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Performance analysis of an improved MUSIC DoA
estimator

Pascal Vallet, Member, IEEE, Xavier Mestre, Senior Member, IEEE, and Philippe Loubaton, Fellow, IEEE

Abstract—This paper adresses the statistical performance of
subspace DoA estimation using a sensor array, in the asymptotic
regime where the number of samples and sensors both converge
to infinity at the same rate. Improved subspace DoA estimators
were derived (termed as G-MUSIC) in previous works, and were
shown to be consistent and asymptotically Gaussian distributed
in the case where the number of sources and their DoA remain
fixed. In this case, which models widely spaced DoA scenarios,
it is proved in the present paper that the traditional MUSIC
method also provides DoA consistent estimates having the same
asymptotic variances as the G-MUSIC estimates. The case of DoA
that are spaced of the order of a beamwidth, which models closely
spaced sources, is also considered. It is shown that G-MUSIC
estimates are still able to consistently separate the sources, while
this is no longer the case for the MUSIC ones. The asymptotic
variances of G-MUSIC estimates are also evaluated.

Index Terms—Subspace DoA estimation, large sensor arrays,
random matrix theory

I. INTRODUCTION

THE problem of estimating the directions of arrival (DoA)
of source signals with an array of sensors is fundamental

in statistical signal processing, and several methods have been
developed and characterized in terms of performance, during
the past 40 years. Among the most popular high resolution
methods, subspace algorithms such as MUSIC [17] are widely
used. It is well known (see e.g. [19]) that subspace methods
suffer the so-called “threshold effect”, which involves a severe
degradation when either the Signal to Noise Ratio (SNR)
and/or the sample size are not large enough. In contrast, the
threshold breakdown is less significant for Maximum Like-
lihood (ML) techniques, and occurs for a much lower SNR
and/or sample size. However, due to their reduced complexity
since they involve a one-dimensional search over the set of
possible DoA, subspace methods are usually prefered over ML
which requires a multi-dimensional search.

The study of the statistical performance of MUSIC al-
gorithm has received a lot of attention, see e.g. [18], and
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its behaviour has been mainly characterized in the situation
where the number of available samples N of the observed
signal is much larger than the number of sensors M of the
array. However, there may exist some situations where this
hypothesis is not realistic, for example when the number of
sensors M is large and the signals have short-time duration
or short time stationarity. In this case, M and N are of the
same order of magnitude, and the standard statistical analysis
of MUSIC is irrelevant. This is mainly because the sample
correlation matrix of the observations, on which MUSIC
mainly relies, does not properly estimate the true covariance
matrix. In this context, the standard estimate of the MUSIC
angular “pseudo-spectrum” does not appear to be consistent.
To model this more stringent scenario, it was proposed in [13]
to consider a new asymptotic regime in which both M,N
converges to infinity at the same rate, that is

M,N →∞ such that M
N → c > 0.

Based on results from random matrix theory, giving a precise
description of the behaviour of the eigenvalues and eigen-
vectors of large random matrices, an improved MUSIC DoA
technique, termed as “G-MUSIC”, was derived in [13] in
the unconditional model case, that is, by assuming that the
source signals are Gaussian and temporally white. This method
was based on a novel estimator of the “pseudo-spectrum”
function. Other related works concerning the unconditional
case include [9] as well as [10] where the source number
detection is addressed. Later, [20] addressed the more general
conditional model case, i.e. the source signals are modelled
as non observable deterministic signals. Using an approach
similar to [13], a different estimator of the pseudo-spectrum
was proposed. More recently, the work of [23] extends the
improved subspace estimation of [20] to the situation where
the noise may be correlated in time. We also mention the recent
series of works [4] [3] [5] on robust subspace estimation, in
the context of impulsive noise.

Experimentally, it can be observed that in certain scenarios,
MUSIC and G-MUSIC show quite similar performance, while
in other contexts G-MUSIC outperforms MUSIC. In this paper
which is focused on the conditional case, we explain this
behaviour and provide a complete description of the statistical
performance of MUSIC and G-MUSIC. Roughly speaking,
we prove that if the DoAs are widely spaced compared to 1

M ,
MUSIC and G-MUSIC have a similar behaviour, while MU-
SIC fails when the DoAs are closely spaced. More precisely,
we establish the following results.
• When the number of sources K and the corresponding

DoA remain fixed as M,N → ∞ (a regime which
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models widely spaced sources), we show that, while
the pseudo-spectrum estimate of MUSIC is inconsistent,
its minimization w.r.t. the DoA provides N -consistent
1 estimates. Moreover, in the case of asymptotically
uncorrelated source signals, the MUSIC DoA estimates
share the same asymptotic MSE as G-MUSIC.

• For two sources with an angular spacing of the order of
a beamwidth, that is O(M−1) as M,N →∞, we show
that G-MUSIC remains N -consistent while MUSIC is not
N -consistent anymore, which means that MUSIC is no
longer able to asymptotically separate the DoA.

A. Problem formulation and previous works
Let us consider the situation where K narrow-band and far-

field source signals are impinging on a uniform linear array
of M sensors, with K < M . The received signal at the output
of the array is usually modeled as a complex M -variate time
series (yn)n≥1 given by

yn = Asn + vn,

where
• A = [a(θ1), . . . ,a(θK)] is the M ×K matrix of steering

vectors a(θ1), . . . ,a(θK), with θ1, . . . , θK the source
signals DoA, and a(θ) = 1√

M
[1, . . . , ei(M−1)θ]T ;

• sn ∈ CK contains the source signals received at time n,
considered as unknown deterministic ;

• (vn)n≥1 is a temporally and spatially white circularly
symmetric complex Gaussian noise with spatial covari-
ance E[vnv∗n] = σ2I.

By assuming that N observations y1, . . . ,yN are collected in
the M ×N matrix

YN = [y1, . . . ,yN ] = ASN + VN , (1)

with SN = [s1, . . . , sN ] and VN = [v1, . . . ,vN ], the DoA
estimation problem thus consists in estimating the K DoA
θ1, . . . , θK from the matrix of samples YN .

Subspace methods are based on the observation that
the source contributions As1, . . . ,AsN are confined in
the so-called signal subspace of dimension K, defined as
span {a(θ1), . . . ,a(θK)} . By assuming that the signal sample
covariance N−1SNS∗N is full rank, θ1, . . . , θK are the unique
zeros of the pseudo-spectrum

η(θ) = a(θ)∗Πa(θ), (2)

where Π is the orthogonal projection matrix onto the noise
subspace, defined as the orthogonal complement of the signal
subspace, and which coincides in that case with the kernel of
N−1ASNS∗NA∗ of dimension M −K.

Since Π is not available in practice, it must be estimated
from the observation matrix YN . This estimation is tradi-
tionnaly performed by using the so-called sample correlation
matrix of the observations (SCM)

YNY∗N
N

=
1

N

N∑
n=1

yny∗n,

1An estimator θ̂N of a (possibly depending on N,M ) DoA θN is defined
as N -consistent if almost surely, N

(
θ̂N − θN

)
→ 0 as M,N →∞.

and Π is directly estimated by considering its sample estimate
Π̂N , i.e. the corresponding orthogonal projection matrix onto
the eigenspace associated with the M−K smallest eigenvalues
of YNY∗N

N . The MUSIC method thus consists in estimating
the DoA θ1, . . . , θK as the K most significant minima of the
estimated pseudo-spectrum

η̂
(t)
N (θ) = a(θ)∗Π̂Na(θ),

where the superscript (t) refers to “traditional estimate”.
The SCM is known to be an accurate estimator of the true

covariance matrix when the number of available samples N
is much larger than the observation dimension M . Indeed, in
the asymptotic regime where M is constant and N converges
to infinity, under some technical conditions, the law of large
numbers ensures that∥∥∥∥YNY∗N

N
−
(

A
SNS∗N
N

A∗ + σ2I

)∥∥∥∥→ 0, (3)

almost surely (a.s.) as N → ∞, where ‖.‖ stands for the
spectral norm. This implies that∥∥∥Π̂N −Π

∥∥∥ a.s.−−−−→
N→∞

0 (4)

i.e. the sample projection matrix Π̂N is a consistent estimator
of Π. Moreover, (4) directly implies the uniform consistency
of the traditional pseudo-spectrum estimate

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(θ)
∣∣∣ a.s.−−−−→
N→∞

0. (5)

The K MUSIC DoA estimates, defined formally, for k =
1, . . . ,K, by

θ̂
(t)
k,N = argmin

θ∈Ik
η̂
(t)
N (θ),

where Ik is a compact interval containing θk and such that
Ik ∩ Il = ∅ for k 6= l, are therefore consistent, i.e.

θ̂
(t)
k,N

a.s.−−−−→
N→∞

θk.

Several accurate approximations of the MSE on the MUSIC
DoA estimates have been obtained (see e.g. [18] and the
references therein).

In the situation where M,N are of the same order of
magnitude, (3), and therefore (4) as well as (5), are no longer
true. To analyze this situation, [13] proposed to consider the
non standard asymptotic regime in which

M,N →∞ such that
M

N
→ c > 0. (6)

In [20], an estimator η̂N (θ) of the pseudo-spectrum η(θ)
was derived. Under an extra assumption, called the separation
condition, it was proved to be consistent in the new asymptotic
regime (6), that is

η̂N (θ)− η(θ) −→ 0,

almost surely, when 2 M,N → ∞ such that M
N → c > 0. In

the case where the number of sources K remains fixed when

2Note that in that case η(θ) depends on M (and thus implicitely on N ). In
the next sections, a subscript N will be added to make clear this dependence.
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M and N increase, the separation condition was shown to
hold if the eigenvalues of A

SNS∗N
N A∗ are above the threshold

σ2
√
c [20, Section III-C]. Note that a similar estimator was

previously derived in [13] in the unconditional source signal
case. A stronger result of uniform convergence over θ was
proved in [6], that is

sup
θ∈[−π,π]

|η̂N (θ)− η(θ)| → 0,

almost surely. When K and the DoA (θk)k=1,...,K remain
fixed, the G-MUSIC DoA estimates, defined for k = 1, . . . ,K
by θ̂k,N = argminθ∈Ik η̂N (θ), were also shown to be N -
consistent, that is

N
(
θ̂k,N − θk

)
→ 0

almost surely, when M,N →∞ such that MN → c > 0. More
recently, [7] also proposed a second-order analysis of the G-
MUSIC DoA estimates (in the conditional case), in terms of a
Central Limit Theorem (CLT) in the latter asymptotic regime.

The work in [7] assumes that the source signals are spatially
uncorrelated asymptotically, that is N−1SNS∗N converges to
a positive diagonal matrix as N → ∞, and both [6] and
[7] that the source DoA θ1, . . . , θK are fixed with respect to
M,N . This latter assumption is suitable for practical scenarios
in which the source DoA are widely spaced. However, for
scenarios in which the source DoA are closely spaced, e.g.
with an angular separation of the orderO

(
M−1

)
), the analysis

of G-MUSIC provided in [6] and [7] are not relevant anymore.
In this paper, we address a theoretical comparison between

the performance of MUSIC and G-MUSIC in the two follow-
ing scenarios.

In a first scenario, in which the number of sources K and
the corresponding DoA θ1, . . . , θK are considered fixed with
respect to M,N (referred to as “widely spaced DoA”) and
where it is known that G-MUSIC is N -consistent, we prove
that, while the traditional MUSIC pseudo-spectrum estimate
η̂
(t)
N (θ) is inconsistent, the MUSIC algorithm is N -consistent

and that the two methods exhibit the same asymptotic Gaus-
sian distributions. We remark that the analysis provided for
this scenario allows spatial correlation between the different
source signals.

In a second scenario, we consider K = 2 spatially un-
correlated source signals with DoA θ1 and θ2 depending on
M,N such that their angular separation θ1− θ2 = O

(
M−1

)
,

when M,N converge to infinity at the rate. We show in this
context that the G-MUSIC DoA estimates remain N -consistent
while MUSIC looses its N -consistency. We also provide in this
scenario the asymptotic distribution for the G-MUSIC DoA
estimates.

To obtain the asymptotic distribution of G-MUSIC under
the two previous scenarios, we rely on a Central Limit The-
orem (CLT) which extends the results obtained in [7] using
a different approach, and which allows situations involving
spatial correlations between sources and closely spaced DoA.
A CLT for the traditional MUSIC DoA estimates is also given
in the first scenario using the same technique. The proofs
of these results need the use of large random matrix theory
technics, and appear to be quite long and technical. Therefore,

we choose to not include them in the present paper. However,
the derivations are available on-line at [22].

B. Organization and notations

Organization of the paper: In section II, we review some
basic random matrix theory results, concerning the asymptotic
behaviour of the eigenvalues of the SCM in the case where
the number of sources K remains fixed when M and N
increase. We then make use of these results to introduce the
estimator of any bilinear form of the noise subspace projector
Π, derived in [20]. We also give a Central Limit Theorem
(CLT) for this estimator, which will be used in the subsequent
sections to derive the asymptotic distribution of the G-MUSIC
DoA estimates. In section III, we prove that MUSIC and
G-MUSIC are both N -consistent in the scenario where the
source DoA are widely spaced. However, in a closely spaced
DoA scenario, we prove that MUSIC is not N -consistent,
while G-MUSIC is still N -consistent. Finally, we provide
in section IV an analysis of G-MUSIC and MUSIC DoA
estimates in terms of Asymptotic Gaussianity. In particular, it
is shown that MUSIC and G-MUSIC exhibit exactly the same
asymptotic MSE in the widely spaced DoA scenario and for
asymptotically uncorrelated source signals. Some numerical
experiments are provided which confirm the accuracy of the
predicted performance of both methods.

Notations: For a complex matrix A, we denote by AT ,A∗

its transpose and its conjugate transpose, and by tr (A) and
‖A‖ its trace and spectral norm. The identity matrix will be I
and en will refer to a vector having all its components equal to
0 except the n-th equals to 1. The notation span{x1, . . . ,xn}
will refer to the vector space generated by x1, . . . ,xn. The
real normal distribution with mean m and variance σ2 is
denoted NR(α, σ2) and the multivariate normal distribution in
Rk, with mean m and covariance Γ is denoted in the same way
NRk(m,Γ). A complex random variable Z = X+iY follows
the distribution NC(α + iβ, σ2) if X and Y are independent
with respective distributions NR(α, σ

2

2 ) and NR(β, σ
2

2 ). The
expectation and variance of a complex random variable Z will
be denoted E[Z] and V[Z]. For a sequence of random variables
(Xn)n∈N and a random variable X , we write

Xn
a.s.−−−−→
n→∞

X and Xn
D−−−−→

n→∞
X

when Xn converges respectively with probability one and in
distribution to X . Finally, Xn = oP(1) will stand for the
convergence of Xn to 0 in probability, and Xn = OP(1) will
stand for tightness (boundedness in probability).

II. ASYMPTOTIC BEHAVIOUR OF THE SAMPLE
EIGENVALUES AND EIGENVECTORS

In this section, we present some basic results from random
matrix theory describing the behaviour of the eigenvalues
of the SCM YNY∗N

N , in the asymptotic regime where M,N
converge to infinity such that M

N → c > 0. These results
are required to properly introduce the improved subspace
estimator of [20]. To that end, we will work with the following
more general model, referred to as “Information plus Noise”
in the literature.
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We consider M,N,K ∈ N∗ such that K < M and M =
M(N), is a function of N satisfying 3

cN =
M

N
= c+ o

(
1√
N

)
(7)

as N →∞. Thus, in the remainder, the notation N →∞ will
refer to the double asymptotic regime M,N →∞, M/N →
c > 0. We also assume that K is fixed with respect to N (for
the general case where K may possibly go to infinity with
N , see [20]). We consider the sequence of random matrices
(ΣN )N≥1 of size M ×N where 4

ΣN = BN + WN , (8)

with
• BN a rank K deterministic matrix satisfying

supN ‖BN‖ <∞,
• WN having i.i.d. NC

(
0, σ

2

N

)
entries .

We denote by λ1,N ≥ . . . ≥ λK,N the non zero eigenval-
ues of BNB∗N and by u1,N , . . . ,uK,N the respective unit
norm eigenvectors. (uk,N )k=K+1,...,M are unit norm mutually
orthogonal vectors of the kernel of BNB∗N . Equivalently,
λ̂1,N ≥ . . . ≥ λ̂M,N are the eigenvalues of the matrix ΣNΣ∗N
and û1,N , . . . , ûM,N the respective unit norm eigenvectors.

A. The asymptotic spectral distribution of the SCM

Let µ̂N be the empirical spectral measure of the matrix
ΣNΣ∗N , defined as the random probability measure

µ̂N =
1

M

M∑
k=1

δλ̂k,N ,

with δx the Dirac measure at point x. The distribution µ̂N can
be alternatively characterized through its Stieltjes transform
defined as

m̂N (z) =

∫
R

dµ̂N (λ)

λ− z
=

1

M
tr (ΣNΣ∗N − zI)

−1

where (ΣNΣ∗N − zI)
−1 is the resolvent of the matrix ΣNΣ∗N .

It is well-known from [12] that for all z ∈ C\R,

m̂N (z)
a.s.−−−−→
N→∞

m(z), (9)

where

m(z) =

∫
R

dµ(λ)

λ− z
is the Stieltjes of a deterministic probability measure called the
Marchenko-Pastur distribution, whose support coincides with
the compact interval [σ2(1 −

√
c)2, σ2(1 +

√
c)2], and which

is defined by

dµ(x) =(
1− 1

c

)+

δ0 +

√
(x− x−) (x+ − x)

2σ2cπx
1[x−,x+](x)dx.

3The condition
√
N (cN − c)→ 0 is purely technical and is in fact only

needed for the validity of Theorems 3, 8 and 7 below.
4Of course, we retrieve the usual array processing model (1) by setting

ΣN = N−1/2YN , BN = N−1/2ASN and WN = N−1/2VN .

with x− = σ2(1−
√
c)2 and x+ = σ2(1 +

√
c)2.

Moreover, m(z) satisfies the following fundamental equa-
tion

m(z) =
1

−z (1 + σ2cm(z)) + σ2(1− c)
. (10)

An equivalent statement of (9) is given with the following
convergence in distribution

µ̂N
D−−−−→

N→∞
µ

which holds almost surely, that is, the empirical eigenvalue
distribution of ΣNΣ∗N has the same asymptotic behaviour as
the Marchenko-Pastur distribution. Practically, the eigenvalue
histogram of ΣNΣ∗N matches the density of the Marchenko-
Pastur distribution, for M,N large enough, as shown in Figure
1, where we have chosen M = 1000, N = 2000, σ2 = 1 and
K = 2 with λ1,N = 5 and λ2,N = 10.

−4 −2 0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Limiting spectral distribution and histogram of the sample eigenvalues

 

 

Histogram

Marcenko−Pastur density

Fig. 1. Marchenko-Pastur distribution and eigenvalue histogram of ΣNΣ∗
N

Remark 1. The Marchenko-Pastur distribution was originally
obtained as the limit distribution of the empirical eigenvalue
distribution of the noise part WNW∗

N . Nevertheless, the
assumption that the rank K of the deterministic perturbation
BN is independent of N implies that the Marchenko-Pastur
limit still holds for ΣNΣ∗N . This fact is well known, and can
be easily seen by expressing m̂N (z) in terms of the Stieltjes
transform of the spectral distribution of WNW∗

N . Finite rank
perturbations of WN are often referred to as “spiked models”
in the random matrix literature [1].

B. Asymptotic behaviour of the sample eigenvalues

As also noticed in Figure 1, the non zero eigenvalues λ1,N
and λ2,N of BNB∗N generate two outliers λ̂1,N , λ̂2,N in the
spectrum of ΣNΣ∗N , in the sense that λ̂1,N , λ̂2,N are outside
the support [x−, x+] of the Marchenko-Pastur distributions,
while all the remaining eigenvalues λ̂3,N , . . . , λ̂M,N concen-
trate around [x−, x+].

In fact, under an additional condition on the non zero eigen-
values λ1,N , . . . , λK,N , it is possible to characterize the be-
haviour of the K largest sample eigenvalues λ̂1,N , . . . , λ̂K,N .
The following assumption, usually referred to as subspace
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separation condition, ensures that the K non zero eigenvalues
of BNB∗N are sufficiently separated from the M − K zero
eigenvalues.

Assumption 1. For k = 1, . . . ,K, λk,N → λk as N → ∞,
where

λ1 > . . . > λK > σ2
√
c.

We note that forthcoming results remain valid if some
(λk)k=1,...,K coincide. We assume that λk 6= λl for k 6= l
in order to simplify the presentation. Under the previous
assumption, an accurate description of the behaviour of the
eigenvalues of ΣNΣ∗N can be obtained.

Theorem 1. Under Assumption 1, for k = 1, . . . ,K,

λ̂k,N
a.s.−−−−→
N→∞

φ(λk) =
(λk + σ2)(λk + σ2c)

λk
.

with φ(λk) > x+. Moreover, for all ε > 0,

λ̂K+1,N , . . . , λ̂M,N ∈
(
x− − ε, x+ + ε

)
,

almost surely for N large enough.

Theorem 1 is a consequence of the general results proved
in [1] (see also [11] for a different, but less general, proof).
Rephrased in another way, under the separation condition, the
K largest eigenvalues of ΣNΣ∗N escape from the support of
the Marchenko-Pastur distribution while the smallest M −K
eigenvalues are concentrated in a neighborhood of [x−, x+].

Remark 2. Theorem 1 in conjunction with Assumption 1 have
a nice interpretation (see e.g. [15] and [2] in the conditional
case). Indeed, we notice that the separation condition can
be interpreted as a detectability threshold on the SNR con-
dition, if we define the SNR to be the ratio λK

σ2 . Therefore,
Theorem 1 ensures that the K “signal sample eigenvalues”
λ̂1,N , . . . , λ̂K,N will be detectable in the sense that they will
split from the M−K “noise sample eigenvalues” as N →∞,
as long as the SNR is above

√
c.

C. Estimation of the signal subspace

In this section, we introduce a consistent estimator of any
bilinear form of the noise subspace orthogonal projection
matrix, which was derived in [7] (see also [20]). Let us
introduce the function

w(z) = z
(
1 + σ2cm(z)

)2 − σ2(1− c)
(
1 + σ2cm(z)

)
.

From the fixed point equation (10), straightforward algebra
leads to the new equation

φ (w(z)) = z, (11)

and one can see easily that the function λ 7→ φ(λ)
is a one to one correspondence from

(
σ2
√
c,+∞

)
onto(

σ2(1 +
√
c)2,+∞

)
with inverse function x 7→ w(x) defined

on the interval
(
σ2(1 +

√
c)2,+∞

)
(see [22]).

The following fundamental result was proved in [1] (see
also [7]).

Theorem 2. Under Assumption 1, for all deterministic se-
quences of unit norm vectors (d1,N ), (d2,N ), we have for
k = 1, . . . ,K

d∗1,N ûk,N û∗k,Nd2,N =

h (φ(λk)) d∗1,Nuk,Nu∗k,Nd2,N + o(1) a.s.,

where

h(z) =
w(z)2 − σ4c

w(z) (w(z) + σ2c)
.

Since the function φ is the inverse of the function w, we
obtain an explicit expression for h (φ(λk)) :

h (φ(λk)) =
λ2k − σ4c

λk (λk + σ2c)
.

Define the following bilinear form of the noise subspace
orthogonal projection matrix:

ηN = d∗1,NΠNd2,N , (12)

as well as its traditional estimate

η̂
(t)
N = d∗1,NΠ̂Nd2,N . (13)

Then Theorem 2 shows in particular that

η̂
(t)
N = d∗1,N

(
I−

K∑
k=1

h (φ(λk)) uk,Nu∗k,N

)
d2,N + o(1),

(14)

a.s., which implies that the traditional subspace estimate is not
consistent.

Moreover, Theorem 1 in conjunction with Theorem 2 di-
rectly provides a consistent estimator of (12). Indeed, under
Assumption 1,

η̂N − ηN
a.s.−−−−→
N→∞

0, (15)

where

η̂N = d∗1,N

I−
K∑
k=1

1

h
(
λ̂k,N

) ûk,N û∗k,N

d2,N . (16)

Remark 3. It should be noticed that the estimator given
in (16) provides in particular a consistent estimator of any
(i, j)−th entry of ΠN , by choosing d1,N = ei and d2,N = ej .
However, (15) does not imply that we have a norm-consistent
estimator of ΠN , in the sense that∥∥∥∥∥∥ΠN −

I−
K∑
k=1

1

h
(
λ̂k,N

) ûk,N û∗k,N

∥∥∥∥∥∥
does not necessarily converge to 0 as N →∞.

A result concerning the asymptotic Gaussianity of the
estimator η̂N can be also derived. Let ϑk,` be defined under
Assumption 1 by

ϑk,` =
σ4c

(
λkλ` + (λk + λ`)σ

2 + σ4
) (
λkλ` + σ4c

)
4 (λ2k − σ4c) (λ2` − σ4c) (λkλ` − σ4c)



6

χ
(t)
k,` = λkλ`

(
λkλ` + σ2(λk + λ`) + σ4

) (
(1 + c)(λkλ` + σ4c) + 2σ2c(λk + λ`)

)
− c

(
λkλ` − σ4c

) (
λkλ` + σ2(λk + λ`) + σ4c

)2
.

for 1 ≤ k, ` ≤ K, and by

ϑk,` =
σ2
(
λk + σ2

)
4 (λ2k − σ4c)

for k ≤ K, ` ≥ K + 1, with ϑk,` = ϑ`,k, and set ϑk,` = 0 for
k, ` ≥ K + 1. Define finally

γN =

M∑
k,`=1

ϑk,`
∣∣u∗k,N (d1,Nd∗2,N + d2,Nd∗1,N

)
u`,N

∣∣2 .
(17)

We then have the following result.

Theorem 3. Under Assumption 1, if lim infN γN > 0, then
√
N

Re (η̂N − ηN )
√
γN

D−−−−→
N→∞

NR (0, 1) . (18)

The proof of Theorem 3, which requires the use of technical
tools from random matrix theory, is not included in the paper
and is available in [22].

To conclude this section, we also provide a result on the
asymptotic Gaussianity of the classical subspace estimator
(13), which will prove to be useful to study the behaviour
of MUSIC in the next section. In the same way as (17), we
define

ϑ
(t)
k,` =

σ4c

4

χ
(t)
k,`

λkλ`(λk + σ2c)2(λ` + σ2c)2(λkλ` − σ4c)

for 1 ≤ k, ` ≤ K, where χ(t)(k, `) is given at the top of the
page (note that χ(t)

k,l > 0), and by

ϑ
(t)
k,` =

σ2
(
λk + σ2

) (
λ2k − σ4c

)
4λ2k (λk + σ2c)

2 .

for k ≤ K, ` ≥ K + 1, with ϑ(t)k,` = ϑ
(t)
`,k, and set ϑ(t)k,` = 0 for

k, ` ≥ K + 1. Define finally

γ
(t)
N =

M∑
k,`=1

ϑ
(t)
k,`

∣∣u∗k,N (d1,Nd∗2,N + d2,Nd∗1,N
)
u`,N

∣∣2 .
(19)

Then the following result holds.

Theorem 4. Under Assumption 1, if lim infN γ
(t)
N > 0, then

√
N

Re
(
η̂
(t)
N − η

(t)
N

)
√
γ
(t)
N

D−−−−→
N→∞

NR (0, 1) , (20)

where

η
(t)
N = d∗1,N

(
I−

K∑
k=1

λ2k,N − σ2cN

λk,N (λk,N + σ2cN )
uk,Nu∗k,N

)
d2,N .

The proof of Theorem 4 is given in [22].

D. Connections with others improved subspace estimators

Estimator (16) is valid under the hypothesis that the number
of sources K remains fixed when N → +∞. We recall that,
under the hypothesis that the source signals are deterministic,
or equivalently in the conditional case, [20] proposed a con-
sistent estimator of ηN , say η̂N,c, valid whatever K is, and
that it was proved in [20] that

η̂N,c − η̂N → 0 a.s. (21)

It is even established in [22, Remark 3.] that

η̂N,c − η̂N = oP

(
1√
N

)
(22)

Therefore, if K is fixed, the original subspace estimator
derived in [20] appears to be equivalent to the estimator (16).

If the K dimensional source signal (sn) is assumed to be
i.i.d. complex Gaussian, or equivalently in the unconditional
case, [13] proposed another consistent estimator, denoted η̂N,u,
also valid whatever K is in the unconditional case. When K is
fixed, and when (sn) is deterministic, that is, in the conditional
case, it is shown in the Appendix A that

η̂N,u − η̂N = oP

(
1√
N

)
(23)

Therefore, if K is fixed, the subspace estimator of [13], in
principle valid in the unconditional case, behaves as η̂N ,
or equivalently as the estimator η̂N,c derived in [20] in the
conditional case. In conclusion, if K is fixed, in the conditional
case, the estimators η̂N,u, η̂N,c and η̂N are all equivalent. In
section IV-B, simulations are provided to illustrate that η̂N and
η̂N,u(θ) present the same performance, in the context of DoA
estimation.

III. ANALYSIS OF THE CONSISTENCY OF G-MUSIC AND
MUSIC

From now on, we use the results of section II for ΣN =
N−1/2YN , BN = N−1/2A(θ)SN , WN = N−1/2VN ,
d1,N = d2,N = a(θ) and assume that Assumption 1 holds.
Based on the subspace estimator (16), [7] proposed the im-
proved pseudo-spectrum estimator

η̂N (θ) = 1−
K∑
k=1

1

h
(
λ̂k,N

) |a(θ)∗ûk,N |2 , (24)

Remark 4. The pseudo-spectrum estimator (24) can be
viewed as a weighted version of the traditional pseudo-
spectrum estimator

η̂
(t)
N (θ) = 1−

K∑
k=1

|a(θ)∗ûk,N |2 .
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Therefore, there is no additional computational cost by us-
ing this improved pseudo-spectrum estimator (which gives
the G-MUSIC method described below), since it also relies
on an eigenvalues/eigenvectors decomposition of the SCM
1
NYNY∗N . Moreover, in the traditional asymptotic regime
where M

N → 0, by setting c = 0, we remark that h(z) = 1
and thus the improved pseudo-spectrum estimator reduces to
the traditional one.

From (15), we have directly that η̂N (θ) − ηN (θ) → 0 a.s.
as N → ∞, for all θ. In Hachem et al. [6], this convergence
was also proved to be uniform, that is

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| a.s.−−−−→
N→∞

0, (25)

The resulting DoA estimation method, termed as G-MUSIC,
consists in estimating θ1, . . . , θK as the K most significant
minima of θ 7→ η̂N (θ).

Concerning the traditional pseudo-spectrum estimator
η̂
(t)
N (θ), Theorem 2 directly implies that for all θ,

η̂
(t)
N (θ)− η(t)N (θ)

a.s.−−−−→
N→∞

0,

where

η
(t)
N (θ) = 1−

K∑
k=1

λ2k − σ4c

λk (λk + σ2c)
|a(θ)∗uk,N |2 . (26)

A. N -consistency for widely spaced DoA

In this section, we consider a widely spaced DoA scenario.
In practice, such a situation occurs e.g. when the DoA have
an angular separation much larger than a beamwidth 2π

M .
Mathematically speaking, we will therefore consider that the
DoA θ1, . . . , θK are fixed with respect to N . In that case,
A∗A → I and the separation condition (Assumption 1)
holds if and only if the eigenvalues of SNS∗N

N converge to
λ1 > . . . > λK > σ2

√
c. To summarize, we make the

following assumption.

Assumption 2. K, θ1, . . . , θK are independent of N , and the
eigenvalues of N−1SNS∗N converge to

λ1 > . . . > λK > σ2
√
c.

Note that Assumption 2 allows in particular spatial corre-
lation between sources, since 1

N SNS∗N may converge to a
positive definite matrix, which is not necessarily constrained
to be diagonal.

To study the consistency of G-MUSIC and MUSIC, we need
to define “properly” the corresponding estimators, to avoid
identifiability issues. As it is usually done in the theory of
M-estimation, we consider I1, . . . , IK ⊂ [−π, π] K compact
disjoint intervals such that θk ∈ Int (Ik) (Int denotes the
interior of a set), and formally define the G-MUSIC and
MUSIC DoA estimators as 5

θ̂k,N = argmin
θ∈Ik

η̂N (θ) and θ̂
(t)
k,N = argmin

θ∈Ik
η̂
(t)
N (θ). (27)

5Note that the G-MUSIC cost function can be negative due to the presence
of the weighting factor h(λ̂k,N )−1 in (24).

We have the following result, whose proof is deferred to
Appendix B.

Theorem 5. Under Assumption 2, for k = 1, . . . ,K,

θ̂k,N = θk + o

(
1

N

)
and θ̂

(t)
k,N = θk + o

(
1

N

)
,

with probability one.

The results of Theorem 5 show that both the G-MUSIC
and MUSIC methods have the same first order behaviour, i.e.
are N -consistent, when the angles θ1, . . . , θK are fixed with
respect to N . In section IV, it will be further shown that the
MUSIC method also has the same asymptotic MSE as the
G-MUSIC method as N →∞.

B. N -consistency for closely spaced DoA

In this section, we study the consistency of G-MUSIC and
MUSIC in a closely spaced DoA scenario, where we let the
DoA θ1,N , . . . , θK,N depends on N and converge to the same
value at rate O

(
1
M

)
. To simplify the presentation, we only

consider K = 2 sources with DoA θ1,N and θ2,N = θ1,N+ α
N ,

where α > 0, and assume asymptotic uncorrelated sources
with equal powers, that is N−1SNS∗N → I. In this case,
it is easily seen that the two non null signal eigenvalues of
ASNS∗NA∗

N converge to

λ1(α) = 1 +
∣∣∣sinc

(αc
2

)∣∣∣ and λ2(α) = 1−
∣∣∣sinc

(αc
2

)∣∣∣ .
where sinc(x) = sin(x)/x if x 6= 0 and sinc(0) = 1.
Therefore, the subspace separation condition (Assumption 1)
holds if and only if λ2(α) > σ2

√
c. To summarize, we

consider the following assumption.

Assumption 3. We assume that K = 2,

SNS∗N
N

−−−−→
N→∞

I,

and that the DoA θ1,N , θ2,N depend on N in such a way that

θ2,N = θ1,N +
α

N
,

where α > 0 satisfies∣∣∣sinc
(αc

2

)∣∣∣ < 1− σ2
√
c.

Since the DoA are not fixed with respect to N , we define,
in the same way as (27), the G-MUSIC and MUSIC DoA
estimates as

θ̂k,N = argmin
θ∈Ik,N

η̂N (θ) and θ̂
(t)
k,N = argmin

θ∈Ik,N
η̂
(t)
N (θ) (28)

where Ik,N is defined as the compact interval

Ik,N =

[
θk,N −

α− ε
2N

, θk,N +
α− ε
2N

]
,

with 0 < ε < α. The N -consistency results for G-MUSIC
and MUSIC in the closely spaced DoA scenario can be
summarized as follows.
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Fig. 2. Function β 7→ κ(t)(β) for σ = 1, c = 0.5 and different values of α
(the dashed lines represent the location of 0 and α)

Theorem 6. Under Assumption 3, for k ∈ {1, 2},

θ̂k,N = θk,N + o

(
1

N

)
, (29)

with probability one. Moreover, if 0 and α are not local
maxima of the function β 7→ κ(t)(β) defined by

κ(t)(β) =(
λ1(α)2 − σ4c

)
(sinc(βc/2) + sinc((β − α)c/2))

2

2λ1(α)2 (λ1(α) + σ2c)

+

(
λ2(α)2 − σ4c

)
(sinc(βc/2)− sinc((β − α)c/2))

2

2λ2(α)2 (λ2(α) + σ2c)
, (30)

then N
(
θ̂
(t)
k,N − θk,N

)
does not converge to 0.

The proof of Theorem 6 is deferred to Appendix C.
Theorem 6 shows that the G-MUSIC method remains N -

consistent when two sources have DoA with a spacing of the
order O

(
M−1

)
while MUSIC may not be able to consistently

separate the two DoA if the spacing parameter α is not a local
maximum of the function defined in (30) (numerical examples
are given in Figure 2). This confirms the superiority of G-
MUSIC over MUSIC in closely spaced DoA situations and
low sample size situations.

C. Remarks on the spatial periodogram

Regarding the previous results on the consistency of the
MUSIC estimator for widely spaced and closely spaced sce-
narios, it is natural to ask how traditional “low resolution”
techniques for DoA estimation behave.

Considering the classical spatial periodogram cost function,
that is

η̂
(p)
N (θ) = a(θ)∗

YNY∗N
N

a(θ),

we can prove, such as in [6, Sec. 3.3], that

sup
θ∈[−π,π]

∣∣∣η̂(p)N (θ)− η(p)N (θ)
∣∣∣ a.s.−−−−→
N→∞

0,

where η(p)N (θ) = a(θ)∗
(
A

SNS∗N
N A∗ + σ2I

)
a(θ). Moreover,

following the steps of the proof of Theorem 5 for the MUSIC
estimates, we end up as well with

θ̂
(p)
k,N = θk + o

(
1

N

)
,

with probability one, where θ̂
(p)
k,N = argmaxθ∈Ik η̂

(p)
N (θ).

Therefore, the spatial periodogram also provides consistent
estimate in the widely-spaced DoA scenario, without any
requirements on the sources power (i.e. without need of
the separation condition λk > σ2

√
c, k = 1, . . . ,K). This

confirms the well-known fact that the use of subspace methods,
especially MUSIC, is not necessarily a relevant choice for
estimating the DoA of widely spaced sources. Nevertheless,
in certain scenarios involving correlated source signals and
widely spaced DoA and for which the spatial periodogram may
exhibit a non negligible bias at high SNR, the use of subspace
methods may still be interesting (see numerical illustrations in
Section IV-B).

However, in the scenario of closely spaced DoA, one can
also prove, following the steps of Theorem 6, that the spatial
periodogram suffers the same drawback as MUSIC, and is not
capable of consistently separating two DoA with an angular
spacing of the order O

(
1
M

)
. Simulations are provided in the

next section to illustrate these facts.

IV. ASYMPTOTIC GAUSSIANITY OF G-MUSIC AND
MUSIC

We now apply the results of Theorems 3 and 4 to obtain a
Central Limit Theorem for the G-MUSIC and MUSIC DoA
estimates. The results for G-MUSIC will be valid for both the
widely spaced and closely spaced DoA scenarios introduced
in the previous section, while the CLT for MUSIC will be
only valid for the widely spaced DoA scenario, since it is not
N -consistent for the other situation.

A. CLT for G-MUSIC and MUSIC

The following Theorem, whose proof is given in Appendix
D, provides the asymptotic Gaussianity of the G-MUSIC DoA
estimates, under Assumption 2 or Assumption 3. We denote
by a′(θ) and a′′(θ) respectively the first and second order
derivatives w.r.t. θ of the function θ → a(θ).
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Theorem 7. Under Assumption 2 or Assumption 3,

N3/2

√√√√(d∗1,NΠNd1,N

)2
γN

(
θ̂k,N − θk,N

)
D−−−−→

N→∞
NR(0, 1).

(31)

for k = 1, . . . ,K, where γN is defined by (17), with d1,N =
N−1a′(θk,N ), d2,N = a(θk,N ).

In particular, by considering the settings of Assumption 2
and adding the following spatial uncorrelation condition

SNS∗N
N

−−−−→
N→∞

diag (λ1, . . . , λK) , (32)

we obtain, using the usual asymptotic orthogonality between
a(θk) and uk′,N for k 6= k′ (see e.g. [7, Lem. 8]),

d∗1,NΠNd1,N −−−−→
N→∞

c2

12
and γN −−−−→

N→∞

c2

24

σ2(λk + σ2)

λ2k − σ4c
.

Thus, we retrieve the results of [7] under this particular
assumption:

N3/2
(
θ̂k,N − θk

)
D−−−−→

N→∞
NR

(
0,

6

c2
σ2(λk + σ2)

λ2k − σ4c

)
, (33)

Therefore, Theorem 7 extends the results of [7] to more
general scenarios of correlated sources and not necessarily
widely distributed sources.

Concerning the MUSIC method, we obtain the following
result in the widely spaced DoA scenario.

Theorem 8. Let η(t)(2)N (θ) be the second order derivative of
θ 7→ η

(t)
N (θ) defined in (26). Under Assumption 2, and if

lim inf
N→∞

|η(t)(2)N (θk)| > 0,

it holds that

N3/2

√√√√η
(t)(2)
N (θk)2

4γ
(t)
N

(
θ̂
(t)
k,N − θk

)
D−−−−→

N→∞
NR (0, 1) , (34)

for k = 1, . . . ,K, where γ
(t)
N is defined by (19) by setting

d1,N = N−1a′(θk) and d2,N = a(θk),

The proof of Theorem 8, which is based on the CLT of
Theorem 4, is similar to the one of Theorem 7 and is therefore
omitted.

Theorem 8, having been derived under Assumption 2, allows
in particular correlation between source signals. Moreover, by
assuming asymptotic uncorrelation between sources, i.e. that
(32) holds, we obtain

1

N2
η
(t)(2)
N (θk) −−−−→

N→∞

c2(λ2k − σ4c)

6λk(λk + σ2c)
, (35)

and

γ
(t)
N −−−−→

N→∞

c2(λk + σ2)(λ2k − σ4c)

24λ2k(λk + σ2c)2
,

which implies

N3/2
(
θ̂
(t)
k,N − θk

)
D−−−−→

N→∞
NR

(
0,

6

c2
σ2(λk + σ2)

λ2k − σ4c

)
. (36)

The striking fact about Theorem 8 is that, in the widely spaced
scenario, the variance of the MUSIC estimates obtained in (36)
coincides with the variance of the G-MUSIC estimates (33)
previously derived in [7]. This shows that MUSIC and G-
MUSIC present exactly the same asymptotic performance for
widely spaced DoA and uncorrelated sources, which reinforces
the conclusions given in Section III-A.

B. Numerical examples
In this section, we provide numerical simulations illustrating

the results given in the previous sections.
To illustrate the similarity between the theoretical MSE

(formula of Theorem 7) and its approximation for uncorrelated
source signal and widespace DoA (specific formula of (33)),
we plot these two formulas in Figure 3(a) and Figure 3(b),
together with the empirical MSE of the G-MUSIC estimate
θ̂1,N and the Cramer-Rao bound (CRB). The parameters are
K = 2, M = 40, N = 80, SNR = −10 log(σ2). In
Figure 3(a), we consider the context of widespace DoA with
uncorrelated source signal, by choosing a signal matrix SN
with standard i.i.d NC(0, 1) entries, and setting θ1 = 0,
θ2 = 5 × 2π

M . The separation condition λK > σ2
√
c occurs

around SNR = 0 dB. In this situation, we notice that the
two MSE formulas match, as discussed in Section IV-A. In
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(a) Uncorrelated source signals
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Fig. 3. Empirical MSE of θ̂1,N for widely spaced DoA versus SNR (dB)

Figure 3(b), we consider the context of widespace DoA with
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significant correlation between source signals, by choosing
a matrix SN = R1/2XN with R = [1, 0.4; 0.4, 1] and
XN having standard i.i.d NC(0, 1) entries. The separation
condition occurs around SNR = 2 dB. We notice that the
MSE formula of Theorem 7 is relatively accurate while a
discrepancy may occur for the formula (33), since the spatial
uncorrelation is not fulfilled in that case.

In Figure 4, we consider the context of widespace DoA
and uncorrelated source signals, and compare the performance
of G-MUSIC, MUSIC and DoA estimation with spatial pe-
riodogram, in terms of MSE on the first DoA estimate. The
empirical MSE of θ̂1,N together with its theoretical MSE given
in Theorem 7, as well as the empirical MSE of θ̂(t)1,N and
θ̂
(p)
1,N are plotted. The parameters are M = 40, N = 80, and
θ1 = 0, θ2 = 5× 2π

M . The signal matrix SN has standard i.i.d
NC(0, 1) entries, and the separation condition occurs around
SNR = 0 dB. We notice in Figure 4 that the performance
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Fig. 4. Empirical MSE of θ̂1,N , θ̂(t)1,N and θ̂(p)1,N for widely spaced DoA and
uncorrelated source signals, versus SNR (dB)

of G-MUSIC, MUSIC as well as the DoA estimate from the
spatial periodogram coincide, since the source DoA are widely
spaced (five times the beamwidth 2π

M ). We also notice that the
threshold effect of the spatial periodogram is less significant,
since it is not constrained by the subspace separation condition
(see Section III-C).

In Figure 5, we consider the same simulation as for Figure
4, except that we add significant correlation between sources,
by taking SN = R1/2XN with R = [1, 0.4; 0.4, 1] and XN

having standard i.i.d NC(0, 1) entries. Again, we notice that
both G-MUSIC and MUSIC perform well, since the DoA are
widely spaced. Concerning the spatial periodogram method,
we notice that a strong bias occurs at high SNR, which
corresponds to the well-known effect of source correlation on
spatial beamforming techniques (see [16]).

To illustrate the asymptotic Gaussianity of the G-MUSIC
and MUSIC estimates predicted in Theorems 7 and 8, we plot
in Figure 6 the histograms of θ̂2,N and θ̂

(t)
2,N (5000 draws),

with the parameters used in Figure 5 (widely spaced DoA and
correlated source signals, SNR=6 dB).

Figure 7 illustrates the closely spaced DoA scenario, and
the parameters are the same as in Figure 4, except for the
DoA fixed to θ1 = 0, θ2 = 0.25 × 2π

M . The separation
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Fig. 5. Empirical MSE of θ̂1,N , θ̂(t)1,N and θ̂(p)1,N for widely spaced DoA and
correlated source signals, versus SNR (dB)
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(a) G-MUSIC
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(b) MUSIC

Fig. 6. Histograms of θ̂2,N and θ̂(t)2,N compared to their asymptotic Gaussian
distribution

condition is fulfilled for all SNR. One can observe that a
strong difference occurs between the performances of the
G-MUSIC and MUSIC methods, e.g. a difference of 4 dB
between the threshold points of G-MUSIC and MUSIC can be
measured, which illustrates the result of Theorem 6. Moreover,
we notice the poor performance of the spatial periodogram
DoA estimate, which suffers from the well-known resolution
loss, since the DoA spacing is lower than a beamwidth.

Similarly, in Figure 8, we keep the same parameters as for
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Fig. 7. Empirical MSE of θ̂1,N , θ̂(t)1,N and θ̂
(p)
1,N for closely spaced DoA

versus SNR (dB)
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Fig. 8. Empirical MSE of θ̂1,N , θ̂(t)1,N and θ̂
(p)
1,N for closely spaced DoA

(undersampled), versus SNR (dB)

Figure 7 except that M = 40 and N = 20. Thus, we consider
an “undersampled” scenario in which N > M . In that case,
G-MUSIC still outperforms the MUSIC estimates, with about
6 dB between the threshold points.

In Figure 9, we provide the empirical MSE of MUSIC
together with the theoretical MSE given in Theorem 8. The
parameters are M = 40, N = 80, θ1 = 0, θ2 = 5 × 2π

M ,
and correlated source signals with correlation matrix R =
[1, 0.4; 0.4, 1] and the separation condition occurs near 2 dB.
One can observe the accuracy of the theoretical MSE predicted
in Theorem 8.

Finally, we provide in Figures 10 and 11 a comparison be-
tween the conditional and unconditional G-MUSIC estimates,
using respectively the same scenarios as for Figure 4 and 7.
The unconditional G-MUSIC estimator is computed with the
formula of [13]. We observe that the two estimators exhibit
the same empirical MSE as soon as the separation condition
is fulfilled (around SNR = 2 dB for Figure 10 and verified for
all SNR in Figure 11), which illustrates the remarks in Section
II-D on the connections between both estimators.

V. CONCLUSION

In this paper, we have adressed a statistical comparison of
the performance of the G-MUSIC and MUSIC method for
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Fig. 9. Empirical MSE of θ̂(t)1,N for widely spaced DoA and correlated
sources, versus SNR (dB)
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Fig. 10. Empirical MSE of θ̂1,N (conditional and unconditional G-MUSIC),
for widely spaced DoA and uncorrelated source, versus SNR (dB)
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Fig. 11. Empirical MSE of θ̂1,N (conditional and unconditional G-MUSIC),
for closely spaced DoA and uncorrelated sources, versus SNR (dB)
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DoA estimation, in an asymptotic regime where the number
of sensors M and the number of samples N both converge to
infinity at the same rate. Two scenarios were considered. In
a first scenario where the source DoA are widely spaced (i.e.
fixed with respect to M ,N ), we have proved that both MUSIC
and G-MUSIC exhibit the same asymptotic performance in
terms of consistency and asymptotic Gaussianity, In a second
scenario where the source DoA are closely spaced (i.e. with
an angular separation of the order of a beamwidth O(M−1)),
we have proved that G-MUSIC is still N -consistent, while
MUSIC is no more able to separate the DoA. The asymp-
totic Gaussianity of G-MUSIC and the identification of its
asymptotic MSE provided in this paper hold under general
conditions, including correlation between sources, and extend
previous existing results which were only valid for asymptot-
ically uncorrelated source signals.

APPENDIX A
COMPARISON BETWEEN THE UNCONDITIONAL SUBSPACE

ESTIMATOR OF [13] WITH THE ESTIMATOR (16).

In this section, we establish (23) when the source signals
are deterministic signals satisfying Assumption 1. For this, we
first recall that the unconditional estimator η̂N,u proposed in
(16) can be written as

η̂N,u =
1

2iπ

∫
∂R

d1,N (ΣNΣ∗N − zI)
−1

d2,N ĝN (z)dz,

(37)

where ĝN (z) is defined by

ĝN (z) =
(1− cN ) + cz2m̂

′

N (z)

(1− cN )− cNzm̂N (z)
,

and where ∂R is a contour enclosing the interval [σ2(1 −√
c)2− ε, σ2(1 +

√
c)2 + ε], ε being chosen in such a way that

σ2(1 +
√
c)2 + ε < λK , and where we recall that m̂N (z) =

1
M tr (ΣNΣ∗N − zI)

−1 (m̂
′

N (z) represents the derivative of
m̂N (z) w.r.t. z). Using condition (7), it is easily seen that
m̂N (z) = m(z)+oP

(
1√
N

)
, that m̂

′

N (z) = m
′
(z)+oP

(
1√
N

)
,

and using an additional argument such as in [22, Sec. 4.1], one
can show

η̂N,c =

1

2iπ

∫
∂R

d∗1,N (ΣNΣ∗N − zI)
−1

d2,N g(z)dz + oP

(
1√
N

)
,

where

g(z) =
(1− c) + cz2m

′
(z)

(1− c)− czm(z)
.

It is established in [22] that

η̂N =

1

2iπ

∫
∂R

d∗1,N (ΣNΣ∗N − zI)
−1

d2,N
w
′
(z)

1 + σ2cm(z)
dz

+ oP

(
1√
N

)
.

The conclusion follows from the identity

g(z) =
w
′
(z)

1 + σ2cm(z)
.

which can be checked easily.

APPENDIX B
PROOF OF THEOREM 5

The consistency of G-MUSIC is already established in [6],
and we prove hereafter the consistency of MUSIC.

From Theorem 2, we have for all θ ∈ [−π, π],

η̂
(t)
N (θ) = η

(t)
N (θ) + o(1), (38)

with probability one, where

η
(t)
N (θ) = 1− a(θ)∗UNDU∗Na(θ),

with UN = [u1,N , . . . ,uK,N ] and D = diag(d1, . . . , dK)
with

dk =
λ2k − σ4c

λk (λk + σ2c)
.

It is easily seen that d1 > d2 > . . . > dK . Applying verbatim
the steps of [6, Sec. 3.3], (38) can be strengthened to

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(t)N (θ)
∣∣∣ a.s.−−−−→
N→∞

0. (39)

Using the fact that UN and A share the same image, we have

UN = A (A∗A)
−1/2

VN ,

where VN is a K × K unitary matrix given by VN =
(A∗A)−1/2A∗UN . Since θ1, . . . , θK are fixed with respect
to N , we also have A∗A → IK as N → ∞. It is clear that
if l 6= k, then it holds that

sup
θ∈Ik
|a(θ)∗a(θl)| → 0

From this, we obtain immediately that

sup
θ∈Ik
‖a(θ)∗UN − a(θ)∗a(θk)e∗kVN‖ → 0

and that, for all k = 1, . . . ,K,

sup
θ∈Ik

∣∣∣η(t)N (θ)−
(

1− |a(θ)∗a(θk)|2 e∗kVNDV∗Nek

)∣∣∣ −−−−→
N→∞

0.

(40)

Moreover, it holds that

sup
θ 6∈

⋃
k Ik

η
(t)
N (θ) −−−−→

N→∞
1. (41)

We claim that

θ̂
(t)
k,N

a.s.−−−−→
N→∞

θk. (42)

To verify this, we first remark that (39) and (40) used at point
θ = θ̂

(t)
k,N lead to

η̂
(t)
N (θ̂

(t)
k,N )−

(
1−

∣∣∣a(θ̂
(t)
k,N )∗a(θk)

∣∣∣2 e∗kVNDV∗Nek

)
→ 0

almost surely. As function of θ, |a(θ)∗a(θk)|2 has a unique
global maximum at θk and that e∗kVNDV∗Nek is lower
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bounded by dK > 0 so we deduce that (42) holds. Otherwise,
one could extract from sequence (θ̂

(t)
k,N )N≥1 a subsequence

θ̂
(t)
k,φ(N) converging towards a point θ∗ 6= θk almost surely.

This would imply that

η̂
(t)
φ(N)(θ̂

(t)
k,φ(N))− η̂

(t)
φ(N)(θ∗)→ 0

and that

η̂
(t)
φ(N)(θ̂

(t)
k,φ(N))−

(
1− |a(θ∗)

∗a(θk)|2 e∗kVNDV∗Nek

)
→ 0

However, (39) and (40) used at point θ = θk imply that

η̂
(t)
N (θk)− (1− e∗kVNDV∗Nek)→ 0.

Therefore, for ε > 0 small enough, it holds that

η̂
(t)
φ(N)(θk) < η̂

(t)
φ(N)(θ̂

(t)
k,φ(N))− ε

for each N large enough, a contradiction.
We now improve (42) by showing that

N
(
θ̂
(t)
k,N − θk

)
a.s.−−−−→
N→∞

0, (43)

and for that purpose we follow the approach of [8] (also used
in [6, Sec. 4]). By definition, we have

η
(t)
N (θ̂

(t)
k,N ) ≤

∣∣∣η(t)N (θ̂
(t)
k,N )− η̂(t)N (θ̂

(t)
k,N )

∣∣∣+ η̂
(t)
N (θ̂

(t)
k,N )

≤ sup
θ∈[−π,π]

∣∣∣η(t)N (θ)− η̂(t)N (θ)
∣∣∣+ η̂

(t)
N (θk),

and from (39) and (40) used at point θ = θk, we obtain

lim sup
N→∞

η
(t)
N (θ̂

(t)
k,N ) ≤ lim sup

N→∞
η̂
(t)
N (θk)

= 1− lim inf
N→∞

e∗kVNDV∗Nek

< 1, (44)

where the last inequality comes from the fact that
e∗kVNDV∗Nek ≥ dK > 0. Assume that the sequence
N
(
θ̂
(t)
k,N − θk

)
is not bounded. Then we can extract a subse-

quence ϕ(N)
(
θ̂
(t)
k,ϕ(N) − θk

)
such that

ϕ(N)
∣∣∣θ̂(t)k,ϕ(N) − θk

∣∣∣ −−−−→
N→∞

∞.

This implies that a(θ̂
(t)
k,φ(N))

∗a(θk) → 0 and that, by

(40), η(t)ϕ(N)(θ̂
(t)
k,ϕ(N)) → 1, a contradiction with (44). Since

N
(
θ̂
(t)
k,N − θk

)
is bounded, we can extract a subsequence such

that

ϕ(N)
∣∣∣θ̂(t)k,ϕ(N) − θk

∣∣∣ −−−−→
N→∞

β,

with β assumed to lie in [−π, π] without loss of generality. If
β 6= 0, then (40) gives

η
(t)
ϕ(N)(θ̂

(t)
k,ϕ(N)) = 1− e∗kVNDV∗Nek sinc (βc/2) + o(1)

with probability one. Since, in that case,

lim sup
N→∞

η
(t)
N (θ̂

(t)
k,N ) > 1− lim inf

N→∞
e∗kVNDV∗Nek,

this contradicts (44) again.
Therefore all converging subsequences of the bounded se-

quence N
(
θ̂
(t)
k,N − θk

)
have the same limit, which is 0, and

thus the whole sequence converges itself to 0, which finally
shows (43).

APPENDIX C
PROOF OF THEOREM 6

Recall from (25) that we have supθ |η̂N (θ)− ηN (θ)| →N 0
with probability one, with

ηN (θ) = a(θ)∗ΠNa(θ) = 1− a(θ)∗A (A∗A)
−1

A∗a(θ).

From Assumption 3, we have supθ |ηN (θ)− η̃N (θ)| →N 0
where

η̃N (θ) = 1− 1

1− sinc
(
αc
2

)2 a(θ)∗ATA∗a(θ), (45)

where

T =

[
1 −eiαc/2 sinc

(
αc
2

)
−e−iαc/2 sinc

(
αc
2

)
1

]
.

Note that

lim sup
N→∞

∣∣∣η̂N (θ̂1,N )
∣∣∣ ≤ lim sup

N→∞
|η̂N (θ1,N )| = 0. (46)

We next rely on the following lemma.

Lemma 1. If (ψN ) is a sequence of [−π, π] such that
N |ψN − θ1,N | → ∞, then

ηN (ψN ) −−−−→
N→∞

1.

Moreover, for any compact K ⊂ R,

sup
β∈K

∣∣∣∣ηN (θ1,N +
β

N

)
− (1− κ(β))

∣∣∣∣ −−−−→N→∞
0,

where

κ(β) =
1

1− sinc (αc/2)
2

(
sinc (βc/2)

2
+ sinc ((β − α)c/2)

2

−2 sinc (αc/2) sinc (βc/2) sinc ((β − α)c/2)

)
is such that κ(β) ≤ 1 with equality if and only if β = 0 or
β = α.

Proof. The two convergences can be easily obtained from
(45). It thus remains to establish that κ(β) ≤ 1 with equality
if and only if β = 0 or β = α. Consider the Hilbert space
L2

C ([0, 1]) endowed with the usual scalar product < z1, z2 >=∫ 1

0
z1(t)z2(t)∗dt, and let x1, x2, y ∈ L2

C ([0, 1]) defined by

x1(t) = 1, x2(t) = eiαct and y(t) = eiβct.

Straightforward computations show that κ(β) coincides with
the squared norm of the orthogonal projection of y onto
span{x1, x2}. Since y is unit-norm, it is clear that κ(β) ≤ 1,
and the equality holds if and only if y ∈ span{x1, x2}, which
is obviously the case if and only if β = 0 or β = α.

From Lemma 1, the function κ admits a global maximum,
equal to 1, at the unique points 0 and α and

sup
β∈[−α2 ,

3α
2 ]

∣∣∣∣η̂N (θ1,N +
β

N

)
− (1− κ(β))

∣∣∣∣ −−−−→N→∞
0.

Thus,

η̂N

(
θ̂1,N

)
= 1− κ

(
N(θ̂1,N − θ1,N )

)
+ o(1),
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and since η̂N

(
θ̂1,N

)
→ 0 a.s., we deduce that N(θ̂1,N −

θ1,N )→ 0 a.s. We obtain similarly the same results for θ̂2,N .
We now consider the consistency of the traditional MUSIC

estimates. From (39),

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(t)N (θ)
∣∣∣ a.s.−−−−→
N→∞

0,

where η(t)N (θ) = 1 − a(θ)∗UNDU∗Na(θ). From Assumption
3, N−1SNS∗N → I, and using the fact that

A∗A −−−−→
N→∞

[
1 eiαc/2 sinc (αc/2)

e−iαc/2 sinc (αc/2) 1

]
,

together with a singular value decomposition of A, straight-
forward computations yield

sup
θ

∣∣∣η(t)N (θ)− η̃(t)N (θ)
∣∣∣ −−−−→
N→∞

0,

where η̃(t)N (θ) = 1 − a(θ)∗AṼD̃Ṽ∗A∗a(θ) and where Ṽ is
2× 2 unitary matrix given by

Ṽ =
1√
2

[
1 eiαc/2

−e−iαc/2 1

]
,

and D̃ is a 2× 2 diagonal matrix defined by

D̃ =

[
d1(α)

1−sinc(αc/2) 0

0 d2(α)
1+sinc(αc/2)

]
with

d1(α) =
(1− | sinc(αc/2)|)2 − σ4c

(1− | sinc(αc/2)|) (1− | sinc(αc/2)|+ σ2c)

d2(α) =
(1 + | sinc(αc/2)|)2 − σ4c

(1 + | sinc(αc/2)|) (1 + | sinc(αc/2)|+ σ2c)
.

We now use the following result, whose proof is similar to the
one of Lemma 1.

Lemma 2. If (ψN ) is a sequence of [−π, π] such that
N |ψN − θ1,N | → ∞, then

η
(t)
N (ψN ) −−−−→

N→∞
1.

Moreover, for any compact K ⊂ R,

sup
β∈K

∣∣∣∣η(t)N (
θ1 +

β

N

)
−
(

1− κ(t)(β)
)∣∣∣∣ −−−−→N→∞

0,

where

κ(t)(β) =

(sinc(βc/2)− sinc ((β − α)c/2))
2 d1(α)

2 (1− | sinc(αc/2)|)

+ (sinc(βc/2) + sinc ((β − α)c/2))
2 d2(α)

2 (1 + | sinc(αc/2)|)
.

Function κ(t) does not admit in general a local maximum
at 0 or α. In effect, it is easy to find values of α for which
κ(t)(0) and κ(t)(α) are not local maxima of function κ(t). For
example, if α = π

c , we easily check that κ(t)
′
(β) 6= 0 for

β = 0 and β = α.

From Lemma 2, we have with probability one,

η̂
(t)
N

(
θ̂
(t)
1,N

)
= 1− κ(t)

(
N
(
θ̂
(t)
1,N − θ1,N

))
+ o(1).

Assume N
(
θ̂
(t)
1,N − θ1,N

)
→ 0. Then η̂

(t)
N

(
θ̂
(t)
1,N

)
→ 1 −

κ(t)(0). If 0 and α are not local maxima of κ(t), let β ∈
[−α−ε2 , α−ε2 ] such that κ(t)(0) < κ(t)(β), and (ψN ) a se-
quence such that N (ψN − θ1,N )→ β. Then

lim sup
N→∞

η̂
(t)
N

(
θ̂
(t)
1,N

)
≤ lim sup

N→∞
η̂
(t)
N (ψN )

= 1− κ(t)(β)

< 1− κ(t)(0),

which is a contradiction.

APPENDIX D
PROOF OF THEOREM 7

To prove Theorem 7, we will use the classical ∆-method,
as in e.g. Hachem et al. [7].

We consider the settings of Assumption 2 or Assumption
3, and make appear the dependence in N for the DoA in
both scenarios, which we denote by θ1,N , . . . , θK,N . Let k =
1, . . . ,K. Using Theorem 5 under Assumption 2 (respectively
Theorem 6 under Assumption 3), as well as a Taylor expansion
around θk,N , we obtain

η̂′N

(
θ̂k,N

)
= η̂′N (θk,N ) +

(
θ̂k,N − θk,N

)
η̂
(2)
N (θk,N )

+

(
θ̂k,N − θk,N

)2
2

η̂
(3)
N

(
θ̃k,N

)
,

where θ̃k,N ∈
(

min
{
θ̂k,N , θk,N

}
,max

{
θ̂k,N , θk,N

})
.

Since by definition, η̂′N
(
θ̂k,N

)
= 0, we obtain

θ̂k,N − θk,N = − η̂′N (θk,N )

η̂
(2)
N (θk,N ) +

θ̂k,N−θk,N
2 η̂

(3)
N

(
θ̃k,N

) .
As the j-th derivative a(j)(θ) satisfies supθ

∥∥a(j)(θ)
∥∥ ∼M j ,

we deduce from [6] that 6

1

N3
η̂
(3)
N

(
θ̃k,N

)
= O(1) (47)

with probability one. Theorem 5 implies

(
θ̂k,N − θk,N

) η̂(3)N (
θ̃k,N

)
N2

a.s.−−−−→
N→∞

0,

and we obtain

N3/2
(
θ̂k,N − θk,N

)
= −

1√
N
η̂′N (θk,N )

1
N2 η̂

(2)
N (θk,N ) + oP(1)

. (48)

By using (15) and the fact that ΠNa(θk) = 0, we can write

1

N2
η̂
(2)
N (θk,N ) = 2

a′(θk,N )∗

N
ΠN

a′(θk,N )

N
+ oP(1)

6The boundedness (47) can be obtained using the techniques developed in
the proof of [6, Th. 3.1] (see also equation (1.3) in the introduction part of
this reference).
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Under Assumption 2, the basic convergences A∗A → I, as
N →∞, as well as∥∥∥∥ 1

N
a′(θk,N )

∥∥∥∥2 −−−−→N→∞

c2

3

and ∣∣∣∣ 1

N
a′(θk,N )∗a(θ`,N )

∣∣∣∣ −−−−→N→∞

c2

4
δk,`

prove that

a′(θk,N )∗

N
ΠN

a′(θk,N )

N
−−−−→
N→∞

c2

12
> 0.

Under Assumption 3, we use the arguments in the proof of
Lemma 1. Indeed, let x1, x2, y ∈ L2

C ([0, 1]) defined by

x1(t) = 1, x2(t) = eiαct and y(t) = ict.

Then, we observe that a′(θk,N )∗

N ΠN
a′(θk,N )

N converges to
the squared norm of the orthogonal projection of y onto
span{x1, x2}⊥. Thus, we deduce again that

lim inf
N→∞

a′(θk,N )∗

N
ΠN

a′(θk,N )

N
> 0.

Consider now the quantity γN introduced in (17), where we
set

d1,N =
a′(θk,N )

N
and d2,N = a(θk,N ).

Obviously,

γN ≥
a′(θk,N )∗

N
ΠN

a′(θk,N )

N

K∑
`=1

σ2(λ` + σ2)

4(λ2` − σ4c)
|a(θk,N )∗u`,N |2

≥ Da′(θk,N )∗

N
ΠN

a′(θk,N )

N
,

where D = min
{
σ2(λ`+σ

2)
4(λ2

`−σ4c)
: ` = 1, . . . ,K

}
> 0. Therefore,

under Assumption 2 or Assumption 3, we obtain

lim inf
N→∞

γN > 0.

Since

η̂′N (θk,N ) =

2NRe

a′(θk,N )∗

N

I−
K∑
k=1

1

h
(
λ̂k,N

) ûk,N û∗k,N

a(θk,N )

 ,

Theorem 3 applied with d1,N =
a′(θk,N )

N , d2,N = a(θk,N )
gives

η̂′N (θk,N )

2
√
N
√
γN

D−−−−→
N→∞

NR(0, 1),

Gathering this convergence with (48), we eventually obtain
(31).

REFERENCES

[1] Florent Benaych-Georges and Raj Rao Nadakuditi. The singular values
and vectors of low rank perturbations of large rectangular random
matrices. Journal of Multivariate Analysis, 111:120–135, 2012.

[2] P. Bianchi, M. Debbah, M. Mada, and M. Najim. Performance of
statistical tests for single source detection using random matrix theory.
IEEE Transactions on Information Theory, 57(4):2400–2419, 2011.

[3] Romain Couillet. Robust spiked random matrices and a robust G-MUSIC
estimator. To appear in Journal of Multivariate Analysis, 2015.

[4] Romain Couillet and Abla Kammoun. Robust G-MUSIC. In Signal
Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd
European, pages 2155–2159. IEEE, 2014.

[5] Couillet, Romain and Pascal, Frédéric and Silverstein, Jack W. The
random matrix regime of Maronna’s M-estimator with elliptically dis-
tributed samples. Journal of Multivariate Analysis, 139:56–78, 2015.

[6] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet. Large
information plus noise random matrix models and consistent subspace
estimation in large sensor networks. Random Matrices: Theory and
Applications, 1(2), 2012.

[7] W. Hachem, P. Loubaton, X. Mestre, J. Najim, and P. Vallet. A subspace
estimator for fixed rank perturbations of large random matrices. Journal
of Multivariate Analysis, 114:427–447, 2012. arXiv:1106.1497.

[8] E.J. Hannan. The estimation of frequency. Journal of Applied proba-
bility, 10(3):510–519, 1973.

[9] B.A. Jonhson, Y.I. Abramovich, and X. Mestre. MUSIC, G-MUSIC,
and maximum-likelihood performance breakdown . IEEE Transactions
on Signal Processing, 56(8):3944–3958, 2008.

[10] S. Krichtman and B. Nadler. Non-parametric detection of the number of
signals: hypothesis testing and random matrix theory. IEEE Transactions
on Signal Processing, 57(10):3930–3941, 2009.

[11] Philippe Loubaton and Pascal Vallet. Almost sure localization of the
eigenvalues in a gaussian information plus noise model. application to
the spiked models. Electron. J. Probab., 16:1934–1959, 2011.

[12] V.A. Marchenko and L.A. Pastur. Distribution of eigenvalues for some
sets of random matrices. Mathematics of the USSR-Sbornik, 1:457, 1967.
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