1 2 2 (i) 6 + (1 ¡ 1 2 i+1 ) 2 (i+1) > (i) ¡ 1 2 2 (i) > 1 2 (1 + 1 2 i ¡ 1 2 i+1 ) > 1 2 (1 + 1 2 i+1 ) 1 (i+1) 6 1 (i) + 1 2 2 (i) 6 1 + (1 ¡ 1 2 i+1 ) 2 2 (i+1) 6 1 2 2 (i) 6 1 2 i+1 2 :
This completes the induction.

Applying the induction to the sequence starting at D (i) , we have for every j > 0,

kD (i+ j) ¡ D (i) k 6 (1 ¡ 1 2 j +1 ) 2 (i) 6 (1 ¡ 1 2 j +1 ) 1 2 i+1 2 :
This shows that D (i) is a Cauchy sequence that tends to a limit D (1) with kD (1) ¡ Dk 6 2 . From this inequality, we also deduce that kD (1) ¡ D (i) k 6 1 2 i+1 2 , so D (i) converges geometrically to D (1) .

Moreover, for each i, we have

" (i) = kE (i) k 6 ¡1 2 (i) 6 1 2 i ¡1 2 .
Hence, the matrix

E ^= (1 + E (0) ) (1 + E (1) ) (1 + E (2) ) ¡ 1
is well dened, and log(1 + kE ^k) 6 log (1 + " (0) ) + log(1 + " (1) ) + log(1 + " (2) ) + 6 2 ¡1 2 :

We deduce that

kE ^k 6 e 2 ¡1 2 ¡ 1 6 3 ¡1 2 ; since ¡1 2 6 1 32 . We claim that M (i) = D (i) + H (i) converges geometrically to M (1) = (1 + E ^)¡1 M (0) (1 + E ^):
For any matrix M ; E 2 C nn with kE k < " < 1, we have

k(1 + E) ¡1 M (1 + E) ¡ M k = kM E ¡ E (1 + E) ¡1 M (1 + E)k 6 kM k (" + " (1 + ") k(1 + E) ¡1 k) 6 " kM k (1 + (1 + ") (1 ¡ ") ¡1 ) = 2 " 1 ¡ " kM k: (7) Let E ^(i) = (1 + E (i) ) (1 + E (i+1) ) (1 + E (i+2)
) ¡ 1: By the same arguments as above, we have

" ^i := kE (i) k 6 3 ¡1 2 (i) = 3 2 i+1 ¡1 2 . Since M (1) = (1 + E ^(i) ) ¡1 M (i) (1 + E ^(i) ), the inequality (7) implies kM (1) ¡ M (i) k 6 2 " ^i 1 ¡ " ^i (kD (i) k + kH (i) k) 6 2 " ^i 1 ¡ " ^i¡ i + 1 (i) + 2 (i) 6 3 2 i ¡1 2 1 ¡ " ^i ( + 1 + 2 ):
This shows that M (i) converges geometrically to M (1) . We deduce that the sequence

H (i) = M (i) ¡ D (i)
also converges geometrically to a limit H (1) with kH (1) 

k 6 1 + 2 .
Since lim i!1 2 (i) = 0, we nally observe that M (1) = D (1) + H (1) is block diagonal. Proof. The extra assumption implies that 1 (i) = 0 for all i. Let us show by induction over i that we now have

2 (i) 6 1 2 2 i ¡1 2 :
This is clear for i = 0. Assume that the result holds for a given i. Then we may apply Lemma 2 to (D (i) ; H (i) ) for = 2 ¡2 i +1 , and obtain (i) , this establishes the quadratic convergence.

2 (i+1) 6 1 2 2 i ¡1 2 (i) 6 1 2 2 i+1 ¡1 : Since kD (i+1) ¡ D (i) k 6 2

Algorithms

Clustering

Let M = D + H be the perturbation of a diagonal matrix (5) as in the previous section.

In order to apply theorem 3, we rst have to nd a suitable clustering (4). For a given threshold separation , we will simply take the nest clustering (i.e. for which p is maximal) with the property that j i ¡ j j 6 ) i j. This clustering can be computed using the algorithm Cluster below.

Algorithm

Cluster Input: eigenvalues 1 ; :::; n 2 B and 2 F > Output: the nest clustering (4) with b i ¡ j c 6 ) i j

Let G be the graph with vertices 1; :::; n and such that i and j are connected if and only if b i ¡ j c 6 .

Let H be the transitive closure of G.

Let H 1 ; :::; H p the connected components of H.

Let I k be the set of vertices of H k for each k.

Certication in the case of perturbed diagonal matrices

In order to apply theorem 3, it now remains to nd a suitable threshold for which the conditions of the theorem hold. Starting with = 0, we will simply increase to (D) whenever the conditions are not satised. This will force the number p of clusters to decrease by at least one at every iteration, whence the algorithm terminates. Notice that the workload of one iteration is O(n 2 ), so the total running time remains bounded by O(n 3 ). 

Algorithm

Certication of approximate eigenvectors and eigenvalues

Let us now return to the original problem of certifying a numerical solution to an eigenproblem. We will denote by 1 n the n n matrix of which all entries are one. Obviously, any eigenvalue 2 C of a matrix M 2 C nn satises jj 6 kM k. We may thus use the following modication of EigenvectorCertify in order to compute enclosures for the eigenvalues of M . 

Algorithm EigenvectorCertify

Input: M = B(M c ; M r ) 2 B nn and T c 2 F[i] nn such that T c ¡1 M c T c is

Algorithm EigenvalueCertify

Input: M = B(M c ; M r ) 2 B nn and T c 2 F[i] nn such that T c ¡1 M c T c is

Possible extensions

Let M 2 C nn be a matrix with a (numerically) multiple eigenvalue . We have already stressed that it is generally impossible to provide non trivial certications for the corresponding eigenvectors. Nevertheless, two observations should be made:

If the eigenspace E corresponding to has dimension 1, then small perturbations of the matrix M only induce small perturbations of and E .

Let F denote the full invariant subspace associated to the eigenvalue (or all eigenvalues in the cluster of ). Then small perturbations of M only induce small perturbations of and F . More precisely, in these two cases, we may search for ball enclosures for orthonormal bases of the vector spaces E resp. F , which do not contain the zero vector.

When considering the numeric solution (1) of the eigenproblem for M , the column vectors which generate F are usually far from being orthogonal. Orthonormalization can only be done at the expense of making T ¡1 M T only upper triangular. Moreover, the orthogonalization implies a big loss of accuracy, which requires the application of a correction method for restoring the accuracy. It seems that the fundamental Newton iteration from Section 3.2 can actually be used as a correction method. For instance, for small perturbations of the matrix

D = 0 B B @ 1 1 0 0 0 1 0 0 0 0 2 1 0 0 0 2 1 C C A ;
it can be shown that the fundamental iteration still converges. However, for more general block diagonal matrices with triangular blocks, the details are quite technical and yet to be worked out.

Yet another direction for future investigations concerns the quadratic convergence. As a renement of Lemma 1, we might replace D by a block diagonal matrix with entries 1 ; :::; p . Instead of taking B i;j = M i; j j ¡ i , we then have to solve equations of the form B i;j j ¡ i B i;j = M i;j :

If the i are suciently close to i Id, it might then be possible to adapt the fundamental iteration accordingly so as to achieve quadratic convergence for the strongly o diagonal part.
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DiagonalCertify Input: a diagonal ball matrix D 2 B 6 ; 1 4 o

 2614 nn with entries 1 ; :::; n and an o diagonal ball matrix H 2 B nn Output: a clustering I and " ^2 F such that, for any M 2 D and H 2 H, the conditions of theorem 3 hold and kE ^k 6 " := 0 Repeat Compute the clustering I for 1 ; :::; n and using Cluster Let := kDk, := I (D), 1 := k I (H)k and 2 := k I (H)k Let := min n If d 1 + 2 e 6 b 8 c and d 2 e 6 b 8 c, then return (I ; d 3 2 e) Set := d e
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