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Abstract
In the last few years, Recurrent Neural Networks (RNNs) have proved effective

on several NLP tasks. Despite such great success, their ability to model sequence
labeling is still limited. This lead research toward solutions where RNNs are com-
bined with models which already proved effective in this domain, such as CRFs.
In this work we propose a solution far simpler but very effective: an evolution
of the simple Jordan RNN, where labels are re-injected as input into the network,
and converted into embeddings, in the same way as words. We compare this RNN
variant to all the other RNN models, Elman and Jordan RNN, LSTM and GRU, on
two well-known tasks of Spoken Language Understanding (SLU). Thanks to label
embeddings and their combination at the hidden layer, the proposed variant, which
uses more parameters than Elman and Jordan RNNs, but far fewer than LSTM and
GRU, is more effective than other RNNs, but also outperforms sophisticated CRF
models.

1 Introduction
In the last few years Recurrent Neural Networks (RNNs) [1, 2, 3] have proved very ef-
fective in several Natural Language Processing (NLP) tasks such as Part-of-Speech tag-
ging (POS tagging), chunking, Named Entity Recognition (NER), Spoken Language
Understanding (SLU), machine translation and even more [4, 5, 6, 7, 8, 9, 10]. These
models are particularly effective thanks to their recurrent architecture, which allows
neural models to keep in memory past information and re-use it at the current process-
ing step.
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In the literature of RNNs applied to NLP, several architectures have been proposed.
At first Elman and Jordan RNNs, introduced in [2, 1], and known also as simple RNNs,
have been adapted to NLP. The difference between these two models is in the type of
connection giving the recurrent character to these two architectures: in the Elman RNN
the recursion is a loop at the hidden layer, while in the Jordan RNN it relies the output
layer to the hidden layer. This last recursion allows to use at the current step labels
predicted for previous positions in a sequence.

These two recurrent models have shown limitations in learning relatively long con-
texts [11]. In order to overcome this limitation the RNNs known as Long Short-Term
Memory (LSTM) have been proposed [3]. Recently, a simplified and, apparently, more
effective variant of LSTM has been proposed, using Gated Recurrent Units and thus
named GRU [12].

Despite outstanding performances on several NLP tasks, RNNs have not been ex-
plicitly adapted to integrate effectively label-dependency information in sequence la-
beling tasks. Their sequence labeling decisions are based on intrinsically local func-
tions (e.g. the softmax). In order to overcome this limitation, sophisticated hybrid
RNN+CRF models have been proposed [13, 14, 15], where the traditional output layer
is replaced by a CRF neural layer. These models reach state-of-the-art performances,
their evaluation however is not clear. In particular it is not clear if performances de-
rive from the model itself, or thanks to particular experimental conditions. In [15] for
example, the best result of POS tagging on the Penn Treebank corpus is an accuracy
of 97.55, which is reached using word embeddings trained using GloVe [16], on huge
amount of unlabeled data. The model of [15] without pre-trained embeddings reaches
an accuracy of 96.9, which doesn’t seem that outstanding if we consider that a CRF
model dating from 2010, trained from scratch, without using any external resource,
reaches an accuracy of 97.3 on the same data [17]. We achieved the same result on
the same data with a CRF model trained from scratch using the incremental procedure
described in [18]. Moreover, the first version of the network proposed in this paper,
but using a sigmoid activation function and only the L2 regularization, tough with a
slightly different data preprocessing, achieves an accuracy on the Penn Treebank of
96.9 [19].

The intuition behind this paper is that embeddings allow a fine and effective mod-
eling not only of words, but also of labels and label dependencies, which are crucial in
some tasks of sequence labeling. In this paper we propose, as alternative to RNN+CRF
models, a variant of RNN allowing this more effective modeling. Surprisingly, a simple
modification to the RNN architecture results in a very effective model: in our variant of
RNN the recurrent connection connects the output layer to the input layer and, since the
first layer is just a look-up table mapping discrete items into embeddings, labels pre-
dicted at the output layer are mapped into embeddings the same way as words. Label
embeddings and word embeddings are combined at the hidden layer, allowing to learn
relations between these two types of information, which are used to predict the label at
current position in a sequence. Our intuition is that using several label embeddings as
context, a RNN is able to model correctly label-dependencies, the same way as more
sophisticated models explicitly designed for sequence labeling like CRFs [20].

This paper is a straight follow-up of [21]. Contributions with respect to that work
are as follows:
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(a) Elman (b) Jordan (c) Our variant

Figure 1: High level schema of simple RNNs (Elman and Jordan) and the variant
proposed in this paper.

i) An analysis of performances of forward, backward and bidirectional models. ii)
The use of ReLU hidden layer and dropout regularization [22] at the hidden and embed-
ding layers for improved regularized models. iii) The integration of a character-level
convolution layer. iv) An in-depth evaluation, showing the effect of different com-
ponents and of different information level on the performance. v) A straightforward
comparison of the proposed variant of RNN to Elman, Jordan, LSTM and GRU RNNs,
showing that the new variant is at least as effective as the best RNN models, such as
LSTM and GRU. Our variant is even more effective when taking label-dependencies
into account is crucial in the task, proving that our intuition is correct.

An high level schema of simple RNNs and of the variant proposed in this paper is
shown in figure 1, where w is the input word, y is the label, E, H , O and R are the
model parameters, which will be discussed in the following sections.

Since evaluations on tasks like POS tagging on the Penn Treebank are basically
reaching perfection (state-of-the-art is at 97.55 accuracy), any new model would prob-
ably provide little or no improvement. Also, performances on this type of tasks seem to
have reached a plateau, as models achieving 97.2 accuracy or even better, were already
published starting from 2003 [23, 24]. We propose instead to evaluate all the models
on two different and widely used tasks of Spoken Language Understanding [25], which
provide more variate evaluation settings: ATIS [26] and MEDIA [27].

ATIS is a relatively simple task and doesn’t require a sophisticated modeling of
label dependencies. This task allows to evaluate models in similar settings as tasks like
POS tagging or Named Entity Recognition as defined in the CoNLL Shared Task 2003,
both widely used as benchmarks in NLP papers. MEDIA is a very challenging task,
where the ability of models to keep label dependencies into account is crucial to obtain
good results.

Results show that our new variant is as effective as the best RNN models on a sim-
ple task like ATIS, still having the advantage of being much simpler. On the MEDIA
task however, our variant outperforms all the other RNNs by a large margin, and even
sophisticated CRF models, providing the best absolute result ever achieved on this task.

The paper is organized as follows: In the next section we describe the RNNs used
in the literature for NLP, starting from existing models to arrive at describing the new
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variant we propose. In the section 3 we present the corpora used for evaluation, the
experimental settings and the results obtained in several experimental conditions. We
draw some conclusions in section 4.

2 Recurrent Neural Networks (RNNs)
In this section we describe the most popular RNNs used for NLP, such as Elman and
Jordan RNNs [1, 2], and the most sophisticated RNNs like LSTM and GRU [3, 12].
We also describe training and inference procedures, and the RNN variant we propose.

2.1 Elman and Jordan RNNs
Elman and Jordan RNNs are defined as follows:

ht
Elman = Φ(R hElman

t−1 +H It) (1)
ht

Jordan = Φ(R yt−1 +H It) (2)

The difference between these two models is in the way of computing hidden activities,
while the output is computed in the same way:

yt = softmax(O h∗t) (3)
h∗t and yt are respectively the hidden and output layer’s activities1, Φ is an activation
function, H , O and R are the parameters at the hidden, output and recurrent layer,
respectively (biases are omitted to keep equations lighter). hElman

t−1 is the hidden layer
activity computed at previous time step and used as context in the Elman RNN, while
yt−1 is the previous predicted labels, used as context in the Jordan RNN. It is the
input, which is often the concatenation of word embeddings in a fixed window dw (for
winDow of Words) around the current word wt to be labeled. We define as E(wi) the
embedding of any word wi. It is then defined as:

It = [Ew(wt−dw
)...Ew(wt)...Ew(wt+dw

)] (4)
where [ ] is the concatenation of vectors (or matrices in the following sections). The
softmax function, given a set S of m numerical values vi, associated to discrete ele-
ments i ∈ [1,m], computes the probability associated to each element as:

∀i ∈ [1,m] p(i) = evi∑m
j=1 evj

This function allows to compute the probability associated to each label and choose as
predicted label the one with the highest probability.

2.2 Long Short-Term Memory (LSTM) RNNs
While LSTM is often used as the name of the whole network, it just defines a different
way of computing the hidden layer activities. LSTMs use gate units to control how
past and present information affect the network’s internal state, and a cell to store past
information that is going to be used as context at the current processing step. Forget,
input gates and cell state are computed as:

ft = Φ(Wfht−1 + UfIt) (5)
it = Φ(Wiht−1 + UiIt) (6)
ĉt = Γ(Wcht−1 + UcIt) (7)

1h∗ means the hidden layer of any model, as the output layer is computed in the same way for all networks
described in this paper.
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Γ is used to indicate a different activation function from Φ2. ĉt is actually an interme-
diate value used to update the cell state value as follows:

ct = ft � ct−1 + it � ĉt (8)
� is the element-wise multiplication. Once these quantities have been computed, the
output gate is computed and used to control the hidden layer activities at the current
time step t:

ot = Φ(Woht−1 + UoIt) (9)
ht

LSTM = ot � Φ(ct) (10)

Once again (and in the remainder of the paper), biases are omitted to keep equations
lighter. As we can see, each gate and the cell state have their own parameter matrices
W and U , used for the linear transformation of the previous hidden state (ht−1) and
the current input (It). The evolution of the LSTM layer named GRU (Gated Recurrent
Units) [12], combines together forget and input gates, and the previous hidden layer
with the cell state:

zt = Φ(Wzht−1 + UzIt) (11)
rt = Φ(Wrht−1 + UrIt) (12)
ĥt = Γ(W (rt � ht−1) + UIt) (13)

ht
GRU = (1− zt)� ht−1 + zt � ĥt (14)

GRU is thus a simplification of LSTM, it uses less units and it has less parameters to
learn.

2.3 LD-RNN : Label-Dependencies Aware Recurrent Neural Net-
works

The variant of RNN that we propose in this paper can be thought of as having a recur-
rent connection from the output to the input layer. Note that from a different perspec-
tive, this variant can just be seen as a Feed-Forward Neural Network (FFNN) using
previous predicted labels as input. Since Jordan RNN has the same architecture, the
only difference being that in contrast to Jordan models we embed labels, we still prefer
talking about recurrent network. This simple modification to the architecture of the
network has important consequences on the model.

The reason motivating this modification is that we want embeddings for labels and
use them the same way as word embeddings. Like we mentioned in the introduction,
the first layer is a look-up table mapping discrete, or one-hot3, representations into
distributional representations.

Such representations can encode very fine syntactic and semantic properties, as it
has already been proved by word2vec [28] or GloVe [16]. We want similar properties to
be learned also for labels, so that to encode in label embeddings the label dependencies
needed for sequence labeling tasks. In this paper we learn label embeddings from the
sequences of labels associated to word sentences in annotated data. But this procedure

2In the literature Φ and Γ are the sigmoid and tanh, respectively
3The one-hot representation of a token represented by an index i in a dictionary, is a vector v of the same

size as the dictionary and assigned zero everywhere, except at position i where it is 1.
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could be applied also when structured label information is available. We could thus
exploit syntactic parse trees, structured named entities or entity relations for learning
sophisticated label embeddings.

The idea of using label embeddings has been introduced in [29] for dependency
parsing, resulting in a very effective parser. In this paper we go ahead with respect
to [29] by using several label embeddings as context to predict the label at current
position in a sequence. Also we pre-train label embeddings like it is usually done for
words. As consequence, we learn first generic dependencies between labels without
their interactions with words. Such interactions are then integrated and refined during
the learning phase of the target sequence labeling task. For this ability to learn label-
dependencies, we name our variant LD-RNN, standing for Label Dependencies aware
RNN.

Using the same formalism as before, we define Ew the matrix for word embed-
dings, while El is the matrix for label embeddings. The word-level input to our RNN
is It as for the other RNNs, while the label-level input is:

Lt = [El(yt−dl+1) El(yt−dl+2) . . . El(yt−1)] (15)
which is the concatenation of vectors representing the dl previous predicted labels (dl
stands (for winDow of Labels)). The hidden layer activities of our RNN variant are
computed as:

ht
LD-RNN = Φ(H [ItLt]) (16)

We note that we could rewrite the equation above as Φ(HwIt + HlLt) with a similar
formalism as before, the two equations are equivalent if we define H = [HwHl].

Thanks to the use of label embeddings and their combination at the hidden layer,
our LD-RNN variant learns very effectively label dependencies. Since the other RNNs
in general don’t use explicitly the label information as context, they can predict inco-
herent label sequences. As we already mentioned, this limitation lead research toward
hybrid RNN+CRF models [13, 14, 15].

Another consequence of the modification introduced in our RNN variant is an im-
proved robustness to prediction mistakes. Since we use several label embeddings as
context (see Lt above), once the model has learned label embeddings, in the test phase
it is unlikely that several prediction mistakes occur in the same context. Even in that
case, thanks to properties encoded in the embeddings, mistaken labels have similar
representations to correct labels, allowing the model to possibly predict correct labels.
Reusing an example from [30]: if Paris is replaced by Rome in a text, this has no im-
pact on several NLP tasks, as they are both proper nouns in POS tagging, localization in
Named Entity Recognition etc. Using label embeddings provides the LD-RNN variant
with the same robustness on the label side.

While the traditional Jordan RNN uses also previous labels as context information,
it has not the same robustness because of the poor label representation used in adapta-
tions of this model to NLP tasks. In Jordan RNNs used for NLP like [8, 9, 10], labels
are represented either with the probability distribution computed by the softmax, or
with the one-hot representation computed from the probability distribution.

In the latter case it is clear that a prediction mistake can have a bad impact in
the context, as the only value being 1 in the one-hot representation would be in the
wrong position. Instead, using the probability distribution may seem a kind of fazzy
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representation over several labels, but we have found empirically that the probability is
very sharp and picked on one or just few labels. In any case this representation doesn’t
provide the desired robustness that can be achieved with label embeddings.

From another point of view, we can interpret the computation of the hidden activi-
ties in a Jordan RNN as using label embeddings. In the equation 2, the multiplication
Ryt−1, since yt−1 is a sparse vector, can be interpreted as the selection of an embed-
ding from R.

Even with this interpretation there is a substantial difference between a Jordan RNN
and our variant. In the Jordan RNN, once the label embedding has been computed with
Ryt−1, the result is not involved in the linear transformation applied by the matrix H ,
which is only applied to the word-level input It. The result of this multiplication is
added to Ryt−1 and then the activation function is applied.

In our variant in contrast, labels are first mapped into embeddings with E[yi]
4.

Word and label inputs It and Lt are then both transformed by multiplying byH , which
is correctly dimensioned to apply the linear transformation on both inputs. In our
variant thus, two different label transformations are always applied: i) the conversion
from sparse to embedding representation; ii) the linear transformation by multiplying
label embeddings by H .

2.4 Learning and Inference
We learn the LD-RNN variant like all the other RNNs, by minimizing the cross-entropy
between the expected label lt and the predicted label yt at position t in the sequence,
plus a L2 regularization term:

C = −lt � log(yt) +
λ

2
|Θ|2 (17)

λ is a hyper-parameter to be tuned, Θ is a short notation for Ew, El, H,O. lt is the
one-hot representation of the expected label. Since yt above is the probability dis-
tribution over the label set, we can see the output of the network as the probability
P (i|It,Lt) ∀i ∈ [1,m], where It and Lt are the input of the network (words and
labels), i is the index of one of the labels defined in the targeted task.

We can thus associate to the LD-RNN model the following decision function:
argmaxi∈[1,m]P (i|It,Lt) (18)

We note that this is still a local decision function, as the probability of each label is
normalized at each position of a sequence. Despite this, the use of label-embeddings
Lt as context allows the LD-RNN to effectively model label dependencies. Since the
other RNNs like Elman and LSTM don’t use the label information in their context,
their decision function can be defined as:

argmaxi∈[1,m]P (i|It) (19)
which can lead to incoherent predicted label sequences.

We use the traditional back-propagation algorithm with momentum to learn our net-
works [31]. Given the recurrent nature of the networks, the Back-Propagation Through
Time (BPTT) is often used [32]. This algorithm consists in unfolding the RNN for N
previous steps, N being a parameter to choose, and using thus the N previous inputs
and hidden states to update the model’s parameters. The traditional back-propagation

4In our case, yi is explicitly converted from probability distribution to one-hot representation.

7



algorithm is then applied. This is equivalent to learn a feed-froward network of depth
N . The BPTT algorithm is supposed to allow the network to learn arbitrary long con-
texts. However [5] has shown that RNNs for language modeling learn best with only
N = 5 previous steps. This can be due to the fact that, at least in NLP, a longer context
does not lead necessarily to better performances, as a longer context is also more noisy.

Since the BPTT algorithm is quite expensive, [9] chose to explicitly use the con-
textual information provided by the recurrent connection, and to use the traditional
back-propagation algorithm, apparently without performance loss.

In this paper we use the same strategy. When the contextual information is used
explicitly in a Jordan RNN, the hidden layer state is computed as follows:

ht = Φ(R[yt−dl+1 yt−dl+2 ... yt−1] +H It) (20)
A similar modification can be applied also to Elman, LSTM and GRU RNNs to keep
into account explicitly the previous hidden states. To our knowledge however, these
networks are effectively learned using only one previous hidden state [13, 14, 15].

From explanations above we can say that using explicit wide context of words and
labels like we do in LD-RNN, can be seen as an approximation of the BPTT algorithm.

2.5 Toward More Sophisticated Networks: Character-Level Con-
volution

Even if word embeddings provide a very fine encoding of word features, several works
such like [13, 33, 14, 15] have shown that more effective models can be obtained using a
convolution layer over characters of words. Character-level information is indeed very
useful to allow a model generalizing over rare inflected surface forms and even out-of-
vocabulary words in the test phase. Word embeddings are in fact much less effective in
such cases. The convolution over word characters provide also the advantage of being
very general: it can be applied in the same way to different languages, allowing to
re-use the same system on different languages and tasks.

In this paper we focus on a convolution layer similar to the one used in [7] for
words. For any word w of length |w|, we define Ech(w, i) the embedding of the char-
acter i of the word w. We define Wch the matrix of parameters for the linear trans-
formation applied by the convolution (once again we omit the associated bias). We
compute a convolution of window size 2dc + 1 over characters of a word w as follows:

• ∀i ∈ [1, |w|] Convi = Wch[Ech(w, i− dc); . . . Ech(w, i); . . . Ech(w, i+ dc)]

• Convch = [Conv1 . . . Conv|w|]

• Charw = Max(Convch)

the Max function is the so-called max-pooling [7]. While it is not strictly necessary
mapping characters into embeddings, it would be probably less interesting applying the
convolution on discrete representations. The matrix Convch is made of the concate-
nation of vectors returned from the application of the linear transformation Wch. Its
size is thus |C| × |w|, where |C| is the size of the convolution layer. The max-pooling
computes the maxima over the word-length direction, thus the final output Charw has
size |C|, which is independent from the word length. Charw can be interpreted as a
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distributional representation of the word w encoding the information at w’s character
level. This is a complementary information with respect to word embeddings, which
encode inter-word information, and provide the model with an information similar to
what is provided by discrete lexical features like word prefixes, suffixes, capitaliza-
tion information etc., plus information about morphologically correct words of a given
language.

2.6 RNN Complexities
The improved modeling of label dependencies in our LD-RNN variant is achieved at the
cost of more parameters with respect to the simple RNN models. However the number
of parameters is still much less than sophisticated networks like LSTM. In this section
we provide a comparison of RNNs complexity in terms of the number of parameters.

We introduce the following symbols: |H| and |O| are the size of the hidden and
output layers, respectively. The size of the output layer is the number of labels;N is the
embedding size, in LD-RNN we use the same size for word and label embeddings; dw
is the window size used for context words; and dl is the number of label embeddings
we use as context in LD-RNN. We analyze the hidden layer of all networks, and the
embedding layer for LD-RNN. The other layers are exactly the same for all the networks
described in this paper.

For Elman and Jordan RNNs, the hidden layer has the following number of param-
eters, respectively:

{|H| ∗ |H|}R + {|H| ∗ (2dw + 1)N}HElman

{|O| ∗ |H|}R + {|H| ∗ (2dw + 1)N}HJordan

Subscripts indicate from which matrix the parameters come. The factor (2dw + 1)N
comes from the (2dw + 1) words used as input context and then mapped into embed-
dings. The factor |O| ∗ |H| in Jordan RNN is due to the fact that the matrix R connects
output and hidden layers.

In LD-RNN we have:
{|O| ∗N}El

+ {((2dw + 1 + dl)N) ∗ |H|}HLD-RNN

The factor |O|∗N is due to the use of the matrixEl containing |O| label embeddings
of size N . Since in this paper we chose N = |H| and |O| < |H|, and since in LD-
RNN we don’t use any matrix R on the recurrent connection, the fact of using label
embeddings doesn’t increase the number of parameters of the LD-RNN variant.

The hidden layer of LD-RNN however is dimensioned to connect all the word and
label embeddings to all the hidden neurons. As consequence in the matrix H we have
dlN more parameters than in the matrix H of Elman and Jordan RNNs.

In LSTM and GRU RNNs we have two extra matrices W and U for each gate and
for the cell state, used to connect the previous hidden layer and the current input, re-
spectively. These two matrices contain thus |H|∗|H| and (2wd+1)N ∗|H| parameters,
respectively.

Using the same notation and the same settings as above, in the hidden layer of
LSTM and GRU we have the following number of parameters:

{4(|H| ∗ |H|+ |U | ∗ (2dw + 1)N)}HLSTM

{3(|H| ∗ |H|+ |U | ∗ (2dw + 1)N)}HGRU
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The 3 for GRU reflects the fact that this network uses only 2 gates and a cell state. It
should be pointed out, however, that while we have been testing LSTM and GRU with
a word window for a matter of fair comparison5, these layers are applied on the current
word and the previous hidden layer only, without the need of a word window. This is
because this layer learns automatically how to use previous word information. In such
case the complexity of the LSTM layer reduces to {4(|H| ∗ |H| + |U | ∗ N)}HLSTM .
If we choose |U | = |H|, such complexity is comparable to that of LD-RNN in terms
of number of parameters (slightly less actually). The LSTM is still more complex
however because the hidden layer computation requires 4 gates and the cell state (ĉt)
computations (each involving 2 matrix multiplications), the update of the new cell state
ct (involving also 2 matrix multiplications), and only after the hidden state can be
computed. LD-RNN’s hidden state, in contrast, requires only matrix rows selection
and concatenation to compute It and Lt, which are very efficient operations, and then
the hidden state can already be computed.

As consequence, while the variant of RNN we propose in this paper is more com-
plex than simple RNNs, LSTM and GRU RNNs are by far the most complex networks.

2.7 Forward, Backward and Bidirectional Networks
The RNNs introduced in this paper are proposed as forward, backward and bidirec-
tional models [34]. The forward model is what has been described so far. The architec-
ture of the backward model is exactly the same, the only difference is that the backward
model processes data from the end to the begin of sequences. Labels and hidden layers
computed by the backward model can thus be used as future context in a bidirectional
model.

Bidirectional models are described in details in [34]. In this paper we utilize the
version using separate forward and backward models. The final output is computed as
the geometric mean of the output of the two individual models, that is:

yt =
√

yf
t � yb

t

where yf
t and yb

t are the output of the forward and backward models, respectively.
In the development phase of our systems, we noticed no difference in terms of

performance between the two types of bidirectional models described in [34]. We chose
thus the version described above, since it allows to initialize all the parameters with the
forward and backward models previously trained. As consequence the bidirectional
model is very close to a very good optimum since the first learning iteration, and very
few iterations are needed to learn the final model.

3 Evaluation

3.1 Corpora for Spoken Language Understanding
We evaluated our models on two tasks of Spoken Language Understanding (SLU) [25]:

5Indeed we observed better performances when using a word window with respect to when using a single
word
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The ATIS corpus (Air Travel Information System) [26] was collected for building
a spoken dialog system able to provide flight information in the United States.

ATIS is a simple task dating from 1993. Training data are made of 4978 sentences
chosen among dependency-free sentences in the ATIS-2 and ATIS-3 corpora. The
test set is made of 893 sentences taken from the ATIS-3 NOV93 and DEC94 data.
Since there are not official development data, we taken a part of the training set for this
purpose. The word and label dictionaries contain 1117 and 85 items, respectively. We
use the version of the corpus published in [35], where some word classes are available,
such as city names, airport names, time expressions etc. These classes can be used as
features to improve the generalization of the model on rare or unseen words. More
details about this corpus can be found in [26].

An example of utterance transcription taken from this corpus is “I want all the
flights from Boston to Philadelphia today”. The words Boston, Philadelphia and today
in the transcription are associated to the concepts DEPARTURE.CITY, ARRIVAL.CITY
and DEPARTURE.DATE, respectively. All the other words don’t belong to any concept,
they are associated to the void concept named O (for Outside). This example show the
simplicity of this task: the annotation is sparse, only 3 words of the transcription are
associated to a non-void concept; there is no segmentation problem, as each concept is
associate to one word. Because of these two characteristics, the ATIS task is similar
on the one hand to a POS tagging task, where there is no segmentation of labels over
multiple words; on the other hand it is similar to a linear Named Entity Recognition
task, where the annotation is sparse.

We are aware of the existence of two version of the ATIS corpus: the official ver-
sion published starting from [35], and the version associated to the tutorial of deep
learning made available by the authors of [9].6. This last version has been modified,
some proper nouns have been re-segmented (for example the token New-York has been
replaced by two tokens New York), and a preprocessing has been applied to reduce the
word dictionary (numbers have been converted into the conventional token DIGIT, and
singletons of the training data, as well as out-of-vocabulary words of the developpe-
ment and test data, have been converted into the token UNK). Following the tutorial of
[9] we have been able to download the second version of the ATIS corpus. However
in this version word classes that are available in the first version are not given. We ran
some experiments with these data, using only words as input. The results we obtained
are comparable with those published in [36], in part from same authors of [9]. How-
ever without word classes we cannot fairly compare with works that are using them. In
this paper we thus compare only with published works that used the official version of
ATIS.

The French corpus MEDIA [27] was collected to create and evaluate spoken di-
alog systems providing touristic information about hotels in France. This corpus is
made of 1250 dialogs collected with Wizard-of-OZ approach. The dialogs have been
manually transcribed and annotated following a rich concept ontology. Simple seman-
tic components can be combined to create complex semantic structures.7 The rich
semantic annotation is a source of difficulties, but also the annotation of coreference

6Available at http://deeplearning.net/tutorial/rnnslu.html
7For example the component localization can be combined with other components like city,

relative-distance, generic-relative-location, street etc.
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MEDIA ATIS
Words Classes Labels Words Classes Labels

Oui - Answer-B i’d - O
l’ - BDObject-B like - O

hotel - BDObject-I to - O
le - Object-B fly - O

prix - Object-I Delta airline airline-name
à - Comp.-payment-B between - O

moins relative Comp.-payment-I Boston city fromloc.city-name
cinquante tens Paym.-amount-B and - O

cinq units Paym.-amount-I Chicago city toloc.city-name
euros currency Paym.-currency-B

Table 1: An example of annotated utterance transcription taken from MEDIA (left)
and ATIS (right). The translation in French is “Yes, the one which price is less than 50
Euros per night”

Training Dev. Test
# Sentences 12,908 1,259 3,005

words concepts words concepts words concepts
# mots 94,466 43,078 10,849 4,705 25,606 11,383
# vocab. 2,210 99 838 66 1,276 78
# OOV% – – 1.33 0.02 1.39 0.04

Table 2: Statistic of the corpus MEDIA

phenomena. Some words cannot be correctly annotated without knowing a relatively
long context, often going beyond a single dialog turn. For example in the utterance
transcription “Yes, the one which price is less than 50 Euros per night”, the one is a
mention of an hotel previously introduced in the dialog. Statistics on the corpus ME-
DIA are shown in table 2.

The task resulting from the corpus MEDIA can be modeled as a sequence labeling
task by chunking the concepts over several words using the traditional BIO notation
[37].

Thanks to the characteristics of these two corpora, together with their relatively
small size which allows training models in a reasonable time, these two tasks provide
ideal settings for the evaluation of models for sequence labeling. A comparative ex-
ample of annotation, showing also the word classes available for the two tasks and
mentioned above, is shown in the table 1.

3.2 Settings
The RNN variant LD-RNN has been implemented in Octave8 using OpenBLAS for
low-level computations9.

LD-RNN models are trained with the following procedure:

• Neural Network Language Models (NNLM), like the one described in [38], are

8https://www.gnu.org/software/octave/;
Our code is described at http://www.marcodinarelli.it/software.php and available upon request.

9http://www.openblas.net; This library allows a speed-up of roughly 330× on a single matrix-matrix
multiplication using 16 cores. This is very attractive with respect to the speed-up of 380× that can be
reached with a GPU, keeping into account that both Octave and OpenBLAS are available for free.
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trained for words and labels to generate the embeddings (separately).

• Forward and backward models are trained using the word and label embeddings
trained at previous step.

• The bidirectional model is trained using as starting point the forward and back-
ward models trained at previous step.

We ran also some experiments using embeddings trained with word2vec [28]. The
results obtained are not significantly different from those obtained following the pro-
cedure described above. This outcome is similar to the one obtained in [10]. Since the
tasks addressed in this paper are made of small data, we believe that any embedding is
equally effective. In particular tools like word2vec are designed to work on relatively
big amount of data. Results obtained with word2vec embeddings will not be described
in the following sections.

We roughly tuned the number of learning epochs for each model on the develop-
ment data of the addressed tasks: 30 epochs are used to train word embeddings, 20
for label embeddings, 30 for the forward and backward models, 8 for the bidirectional
model (the optimum of this model is often reached at the first epoch on the ATIS task,
between the 3rd and the 5th epoch on MEDIA). At the end of the training phase, we
keep the model giving the best prediction accuracy on the development data. We stop
training the model if the accuracy is not improved for 5 consecutive epochs (also known
as Early stopping strategy [31]).

We initialize all the weights with the “so called” Xavier initialization [31], theo-
retically motivated in [39] as keeping the standard deviation of the weights during the
training phase when using ReLU, which is the type of hidden layer unit we chose for
our variant of RNN.

We also tuned some of the hyper-parameters on the development data: we found out
that the best initial learning rate is 0.5, this is linearly decreased with a value computed
as the ratio between the initial learning rate and the number of epochs (Learing Rate
decay). We combine dropout and L2 regularization [31], the best value for the dropout
probability is 0.5 at the hidden layer, 0.2 at the embedding layer on ATIS, 0.15 on
MEDIA. The best coefficient (λ) for the L2 regularization is 0.01 for all the models,
except for the bidirectional model where the best is 3e−4.

We ran also some experiments for optimizing the size of the different layers. In
order to minimize the time and the number of experiments, this optimization has been
based on the result provided by the forward model on the two tasks, and using only
words and labels as input (without word classes and character convolution, which were
optimized separately). The best size for the embeddings and the hidden layer is 200
for both tasks. The best size for the character convolution layer is 50 on ATIS, 80 on
MEDIA. In both cases, the best size for the convolution window is 1, meaning that
characters are used individually as input to the convolution. A window of size 3 (one
character on the left, one on the right, plus the current character) gives roughly the
same results, we thus prefer the simpler model. With a window of size 5, results starts
to slightly deteriorate.

We also optimized the size of the word and label context used in the LD-RNN
variant. On ATIS the best word context size is 11 (5 on the lest, 5 on the right plus the
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Model F1 measure
forward backward bidirectional

LD-RNN Words 94.23% 94.30% 94.45%
LD-RNN Words+CC 94.56% 94.69% 94.79%
LD-RNN Words+Classes 95.31% 95.42% 95.53%
LD-RNN Words+Classes+CC 95.55% 95.45% 95.65%

Table 3: Results in terms of F1 measure on ATIS, using different level of information
as input.

Model F1 measure
forward backward bidirectional

LD-RNN Words 85.39% 86.54% 87.05%
LD-RNN Words+CC 85.41% 86.48% 86.98%
LD-RNN Words+Classes 85.46% 86.59% 87.16%
LD-RNN Words+Classes+CC 85.38% 86.79% 87.22%

Table 4: Results in terms of F1 measure on MEDIA, using different level of information
as input.

current word), the best label context size is 5. On MEDIA the best sizes are 7 and 5
respectively. These values are the same found in [10] and comparable to those of [36].

The best parameters found in this phase has been used to obtain baseline mod-
els. The goal was to understand the behavior of the models with the different level
of information used: the word classes available for the tasks, and the character level
convolution. Some parameters needed to be re-tuned, as we will describe later on.

Concerning training and testing time of our models, the overall time to train and test
forward, backward and bidirectional models, using only words and classes as input, is
roughly 1 hour 10 minutes on MEDIA, 40 minutes on ATIS. These times go to 2 hours
for MEDIA and 2 hours 10 minutes for ATIS, using also word classes and character
convolution as input. All these times are measured on a Intel Xeon E5-2620 at 2.1 GHz,
using 16 cores.

3.3 Results
All the results shown in this section are averages over 6 runs. Embeddings were learned
once for all experiments.

3.3.1 Incremental Results with Different Level of Information

In this section we describe results obtained with incremental levels of information given
as input to the models: i) Only words (previous labels are always given as input),
indicated with Words in the tables; ii) words and classes Words+Classes; iii) words and
character convolution Words+CC; iv) All possible inputs Words+Classes+CC.

The results obtained on the ATIS task are shown in the table 3, results on MEDIA
are in table 4.

Results in these tables show that models have a similar behavior on the two tasks.
In particular on ATIS, adding the different level of information results improve pro-
gressively and the best performance is obtained integrating words, labels and character
convolution, though some of the improvements do not seem statistically significant,
taking into account the small size of this corpus.

14



This observation is confirmed by results obtained on MEDIA, where adding the
character level convolution leads to a slight degradation of performances. In order to
understand the reason of this behavior we analyzed the training phase on the two tasks.
We found out that the main problem was an hidden layer saturation: with the number
of hidden neurons chosen in the preliminary optimization phase using only words (and
labels), the hidden layer was not able to model the whole information richness provided
by all the inputs at the same time. We ran thus some experiments using a larger hidden
layer with size 256, which gave the results shown in the two tables with the model
LD-RNN Words+Classes+CC. For lack of time we did not further optimized the size
of the hidden layer.

Beyond all of that, results shown in the table 3 and 4 are very competitive, as we
will discuss in the next section.

3.3.2 Comparison with the State-of-the-Art

In this section we compare our results with the best results found in the literature. In
order to be fair, the comparison is made using the same input information: words and
classes. In the tables we use E-RNN for Elman RNN, J-RNN for Jordan RNN, I-RNN
for the improved RNN proposed by [40].10

In order to give an idea of how our RNN variant compares to LSTM+CRF models
like the one of [15], we ran an experiment on the Penn Treebank [41]. With a similar
data pre-processing, exactly the same data split, using a sigmoid activation function,
and using only words as input, the LD-RNN variant achieves an accuracy of 96.83.
This is comparable to the 96.9 achieved by the LSTM+CRF model of [15] without
pre-trained embeddings.11

Results on the ATIS task are shown in table 5. On this task we compare to results
published in [42] and [40].

The results in the table 5 show that all models obtain a good performance on this
task, always higher than 94.5 F1. This confirm what we anticipated in the previous
section concerning how easy is this task.

The GRU RNNs of [42] and our variant LD-RNN obtain equivalent results (95.53),
which is slightly better than all the other models, in particular with the bidirectional
models. This is a good outcome, as our variant of RNN obtains the same result as
GRU while using much less parameters (see section 2.6 for RNNs complexity). Indeed
LSTM and GRU are considered very effective models for learning very long contexts.
The way they are used in [42] allows to learn long contexts on the input side (words),
they are not adapted however to learn also long label contexts, which is what we do in
this paper with our variant. The fact that the best word context on this task is made of
11 words, show that this is the most important information to obtain good results on
this task. It is thus not surprising that the GRU RNN achieves such good performance.

Comparing our results on the ATIS task with those published in [40] with a Jordan
RNN, which uses the same label context as our models, we can conclude that the

10This is a publication in French, but results in the tables are easy to understand and directly comparable
to our results.

11We did not run further experiments because without a GPU, experiments on the Penn Treebank are still
quite expensive.
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Model F1 measure
forward backward bidirectional

[42] LSTM 95.12% – 95.23%
[42] GRU 95.43% – 95.53%
[40] E-RNN 94.73% 93.61% 94.71%
[40] J-RNN 94.94% 94.80% 94.89%
[40] I-RNN 95.21% 94.64% 94.75%
LD-RNN Words+Classes 95.31% 95.42% 95.53%

Table 5: Comparison of our results on the ATIS task with the literature, in terms of F1
measure.

Model F1 measure
forward backward bidirectional

[10] CRF 86.00%
[10] E-RNN 81.94% – –
[10] J-RNN 83.25% – –
[42] LSTM 81.54% – 83.07%
[42] GRU 83.18% – 83.63%
[40] E-RNN 82.64% 82.61% 83.13%
[40] J-RNN 83.06% 83.74% 84.29%
[40] I-RNN 84.91% 86.28% 86.71%
LD-RNN Words+Classes 85.46% 86.59% 87.16%

Table 6: Comparison of our results on the MEDIA task with the literature, in terms of
F1 measure.

Model CER
[43] CRF 11.7%
[44] CRF 11.5%
[45] CRF 10.6%
LD-RNN Words 10.73% (10.63)
LD-RNN Words+Classes 10.52% (10.15)
LD-RNN Words+Classes+CC 10.41% (10.09)

Table 7: Results on the MEDIA task in terms of Concept Error Rate (CER), compared with the
best results published so far on this task.

advantage in the variant LD-RNN is given by the use of label embeddings and their
combination at the hidden layer.

This conclusion is more evident if we compare results obtained with RNNs using
label embeddings with the other RNNs on the MEDIA task. This comparison is shown
in table 6. As we mentioned in the section 3.1, this task is very challenging for several
reason, but in the context of this paper we focus on the label dependencies that we
claim we can effectively model with our RNN variant.

In this context we note that a traditional Jordan RNN, the J-RNN of [40], which
is the only traditional model to explicitly use previous label information as context,
is more effective than the other traditional models, including LSTM and GRU (84.29
F1 with J-RNN, 83.63 with GRU, second best model among traditional RNNs). We
note also that on MEDIA, CRFs, which are models specifically designed for sequence
labeling, are by far more effective than the traditional RNNs (86.00 F1 with the CRF
of [10]).

The only models outperforming CRFs on the MEDIA task are the I-RNN model of
[40] and our LD-RNN variant, both using label embeddings.

Even if results on MEDIA discussed so far are very competitive, this task has been
designed for Spoken Language Understanding (SLU) [25]. In SLU the goal is to extract
a correct semantic representation of a sentence, allowing a correct interpretation of the
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user will by the spoken dialog system. While the F1 measure is strongly correlated
with SLU evaluation metrics, the evaluation measure used most often in the literature
is the Concept Error Rate (CER). CER is defined exactly in the same way as Word
Error rate in automatic speech recognition, where words are replaced by concepts.12

In order to place our results on an absolute ranking among models designed for the
MEDIA task, we propose a comparison in terms of CER to the best models published
in the literature, namely [45], [44] and [43]. This comparison is shown in table 7.

The best individual models published by [45], [44] and [43] are CRFs, achieving
a CER of 10.6, 11.5 and 11.7, respectively. These models use both word and classes,
and a rich set of lexical features such like word prefixes, suffixes, word capitalization
information etc. We note that the large gap between these CRF models is due to the
fact that the CRF of [45] is trained with an improved margin criterion, similar to the
large margin principle of SVM [46, 47]. We note also that comparing significance tests
published in [43], a difference of 0.1 in CER is already statistically significant. Since
results in this paper are higher, we hypothesize than even smaller gains are significant.

Our best LD-RNN model achieve a CER of 10.41. To the best of our knowledge
this is the best CER obtained on the MEDIA task with an individual model. Moreover,
instead of taking the mean of CER of several experiments, following a strategy similar
to [8], one can run several experiments and keep the model obtaining the best CER on
the development data of the target task. Results obtained using this strategy are shown
in table 7 between parenthesis. The best result obtained by our LD-RNN is a CER of
10.09, the best absolute result on this task so far, even better than the ROVER model
[48] used in [45], which combines 6 individual models, including the individual CRF
model achieving 10.6 CER.

3.4 Results Discussion
In order to understand the high performances of the LD-RNN variant on the MEDIA
task, we made some simple analyses on the model output, comparing them to the output
of a Jordan RNN trained with our own system in the same conditions as LD-RNN
models. The main difference between these two models is the general tendency of the
Jordan RNN to split a single concept into two or more concepts, mainly for concepts
instantiated by long surface forms, such like command-tache. This concept is used to
mean the general user will in a dialog turn (e.g. Hotel reservation, Price information
etc.). The Jordan RNN often split this concept into several concepts by introducing a
void label, associated to a stop-word. This is due to the limitation of this model to take
relatively long label context into account, even if it is the only traditional RNN using
explicitly previous labels as context information.

Surprisingly, LD-RNN never makes this mistake and in general never makes seg-
mentation errors (concerning the BIO formalism). This can be due to two reasons. The
first is that label embeddings learns similar representations for semantically similar la-
bels. This allows the model to correctly predict start-of-concept (B) even if the target
word has been seen in the training set only as continuation-of-concept (I), or viceversa,
as the two labels acquire very similar representations. The second reason, which is not

12The errors made by the system are classified as Insertions (I), Deletions (D) and Substitutions (S). The
sum of these errors is divided by the number of concepts in the reference annotation (R): CER = I+D+S

R
.
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in mutual exclusion with the first, is that the model factorizes information acquired on
similar words seen associated to start-of-concept labels. Thus if a word has not been
seen associated to start-of-concept labels, but similar words do, the model is still able
to provide the correct annotation. This second reason is what made neural networks
popular for learning word embeddings in earlier publications [38]. In any case, in our
experience, we never observed such precise behavior even with CRF models tuned for
the MEDIA task. For this reason we believe LD-RNN deserves the name of Label
Dependencies aware RNN.

Still LD-RNN makes mistakes, which means that once a label annotation starts for
a target word, even if the label is not the correct one, the same label is kept even if the
following words provide evidence that the correct label is another one. LD-RNN tends
to be coherent with previous labeling decisions. This behavior is due to the use of a
local decision function which definitely relies heavily on the label embedding context,
but it doesn’t prevent the model from being very effective. Interestingly, this behavior
suggests that LD-RNN could still benefit from a CRF neural layer like those used in
[13, 14, 15]. We leave this as future work.

4 Conclusion
In this paper we proposed a new variant of RNN for sequence labeling using a wide
context of label embeddings in addition to the word context to predict the next label
in a sequence. We motivated our variant as being more effective at modeling label de-
pendencies. Results on two Spoken Language Understanding tasks show that i) on a
simple task like ATIS our variant achieves the same performance as much more com-
plex models such as LSTM and GRU, which are claimed the most effective RNNs; ii)
on the MEDIA task, where modeling label dependencies is crucial, our variant out-
performs by a large margin all the other RNNs, including LSTM and GRU. When
compared to the best models of the literature in terms of Concept Error Rate (CER),
our RNN variant results to be more effective, achieving a state-of-the-art CER of 10.09.
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