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Large system analysis of a GLRT for detection with
large sensor arrays in temporally white noise

Sonja Hiltunen, Philippe Loubaton, Fellow, IEEE , and Pascal Chevalier

Abstract— This paper addresses the behaviour of a classical
multi-antenna GLRT test that allows to detect the presence of a
known signal corrupted by a multi-path propagation channel and
by an additive temporally white Gaussian noise with unknown
spatial covariance matrix. The paper is focused on the case where
the number of sensors M is large, and of the same order of
magnitude as the sample size N , a context which is modeled by
the large system asymptotic regime M → +∞, N → +∞ in
such a way that M/N → c for c ∈ (0,+∞). The purpose of
this paper is to study the behaviour of a GLRT statistics in this
regime, and to show that the corresponding theoretical analysis
allows to accurately predict the performance of the test when M
and N are of the same order of magnitude.

Index Terms— Multichannel detection, asymptotic analysis,
GLRT, random matrix theory

I. INTRODUCTION

Due to the spectacular development of sensor networks
and acquisition devices, it has become common to be faced
with multivariate signals of high dimension. Very often, the
sample size that can be used in practice in order to perform
statistical inference cannot be much larger than the signal
dimension. In this context, it is well established that a number
of fundamental existing statistical signal processing methods
fail. It is therefore of crucial importance to revisit certain
classical problems in the high-dimensional signals setting.
Previous works in this direction include e.g. [16] and [22]
in source localization using a subspace method, or [3],[15],
[17],[18] in the context of unsupervised detection.

In the present paper, we address the problem of detecting
the presence of a known signal using a large array of
sensors. We assume that the observations are corrupted by
a temporally white, but spatially correlated (with unknown
spatial covariance matrix) additive complex Gaussian noise,
and study the generalized likelihood ratio test (GLRT).
Although our results can be used in more general situations,
we focus on the detection of a known synchronization
sequence transmitted by a single transmitter in an unknown
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multipath propagation channel. The behaviour of the GLRT in
this context has been extensively addressed in previous works,
but for the low dimensional signal case (see e.g. [1],[4],[7],
[13],[14],[23], [25]). The asymptotic behaviour of the relevant
statistics has thus been studied in the past, but it has been
assumed that the number of samples of the training sequence
N converges towards +∞ while the number of sensors M
remains fixed. This is a regime which in practice makes sense
when M << N . When the number of sensors M is large,
this regime is however often unrealistic, since in order to
avoid wasting resources, the size N of the training sequence
is usually chosen of the same order of magnitude as M .
Therefore, we consider in this paper the asymptotic regime
in which both M and N converge towards∞ at the same rate.

We consider both the case where the number of paths L
remains fixed, and the case where L converges towards ∞ at
the same rate as M and N . When L is fixed, we prove that the
GLRT statistics ηN converges under hypothesis H0 towards a
Gaussian distribution with mean L log 1

1−M/N and variance
L
N

M/N
1−M/N . This is in contrast with the standard asymptotic

regime N → +∞ and M fixed in which the distribution
of ηN converges towards a χ2 distribution. Under hypothesis
H1, we prove that ηN has a similar behaviour than in the
standard asymptotic regime N → +∞ and M fixed, except
that the terms L log 1

1−M/N and L
N

M/N
1−M/N are added to the

asymptotic mean and the asymptotic variance, respectively.
When L converges towards ∞ at the same rate as M and
N , we use existing results (see [2] and [24]) characterizing
the behaviour of linear statistics of the eigenvalues of large
multivariate F–matrices, and infer that the distribution of ηN
under H0 is also asymptotically Gaussian. The asymptotic
mean converges towards ∞ at the same rate as L,M,N
while the asymptotic variance is a O(1) term. The asymptotic
behaviour of ηN under hypothesis H1 when L scales with
M,N is not covered by the existing literature. The derivation
of the corresponding new mathematical results would need an
extensive work that is not in the scope of the present paper.
We rather propose a pragmatic approximate distribution for
ηN , motivated by the additive structure of its asymptotic mean
and variance in the regime where L is fixed.

We evaluate the accuracy of the various Gaussian
approximations by numerical simulations, by comparing
the asymptotic means and variances with their empirical
counterparts evaluated by Monte-Carlo simulations. Further,
we compare the ROC curves corresponding to the various
approximations with the empirical ones. The numerical
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results show that the standard approximations obtained when
N → +∞ and M is fixed completely fail if M

N is greater
than 1

8 . The large system approximations corresponding to
a fixed L and L → +∞ appear reliable for small values of
M
N , and, of course, for larger values of M

N . For the values of
L,M,N that are considered, the approximations obtained in
the regime L → +∞ at the same rate as M and N appear
to be the most accurate, and the corresponding ROC-curves
are shown to be good approximations of the empirical ones.
Therefore, the proposed Gaussian approximations allow to
reliably predict the performance of the GLRT when the
number of array elements is large.

This paper is organized as follows. In section II, we provide
the signal model under hypotheses H0 and H1, recall the
expression of the statistics ηN corresponding to the GLRT,
and explain that, in order to study ηN , assuming that the
additive noise is spatially white and that the training sequence
matrix is orthogonal is not a restriction. In section III, we
recall the asymptotic behaviour of ηN in the traditional
asymptotic regime N → +∞ and M fixed. The main results
of this paper, concerning the asymptotic behaviour of ηN in
the regime M,N converge towards ∞ at the same rate, are
presented in section IV. In this section, we only give outlines
of the proofs, while providing the remaining technical details
in Appendices. Section V is devoted to the numerical results,
and section VI concludes the paper.

General notations. For a complex matrix A, we denote by
AT and A∗ its transpose and its conjugate transpose, and by
Tr(A) and ‖A‖ its trace and spectral norm. I will represent
the identity matrix and en will refer to a vector having all its
components equal to 0 except the n-th which is equal to 1.

The real normal distribution with mean m and variance
σ2 is denoted NR(m,σ

2). A complex random variable Z =
X + i Y follows the distribution NC(α+ i β, σ2) if X and Y
are independent with respective distributions NR(α,

σ2

2 ) and
NR(β,

σ2

2 ).
For a sequence of random variables (Xn)n∈N and a random

variable X , we write

Xn → X a.s. and Xn →D X

when Xn converges almost surely and in distribution, re-
spectively, to X when n → +∞. Finally, if (an)n∈N is
a sequence of positive real numbers, Xn = oP (an) will
stand for the convergence of (Xn/an)n∈N to 0 in probability,
and Xn = OP (an) denotes boundedness in probability (i.e.
tightness) of the sequence (Xn/an)n∈N.

II. PRESENTATION OF THE PROBLEM.

In the following, we assume that a single transmitter sends a
known synchronization sequence (sn)n=1,...,N through a fixed
channel with L paths, and that the corresponding signal is
received on a receiver with M sensors. The received M -
dimensional signal is denoted by (yn)n=1,...,N . When the
transmitter and the receiver are perfectly synchronized, yn is

assumed to be given for each n = 1, . . . , N by

yn =

L−1∑
l=0

hlsn−l + vn (1)

where (vn)n∈Z is an additive independent identically dis-
tributed complex Gaussian noise verifying

E(vn) = 0

E(vnvTn ) = 0

E(vnv∗n) = R = σ2R̃ (2)

where R > 0 and 1
MTr(R̃) = 1. Denoting by H the M × L

matrix H = (h0, . . . ,hL−1), the received signal matrix Y =
(y1, . . . ,yN ) in the presence of a useful signal can be written
as

Y = HS + V (3)

where V = (v1, . . . ,vN ) and where S represents the known
signal matrix. We assume from now on that the size N of
the training sequence satisfies N > M + L. We remark
that the forthcoming results are valid as soon as the matrix
collecting the observations can be written as in Eq. (3). In
particular, by appropriately modifying the matrices H and S,
this system model can equivalently be used for a link with
multiple transmit antennas.

Furthermore, in the absence of a useful signal, the received
signal matrix is given by

Y = V. (4)

In this paper, we study the classical problem of testing
the hypothesis H1 characterized by Equation (3) against the
hypothesis H0 defined by equation (4), in the aim of testing
whether there is a useful signal present in the received signal.
The hypotheses are

H0 : Y = V

H1 : Y = HS + V, (5)

where we assume from now on that H and R are unknown at
the receiver side. In the following, we will review the expres-
sion of the corresponding generalized maximum likelihood test
(GLRT) derived in [4]. The generalized likelihood ratio rN is
defined by [14]

rN =

max
R,H

pH1
(Y | S,H,R)

max
R

pH0(Y | R)
. (6)

The probability density functions are given by

pH0
(Y | R) =

1

πNM (det(R))
N
e−Tr[Y

∗R−1Y] (7)

pH1
(Y| S,H,R) =

1

πNM (det(R))
N
·

· e−Tr[(Y−HS)∗R−1(Y−HS)].

The first step to calculate rN is to determine R̂1 and Ĥ, the
R and H that maximize the numerator, and R̂0, the R that
maximizes the denominator, of equation (6). Straightforward
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calculations show that Ĥ = YS∗

N (SS∗

N )−1 and R̂1 = YY∗

N −
(YS∗

N )(SS∗

N )−1(SY∗

N ). Similarly, R̂0 is given by R̂0 = YY∗

N .
Inserting these estimates into equation (6) leads to rN =(
det(R̂1R̂

−1
0 )
)−N

. Therefore, the log-likelihood ratio ηN ,

defined by ηN = log rN
N , is given by

ηN = − log det

[
IM − R̂

−1/2
0

YS∗

N

(
SS∗

N

)−1
SY∗

N
R̂
−1/2
0

]
(8)

or, using the identity det(I−AB) = det(I−BA), by

ηN = − log det [IL −TN ] (9)

where TN is the L× L matrix defined by

TN =

(
SS∗

N

)−1/2
SY∗

N

(
YY∗

N

)−1
YS∗

N

(
SS∗

N

)−1/2
(10)

The generalized maximum likelihood test consists then in
comparing ηN to a threshold.

In order to study the behaviour of the test in Eq. (9), we
study the limit distribution of ηN under each hypothesis. For
this, we remark that it is possible to assume without restriction
that SS∗

N = IL is verified and that E(vnv∗n) = σ2I, i.e. R̃ is
reduced to the identity matrix. If this is not the case, we denote
by S̃ the matrix

S̃ =

(
SS∗

N

)−1/2
S (11)

and by Ỹ and Ṽ the whitened observation and noise matrices

Ỹ =R̃−1/2 Y,

Ṽ =R̃−1/2 V (12)

It is clear that S̃S̃∗

N = IL and that E(ṽnṽ∗n) = σ2I. Moreover,
under H0, it holds that Ỹ = Ṽ, while under H1, Ỹ = H̃S̃+Ṽ
where the channel matrix H̃ is defined by

H̃ = R̃−1/2 H (SS∗/N)1/2 (13)

Finally, it holds that the statistics ηN can also be written as

ηN = − log det

IL −
S̃Ỹ∗

N

(
ỸỸ∗

N

)−1
ỸS̃∗

N

 (14)

This shows that it is possible to replace S, R̃ and H by S̃, I,
and H̃ without modifying the value of statistics ηN . Therefore,
without restriction, we assume from now on that

SS∗

N
= IL, R̃ = IM (15)

In the following, we denote by W a (N −L)×N matrix for
which the matrix Θ = (WT , ST√

N
)T is unitary and define the

M × (N − L) and M × L matrices V1 and V2 by

(V1,V2) = VΘ∗ = (VW∗,V
S∗√
N

) (16)

It is clear that V1 and V2 are complex Gaussian random
matrices with independent identically distributed NC(0, σ

2)

entries, and that the entries of V1 and V2 are mutually
independent. We notice that since N > M + L, the matrix
V1V∗1
N is invertible almost surely. We now express the statistics

ηN in terms of V1 and V2. We observe that
VV∗

N
=

V1V
∗
1

N
+

V2V
∗
2

N
(17)

and that
VS∗

N
=

1√
N

(V1,V2)

(
W
S√
N

)
S∗√
N

(18)

coincides with V2√
N

because W S∗√
N

= 0. Therefore, under
hypothesis H0, ηN can be written as

ηN = − log det

(
I− V∗2√

N

(
V1V

∗
1

N
+

V2V
∗
2

N

)−1
V2√
N

)
(19)

Using the identity

A∗ (BB∗ + AA∗)
−1

=

A∗(BB∗)−1A
(
I + A∗(BB∗)−1A

)−1
(20)

we obtain that, under hypothesis H0, ηN can be written as

ηN = log det
(
IL + V∗2/

√
N (V1V

∗
1/N)

−1
V2/
√
N
)
(21)

Similarly, it is easy to check that, under H1, ηN is given by

ηN = log det (IL + GN ) (22)

where the matrix GN is defined by

GN =
(
H + V2/

√
N
)∗

(V1V
∗
1/N)

−1
(
H + V2/

√
N
)

(23)

III. STANDARD ASYMPTOTIC ANALYSIS OF ηN .
In order to give a better understanding of the similarities

and differences with the more complicated case where M and
N converge towards +∞ at the same rate, we first recall some
standard results concerning the asymptotic distribution of ηN
under H0 and H1 when N → +∞ but M remains fixed.

A. Hypothesis H0.
A general result concerning the GLRT, known as Wilk’s

theorem (see e.g. [14], [21] Chapter 8-5), implies that NηN
converges in distribution towards a χ2 distribution with 2ML
degrees of freedom. For the reader’s convenience, we provide
an informal justification of this claim. We use (21) and remark
that when N → +∞ and M and L remain fixed, the matrices
V1V

∗
1/N and 1

NV∗2 (V1V
∗
1/N)

−1
V2 converge a.s. towards

σ2I and the zero matrix respectively. Moreover,
1

N
V∗2 (V1V

∗
1/N)

−1
V2 =

1

σ2
V∗2V2/N + oP (

1

N
) (24)

and a standard second order expansion of ηN leads to

ηN =
1

σ2
Tr (V∗2V2/N) + oP (

1

N
) (25)

This implies immediately that the limit distribution of N ηN
is a chi-squared distribution with 2ML degrees of freedom.
Informally, this implies that E(ηN ) ' LMN and Var(ηN ) '
L
N
M
N .
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B. Hypothesis H1.

Under hypothesis H1, ηN is given by (22). When N → +∞
and M and L remain fixed, the matrix V1V

∗
1/N converges

a.s. towards σ2I and it is easily seen that

ηN = log det
(
I+

HH∗

σ2

)
+

Tr
[(

I+
HH∗

σ2

)−1
∆N

]
+OP (1/N) (26)

where the matrix ∆N is given by

∆N = H∗ΥNH +
1

σ2

(
V∗2√
N

H + H∗
V2√
N

)
(27)

with ΥN = (V1V1/N)
−1−I/σ2. Standard calculations show

that
√
N

(
ηN − log det

(
I +

HH∗

σ2

))
→ N (0, κ1) (28)

where κ1 is given by

κ1 = Tr

[
I−

(
I +

H∗H

σ2

)−2]
(29)

Note that in [14] and [25], the asymptotic distribution of ηN is
studied under the assumption that the entries of the matrix H
are O( 1√

N
) terms. In that context, ηN behaves as a non-central

χ2 distribution.

IV. MAIN RESULTS.
In this section, we present the main results of this paper

related to the asymptotic behaviour of ηN when M and N
converge towards ∞ at the same rate. The analysis of ηN in
the asymptotic regime M and N converge towards ∞ at the
same rate differs deeply from the standard regime studied in
section III. In particular, it is no longer true that the empirical
covariance matrix V1V

∗
1/N converges in the spectral norm

sense towards σ2I. This, of course, is due to the fact that the
number of entries of this M ×M matrix is of the same order
of magnitude than the number of available scalar observations
(i.e. M(N − L) = O(MN)). We also note that for any
deterministic M ×M matrix A, the diagonal entries of the
L×L matrix 1

NV∗2AV2 converge towards 0 when N → +∞
and M remains fixed, while this does not hold when M and
N are of the same order of magnitude (see Proposition 4 in
Appendix I). It turns out that the asymptotic regime where
M and N converge towards ∞ at the same rate is more
complicated than the conventional regime of section III. As
the proofs of the following theorems are rather technical, we
just provide in this section the outlines of the approaches that
are used to establish them. The detailed proofs are given in
the Appendix II.

A. Asymptotic behaviour of ηN when the number of paths L
remains fixed when M and N increase.

All along this section, we assume that:

Assumption 1. • M and N converge towards +∞ in such
a way that cN = M

N < 1− L
N converges towards c, where

0 < c < 1

• the number of paths L remains fixed when M and N
increase.

In the asymptotic regime defined by Assumption 1, M
can be interpreted as a function M(N) of N . Therefore, M -
dimensional vectors or matrices where one of the dimensions
is M will be indexed by N in the following. Moreover,
in order to simplify the exposition, N → +∞ should be
interpreted in this section as the asymptotic regime defined
by Assumption 1.

As M is growing, we have to be precise with how the
power of the useful signal component HS is normalized.
In the following, we assume that the norms of vectors
(hl)l=0,...,L−1 remain bounded when the number of sen-
sors M increases. This implies that the signal to noise
ratio at the output of the matched filter S∗H∗Y/

√
N , i.e.

Tr
(
(H∗H)2

)
/
(
σ2Tr(H∗H)

)
, is a O(1) term in our asymp-

totic regime. We mention however that the received signal to
noise ratio Tr(H∗H)/(Mσ2) converges towards 0 at rate 1

N
when N increases.

1) Asymptotic behaviour of ηN under hypothesis H0:
Under hypothesis H0, the following theorem holds.

Theorem 1. It holds that

ηN − L log

(
1

1− cN

)
→ 0 a.s. (30)

and that
√
N√
LcN
1−cN

(
ηN − L log

(
1

1− cN

))
→D NR(0, 1) (31)

Informally, Theorem 1 leads to E(ηN ) ' −L log(1 − cN )
and Var(ηN ) ' L

N
cN

1−cN . We recall that if M is fixed,
NηN behaves like a χ2 distribution with 2ML degrees of
freedom. In that context, E(ηN ) ' LcN and var(ηN ) ' L

N cN .
Therefore, the behaviour of ηN in the two asymptotic regimes
deeply differ. However, if cN → 0, − log(1− cN ) ' cN , and
the asymptotic means and variances of ηN tend to coincide.

Outline of the proof. We denote by FN the L×L matrix

FN = V∗2/
√
N (V1V

∗
1/N)

−1
V2/
√
N (32)

and remark that under H0, (21) leads to

ηN = log det (IL + FN ) (33)

First step: proof of (30). As L does not increase with M and
N , it is sufficient to establish that

FN −
cN

1− cN
IL → 0 a.s. (34)

Our approach is based on the observation that if AN is a M×
M deterministic Hermitian matrix verifying supN ‖AN‖ <
a < +∞, then,

EV2

∣∣∣ (V∗2/
√
N ANV2/

√
N
)
k,l

−σ
2

N
Tr(AN ) δ(k − l)

∣∣∣4 ≤ C(a)

N2
(35)
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where C(a) is a constant term depending on a, and where
EV2 represents the mathematical expectation operator w.r.t.
V2. This is a consequence of Proposition 4 in the Appendix
I. Assume for the moment that there exists a deterministic
constant a such that

‖ (V1V
∗
1/N)

−1 ‖ ≤ a (36)

for each N greater than a non random integer N0. Then, as V1

and V2 are independent, it is possible to use (35) for AN =
(V1V

∗
1/N)

−1 and to take the mathematical expectation w.r.t.
V1 of (35) to obtain that

E

∣∣∣∣(FN )k,l −
σ2

N
Tr (V1V

∗
1/N)

−1
δ(k − l)

∣∣∣∣4 ≤ C(a)

N2
(37)

for each N > N0, and, using the Borel-Cantelli lemma, that

FN −
σ2

N
Tr (V1V

∗
1/N)

−1
IL → 0 a.s. (38)

In order to conclude, we use known results related to the al-
most sure convergence of the eigenvalue distribution of matrix
V1V

∗
1/N towards the so-called Marcenko-Pastur distribution

(see Eq. (77) in the Appendix I ) which imply that

1

N
Tr
(
V1V

∗
1/N

)−1
− cN
σ2(1− cN )

→ 0 (39)

almost surely. This, in conjunction with (38), leads to (34) and
eventually to (30).

However, there does not exist a deterministic constant a
satisfying (36) for each N greater than a non random integer.
In order to solve this issue, it is sufficient to replace matrix
(V1V

∗
1/N)

−1 by a convenient regularized version. It is well
known (see Proposition 1 in the Appendix I) that the smallest
and the largest eigenvalue of V1V

∗
1/N converge almost surely

towards σ2(1−
√
c)2 > 0 and σ2(1 +

√
c)2 respectively. This

implies that if EN is the event defined by

EN = {one of the eigenvalues of V1V
∗
1/N escapes from

[σ2(1−
√
c)2 − ε, σ2(1 +

√
c)2 + ε]} (40)

(where ε is chosen such that σ2(1 −
√
c)2 − ε > 0) then,

almost surely, for N larger than a random integer, it holds
that 1EcN = 1. Therefore, almost surely, for N large enough,
it holds that ηN = ηN 1EcN . These two random variables thus
share the same almost sure asymptotic behaviour. Moreover,
it is clear that ηN 1EcN coincides with log det(I + FN1EcN ).
In order to study the almost sure behaviour of ηN1EcN , it is
thus sufficient to evaluate the behaviour of matrix FN1EcN ,
which has the same expression than FN , except that matrix
(V1V

∗
1/N)

−1 is replaced by (V1V
∗
1/N)

−1 1EcN . The latter
matrix verifies∥∥∥(V1V

∗
1/N)

−1 1EcN

∥∥∥ ≤ 1

σ2(1−
√
c)2 − ε

(41)

for each integer N almost surely. Therefore, the regularized
matrix (V1V

∗
1/N)

−1 1EcN satisfies (36) almost surely for each
integer N for a = 1

σ2(1−
√
c)2−ε . This immediately leads to the

conclusion that FN 1EcN has the same almost sure behaviour
than cN

1−cN IL1EcN , or equivalently than cN
1−cN IL. This, in turn,

implies (30).

Second step: proof of (31). As ηN = ηN1EcN almost surely
for N large enough, the asymptotic distributions of

√
N [ηN −

L log( 1
1−cN )] and

√
N [ηN1EcN − L log( 1

1−cN )] coincide. We
thus study the latter sequence of random variables because the
presence of the regularization factor 1EcN allows to simplify a
lot the derivations.

A standard second order expansion of log det(I+FN1EcN )
leads to
√
N [ηN1EcN − L log(

1

1− cN
)] =

(1− cN )
√
N
(
Tr(FN1EcN−

cN
1− cN

I)
)
+ oP (1) (42)

It is thus sufficient to evaluate the asymptotic behaviour of
the characteristic function ψN,0 of random variable β0,N =

(1 − cN )
√
N
(
Tr(FN1EcN −

cN
1−cN I)

)
defined by ψN,0(u) =

E(eiuβN,0). For this, we first evaluate EV2(e
iuβN,0), and using

Proposition 2 and Proposition 4 in Appendix I, we establish
that EV2

(eiuβN,0) has the same asymptotic behaviour as

exp

[
−u

2

2
σ4 L (1− cN )2cN

1

M
Tr

(
V1V

∗
1

N

)−2
1EcN

]
(43)

It is known that 1
MTr

(
V1V∗1
N

)−2
behaves almost surely as

1
σ4(1−cN )3 (see Eq. (78) in the Appendix I). From this, we
obtain immediately that

ψN,0(u)− exp

(
−u

2

2

LcN
1− cN

)
→ 0 (44)

for each u, which, in turn, establishes (31).
2) Asymptotic behaviour of ηN under hypothesis H1: The

behaviour of ηN under hypothesis H1 is given by the following
result.

Theorem 2. It holds that

ηN − ηN,1 → 0 a.s. (45)

where ηN,1 is defined by

ηN,1 = L log
1

1− cN
+ log det

(
I + H∗H/σ2

)
(46)

Moreover,
√
N(

LcN
1−cN + κ1

)1/2 (ηN − ηN,1)→D NR(0, 1) (47)

where κ1 is defined by (29).

Remark 1. Interestingly, it is seen that the asymptotic mean
and variance of ηN are equal to the sum of the asymptotic
mean and variance of ηN in the standard regime N → +∞
and M fixed, with the extra terms L log

(
1

1−cN

)
and LcN

N(1−cN ) ,
which coincide with the asymptotic mean and variance of ηN
under H0.

Outline of the proof. We recall that, under H1, ηN is given
by (22). As in the proof of Theorem 1, it is sufficient to study
the regularized statistics ηN1EcN which is also equal to

ηN1EcN = log det
(
IL + 1EcN GN

)
(48)
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First step: proof of (45). In order to evaluate the almost sure
behaviour of ηN1EcN , we expand GN1EcN as

GN1EcN = H∗ (V1V
∗
1/N)

−1
H 1EcN + FN1EcN +

(V2/
√
N)∗ (V1V

∗
1/N)

−1
H 1EcN +

H∗ (V1V
∗
1/N)

−1
(V2/

√
N) 1EcN (49)

The first term of the righthandside of (49) is known to
behave as H∗H

σ2(1−cN ) (see (81) in the Appendix I) while the
independance between V1 and V2 implies that the third and
the fourth terms converge almost surely towards the zero
matrix. This is because the fourth-order moments w.r.t. V2

of their entries are O( 1
N2 ) terms.

Second step: proof of (47). Using a standard second order
expansion, we obtain immediately that
√
N
(
ηN1EcN − ηN,1

)
=
√
N Tr (DN∆N ) + oP (1) (50)

where ∆N and DN are defined by

∆N = GN1EcN −
(

H∗H

σ2(1− cN )
+

cN
1− cN

I

)
(51)

and

DN = (1− cN )(IL + H∗H/σ2)−1 (52)

In order to establish (47), it is therefore sufficient to evaluate
the asymptotic behaviour of the characteristic function ψN,1
of random variable βN,1 =

√
N Tr (DN∆N ). We define κN

and ωN by

κN = Tr
(
CN (V1V

∗
1/N)

−1
)

(53)

and

ωN = Tr
[
DNFN1EcN

]
+

Tr
[
DN (V2/

√
N)∗ (V1V

∗
1/N)

−1
H 1EcN

]
+

Tr
[
DN H∗ (V1V

∗
1/N)

−1
(V2/

√
N) 1EcN

]
(54)

where CN the M ×M matrix given by

CN = (1− cN )H(IL + H∗H/σ2)−1H∗ (55)

Then, βN,1 can be written as

βN,1 =
√
N

(
κN −

Tr(CN )

σ2(1− cN )

)
+ (56)

√
N

(
ωN −

cN
1− cN

Tr(DN )

)
Using the equation above as well as Proposition 2 and Propo-
sition 4 from Appendix I, we establish that EV2

(eiuβN,1)
behaves as

exp

(
iu
√
N

(
κN −

Tr(CN )

σ2(1− cN )

))
exp(−u

2

2
ζ) (57)

where ζ = cN
(1−cN )3Tr(D

2
N )+2 cN

(1−cN )Tr(D
2
NH∗H). In order

to obtain the limiting behaviour of ψN,1(u), it is thus sufficient
to evaluate the limit of

EV1

[
exp

(
iu
√
N

(
κN −

Tr(CN )

σ2(1− cN )

))]
(58)

This technical point is addressed in Proposition 3 in Appendix
I.

Remark 2. It is useful to recall that the expression of the
asymptotic mean and variance of ηN provided in Theorem 2
assumes that R̃ = I and that SS∗

N = I. If this is not the case,
we have to replace H by R̃−1/2H (SS∗/N)

1/2 in Theorem 2.

Remark 3. We note that Theorem 2 allows to quantify the
influence of an overdetermination of L on the asymptotic
distribution of ηN under H1. This analysis is interesting from
a practical point of view, since it is not always possible to
know the exact number of paths and their delays. If L is
overestimated, i.e. if the true number of paths is L1 < L, then,
matrix H can be written as H = (H1, 0). We also denote by
S1 and S2 the L1 ×N and (L−L1)×N matrices such that
S =

(
ST1 ,S

T
2

)T
. It is easy to check that the second term of

ηN,1, i.e.

log det
(
IL + (SS∗/N)1/2H∗R̃−1H(SS∗/N)1/2

)
(59)

coincides with

log det
(
IL1 + (S1S

∗
1/N)1/2H∗1R̃

−1H1(S1S
∗
1/N)1/2

)
(60)

and is thus not affected by the overdetermination of L.
Therefore, choosing L > L1 increases ηN,1 by the factor

(L−L1) log
(

1
1−cN

)
. As for the asymptotic variance, it is also

easy to verify that κ1 is not affected by the overdetermination
of the number of paths, and that the asymptotic variance is
increased by the factor (L−L1)

cN
1−cN . It is interesting to notice

that the standard asymptotic analysis of subsection III-B does
not allow to predict any influence of the overdetermination of
L on the asymptotic distribution of ηN .

B. Asymptotic behaviour of ηN when the number of paths L
converges towards ∞ at the same rate as M and N .

The asymptotic regime considered in section IV-A is rel-
evant when the number of paths L is much smaller than M
and N . This hypothesis may however be restrictive, so that it
is of potential interest to study the following regime:

Assumption 2. L,M and N converge towards +∞ in such
a way that cN = M

N and dN = L
N converge towards c and d,

where 0 < c+ d < 1

As explained below in Paragraph IV-B.1, the behaviour of
ηN under H0 in this regime is a consequence of existing
results. The behaviour of ηN under H1 is however not covered
by the existing litterature. The derivation of the corresponding
new mathematical results needs extensive work that is not
in the scope of the present paper. Motivated by the additive
structure of the asymptotic mean and variance of ηN under
H1 under assumption 1, we propose in Paragraph IV-B.2 a
pragmatic Gaussian approximation of the distribution of ηN
under H1
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1) Asymptotic behaviour of ηN under hypothesis H0:

Theorem 3. We define η̃N by

η̃N =−N((1− cN ) log(1− cN )

+ (1− dN ) log(1− dN ))

+N(1− cN − dN ) log(1− cN − dN ) (61)

and δ̃N by

δ̃N = − log

(
2
√
a2N − b2N

aN +
√
a2N − b2N

)
(62)

where

aN =
(
1− cN

1− dN

)2
+

dN
1− dN

(
1 +

cN (1− cN )

dN (1− dN )

)
(63)

bN = 2
dN

1− dN

√
cN (1− cN )

dN (1− dN )
(64)

Then, it holds that E(ηN ) = η̃N +O( 1
N ) and that

1√
δN

(ηN − η̃N )→D NR(0, 1) (65)

Justification. The eigenvalues of FN coincide with the non-
zero eigenvalues of (V2V

∗
2)/N (V1V

∗
1/N)

−1. Therefore, ηN
appears a linear statistics of the eigenvalues of this matrix.
(V2V

∗
2)/N (V1V

∗
1/N)

−1 is a multivariate F–matrix. The
asymptotic behaviour of the empirical eigenvalue distribution
of this kind of random matrix as well as the corresponding
central limit theorems are well established (see e.g. Theorem
4-10 and Theorem 9-14 in [2] as well as [24]) when the
dimensions of V1 and V2 converge towards +∞ at the same
rate. Theorem 3 follows from these results.

Remark 4. We notice that the results of Theorem 3 differ
deeply from the results of Theorem 1. We first remark that
η̃N , and thus E(ηN ), converge towards ∞ at the same rate
that L,M,N . Moreover, ηN −E(ηN ) is an OP (1) term under
assumption 2, while it is an OP ( 1√

N
) term when L does not

scale with M,N . However, it is possible to informally obtain
the expressions of the asymptotic mean and variance of ηN in
Theorem 1 from (61) and (62). For this, we remark that a first
order expansion w.r.t. dN = L

N of η̃N and δ̃N leads to

η̃N = L

(
log(

1

1− cN
) +O(L/N)

)
(66)

and to

δ̃N =
L

N

cN
1− cN

+O
(
(L/N)2

)
(67)

which, of course, is in accordance with Theorem 1.

2) Asymptotic behaviour of ηN under hypothesis H1:
Under H1, ηN is a linear statistics of the eigenvalues of matrix(

H + V2/
√
N
)(

H + V2/
√
N
)∗

(V1V
∗
1/N)

−1 (68)

To the best of our knowledge, the asymptotic behaviour of
the linear statistics of the eigenvalues of this matrix has not
yet been studied in the asymptotic regime where L,M,N

converge towards ∞ at the same rate. It is rather easy to eval-
uate an approximation of the empirical mean of ηN under H1

using the results of [8]. However, to establish the asymptotic
gaussianity of ηN and the expression of the corresponding
variance, we need to establish a central limit theorem for
linear statistics of the eigenvalues of non-zero mean large F-
matrices. This needs an important work that is not in the scope
of the present paper, which is why we propose the following
pragmatic approximation of the distribution of ηN .

Claim 1. It is relevant to approximate the distribution of ηN
under H1 by a real Gaussian distribution with mean η̃N +
log det

(
I + H∗H/σ2

)
and variance δ̃N + κ1/N .

Justification of Claim 1. As mentioned in Remark 1,
when M,N → ∞ and L is fixed, under H1, the asymptotic
mean ηN,1 is the sum of the asymptotic mean under H0 given
by (30) and the second term log det

(
I + H∗H/σ2

)
. Thus,

in the regime where N,M,L → ∞, it seems reasonable to
approximate the asymptotic mean of ηN by the sum of η̃N
defined by (61) with the second term log det

(
I + H∗H/σ2

)
.

We can reason similarly with the variance. The asymptotic
variance under H1, (47), is the sum of the asymptotic variance
under H0, outlined in Theorem 1, and the extra term κ1

N .
Therefore, the asymptotic variance under H1 in the regime
where N,M,L→∞ can be approximated by the asymptotic
variance under H0 for the same regime, plus the extra term
κ1

N . The results provided by this approximation are evaluated
numerically in section V.

For the reader’s convenience, the main results of this paper
are summarized in Table I, where δ̃N is given by equation
(62), κ1 by equation (29) and η̃N by equation (61).

V. NUMERICAL RESULTS.

In this section, we validate the relevance of the Gaussian ap-
proximations of section IV. In our numerical experiments, we
have calculated the asymptotic expected values and variances
as well as their empirical counterparts, evaluated by Monte
Carlo simulations with 100.000 trials. In this section, to refer
to the different approximations, we use the (a), (b) and (c)
defined in table I.

The fixed channel H is equal to H = 1

(Tr(HH
∗
))

1/2 H where

H is a realization of a M × L Gaussian random matrix with
i.i.d. Nc(0, 1

M ) entries. We remark that Tr(HH∗) = 1.
The rows of the training sequence matrix S are chosen

as cyclic shifts of a Zadoff-Chu sequence of length N [5].
Due to the autocorrelation properties of Zadoff-Chu sequences,
designed so that the correlation between any shift of the
sequence with itself is zero, we have SS∗/N = IL if L ≤ N .

A. Influence of cN = M
N on the asymptotic means and

variances.

We first evaluate the behaviour of the means and variances
of the three Gaussian approximations in terms of cN = M

N .
We only show the results for the asymptotic variance under
H1, but note that the results are similar for the expected
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Assumption on
parameters Distribution under H0 Distribution under H1

(a) Classical,
N →∞

ηN ∼ 1
N
χ2
2ML(

E[ηN ] = LcN ,Var[ηN ] = LcN · 1
N

) ηN ∼ NR
(
log det

(
I+ HH∗

σ2

)
, κ1
N

)
(b) Proposed,
M,N →∞ ηN ∼ NR

(
L log 1

1−cN
, LcN
1−cN

· 1
N

)
ηN ∼ NR

(
L log 1

1−cN
+ log det

(
I+ HH∗

σ2

)
, κ1
N

+ LcN
1−cN

· 1
N

)
(c) Proposed,
L,M,N →∞ ηN ∼ NR

(
η̃N , δ̃N

)
ηN ∼ NR

(
η̃N + log det

(
I+ HH∗

σ2

)
, κ1
N

+ δ̃N

)
TABLE I

ASYMPTOTIC DISTRIBUTION OF ηN FOR DIFFERENT ASSUMPTIONS, UNDER H0 AND H1

values and under hypothesis H0. Figure 1 compares the
theoretical variances with the empirical variances obtained
by simulation, under hypothesis H1, as a function of cN , the
ratio between M and N . In this simulation, M = 10, L = 5
and N = 20, 40, 60, 80, 160, 320. When cN is small, the
three approximations (a), (b) and (c) give the same variance,
as expected, and are very close to the empirical variance.
When cN ≥ 1

8 , the assumption that M is small compared to
N is no longer valid, and the classical asymptotic analysis
(a) fails. The two large system approximations (b) and (c)
provide similar results when cN ≤ 1

4 , i.e. when N = 40,
or equivalently when L

N ≤
1
8 . However, when N = 20, i.e.

L
N = 1

4 , (c), the approximation corresponding to the regime
where L,M,N converge towards ∞ leads to a much more
accurate prediction of the empirical variance. We remark that
the approximation (c) is also reliable for rather small values
of L,M,N , i.e. L = 5,M = 10, N = 20. We also remark
that the regimes (b) and (c) where M,N are of the same
order of magnitude capture the actual performance even when
cN is small, which, by extension, implies that the standard
asymptotic analysis (a) always performs worse compared
to the two large system approximations. If N,M increase
while cN stays the same, the results will be even closer
to the theoretical values, since the number of samples is larger.

In the simulations that follow, we will use cN = 1/2 with
N = 300, M = 150 and L = 10, if not otherwise stated.

Fig. 1. Proposed asymptotic analysis with standard asymptotic analysis

B. Comparison of the asymptotic means and variances of the
approximations of ηN under H0

We first compare in figures 2 and 3 the asymptotic expected
values and variances with the empirical ones when L increases
from L = 1 to L = 30 while M = 150 and N = 300,
i.e. cN = 1/2. The figures show that the standard asymptotic
analysis of section III completely fails for all values of L.
This is expected, given the value of M

N . As L increases, the
assumption that L is small becomes increasingly invalid, and
the only model that functions well in this regime is the model
(c). This is valid both for the expected value and variance,
and the theoretical values are very close to their empirical
counterparts. We remark that the approximation (c), valid
when L → +∞, also allows to capture the actual empirical
performance when L is small.

Fig. 2. H0: Asymptotic expected values as a function of L

C. Validation of asymptotic distribution under H0

Although the expected values and variances can be very
accurate, this does not necessarily mean that the empirical
distribution is Gaussian. Therefore, we need to validate also
the distribution under H0. The asymptotic distribution under
H0 can be validated by analyzing its accuracy when calculating
a threshold used to obtain ROC-curves. Note that this analysis
also shows the applicability of the results for a practical case
of timing synchronization.

We calculate the ROC curves in two different ways. The
first is the ROC curve calculated empirically. We determine
a threshold s from the empirical distribution under H0 which
gives a given probability of false alarm as Pfa = P(ηN > s).
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Fig. 3. H0: Asymptotic variances as a function of L

Its corresponding probability of non-detection, Pnd, is then
obtained as the probability that the empirical values of the
synchronization statistics under H1 pass this threshold. The
other ROC-curves are obtained by calculating the threshold
s from the asymptotic Gaussian distributions under H0, and
using this theoretical threshold to calculate the Pnd from the
empirical distribution under H1.

Figure 4 shows the ROC-curves obtained with the ap-
proaches mentioned above when L = 10,M = 150, N = 300.
Since the standard asymptotic analysis (a) gives very bad
results, its results are omitted. It is clear that ROC-curve
obtained by using the asymptotic distribution (b), obtained
with the assumption that L is small, differs greatly from the
results from the approximation (c), even for this relatively
small value of L. This is because the theoretical threshold
depends greatly on the expected value, and if it is not precisely
evaluated, it gives erroneous results. In (c), the model where
N,M,L→∞, the expected value and variance are very close
to their empirical counterparts, and the resulting threshold can
be used to precisely predict the synchronization performance
for the set of parameters used when Pfa ≥ 10−3 and
Pnd > 10−3. Figure 5 shows, for the regime (c), the ROC

Fig. 4. ROC curve obtained with theoretical threshold plotted with the
empirical ROC curve

curves obtained with the theoretical threshold, together with
the empirical results. In the figure, L goes from 1 to 20, while
M = 15L goes from 15 to 300 and N = 30L goes from 30
to 600. It is seen that when the three parameters grow, the
distance between the theoretical and empirical ROC curves
decreases.

Fig. 5. ROC curve obtained with theoretical threshold, for proportionally
growing N,M,L, model (c)

D. Comparison of the asymptotic means and variances of the
approximations of ηN under H1.

In this section, we will proceed to validate the expected
value and variance under H1.

Figures 6 and 7 validate the asymptotic expected values
and variances under H1. Similarly to hypothesis H0, the
theoretical expected values and variances are poorly evaluated
using the standard asymptotic analysis (a). We note that the
asymptotic expected values deduced for the regime (c) are
very close to the empirical expected values and variances. For
an L sufficiently small, however, also the regime (b) gives
asymptotic expected values and variances that are close to
their empirical counterparts.

Fig. 6. H1: Asymptotic expected values as a function of L
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Fig. 7. H1: Asymptotic variances as a function of L

E. Validation of asymptotic distribution under H1

To validate the asymptotic distributions under H1, we cal-
culate theoretical ROC-curves using both asymptotic distri-
butions. For each Pfa, a threshold s is calculated from the
theoretical Gaussian distribution under H0. This threshold is
then used to calculate the Pnd from the theoretical Gaussian
distribution under H1, using Pnd = 1− PH1

(ηN > s). Figure
8 shows these theoretical ROC curves plotted together with the
empirical ROC curve. Here, L = 10,M = 150 and N = 300.
It is seen that the approximation corresponding to the regime
N,M,L→∞ provides, as in the context of hypothesis H0, a
more accurate theoretical ROC curve. It is seen that the ROC
curve associated with the regime small L (b) is closer from
the empirical ROC curve than in the context of hypothesis
H0. This is because the corresponding asymptotic means are,
for both H0 and H1, less than the actual empirical means.
These two errors tend to compensate in the theoretical ROC
curves (b), which explains why the theoretical ROC curve (b)
of figure 8 is more accurate than the corresponding ROC curve
of figure 4, for small L.

Fig. 8. Theoretical ROC curves plotted with the empirical ROC curve

We now evaluate the behaviour of the ROC curves when
N,M,L grow at the same rate. In figure 9, L goes from 1

to 20, while M = 15L goes from 15 to 300 and N = 30L
goes from 30 to 600. The results show that as N,M,L grow
proportionally, the theoretical results tend to approach the
empirical values, but that, in contrast with the context of figure
5, a residual error remains. It would be interesting to evaluate
more accurately the asymptotic behaviour of ηN under H1 in
the regime L→ +∞, and to check if the residual error tends
to diminish. However, as mentioned in Paragraph IV-B.2, this
needs to establish a central limit theorem for linear statistics
of the eigenvalues of non zero mean large F-matrices, which
is a non trivial task.

Fig. 9. Theoretical ROC curves for proportionally growing N,M,L, model
(c)

VI. CONCLUSION.

In this paper, we have studied the behaviour of the multi-
antenna GLR detection test statistics ηN of a known signal
corrupted by a multi-path deterministic channel and an additive
white Gaussian noise with unknown spatial covariance. We
have addressed the case where the number of sensors M and
the number of samples N of the training sequence converge
towards ∞ at the same rate. When the number of paths L
does not scale with M and N , we have established that ηN
has a Gaussian behaviour with asymptotic mean L log 1

1−M/N

and variance L
N

M/N
1−M/N . This is in contrast with the standard

regime N → +∞ and M fixed where ηN has a χ2 behaviour.
Under hypothesis H1, ηN has still a Gaussian behaviour. The
corresponding asymptotic mean and variance are obtained as
the sum of the asymptotic mean and variance in the standard
regime N → +∞ and M fixed, and L log 1

1−M/N and
L
N

M/N
1−M/N respectively, i.e. the asymptotic mean and variance

under H0. We have also considered the case where the number
of paths L converges towards∞ at the same rate as M and N .
Using known results of [2] and [24], concerning the behaviour
of linear statistics of the eigenvalues of large F-matrices, we
have deduced that in the regime where L,M,N converge to
∞ at the same rate, ηN still has a Gaussian behaviour under
H0, but with a different mean and variance. The analysis of ηN
under H1 when L,M,N converge to ∞ needs to establish a
central limit theorem for linear statistics of the eigenvalues of
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large non zero-mean F-matrices, a difficult task that we will
address in a future work. Motivated by the results obtained
in the case where L remains finite, we have proposed to
approximate the asymptotic distribution of ηN by a Gaussian
distribution whose mean and variance are the sum of the
asymptotic mean and variance under H0 when L→ +∞ with
the asymptotic mean and variance under H1 in the standard
regime N → +∞ and M fixed. Numerical experiments have
shown that the Gaussian approximation corresponding to the
standard regime N → +∞ and M fixed completely fails as
soon as M

N is not small enough. The large system approxi-
mations provide better results when M

N increases, while also
allowing to capture the actual performance for small values of
M
N . We have also observed that, for finite values of L,M,N ,
the Gaussian approximation obtained in the regime L,M,N
converge towards ∞ is more accurate than the approximation
in which L is fixed. In particular, the ROC curves that are
obtained using the former large system approximation are
accurate approximations of the empirical ones in a reasonable
range of Pfa, Pnd. We therefore believe that our results can
be used to reliably predict the performance of the GLRT, and
that the tools that are developed in this paper are useful in the
context of large antenna arrays.

APPENDIX I
USEFUL TECHNICAL RESULTS.

In this appendix, we provide some useful technical results
concerning the behaviour of certain large random matrices.
In the remainder of this appendix, ΣN represents a M × N
matrix with NC(0,

σ2

N ) i.i.d. elements. We of course assume
in this section that M and N both converge towards +∞ in
such a way that cN = M

N < 1 converges towards c < 1. In
the following, we give some results concerning the behaviour
of the eigenvalues λ̂1,N ≤ λ̂2,N . . . ≤ λ̂M,N of the matrix
ΣNΣ∗N as well as on its resolvent QN (z) defined for z ∈
C− R+ by

QN (z) = (ΣNΣ∗N − zIM )
−1 (69)

We first state the following classical result (see e.g. [2],
Theorem 5.11).

Proposition 1. When N → +∞, λ̂1,N converges almost
surely towards σ2(1 −

√
c)2 while λ̂M,N converges a.s. to

σ2(1 +
√
c)2.

In the following, we denote by Iε the interval defined by

Iε = [σ2(1−
√
c)2 − ε, σ2(1 +

√
c)2 + ε] (70)

(with ε chosen in such a way that σ2(1−
√
c)2 − ε > 0) and

by EN the event defined by

EN = {one of the (λ̂k,N )k=1,...,M escapes from Iε} (71)

and remark that the almost sure convergence of λ̂1,N and
λ̂M,N implies that

1EcN = 1 almost surely for each N

larger than a random integer (72)

Proposition 1 implies that the resolvent QN (z) is almost surely
defined on C − Iε for N large enough, and in particular for
z = 0.

Another important property is the almost sure convergence
of the empirical eigenvalue distribution µ̂N = 1

M

∑M
k=1 δλ̂k,N

of ΣNΣ∗N towards the Marcenko-Pastur distribution (see e.g.
[2] and [20] and the references therein). Formally, this means
that the Stieltjes transform m̂N (z) of µ̂N defined by

m̂N (z) =

∫
R

dµ̂N (λ)

λ− z
=

1

M
Tr (QN (z)) (73)

satisfies
lim

N→+∞
(m̂N (z)−mcN (z)) = 0 (74)

almost surely for each z ∈ C − R+ (and uniformly on
each compact subset of C − R+), where mcN (z) represents
the Stieltjes transform of the Marcenko-Pastur distribution
of parameter cN , denoted by µcN in the following. mcN (z)
satisfies the following fundamental equation

mcN (z) =
1

−z (1 + σ2cNmcN (z)) + σ2(1− cN )
(75)

for each z ∈ C. µcN is known to be absolutely continuous, its
support is the interval [σ2(1−√cN )2, σ2(1+

√
cN )2], and its

density is given by√(
x− x−cN

) (
x+cN − x

)
2σ2cNπx

1[x−cN ,x
+
cN

](x). (76)

with x−cN = σ2(1−√cN )2 and x+cN = σ2(1+
√
cN )2. As µcN

is supported by [σ2(1 − √cN )2, σ2(1 +
√
cN )2], the almost

sure convergence (74) holds not only on C − R+, but also
for each z ∈ C − Iε. In particular, (74) is valid for z = 0.
Solving the equation (75) for z = 0 leads immediately to
mcN (0) =

1
σ2(1−cN ) , and to

lim
N→+∞

1

M
Tr (ΣNΣ∗N )

−1 − 1

σ2(1− cN )
= 0 (77)

almost surely. Taking the derivative of (74) w.r.t. z at z = 0,
and using that m

′

cN (0) =
1

σ4(1−cN )3 , we also obtain that

lim
N→+∞

1

M
Tr (ΣNΣ∗N )

−2 − 1

σ4(1− cN )3
= 0 (78)

almost surely. Moreover, it is possible to specify the conver-
gence speed in (77) and (78). The following proposition is a
direct consequence of Theorem 9.10 in [2].

Proposition 2. It holds that

1

M
Tr (ΣNΣ∗N )

−1 − 1

σ2(1− cN )
= OP (

1

N
) (79)

1

M
Tr (ΣNΣ∗N )

−2 − 1

σ4(1− cN )3
= OP (

1

N
) (80)

Theorem 9.10 in [2] implies that the left hand side of
(79), renormalized by N , converges in distribution towards a
Gaussian distribution, which, in turn, leads to (79). (80) holds
for the same reason.
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Remark 5. As cN → c, the previous results of course
imply that 1

MTr (ΣNΣ∗N )
−1 (resp. 1

MTr (ΣNΣ∗N )
−2) con-

verge towards 1
σ2(1−c) (resp. 1

σ4(1−c)3 ). However, the rate of
convergence is not a OP ( 1

N ) term if the convergence speed of
cN towards c is less than O( 1

N ). Therefore, it is more relevant
to approximate the left hand sides of (79) and (80) by 1

σ2(1−cN )

and 1
σ4(1−cN )3 .

The above results allow to characterize the asymptotic
behaviour of the normalized trace of (ΣNΣ∗N )

−1 and
(ΣNΣ∗N )

−2. However, it is also useful to obtain similar results
on the bilinear forms of these matrices.

Proposition 3. We consider two deterministic M -dimensional
unit norm vectors uN and vN . Then, it holds that

lim
N→+∞

u∗N (ΣNΣ∗N )
−1

vN −
u∗NvN

σ2(1− cN )
= 0 (81)

and that

lim
N→+∞

u∗N (ΣNΣ∗N )
−2

vN −
u∗NvN

σ4(1− cN )3
= 0 (82)

almost surely. Moreover,

u∗N (ΣNΣ∗N )
−1

vN −
u∗NvN

σ2(1− cN )
= OP (

1√
N

) (83)

Finally, if CN is a positive M × M matrix such that
Rank(CN ) = K is independent of N , and satisfying for each
N 0 < d1 ≤ Tr(C2

N ) < d2 < ∞ for some constants d1
and d2, then, we consider the sequence of random variables
(κN )N≥1 defined by

κN = Tr
(
CN (ΣNΣ∗N )−1

)
(84)

Define by θN the term

θN =
Tr(C2

N )

σ4(1− cN )3
(85)

Then, it holds that

E

[
exp

(
iu
√
N

(
κN −

Tr(CN )

σ2(1− cN )

))]
− exp

(
−θNu

2

2

)
→ 0 (86)

for each u ∈ R, and that
√
N√
θN

(
κN −

Tr(CN )

σ2(1− cN )

)
→D N (0, 1) (87)

The almost sure convergence result (81) is well known (see
e.g. [12] in the context of a more general matrix model),
while (82) can be established by differentiating the behaviour
of the bilinear forms of QN (z) w.r.t. z. Moreover, (83) is a
consequence of (87) used for the rank 1 matrix CN = vNu∗N .
(86) and (87) are new and need to be established.

A technical difficulty appears in the present context because
we consider the resolvent of the matrix ΣNΣ∗N at z = 0 while
in previous works, z is supposed to belong to C − R+. To
solve this issue, we use the regularization technic introduced
in a more general context in [11]. For the proof, we refer the
reader to Appendix III.

We finish this appendix by a standard result whose proof is
omitted.

Proposition 4. We consider a M×L random matrix ΓN with
NC(0,

σ2

N ) i.i.d. entries, as well as the following deterministic
matrices: AN is M × M and hermitian, BN is M × L
and satisfies supN ‖BN‖ < +∞ while DN is a positive
L × L matrix and also verifies supN ‖DN‖ < +∞. Then, if
(ωN )N≥1 represents the sequence of random variables defined
by

ωN = Tr [DN (Γ∗NANΓN + Γ∗NBN + B∗NΓN )] (88)

it holds that

E(ωN ) = σ2 1

N
Tr(AN ) Tr(DN ), (89)

Var(ωN ) =
1

N
ζN

where ζN is defined by

ζN =σ4 1

N
Tr(A2

N )Tr(D2
N ) + 2σ2 1

N
Tr
(
D2
NB∗NBN

)
(90)

Moreover,

E |ωN − E(ωN )|4 ≤ a1
N2

+
a2
N2

(
1

N
Tr(A2

N )

)2

+
a3
N3

1

N
Tr(A8

N ) (91)

where a1, a2, a3 are constant terms depending on
L, supN ‖BN‖ and supN ‖DN‖. Finally, if lim supN ζN <
+∞, it holds that

E
(
exp i u

√
N (ωN − E(ωN ))

)
− e−

u2ζN
2 → 0 (92)

for each u ∈ R.

APPENDIX II
PROOFS OF THEOREMS 1 AND 2

Proof of Theorem 1. In order to establish Theorem 1, we
use the results of Appendix I for the matrix ΣN = 1√

N
V1.

We note that 1√
N

V1 is a M×(N−L) matrix while the results
of Appendix I have been presented in the context of a M ×N
matrix. In principle, it should be necessary to exchange N by
N −L in Propositions 1 to 3. However, cN − M

N−L = O( 1
N ),

so that it possible to use the results of the above propositions
without exchanging N by N − L.

We first verify (30). For this, we introduce the event EN
defined by (71). We first remark that ηN − ηN 1EcN → 0, a.s.
It is thus sufficient to study the behaviour of ηN 1EcN which
is also equal to

ηN 1EcN = log det
(
I + FN1EcN

)
(93)

We now study the behaviour of each entry (k, l) of matrix
1EcNFN . For this, we use Proposition 4 for DN = eke

T
l ,

ΓN = V2√
N

and AN = 1EcN

(
V1V∗1
N

)−1
. AN is of course

not deterministic, but as V2 and V1 are independent, it is
possible to use the results of Proposition 4 by replacing
the mathematical expectation operator by the mathematical
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expectation operator EV2
w.r.t. V2. We note that the present

matrix AN verifies

AN ≤
I

σ2(1−
√
c)2 − ε

(94)

because 1EcN 6= 0 implies that all the eigenvalues of V1V∗1
N

belong to Iε = [σ2(1−
√
c)2− ε, σ2(1+

√
c)2+ ε]. Therefore,

(91) immediately implies that

EV2

∣∣FN,k,l1EcN − EV2

(
FN,k,l1EcN

)∣∣4 ≤ a

N2
(95)

where a is a deterministic constant. Taking the mathematical
expectation of the above inequality w.r.t. V1, and using the
Borel-Cantelli Lemma lead to

FN,k,l1EcN − EV2

(
FN,k,l1EcN

)
→ 0 a.s. (96)

or equivalently, to

FN,k,l1EcN − δ(k − l)σ
2cN

1

M
Tr

(
V1V

∗
1

N

)−1
→ 0 a.s.

(97)

(77) implies that FN,k,l1EcN−δ(k−l)
cN

1−cN → 0 almost surely,
or equivalently that

FN −
cN

1− cN
I→ 0 a.s. (98)

This eventually leads to (30).
We now establish (31). For this, we first remark that (72)

implies that ηN = ηN1EcN + OP ( 1
Np ) for each integer p.

Therefore, the asymptotic behaviour of the distribution of the
left hand side of (31) is not modified if ηN is replaced by
ηN1EcN given by (93). We denote by ∆N the matrix defined
by

∆N = FN1EcN −
cN

1− cN
I (99)

We first prove that ∆N = OP ( 1√
N
). For this, we express ∆N

as

∆N =

(
FN1EcN − σ

2cN
1

M
Tr

(
V1V

∗
1

N

)−1
1EcN I

)
+

σ2cN
1

M
Tr

(
V1V

∗
1

N

)−1
1EcN I− cN

1− cN
I (100)

The first term of the right hand side of (100) is OP ( 1√
N
)

because the fourth-order moments of its entries are O( 1
N2 )

terms. As for the second term, (79) implies that it is a OP ( 1
N ).

A standard second order expansion of log det(I + FN1EcN )
leads to

ηN1EcN = L log
1

1− cN
+ (1− cN )Tr(∆N ) +OP (

1

N
)

(101)

Therefore, it holds that
√
N

(
ηN1EcN − L log

1

1− cN

)
=
√
N(1− cN )Tr(∆N )

+OP (
1√
N

), (102)

or, using (100), that

√
N

(
ηN1EcN − L log

1

1− cN

)
=

√
N(1− cN )Tr

(
FN1EcN − σ

2cN
1

M
Tr

(
V1V

∗
1

N

)−1
1EcN

)
+OP (

1√
N

) (103)

As

EV2

(
Tr
(
FN1EcN

))
= σ2cN

1

M
Tr

((
V1V

∗
1

N

)−1
1EcN

)
,

(104)

Proposition 4 used for AN =
(

V1V∗1
N

)−1
1EcN , BN = 0 and

DN = (1− cN )I leads to

EV2

(
exp iu

√
N

(
ηN − L log

1

1− cN

))
−

exp

[
−u

2

2
σ4 L (1− cN )2cN

1

M
Tr

(
V1V

∗
1

N

)−2
1EcN

]
→ 0

(105)

a.s. for each u ∈ R. (78) and the dominated convergence
theorem finally implies that

E

(
exp iu

√
N

(
ηN − L log

1

1− cN

))
−

exp

[
−u

2

2

LcN
1− cN

]
→ 0 (106)

This establishes (31).
Proof of Theorem 2 We recall that, under H1, ηN is given

by (22). As in the proof of Theorem 1, it is sufficient to study
the regularized statistics ηN1EcN which is also equal to

ηN1EcN = log det
(
IL + 1EcN GN

)
(107)

In order to evaluate the almost sure behaviour of ηN1EcN , we
expand GN1EcN as

GN1EcN = H∗ (V1V
∗
1/N)

−1
H 1EcN + FN1EcN +

(V2/
√
N)∗ (V1V

∗
1/N)

−1
H 1EcN +

H∗ (V1V
∗
1/N)

−1
(V2/

√
N) 1EcN (108)

By (81), the first term of the right hand side of (108) behaves
almost surely as H∗H

σ2(1−cN ) , while it has been shown before
that the second term converges a.s. towards cN

1−cN I. To address
the behaviour of entry (k, l) of the sum of the third and the
fourth terms, we use Proposition 4 for ΓN = V2√

N
, AN = 0,

BN = (V1V
∗
1/N)

−1
H 1EcN and DN = eke

T
l . (91) implies

that entry (k, l) converges almost surely towards 0. Therefore,
we have proved that

GN −
(

H∗H

σ2(1− cN )
+

cN
1− cN

I

)
→ 0 a.s. (109)

from which (45) follows immediately.
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The proof of (47) is similar to the proof of (31), thus we
do not provide all the details. We replace ηN by ηN1EcN , and
remark that the matrix ∆N , given by

∆N = GN1EcN −
(

H∗H

σ2(1− cN )
+

cN
1− cN

I

)
(110)

verifies ∆N = OP ( 1√
N
). To check this, it is sufficient to use

the expansion (49), and to recognize that:
• by (83),

H∗ (V1V
∗
1/N)

−1
H 1EcN −

H∗H

σ2(1− cN )
= OP (

1√
N

),

(111)

• by Proposition 4 and (91),

(V2/
√
N)∗ (V1V

∗
1/N)

−1
H 1EcN +

H∗ (V1V
∗
1/N)

−1
(V2/

√
N) 1EcN = OP (

1√
N

) (112)

• it has been shown before that

FN1EcN −
cN

1− cN
I = OP (

1√
N

). (113)

Using a standard linearization of log det(I + GN1EcN ), this
implies that

ηN1EcN − ηN,1 = Tr (DN∆N ) +OP (1/N) (114)

where DN is the L× L matrix given by

DN = (1− cN )(IL + H∗H/σ2)−1 (115)

We define κN and ωN by

κN = Tr
(
CN (V1V

∗
1/N)

−1
)

(116)

and

ωN = Tr
[
DNFN1EcN

]
+

Tr
[
DN (V2/

√
N)∗ (V1V

∗
1/N)

−1
H 1EcN

]
+

Tr
[
DN H∗ (V1V

∗
1/N)

−1
(V2/

√
N) 1EcN

]
(117)

where CN the M ×M matrix given by

CN = (1− cN )H(IL + H∗H/σ2)−1H∗ (118)

Using (114), we obtain that

ηN1EcN − ηN,1 = κN −
Tr(CN )

σ2(1− cN )
+ (119)

ωN −
cN

1− cN
Tr(DN ) +OP (

1

N
)

We also remark that (79) used for ΣN = 1√
N

V1 implies that

ωN − EV2(ωN ) = ωN −
cN

1− cN
Tr(DN ) +OP (

1

N
) (120)

Therefore, it holds that
√
N
(
ηN1EcN − ηN,1

)
=
√
N (Tr (DN∆N )) (121)

can be written as

√
N
(
ηN1EcN − ηN,1

)
=
√
N

(
κN −

Tr(CN )

σ2(1− cN )

)
+

√
N (ωN − EV2(ωN )) +OP (

1√
N

) (122)

We denote by ζN the term

ζN = σ4 1

N
Tr
(
(V1V

∗
1/N)−2 1EcN

)
Tr(D2

N )+

2σ2 1

N
Tr
(
D2
NH∗(V1V

∗
1/N)−1H 1EcN

)
(123)

We use Proposition 4 and (92) for ΓN = V2/
√
N , AN =

(V1V
∗
1/N)−1 1EcN and BN = (V1V

∗
1/N)−1 H 1EcN , and

obtain that

EV2

[
exp

(
iu
√
N
(
ηN1EcN − ηN,1

))]
−

exp

(
iu
√
N

(
κN −

Tr(CN )

σ2(1− cN )

))
exp(−u

2

2
ζN )→ 0

(124)

a.s. ζN has almost surely the same behaviour as ζ given by

ζ =
cN

(1− cN )3
Tr(D2

N ) + 2
cN

(1− cN )
Tr(D2

NH∗H) (125)

which implies that

exp(−u
2

2
ζN )− exp(−u

2

2
ζ)→ 0 a.s. (126)

Therefore, taking the mathematical expectation of (124) w.r.t
V1 and using the dominated convergence theorem as well as
(86), lead, after some calculations, to

E
[
exp

(
iu
√
N(ηN − ηN,1)

)]
− exp

[
−u

2

2

(
LcN

1− cN
+ κ1

)]
→ 0 (127)

for each u. As infN ( LcN1−cN + κ1) > 0, (47) follows from
(127) (see Proposition 6 in [10]).

APPENDIX III
PROOF OF (87)

To establish (87), we follow the approach of [10] which is
based on the joint use of the integration by parts formula and
of the Poincaré-Nash inequality (see section III-B of [10]).
However, the approach of [10] allows to manage functionals
of the resolvent QN (z) for z ∈ C−R+. For this, the inequality
‖QN (z)‖ ≤ 1

dist(z,R+) plays a fundamental role. For z = 0,
‖QN (0)‖ coincides with 1

λ1,N
which is not upper-bounded

by a deterministic positive constant for N greater than a
non random integer. This issue was solved before using the
regularization term 1EcN . However, the use of the integration
by parts formula and the Poincaré-Nash inequality needs to
consider smooth enough functions of ΣN . Motivated by [11],
we consider the regularization term χN defined by

χN = det [φ (ΣNΣ∗N )] (128)
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where φ is a smooth function such that

φ(λ) = 1 if λ ∈ Iε = [σ2(1−
√
c)2 − ε, σ2(1 +

√
c)2 + ε]

φ(λ) = 0 if λ ∈ [σ2(1−
√
c)2 − 2ε, σ2(1 +

√
c)2 + 2ε]c

φ ∈ [0, 1] elsewhere

In the following, we need to use the following property: for
each ε > 0, it holds that

P (EN ) = O( 1

Np
) (129)

where EN is defined by (71). Property (129) is not mentioned
in Theorem 5.11 of [2] which addresses the non Gaussian case.
However, (129) follows directly from Gaussian concentration
arguments.

It is clear that

(ΣNΣ∗N )
−1
χN ≤

I

σ2((1−
√
c)2 − 2ε)

(130)

Lemma 3-9 of [11] also implies that, considered as a function
of the entries of ΣN , χN is continuously differentiable.
Moreover, it follows from Proposition 1 that almost surely,
for N large enough, χN = 1 and κN = κNχN . Therefore, it
holds that κNχN = κN +OP ( 1

Np ), and that

√
N

(
κN −

Tr(CN )

σ2(1− cN )

)
=
√
N

(
κNχN −

Tr(CN )

σ2(1− cN )

)
+ OP (

1

Np
) (131)

for each p ∈ N. In order to establish (86), it is thus sufficient
to prove that

E

[
exp

(
iu
√
N

(
κNχN −

Tr(CN )

σ2(1− cN )

))]
− exp

(
−θNu

2

2

)
→ 0 (132)

for each u. To obtain (87), we remark that, as infN θN > 0,
it follows from (132) that

√
N√
θN

(
κNχN −

Tr(CN )

σ2(1− cN )

)
→D NR(0, 1)

(see Proposition 6 in [10]). (87) eventually appears as a
consequence of (131).

The above regularization trick thus allows to replace the
matrix (ΣNΣ∗N )

−1 by (ΣNΣ∗N )
−1
χN , which verifies (130).

In order to establish (132), it is sufficient to prove that

E(κNχN )− Tr(CN )

σ2(1− cN )
= o(

1√
N

) (133)

and that

E
[
exp

(
iu
√
N (κNχN − E(κNχN ))

)]
− exp

(
−θNu

2

2

)
→ 0 (134)

for each u.
In the rest of this section, to simplify the notations, we

omit to write the dependance on N of the various terms ΣN ,

QN (0), χN ..., and denote them by Σ,Q(0), χ, . . .. However,
we keep the notation cN , in order to avoid confusion between
cN and c. Furthermore, the matrix Q(0) is denoted by Q. If
x is a random variable, x◦ represents the zero mean variable
x◦ = x− E(x). In the following, we denote by δ the random
variable defined by

δ =
√
N κχ

and by ψ◦(u) the characteristic function of δ◦ defined by

ψ◦(u) = E (exp iuδ◦)

We first establish the following Proposition.

Proposition 5. It holds that

(ψ◦(u))
′
= −u E

(
Tr(C2Q2χ)

)
ψ◦(u) +O( 1√

N
) (135)

where ′ represents the derivative w.r.t. the variable u.

Proof. We consider the characteristic function ψ(u) of δ,
and evaluate

ψ
′
(u) = i

√
NE

(
Tr(QCχ)eiuδ

)
We remark that QΣΣ∗ = I so that

E
(
QΣΣ∗χeiuδ

)
= E(χeiuδ)I

We claim that

E(χ eiuδ) = ψ(u) +O( 1

Np
) (136)

for each p. We remark that∣∣E (eiuδ(1− χ))∣∣ ≤ 1− E(χ)

We recall that the event E is defined by (71) and that P (E) =
O( 1

Np ) for each p (see (129)). IEc ≤ χ leads to 1 − E(χ) ≤
P (E). This justifies (136). Therefore, it holds that

E
(
QΣΣ∗χ eiuδ

)
=

(
ψ(u) +O( 1

Np
)

)
I (137)

for each p. We now evaluate each entry of the lefthandside
of (137) using the integration by parts formula. For this, we
denote by (ξ1, . . . , ξN ) the columns of Σ. It holds that

(QΣΣ∗)r,s =

N∑
j=1

(Qξj)rΣs,j

and that

E
[
(Qξj)rΣs,jχ e

iuδ
]
=

M∑
t=1

E
(
Qr,tΣt,jΣs,jχ e

iuδ
)

The integration by parts formula leads to

E
(
Qr,tΣs,jχ e

iuδΣt,j

)
=
σ2

N
E

[
∂
(
Qr,tΣs,jχ e

iuδ
)

∂Σt,j

]
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After some algebra, we obtain that

E
(
Qr,tΣs,jχ e

iuδΣt,j

)
=
σ2

N
E
(
Qr,tχ e

iuδ
)
δ(t = s)

− σ2

N
E
(
(Qξj)r Qt,t Σs,j χ e

iuδ
)

− iσ2u√
N

E
(
Qr,t (QCQξj)t Σs,j χ e

iuδ
)

+
σ2

N
E

(
Qr,t Σs,j e

iuδ ∂χ

∂Σt,j

)
(138)

We now need to study more precisely the properties of the
derivative of χ w.r.t. Σt,j . For this, we give the following
Lemma

Lemma 1. We denote by A the event:

A = {one of the λ̂k,N escapes from Iε}
∩ {(λ̂l,N )l=1,...,M ∈ supp(φ)} (139)

Then, it holds that

∂χ

∂Σt,j

= 0 on Ac (140)

and that

E

∣∣∣∣ ∂χ

∂Σi,j

∣∣∣∣2 = O( 1

Np
) (141)

for each p.

Proof. Lemma 1 follows directly from Lemma 3.9 of [11]
and from the calculations in the proof of Proposition 3.3 of
[11].

Lemma 1 implies that the last term of (138) is O( 1
Np ) for

each p. To check this, we remark that

E

(
Qr,t Σs,j e

iuδ ∂χ

∂Σt,j

)
= E

(
Qr,t Σs,j e

iuδ 1A
∂χ

∂Σt,j

)
The Schwartz inequality leads to

|E
(
Qr,t Σs,j e

iuδ 1A
∂χ

∂Σt,j

)
|2

≤ E
(
|Qr,t Σs,j |2 1A

)
E

∣∣∣∣ ∂χ

∂Σi,j

∣∣∣∣2
On event A, all the eigenvalues of ΣΣ∗ belong to [σ2(1 −√
c)2−2ε, σ2(1+

√
c)2+2ε]. Therefore, |Qr,t 1A is bounded

and (141) implies that the last term of (138) is O( 1
Np ) for

each p. Summing (138) over t, we obtain that

E
(
(Qξj)rΣs,j χ e

iuδ
)
=
σ2

N
E
(
Qr,sχ e

iuδ
)

− σ2cN E
(
m̂(0) (Qξj)r Σs,j χ e

iuδ
)

− iσ2u√
N

E
(
(Q2CQξj)r Σs,j χ e

iuδ
)
+O( 1

Np
) (142)

where we recall that m̂(0) = 1
MTr(Q) represents the Stieltjes

transform of the empirical eigenvalue distribution µ̂ of ΣΣ∗

at z = 0. Using that (1−χ) ≤ 1E , it is easy to check that for
each p, it holds that

E
(
(Qξj)r m̂(0)Σs,j χ e

iuδ
)
=

E
(
(Qξj)r m̂(0)Σs,j χ

2 eiuδ
)
+O( 1

Np
)

We denote by β the term β = m̂(0)χ, and express β as
β = α + β◦. Replacing χ by χ2 in the second term of the
righthandside of (142) and plugging β = α + β◦ into (142),
we obtain that immediately that

E
(
(Qξj)rΣs,j χ e

iuδ
)
=

σ2

N(1 + σ2cNα)
E
(
Qr,sχ e

iuδ
)

− iσ2u√
N(1 + σ2cNα)

E
(
(Q2CQξj)r Σs,j χ e

iuδ
)

− σ2cN
1 + σ2cNα

E
(
β◦ (Qξj)r Σs,j χ e

iuδ
)
+O( 1

Np
) (143)

Summing over j, we get that

E
(
(QΣΣ∗)r,s χ e

iuδ
)
=

σ2

1 + σ2cNα
E
(
Qr,sχ e

iuδ
)

− iσ2u√
N(1 + σ2cNα)

E
(
(Q2CQΣΣ∗)r,s χ e

iuδ
)

− σ2cN
1 + σ2cNα

E
(
β◦(QΣΣ∗)r,s χ e

iuδ
)
+O( 1

Np
) (144)

or, using that QΣΣ∗ = I,

E
(
χ eiuδ

)
δ(r = s) =

σ2

1 + σ2cNα
E
(
Qr,sχ e

iuδ
)

− iσ2u√
N(1 + σ2cNα)

E
(
(Q2C)r,s χ e

iuδ
)

− σ2cN
1 + σ2cNα

E
(
β◦ χ eiuδ

)
δ(r = s) +O( 1

Np
) (145)

In order to evaluate α, we take u = 0 and sum over r = s in
(145), and obtain that

α =
1

σ2(1− cN )
+

1

1− cN
E (β◦ χ) +O( 1

Np
)

E (β◦ χ) coincides with E (β◦ χ◦). Using (141), the Poincaré-
Nash inequality leads immediately to E

(
(χ◦)2

)
= O( 1

Np ),
and to

α =
1

σ2(1− cN )
+O( 1

Np
) (146)

for each p. As a consequence, we also get that

E(Qr,s χ) =
1

σ2(1− cN )
δ(r = s) +O( 1

Np
) (147)

We now use (145) in order to evaluate E
(
(Qr,sχ)

◦ χ eiuδ
)
.

For this, we first establish that the use of (130) and of the
Poincaré-Nash inequality implies that

Var(β) = E
(
(β◦)2

)
= O( 1

N2
) (148)

To check this, we use the Poincaré-Nash inequality:

Var(β) ≤ σ2

N
E

∑
i,j

∣∣∣∣ ∂β

∂Σi,j

∣∣∣∣2 + ∣∣∣∣ ∂β

∂Σi,j

∣∣∣∣2




17

We just evaluate the terms corresponding to the derivatives
with respect to the terms (Σi,j)i=1,...,M,j=1,...,N . It is easily
seen that

∂β

∂Σi,j

= − 1

M
(eTi Q2ξj)χ+

1

M
Tr(Q)

∂χ

∂Σi,j

Therefore, it holds that∣∣∣∣ ∂β

∂Σi,j

∣∣∣∣2 ≤ 2
1

M2
ξ∗jQ

2eie
T
i Q2ξj χ

2 + 2
1

M
Tr(Q)

∣∣∣∣ ∂χ

∂Σi,j

∣∣∣∣2
Using the identity QΣΣ∗ = I as well that ∂χ

∂Σi,j
= 1A

∂χ

∂Σi,j

(see (140)), we obtain that

σ2

N

∑
i,j

(
E

∣∣∣∣ ∂β

∂Σi,j

∣∣∣∣2
)
≤ 2σ2 1

MN
E

(
1

M
Tr(Q3)χ

)
+

2
σ2

N
E

 1

M
Tr(Q)1A

∑
i,j

∣∣∣∣ ∂χ

∂Σi,j

∣∣∣∣2


On the set A, the eigenvalues of ΣΣ∗ are located into [σ2(1−√
c)2 − 2ε, σ2(1 +

√
c)2 + 2ε]. Therefore, we get that

1

M
Tr(Q)1A ≤

1

σ2(1−
√
c)2 − 2ε

Using (141), we obtain that

2
σ2

N
E

 1

M
Tr(Q)1A

∑
i,j

∣∣∣∣ ∂χ

∂Σi,j

∣∣∣∣2
 = O( 1

Np
)

for each p. Moreover, (130) implies that

1

M
Tr(Q3)χ ≤ 1

(σ2(1−
√
c)2 − 2ε)

3

and that

2σ2 1

MN
E

(
1

M
Tr(Q3)χ

)
= O( 1

N2
)

This establishes (148).
Therefore, the Schwartz inequality leads to E

(
β◦ χ eiuδ

)
=

O( 1
N ). Writing E

(
Qr,sχ e

iuδ
)

as

E
(
Qr,sχ e

iuδ
)
= E

(
Qr,sχ

2 eiuδ
)
+O( 1

Np
) =

E(Qr,sχ)E(χ e
iuδ) + E

(
(Qr,sχ)

◦χ eiuδ
)
+O( 1

Np
) =

E(Qr,sχ)E(χ e
iuδ) + E

(
(Qr,sχ)

◦ eiuδ
)
+O( 1

Np
)

(146), (147) and (145) lead to

E
(
(Qr,sχ)

◦ eiuδ
)
=

iu√
N

E
(
(Q2C)r,s χ e

iuδ
)
+O( 1

N
)

(149)
or equivalently to

E
(
δ◦ eiuδ

)
= iuE

(
Tr(Q2C2)χ eiuδ

)
+O( 1√

N
)

Using the Nash-Poincaré inequality, it can be checked that

Var
(
Tr(Q2C2)χ

)
= O( 1

N
)

Therefore, the Schwartz inequality leads to

E
(
Tr(Q2C2)χ eiuδ

)
= E

(
Tr(Q2C2)χ

)
E(eiuδ) +O( 1√

N
)

and we get that

E
(
δ◦ eiuδ

)
= iuE

(
Tr(Q2C2)χ

)
E(eiuδ) +O( 1√

N
) (150)

Plugging δ = δ◦ + E(δ) into (150) eventually leads to

E
(
δ◦ eiuδ

◦
)
= iuE

(
Tr(Q2C2)χ

)
E(eiuδ

◦
) +O( 1√

N
)

(151)
which is equivalent to (135). This, in turn, establishes
Proposition 5.

We now complete the proof of (134). We integrate (135),
and obtain that

ψ◦(u) = exp

[
−u

2

2
E
(
Tr(Q2C2 χ)

)]
+O( 1√

N
)

(see section V-C of [10] for more details). (82) implies that

Tr(Q2C2)− Tr(C2)

σ4(1− cN )3
→ 0 a.s.

As Tr(Q2C2)χ − Tr(Q2C2) also converges to 0 almost
surely, we obtain that

Tr(Q2C2)χ− Tr(C2)

σ4(1− cN )3
→ 0 a.s.

As matrix Q2χ is bounded and supN Tr(C2) < +∞, it is
possible to use the Lebesgue dominated convergence theorem
and to conclude that

E
(
Tr(Q2C2)χ

)
− Tr(C2)

σ4(1− cN )3
→ 0

This proves (134).
It remains to establish (133). For this, we use (147), and

obtain that

E (Tr(QC)χ)− Tr(C)

σ2(1− cN )
= O( 1

Np
)

for each p. This, of course, implies (133).
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444-476, 2012.

[25] Y. Zhou, E. Serpedin, K. Qarage, O. Dobre, ”On the performance of
generalized likelihood ratio test for data aided timing synchronization
of MIMO systems”, Proc. IEEE Int. Conf. Commun. (ICC 2012),
Bucharest, pp. 43-46, 2012.

http://arxiv.org/abs/1106.5119

	I Introduction
	II Presentation of the problem.
	III Standard asymptotic analysis of N.
	III-A Hypothesis H0.
	III-B Hypothesis H1.

	IV Main results.
	IV-A Asymptotic behaviour of N when the number of paths L remains fixed when M and N increase.
	IV-A.1 Asymptotic behaviour of N under hypothesis H0
	IV-A.2 Asymptotic behaviour of N under hypothesis H1

	IV-B Asymptotic behaviour of N when the number of paths L converges towards  at the same rate as M and N.
	IV-B.1 Asymptotic behaviour of N under hypothesis H0
	IV-B.2 Asymptotic behaviour of N under hypothesis H1


	V Numerical results.
	V-A Influence of cN = MN on the asymptotic means and variances.
	V-B Comparison of the asymptotic means and variances of the approximations of N under H0
	V-C Validation of asymptotic distribution under H0
	V-D Comparison of the asymptotic means and variances of the approximations of N under H1.
	V-E Validation of asymptotic distribution under H1

	VI Conclusion.
	Appendix I: Useful technical results.
	Appendix II: Proofs of Theorems ?? and ??
	Appendix III: Proof of (??)
	References

