N

N

Performance analysis of spatial smoothing schemes in
the context of large arrays
Gia-Thuy Pham, Philippe Loubaton, Pascal Vallet

» To cite this version:

Gia-Thuy Pham, Philippe Loubaton, Pascal Vallet. Performance analysis of spatial smoothing schemes
in the context of large arrays. IEEE Transactions on Signal Processing, 2016, 64 (1), pp.160-172.
10.1109/TSP.2015.2480044 . hal-01579050

HAL Id: hal-01579050
https://hal.science/hal-01579050
Submitted on 30 Aug 2017

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01579050
https://hal.archives-ouvertes.fr

arXiv:1503.08196v1 [stat.ME] 10 Feb 2015

1

Performance analysis of spatial smoothing

schemes in the context of large arrays.

Gia-Thuy Pham, Philippe Loubatokellow, IEEE and Pascal ValletMiember, IEEE,

Abstract

This paper adresses the statistical behaviour of spatiab#ring subspace DoA estimation schemes
using a sensor array in the case where the number of obsersali is significantly smaller than the
number of sensord/, and that the smoothing paramefeis such that\/ and N L are of the same order
of magnitude. This context is modelled by an asymptoticmegin which NL and M both converge
towardsco at the same rate. As in recent works devoted to the study ehfonthed) subspace methods
in the case wherd/ and N are of the same order of magnitude, it is shown that it is ptilssible
to derive improved DoOA estimators termed as GeneralizedsMJwith spatial smoothing (G-MUSIC
SS). The key ingredient of this work is a technical resultveihg that the largest singular values and
corresponding singular vectors of low rank determinisgctprbation of certain Gaussian block-Hankel
large random matrices behave as if the entries of the latetam matrices were independent identically
distributed. This allows to conclude that when the numbesaifrces and their DoA do not scale with
M, N, L, a situation modelling widely spaced DoA scenarios, theth lioaditional and Generalized
spatial smoothing subspace methods provide consistent Extifnators whose convergence speed is
faster thanﬁ. The case of DoA that are spaced of the order of a beamwidtichwiodels closely
spaced sources, is also considered. It is shown that theempeivce speed of G-MUSIC SS estimates is

unchanged, but that it is no longer the case for MUSIC SS ones.

. INTRODUCTION

The statistical analysis of subspace DoA estimation methuming an array of sensors is a topic that

has received a lot of attention since the seventies. Mosteofvmorks were devoted to the case where the
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number of available sampléé of the observed signal is much larger than the number of sefgmf the
array (see e.gl [14] and the references therein). More tigcéme case wherd/ and N are large and of
the same order of magnitude was addressed for the first tifdi€@jmusing large random matrix theory. [10]
was followed by various works such as [7], [17]] [6] [5]. Thember of observations may also be much
smaller than the number of sensors. In this context, it id e&hblished that spatial smoothing schemes,
originally developped to address coherent sources ([8], [L1]), can be used to artificially increase the
number of snapshots (see elg.[[14] and the referencesrtheee also the recent related contributions [15],
[16] devoted to the case wheré = 1). Spatial smoothing consists in considerihg< M overlapping
arrays withA/ — L + 1 sensors, and allows to generate artificialy. snapshots observed on a virtual
array of M — L + 1 sensors. The correspondif/ — L + 1) x N L matrix, denotedYS\f), collecting the
observations is the sum of a low rank component generatédby L + 1)-dimensional steering vectors
with a noise matrix having a block-Hankel structure. Subspaethods can still be developed, but the
statistical analysis of the corresponding DoA estimatoes \waddressed in the standard regime where
M — L + 1 remains fixed whileN L converges towardso. This context is not the most relevant when
M is large becausé must be chosen in such a way that the number of virtual serdorsL + 1 be
small enough w.r.tNV L, thus limiting the statistical performance of the estinsata this paper, we study
the statistical performance of spatial smoothing subsjzm& estimators in asymptotic regimes where
M — L+1 and NL both converge towardso at the same rate, wherg — 0 in order to not affect the
aperture of the virtual array, and where the number of saukC&oes not scale witid/, N, L. For this,

it is necessary to evaluate the behaviour of Hidargest eigenvalues and corresponding eigenvectors of
the empirical covariance matriw. To address this issue, we prove that the above eigenvalues
and eigenvectors have the same asymptotic behaviour as iidise contributior’vV f\f) to matrix Y](\f),

a block-Hankel random matrix, was a Gaussian random matitx wdependent identically distributed.
To establish this result, we rely on the recent result [8]ragising the behaviour of the singular values of
large block-Hankel random matrices built from i.i.d. Gaasssequences.[[8] implies that the empirical
eigenvalue distribution of matriw converges towards the Marcenko-Pastur distribution, had t
its eigenvalues are almost surely located in the neigbattodohe support of the above distribution. This
allows to generalize the results of [3] to our random matrixdel, and to characterize the behaviour of
the largest eigenvalues and eigenvectorw. We deduce from this improved subspace estimators,
called DoA G-MUSIC SS (spatial smoothing) estimators, \whace similar to those of [17] and][5]. We
deduce from the results of [18] that when the DoAs do not sealke M, N, L, i.e. if the DoAs are
widely spaced compared to aperture array, then both G-MUES@&nd traditional MUSIC SS estimators
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are consistent and converge at a rate faster I;bam/loreover, when the DoAs are spaced of the order of
%, the behaviour of G-MUSIC SS estimates remains unchangedhb convergence rate of traditional
subspace estimates is lower.

This paper is organized as follows. In sectloh II, we predfs® signal models, the underlying as-
sumptions, and formulate our main results. In sedfidn 1¥, pvove that the largest singular values and
corresponding singular vectors of low rank deterministictprbation of certain Gaussian block-Hankel
large random matrices behave as if the entries of the latetam matrices were independent identically
distributed. In sectiofi 1V, we apply the results of secfidiitd matrix Y%), and follow [5] in order
to propose a G-MUSIC algorithm to the spatial smoothing exinof this paper. The consistency and
the convergence speed of the G-MUSIC SS estimates and ofatigidnal MUSIC SS estimates are
then deduced from the results 6f [18]. Finally, sec{idn Vser# numerical experiments sustaining our
theoretical results.

Notations :For a complex matrixA, we denote byA”, A* its transpose and its conjugate transpose,
and byTr (A) and||A|| its trace and spectral norm. The identity matrix will bande,, will refer to
a vector having all its components equal(texcept then-th equals tol. For a sequence of random

variables(X,,),ey and a random variabl&’, we write

Xn a.s. X

n—oo
when X,, converges almost surely towards Finally, X,, = op (1) will stand for the convergence of,,

to 0 in probability, andX,, = O5 (1) will stand for tightness (boundedness in probability).

II. PROBLEM FORMULATION AND MAIN RESULTS.
A. Problem formulation.

We assume thak narrow-band and far-field source signals are impinging omigotm linear array

of M sensors, with' < M. In this context, the\/—dimensional received signéy,),>1 can be written

as
Yn = AMSn + Vn,
where
o Ay =lap(01),...,anm(0K)]is theM x K matrix of M/—dimensionals steering vecterg; (61), . .., an (0k),
with 61,...,0x the source signals DoA, ansgh;(0) = —-[1,...,e/M-DIT

VM
e s, € CX contains the source signals received at timeonsidered as unknown deterministic ;
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o (vn)n>1is atemporally and spatially white complex Gaussian noisie spatial covariancg|[v,,v}| =
1.
The received signal is observed between timand time N, and we collect the available observations

in the M x N matrix Y defined

Yy =[y1,---,yn| = AuSy + Vn, 1)
with Sy = [s1,...,sy] andVy = [vyq,...,vy]. We assume thdank(Sy) = K for eachM, N greater
than K. The DoA estimation problem consists in estimating BKieDoA 61, ...,0x from the matrix of

samplesY y.

When the number of observationsis much less than the number of sensbfsthe standard subspace
method fails. In this case, it is standard to use spatial $hiregp schemes in order to artificially increase
the number of observations. In particular, it is well ed&di#d that spatial smoothing schemes allow to
use subspace methods even in the single snapshot caséheeMv= 1 (see e.g.[14] and the references
therein). If L < M, spatial smoothing consists in considerihgoverlapping subarrays of dimension
M — L + 1. At each timen, L snapshots of dimensiol/ — L. + 1 are thus available, and the scheme
provides N L. observations of dimension/ — L + 1. In order to be more specific, we introduce the
following notations. If L is an integer less thaif/, we denote byy,(f) the (M — L + 1) x L Hankel

matrix defined by

Yin Yo.n cee e YLn
Y2.n Y3n R 4 28 K)
Y = : : S : (2)
Yv-L+1n YM-L+2n .- ... Ymon

Column [ of matrix y,S” corresponds to the observation on subarkaat time n. Collecting all the
observations on the various subarrays allows to obféih snapshots, thus increasing artificially the

number of observations. We defihé](\f) as the(M — L + 1) x NL block-Hankel matrix given by
Y = (0", 00) @3)

In order to expresy(”, we consider thé M — L + 1) x L Hankel matrix A") () defined from vector

ays(0) in the same way thap\™ . We remark thatd(") () is rank 1, and can be written as

AB(0) = \/L(M — L+ 1)/M ay_11(9) (aL(0))” (4)
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We consider thé M — L 4 1) x K L matrix A (%)

A = (4D 0,), AP (By), .., AP (0)) (5)
which, of course, is a rank matrix whose range coincides with the subspace generateldebyl/ —
L + 1)-dimensional vectoray;—1+1(01),...,ap—1+1(0K). YEVL) can be written as

Y = AD (sye1,)+ VY (6)

where matrixV%) is the block Hankel matrix corresponding to the additiveseoiAs matrixSy ® Iy, is

full rank, the extended obervation matm’(%) appears as a noisy version of a low rank component whose

range is theK—dimensional subspace generated by vectys 1 11(61),-..,an—r+1(0x). Moreover,
it is easy to check that D)
\Vs L Vv L)*
El 22| =0 Ty_r41
NL

Therefore, it is potentially possible to estimate the DdAs);—1, ... x using a subspace approach based
on the eigenvalues / eigenvectors decomposition of mMﬁ&)YE\f)*/NL. The asymptotic behaviour of
spatial smoothing subspace methods is standard in the esgiherel/ — L + 1 remains fixed whileV L
converges towardso. This is due to the law of large numbers which implies thateh®pirical covari-
ance matrixY \" Y ("* /N L has the same asymptotic behaviour theft) (SyS% © I,/NL) AD* 4

: I o (L
o?Iyr_ 1.1, In this context, the orthogonal projection matlikg\,)

onto the eigenspace associated to the
M —L+1— K smallest eigenvalues M%)Y%)*/NL is a consistent estimate of the orthogonal projection
matrix II%) on the noise subspace, i.e. the orthogonal complemeptafy; 1 +1(61),...,an—r+1(0x)}-

In other words, it holds that

Hlﬁ[%) —H(L)H — 0 a.s. 7)
The traditional pseudo-spectrum estimaﬁ\@(e) defined by
~ I L
771(\?(9) =ay—_r+1(0) Hgv)aM_LH(H)

thus verifies

() a.s.
sup [N (0) —n(0)] —— 0. (8)
oe[—m,m] N ( ) ( ) N—oo

wheren(0) = ay_r4+1(0)*TIMay,_; () is the MUSIC pseudo-spectrum. Moreover, thieMUSIC
traditional DoA estimates, defined formally, fér=1, ..., K, by

é,(:)N = argmin ﬁ](\? (9), 9)
’ 0Ly,
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whereZ, is a compact interval containing), and such thaf, N Z; = () for k # [, are consistent, i.e.

0y 2 ). (10)

However, the regime wheré/ — L + 1 remains fixed whileN L converges towardsc is not very
interesting in practice because the side- L + 1 of the subarrays may be much smaller that the number
of antennad\/, thus reducing the resolution of the method. We therefardysspatial smoothing schemes
in regimes where the dimensiofg — L + 1 and NV L. of matrix Y§VL) are of the same order of magnitude
and Where% — 0 in order to keep unchanged the aperture of the array. Moreigalg, we assume that
integersN and L depend onM and that

| M—L+1
M = +00, N = O(M"), 2 < <1, cN:T;%c* (11)

In regime [11),N thus converges towards> but at a rate that may be much lower thah thus
modelling contexts in whichV is much smaller thar/. As N — +oo, it also holds thati- — c,.
Therefore, it is clear that = O(M“) wherea = 1— 3 verifies with0 < « < 2/3. L may thus converge
towardsoo (even faster thaiv if 5 < 1/2) but in such a way thaﬁ — 0. As in regime[(ILL)V depends
on M, it could be appropriate to index the various matrices and [@stimators by integef/ rather
than by integerV as in definitions[(5) and19). However, we prefer to use thexnd in the following
in order to keep the notations unchanged. We also denoteqtiaij matrixII") and pseudo-spectrum
n(0) by HEVL) andny(6) because they depend a@i. Moreover, in the following, the notatioV — +oo
should be understood as reginiel(11) for sofne (1/3,1].

B. Main results.

In regime [(11), [(7) is no more valid. Henc&,{10) is questidealn this paper, we show that it is
possible to generalize the G-MUSIC estimators introducefd]j in the case wheré = 1 to the context
of spatial smoothing schemes in reginie](11) and establisHdlowing results. Under the separation
condition that theX’ non zero eigenvalues of matr%A(L) (% ® IL) AD)* are above the threshold

o?,/c. for eachN large enough, we deduce frof [18] that:
« the spatial smoothing traditional MUSIC estima(ég)]v)kzlwfg and the G-MUSIC SS estimates,

denoted(ék,N)k:L_,_vK are consistent and verify

M@y —60) — Oas., (12)
MOy —0;) — Oas. (13)
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(I2) and [(IB) hold when the DoAdy)r—1.. x do not scale withM, N. In pratice, this assumption
corresponds to practical situations where the DoA are widpaced because when the DO, ) -1, i

are fixed, the ratio
ming; |0 — 01
(2m)/M

converges towardso. We deduce from[18] that:

o If K =2 and that the 2 DoAs scale with/, NV is such a way tha#, y — 61 v = O(ﬁ), then the
G-MUSIC SS estimates still verify (13) while the traditio®dUSIC SS estimates no longer verify

(i)
As in the casel. = 1, the above mentioned separation condition ensures thak'thergest eigenvalues
of the empirical covariance matriéEYE\f)YEVL)*)/NL correspond to the< sources, and the signal and
noise subspaces can be separated. In order to obtain sagisnan this condition, and on the potential
benefit of the spatial smoothing, we study the separatioditon whenM and N converge towardso
at the same rate, i.e. whéﬁ — d,, or equivalently thats = 1 and thatL does not scale withv. In this
case, it is clear that, coincides withc, = d./L. Under the assumption thgl”]\f—7V converges towards a

diagonal matrixD when IV increases, then we establish that the separation condittus if
o*Vd,
VL

for each (M, N) large enough. IfL = 1, the separation condition introduced in the context of (un-

M (Ad_p1Ayv—r+1D) > (14)

smoothed) G-MUSIC algorithms[{[5]) is of course recoveliesl,
M (A AND) > 0?\/d.

If M is large and thall << M, matrix A}, _; Ay —r+1 is close fromAj, A, and the separation

condition is nearly equivalent to
o?\/d,
VL

Therefore, it is seen that the use of the spatial smoothihgree allows to reduce the thresheléh/d,

AK (A*MAMD) >

corresponding to G-MUSIC method without spatial smootHiygthe factory/L. Therefore, ifM and
N are the same order of magnitude, our asymptotic analygsvalto predict an improvement of the
performance of the G-MUSIC SS methods wheincreases providedl << M. If L becomes too large,
the above rough analysis is no more justified and the impattteofliminution of the number of antennas

becomes dominant, and the performance tends to decrease.
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[1l. ASYMPTOTIC BEHAVIOUR OF THE LARGEST SINGULAR VALUES AND CORESPONDING
SINGULAR VECTORS OF FINITE RANK PERTURBATIONS OF CERTAIN LRGE RANDOM

BLOCK-HANKEL MATRICES.

In this section,N, M, L still satisfy [11) while K is a fixed integer that does not scale with We
consider the(M + L — 1) x NL block-Hankel random matriiv‘%) defined previously, and introduce

matrix Z defined

in order to simplify the notations. The entries Bfy have of course variancg? /N L. In the following,

By represents a deterministid/ + L — 1) x N L matrix verifying
sup | By || < 400, Rank(By) = K, (15)
N

for eachN large enough. We denote byi v > A2 v ... > Ag n the non zero eigenvalues of matrix
ByBj arranged in decreasing order, and (ay, v )r=1,..x and (tx n)r=1,. x the associated left and

right singular vectors oB . The singular value decomposition Bfy is thus given by

K
BN = Z)\i@uk,Nﬁz,N = UNA%Q.EJ*N

k=1
Moreover, we assume that:

Assumption 1. The K non zero eigenvalue§\; y)r=1,.. x Of matrix ByB7}, converge towards\; >

Ao > ... > A\g whenN — +oo.

Here, for ease of exposition, we assume that the eigenvalyes),—: . x have multiplicity 1 and
that \,, # A\, for k # 1. However, the forthcoming results can be easily adaptedrifes)\; coincide.
We define matrixXy as
Xy =By +Zy (16)

X can thus be interpreted as a rakikperturbation of the block-Hankel matriy . The purpose of this
section is to study the behaviour of tlié largest eigenvalue(sika)k:L__,K of matrix Xy X% as well
as of their corresponding eigenvectots; n)x—1,.. k. It turns out that(;\ka)k:L___,K and (b N)k=1,. K
behave as if the entries of matri&y where i.i.d. To see this, we have first to precise the behawbu

the eigenvalues of matri¥ yZ?, in the asymptotic regimé (11).
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A. Behaviour of the eigenvalues of matix;Z,.
We first recall the definition of the Marcenko-Pastur disttion 1= . of parameters? andc (see e.g.

[10). o2 is the probability distribution defined by

V(z—a7) (@t —a)

202crx

Aoz o(2) = So[1 — ¢y + Ly o+ () dz

with 2= = 02(1 — \/¢)? andz™ = o%(1 + /c)%. Its Stieltjes transformn,- .(z) defined by

o dﬂ02,c(A)
M2 ,(2) = A
is known to satisfy the fundamental equation
1
ma'zyc(z) = 2 (17)
—2+o 14+0%2cm,2 .(2)
or equivalently,
Me2.c(2) = ! (18)
o2,c - —Z(l +02m027c(2))
1
Mo2,c(2) = (19)

—2(1+ o2emp2 o(2))
wherem,- .(z) is known to coincide with Stieltjes transform of the MarcerRastur distributiom,2. .1 =
Cllo2 e + (1 — ¢)do.

In order to simplify the notations, we denote dy.(z) andm.(z) the Stieltjes transforms of Marcenko-
Pastur distributiongi,2 ., and i,z .-1. m«(2) andm.(z) verify Equations[(I8) and_(19) far = c..
We also denote by, andz the termsz; = 0?(1 — \/c;)? andz] = o%(1 + ,/c;)%. We recall that

function w,.(z) defined by
1

wy(z) = ) e E)

(20)

is analytic onC — [z, =], verifiesw, (z]) = 0%,/c5, and increases from%/& to +o0o whenzx increases
from z} to +oco (see [3], section 3.1). Moreover, if,(w) denotes function defined by

(w+ o) (w + o?cy)

Pu(w) =

(21)
then, ¢, increases fromx; to +oo whenw increases fromr2\/a to +o0. Finally, it holds that
Px(wi(2)) = 2 (22)

for eachz € C — [z, z].
We denote byQy(z) andQu(z) the so-called resolvent of matric&syZ%, and Z%,Zy defined by

Qn(2) = (ZNZy — Ap—141) " Qu(z) = (ZNZN — AAnp) ™"
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Then, the results of [8] imply the following proposition.

Proposition 1.« (i) The eigenvalue distribution of matri&y Z3, converges almost surely towards the
Marcenko-Pastur distribution,= ., or equivalently, for each € C — R™,

1
M—-L+1

« (i) For each e > 0, almost surely, forV large enough, all the eigenvalues #@fyZ3, belong to
[02(1— /ex)? —€,0%(1+ \/&x)? + €] if e <1, and to[o?(1 — /ex)? — €, 0%(1 + \/cx)? + €] U {0}
if ¢, > 1.

Tr(Qn(2)) — m«(z) — Oa.s. (23)

« (iii) Moreover, ifay, by are (M —L+1)—dimensional deterministic vectors satisfyig v (|lax ||, [|bx]|) <

+o0 , then it holds that for each € C*
ay (Qn(z) —m«(2)I) by — 0 a.s. (24)

Similarly, if ay andby are N L-dimensional deterministic vectors verifyingp v (||ay]], [bx]|) <

+o0, then for each: € C™, it holds that
ay (QN(Z) - m*(z)l) by — 0 a.s. (25)
Moreover, for each: € CT, it holds that
ay (Qn(2)ZNy) by — 0 a.s. (26)
Finally, for eache > 0, convergence propertieE (24,125] 26) hold uniformly wsron each compact
subset ofC — [0,z + €.
The proof is given in the Appendix.

Remark 1. Proposition[1 implies that in a certain sense, matéx Z%, behaves as if the entries of
Zy were i.i.d because Propositidd 1 is known to hold for i.i.datrices. In the i.i.d. case[(23) was
established for the first time in[9], the almost sure locatiof the eigenvalues & yZ7}, can be found

in [I] (see Theorem 5-11), whil€_(R4], (25) arid (26) are mivinodifications of Lemma 5 of[5].

We natice that the convergence towards the Marcenko-Pdstiibution holds as soon a8 — +oo
and% — ¢4 In particular, the convergence is still valid N = O(M?) for each0 < 8 < 1, or
equivalently if L. = O(M®) for each0 < « < 1. L can therefore converge towards much faster than
N. However, the hypothesis that > 1/3, which is also equivalent td. = O(M®) with o < 2/3, is

necessary to establish item (ii).
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B. TheK largest eigenvalues and eigenvectorsXof; X7,.

While matrix Z does not meet the conditions formulated fin [3], Proposiflballows to use the
approach used i [3], and to prove that thelargest eigenvalues and corresponding eigenvectors of

XnX7y. behave as if the entries @y were i.i.d. In particular, the following result holds.

Theorem 1. We denote by, 0 < s < K, the largest integer for which

As > 0%\/cy (27)

Then, fork =1,...,s, it holds that

. ws. e + 02 (M + o2c
S -2 e = o) = T DIXETD 8)
—00 k

Moreover, fork = s+ 1,..., K, it holds that

Aoy — 02(1+ e)? as. (29)
Finally, for all deterministic sequences of unit norm vesttd; y), (d2 ), we have fork =1,...,s

dT,Nﬁk,NﬁZ,NdZN =
ha(pr)di yug nuy nydo N +0(1)  a.s., (30)

where functiom,(z) is defined by

wy(2)? — ote,
() — —e(2)

Cwe(2)(ws(2) + 02cy)

(31)

For the reader’s convenience, we provide in the appendixesosights on the approach developed in
[3] to prove [28) and[(29). For more details dnl(30), see trmpof Theorem 2 in[[6] as well as the

identity
2

2y (2)“ M (2)

B ETN B RE)]

where’ represents the derivation w.ra.

IV. DERIVATION OF A CONSISTENTG-MUSIC METHOD.

We now use the results of sectibnl Il for matdy = Y%)/\/W andBy = \/%A(L)(SN ®1Ip).
We recall that(S\k,N)k:L__’M_LH and (G, n)r=1,..M—r1+1 represent the eigenvalues and eigenvectors
of the empirical covariance matrD(%)Y](\f)*/NL, and that(A\; n)k=1,. x and(ug n)i=1,.. x are the
non zero eigenvalues and corresponding eigenvectofsAdf) (SySi /N @ I,) AlD*. We recall that

Hg\f) represents the orthogonal projection matrix onto the neigespace, i.e. the orthogonal complement
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of the space generated by vectdss,—1+1(0x))x=1,.. x and thatny(6) is the corresponding MUSIC

pseudo-spectrum
v (0) = an—£41(0) Ty ans141(6)

Theorem 1L allows to generalize immediately the results bfajid [18] concerning the consistency of

G-MUSIC and MUSIC DoA estimators in the cage= 1. More precisely:

Theorem 2. Assume that the< non zero eigenvalueb\; n)r=1,. x converge towards deterministic

terms\; > Ay > ... > A\ and that
A > o2/, (32)

Then, the estimatofjy () of the pseudo-spectruiy (6) defined by

K

~ * 1 A Ak
An(0) = (anr—41(0))" [ 1= ——< e n0f v | an—r41(0) (33)
=1 h </\lc,N>
verifies
sup [N (0) —nn(0)] ﬁ 0, (34)

O€[—,7]

This result can be proved as Proposition 1[ih [5].

In order to obtain some insights on conditidnl(32) and on thteqtial benefits of the spatial smoothing,
we explicit the separation condition {32) wh&h and NV converge towardsc at the same rate, i.e. when
% — dy, or equivalently that3 = 1 and thatZ does not scale withlV. In this case, it is clear that,
coincides withe, = d. /L. It is easily seen that

SnS%

1 SN S3
EA(L) < ]\EVN ®1L> AP — (M —L+1/M) Ay 11 <

. A%KL) Al (35)
where e represents the Hadamard (i.e. element wise) product oficeatrand wheré stands for the
complex conjugation operator of the elements of maBixIf we assume tha@ converges towards

a diagonal matrixD when N increases, theF?NTS7V e (ATA}) converges towards the diagonal matrix

D e Diag (ATA}) = D. Therefore, 255+ o (A7A}) ~ D when is large enough. Using thadf — 0,
we obtain that the separation condition is nearly equivaien

o?\/d,
VL

Ak (Ap—rp1D Al p4q) >

or to
o\
VL

A (Ah—p41Anm-L41D) > (36)
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for each (M, N) large enough. IfL = 1, the separation condition introduced in the context of (un-

smoothed) G-MUSIC algorithms[([5]) is of course recovelies,

Ak (A%, AyD) > 02\/d,

for each(M, V) large enough. If\/ is large and thal. << M, matrix A}, _; . Ay 111 is close from

A%, A and the separation condition is nearly equivalent to

o/,
VL

Therefore, it is seen that the use of the spatial smoothihgree allows to reduce the threshelth/d,

)\K( >ZKMAA]\/[D) >

corresponding to G-MUSIC method without spatial smoothbygthe factory/L. Hence, if M and

N are the same order of magnitude, our asymptotic analygsvalto predict an improvement of the
performance of the G-MUSIC methods based on spatial smugpthihenZ increases provided << M.

If L becomes too large, the above rough analysis is ho more g@astfd the impact of the diminution
of the number of antennas becomes dominant, and the pericertands to decrease. This analysis is

sustained by the numerical simulations presented in se§fio

We define the DoA G-MUSIC SS estimaté, v )x—1....x by

Or,n = argmin [fn (6)], (37)
0€Zy,

whereZ,, is a compact interval containing), and such thaZ, N Z; = () for k¥ # [. As in |5], (34) as
well as the particular structure of directional vectasg_r+1(6) imply the following result which can

be proved as Theorem 3 of| [5]

Theorem 3. Under condition[(3R), the DoA G-MUSIC SS estima(@@N)k:Lm,K verify
M(@W—@>%Ow& (38)
foreachk =1,... K.

Remark 2. We remark that under the extra assumption tﬁé@ converges towards a diagonal
matrix,[5] (see also [[19] for more general matrice®) proved whenL = 1 that A/3/2 (ék,N — Qk)
converges in distribution towards a Gaussian distributitirwould be interesting to generalize the results
of [B5] and [19] to the G-MUSIC estimators with spatial smoinity in the asymptotic regim&_(L1). This
is a difficult task that is not within the scope of the preseaiqy.
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Theorent1 also allows to generalize immediately the reiilf8] concerning the consistency of the
traditional estimate@,(ﬁv)kzl,__ﬂ in the casel, = 1. In particular, while the traditional estimaféf,) of
the pseudo-spectrum is not consistent, it is shown_in [18] thZ = 1, then the arguments of its local

minima (é,(f)N)k:L,,,,K are consistent and verify
M (80— 04) = 0 a.s. (39)

for eachk = 1,..., K if the separation condition is verified. The reader can chieakTheorenhll allows
to generalize immediately this behaviour to the traditldd@A MUSIC estimates with spatial smoothing

in regime [11). More precisely, the following result holds.
Theorem 4. Under condition[(3R), the DoA traditional MUSIC SS estinsa(@g)]v)k:l,m,fg verify

M (80 = 04) = 0 a.s. (40)
foreachk =1,... K.

Remark 3. It is established in[[18] in the case = 1 that if SNNSR converges towards a diagonal matrix,

then M3/2 (9,(2\, - Gk) has a Gaussian behaviour, and that the corresponding vagaroincides with
the asymptotic variance af/3/2 (ék,N — 9k>. In particular, if L = 1, the asymptotic performance of
MUSIC and G-MUSIC estimators coincide. It would be intaresto check whether this result still holds
true for the MUSIC and G-MUSIC estimators with spatial snhaug.

Theorem$ R and] 3 as well ds {39) assume that the Q6As—1, . x are fixed parameters, i.e. do not

scale withM . Therefore, the ratio
mink?gl wk — 9[‘
(2m)/M

converges towards-co. In practice, this context is thus able to model practicaations in which
supy |0k — 0] is significantly larger than the aperture of the array. In tesel = 1, [18] also
addressed the case where the Do@s v),—1,.. x depend onV, M and verify 6, v — 6 n = O(ﬁ).
This context allows to capture practical situations in whibe DoAs are spaced of the order of a
beamwidth. In order to simplify the calculations, [18] calesed the casé&’ = 2, 6, y = 01 xv + & and
where matrix% — I,. However, the results can be generalized easily to morergkesituations. It
is shown in [18] that the G-MUSIC estimates still verifiy (40t that, in general)/ (9,?)]\, — Hk) does
not converge toward8. The results of[[18] can be generalized immediately to th&teod of G-MUSIC

estimators with spatial smoothing in reginiel(11). For thig, have to assume thé v = 61 v + 7
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(in [18], M and N are of the same order of magnitude so that the assumplighs= 6, x + & and
62,y = 61.n + 17 are equivalent), and to follow the arguments of section 418].[The conclusion of

this discussion is the following Theorem.

Theorem 5. AssumeK = 2, 0o x =t v + 7, and thatSNNS7V — I. If the separation condition

1 — |sinck/2| > o?c. (41)
holds, then the G-MUSIC SS estima(égN)k:l,g defined by

Or,n = argmin [fn ()], (42)
0€Ty, N

whereZy, n = [0x,n — 55, Or.v + 55| fOr € small enough, verify
M (ékJV — 9k,N> — 0 a.s. (43)

In general, the traditional MUSIC SS estimates definedb) 2n the G-MUSIC estimat@y (0) is
replaced by the traditional spectrum estim@tﬁé)(e) are such that\/ (é,(f)N - 91971\/) does not converge

towardsO.

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations illustrg the results given in the previous sections.
We first consider 2 closely spaced sources with D@dAs= 0 and 02 = 57;, and we assume that
M =160 and N = 20. The2 x N signal matrix is obtained by normalizing a realization ofamadom
matrix with N:(0,1) i.i.d. entries in such a way that the 2 source signals haveepdw The signal to
noise ratio is thus equal tSNR = 1/02. Table[] provides the minimum value of SNR for which the
separation condition, in its finite length version (i.e. wtibe limits (\;);=1,. x andc, are replaced by
(M, N)k=1,...k andcy respectively) holds, i.e.

1

(c?)~t = gy (M —L+1)/NL

It is seen that the minimal SNR first decreases but that itemses if_ is large enough. This confirms
the discussion of the previous section on the effect afn the separation condition.

In figure[d, we represent the mean-square errors of the G-KILES estimatod; for L = 2,4, 8,16
versus SNR. The corresponding Cramer-Rao bounds is alseseagied. As expected, it is seen that the
performance tends to increase withuntil L = 16. In figure[2, L is equal to 16, 32, 64, 96, 128.

For L = 32, it is seen that the MSE tends to degrade at high SNR W.Et. 16, while the performance

severely degrades for larger valuesiof
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L 2 4 8 16 32 64 96 128
SNR | 33.46| 30.30 | 27.46 | 25.31 | 24.70| 28.25| 36.11 | 51.52
TABLE |: Minimum value of SNR for separation condition
. N =20, M = 160,60, = 0,0, = 5%
Fig. 1: Empirical MSE of G-MUSIC SS estimatéi versus SNR
. N =20,M =160,0, = 0,0, = 5%
° +L:16
=
N g dee
Fig. 2: Empirical MSE of G-MUSIC SS estimatéi versus SNR
DRAFT
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In Figure[3, parameteL. is equal to16. We compare the performance of G-MUSIC SS with the
standard MUSIC method with spatial smoothing. We also rethe MSE provided by G-MUSIC and
MUSIC for L = 1. The standard unsmoothed MUSIC method of course complé&dsy while the use
of the G-MUSIC SS provides a clear improvement of the peréoroe w.r.t. MUSIC SS and unsmoothed
G-MUSIC.

N =20,M =160,L = 16,6, = 0,0, = 55

10" T T T \ \ : :
w=@== Empirical MSE (G-MUSIC)
== Empirical MSE (MUSIC)
==fi== Empirical MSE (G-MUSIC SS)
" Empirical MSE (MUSIC SS)
2 — CRB o
v

b v

Fig. 3: Empirical MSE of different estimators éf when L=16

We finally consider the cask = 128, and compare as above G-MUSIC SS, MUSIC SS, unsmoothed
G-MUSIC and unsmoothed MUSIC. G-MUSIC SS completely faksdusel, and M are of the same
order of magnitude. Theorelm 2 is thus no more valid, and teegsspectrum estimate is not consistent.

We now consider 2 widely spaced sources with DaAs= 0 and f; = 527, and keep the same
parameters as above. We consider the dase16, and represent in Figl] 5 the performance of MUSIC,
G-MUSIC, MUSIC-SS, and G-MUSIC-SS. It is first observed thatcontrast with the case of closely
spaced DoAs, MUSIC-SS and G-MUSIC-SS have the same penfmenahen the SNR is above the
threshold 6 dB. This is in accordance with Theofdm 4, andgd¢adndicate that, as in the cage= 1,
if % converges towards a diagonal matrix, then the asymptotifopeance of G-MUSIC-SS and
MUSIC-SS coincide (see Remalk 3). The comparison betweemtbthods with and without spatial

smoothing also confirm that the use of spatial smoothingrselseallow to improve the performance.
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N =20,M =160,L =128,6; =0,0> = 5%+
10" T T

T T :
=—=@== Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
=={li== Empirical MSE (G-MUSIC SS)
Empirical MSE (MUSIC SS)
— CRB

107
18 20 22 24 26 28 30 32 34
SNR

Fig. 4: Empirical MSE of different estimators éf when L=128

N=20, M=160, L=16, 6, =0, =5 x2!

T T T T

T T T ;
=—=@=—= Empirical MSE (G-MUSIC)
=== Empirical MSE (MUSIC)
we{ll== Empirical MSE (G-MUSIC SS)
Empirical MSE (MUSIC SS)
— CRB

4 6 8 10 12

Fig. 5: Empirical MSE of different estimators éf when L=16 and widely spaced DoAs

VI. CONCLUSION

In this paper, we have addressed the behaviour of subspake®imators based on spatial smoothing
in asymptotic regimes wher® and N L converge towardso at the same rate. For this, we have evaluated
the behaviour of the largest singular values and corredpgraingular vectors of large random matrices

defined as additive low rank perturbations of certain rantdock-Hankel matrices, and established that

March 30, 2015 DRAFT



19

they behave as if the entries of the block-Hankel matriceeviied. Starting from this result, we have
shown that it is possible to generalize the G-estimator®diiced in [[5], and have deduced from[18]

their properties.

APPENDIX A

INSIGHTS ON THE PROOF OR28) AND (29).

We first recall that[[B] established that far< & < K, if S\MV does not converge towards a limit
strictly greater tharr, then S\MV converges towards;”. We have therefore to evaluate the behaviour
of the eigenvalues oKy X3, that are greater than! + ¢ for somee > 0.

If C represents & x () matrix, we denote byC the (P + Q) x (P + Q) hermitian matrix defined by

0 C
C= : (44)
C* 0
Then, the non zero eigenvalues Gf coincide with the (positive and negative) square roots ef th
non zero eigenvalues of matriXC*, and the corresponding eigenvectors are (tRet- Q)—dimensional
vectors(al, =bl)T where(ay, bx) represent the pairs of left and right singular vector€ofTherefore,
A >z + e is eigenvalue ofX X%, if and only if VA > (zF 4 €)'/? is eigenvalue of matriX ;. We

consider the singular value decomposition
By = UyAY Uy

of matrix By and expresX, as

0 Zy 0 UnAY Ty
Xy = T - 1/2
Zy 0 UnAy Uy 0
which can be written as
0 Z U 0 U 0
N + " - 1/2 J . 1/2+
Zynx 0 0 UnAy 0 Ay'Uy
D D
wherelJ is defined by
5 0 Ig
Ir O
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Considerz > (z} + ¢)'/2. Then,z is not a singular value ofyZ%, and therefore, not an eigenvalue

of Z,. Therefore, it holds that
det(Xy —zI) = det(Zy — I+ DJDY)
= det(Zy — 2T)det(I + (Zy — «I)"'DID*)
= det(Zy — aT)det(Iox + ID*(Zy — 21)"'D)
after noticingd = J~'. Forw € C — [ (zf + ¢)V/2, (xf + ¢)'/?], we denote by8 y(w) the 2K x 2K

matrix defined by
Sy (w) = Iag + ID*(Zy — wI)™'D

Using the identity
wQn(w?)  Qn(w?)Zy

(Zy —wI) ™' = ~
ZyQn(w?)  wQn(w?)

we obtain immediately that

(Sn(w),, = Ik + A

UNZyQn (w?) Uy
(Sv(w))y, = wAY U Qu(w?) UxAY?
(Sn(w))y; = wUNQN(w*)Uy
(S (w))yy = I + Uy Qu(w?) Zy Uy A

Item (iii) of Propositior 1 implies that the elements $f (w) converge almost surely, uniformly on the

compact subsets df — [—(z} + €)V/2, (z} + €)/?] towards the elements of matr, (w) defined by
| wim (w?)A
S, (1) = K (w?)
wm(w?)I Ix

It is easy to check thatet (S (w)) anddet(S.(w)) are functions ofw?. We define functionsy ands.
on C — [0,2} + €] by sy(w?) = det(Sy(w)) and s, (w?) = det(S,(w)). It is clear that almost surely,
sn(z) = s«(z) uniformly on the compact subsets ©f [0, (z;" + €)]. Therefore, in order to precise the
behaviour of the eigenvalues & X%, that are greater than} + € (i.e. the solutions of the equation
sn(z) = 0 greater than;” + €), it is first useful to characterize the solutions of the eiums, (x) = 0.

The equatiors, (z) = 0 is equivalent to

I (1 — Npzmy (z)ms () = 0
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or equivalently to

wy(x) = A

for k = 1,..., K. Using the properties of functiom,, we obtain immediately that if < p, — 2] =
®+(Xs) — a7, then the solutions of,(z) = 0 that are greater than, + e coincide with the(py)r=1,. s
defined byp, = ¢.(\g) for k =1,...,s. Using this, it can be proved using appropriate argumeras th
almost surely, forV large enough, then the greatest eigenvalugs\, y)i=1,.. s of Xy X7}, are greater

thanz +¢ and that\, y — pr for k=1,...,s

APPENDIX B

PrROOF OFPROPOSITIONI.

The proof of Propositiofi]l1 is based on the results of [8]. ldeorto explain this, we denote W y
the NL x (M — L + 1) matrix defined by

Wy = Z}
N o N

The variance of the entries 3V y is equal toMfizH. Therefore, matriXW y is similar to the matrices

studied in[[8] except that the integei®/, V) in [8] should be exchanged GW, M — L+1). In particular,

after this replacement, it is clear that the asymptoticmegfL11) coincides with the regime in/[8]. In order
to recall the results of [8], we denote by (z), tx(2), t.(z) andt.(z) the Stieltjes transforms of the
Marcenko-Pastur distributions of parameter$, ¢, ), (02cy', en), (62, ¢;1) and(o2c; !, c.). Moreover,
Qn.w(2) and Qv w(2) represent the resolvents of matriceéy W+, and W4 Wy respectively. It is
shown in [8] (see Section 6) that the eigenvalue distribuibW y W7, converges almost surely towards

Koz -1, @ Statement equivalent to

ﬁTr(QN,W(z)) —t(2) > 0 a.s.

or to

1 ~ -
L1 M Qrw(2) —t(z) = 0 as.

for eachz € CT. As we have

ZNZyn = c €Wy Wiy (45)

The arguments used inl[3] require the uniform convergencevofowardss.. on the seRe(z) > x + ¢, a property that is
not established in Propositigd 1. However, the proof of thetginity lemma 2.1 in[[2] can be simplified, and only needs th

uniform convergence on compact sets.
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it holds that the resolver@y (z) of Z%,Zy is equal to
Qn(2) = ey Quw (2cy')

As cy — c., it is clear g Tr(Qy(z)) behaves ag-+ Tr(Qu,w (zc;!). Similarly, 74— Tr(Qn(2))

behaves ag- ;2 Tr(Qu,w(2c;1)). Therefore, for each € C*, it holds that

1 L
7 QN (2)) = e ta(z67) = 0 s,
and that
1
T Q) — e (ze) = 0as.

Using Equationd(18,19), it is easy to verify that(z) = c; ' t.(zc; ') andim.(z) = ¢, ' to(zcr ). This
established(23) and the convergence of the eigenvalugbdigin of ZZ7%, towardsyi,z .,

Asymptotic regime[(I1) implies thdt = O(M*) = O((M — L+ 1)*) wherea < 2/3. Therefore, [[8]
implies that for each > 0, almost surely, forV large enough, the eigenvalues'f y W7, are located
n[o2(1 = Ve D)2 = 6,021+ Ve D2 U {0}i(c! > 1). @8) and the convergence of; towardsc,
lead immediately to item (ii) of Propositidd 1.

Using the same arguments as abole] (25) appears as a camsegfie
ay (Qrw(2) — t.(2)I) by — 0 a.s. (46)

While (48) does not appear explicitely i [8], it can be desllicather easily from the various intermediate

results proved in[]8]. For this, we first remark that

ay (Quw(z) — t(2)) by = ay (Qnw (2) — E(Qnw(2))) by + &y (E(Qnw (2)) — £:(2)I) by

and establish that the 2 terms at the right hand side of theeadguation converge towardsin order to
simplify the notations, we denote [gythe first term. The almost sure convergence edwardsoO follows
from the Poincaré-Nash inequality (see e.g. Propositioh[8]). Exchanging M, N) by (N, M — L+1)
in Proposition 6 of([8], we obtain immediately th&t¢|* = O(3725—) = O(4). As L/M — 0, this
implies that{ converges in probability towards. In order to prove the almost sure convergence, we

briefly justify that for eachn, it holds that
El¢*" = O ((L/M)") (47)

(47) can be established by induction en As mentioned above[_(#7) is verified far = 1. We now

assume that it holds until integer— 1, and provel[(4]7). For this, we use the obvious relation:
El¢f*" = (EI¢|")* + Var(€")
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Using the Poincaré-Nash inequality as in the proof of Psitpmn 6 of [8], we obtain easily that
n L 2n—2
< (O
Var(§") < € E(¢ )

whereC is a constant that depends erbut not on the dimensions, M, N. As (41) is assumed to hold
until integern — 1, this implies thatVar(£") = O ((L/M)™). The Schwartz inequality leads immediately
to

(ElE™)® < E(IE”) E(EP"?)

which is aO ((L/M)™) term. This establishes (17). A = O(M®) with o < 2/3, it is clear that

(L/M)3 verifies
1

3 _
(L/M)” = 3.

Therefore, [(4]7) fom = 3 leads to

£ (%) = 0 ( 7o

As 2 —3a > 0, the use of the Markov inequality and of the Borel-Cantelinma imply that converges
towards0 almost surely as expected.

It remains to justify tha&’, (E(Qxw(2)) — t.(2)I) by converges towards. Although it is not stated
explicitely in [8], it can immediately deduced from Eq. (pi Proposition 8, as well as on Corollary

1, Theorem 2, and formula (7.3).

(24) is equivalent to
al, (QMW(Z) - t;(z)l) by — 0 a.s. (48)

It can be proved as above that

ak (QMW(z) - [E(QN,W(z))) by — 0 a.s.
and establish that
ay (E(Quw(2)) — L.()T) by — 0 (49)

for eachz € C*. The behaviour of matrif (Q w (2)) is not studied in[[B]. However, it can be evaluated
using the results of [8]. For this, we first simplify the natas and denote b}V, W, Q, Q the matrices
WN,VNVN,QN,W(z), and QMW(Z)- Moreover,Q is a NL x NL block matrix, so that we denote by
Qi its entry iy + (n1 — 1)L, ig + (n2 — 1)L).
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As in [8], we denote by ™)(.) and7,;", ., ,(.) the operators defined by

N (QV(5) = i
L—1
TM L+1, L(Q) = Z T(N)(Q)(i)J}k\fl—L+1
=—(L—1)

whereJy, is the L x L "shift” matrix defined by(J.);; = d(j —i=1).

Replacing integer§M, N) by integers(N, M — L + 1) in Equation (4.6) of[[B], we obtain that
2

ny *\ N2 g n1,n2
El@W) W, | = 57 E (QU ) B
.
Y Dok [fOQUE@QW) (WS
i=—(L-1)

withl1<jk<M-L+1,1<n1,ny<N,1<14q,ip < L.

Settingu = k — i, the second term of the righthandside of the above equatiomatso be written as

0_2 M—L+1
a Z [E[T(N)(Q)(k_u)ﬂ (L-1)<k—u<L— I(QW)“ u(W*)]nQ}
u=1

Now settingn = ny = ns, 7 = i1 = i9, and summing oven andi, we obtain

o2

E(W'QW);, = aT(N)([E(Q))(k‘ = L (L-1)<k-j<L-1

2 (M=L+l
% ( S M)k - U)]l—(L—l)<k—u<L—l(W*Qw)jv“>

C
N u=1

and using that™)(Q)(k — u)l_(p—1)<h—u<L—1 = (TA(/,]\L)LH,L(Q))k g we get that

o? 02

EW QW) = - (T (EQ), B (T80 QW QTW)

k,] CN k7.7
We express matriQ = E(Q) + Q, and obtain that
2
g

EW QW) = = (T4, 1 (E(Q)

k.j

O'2 w
7z (TA&@LH,L(E(Q))E(WTQTW))m

Noticing the equation,
WTQTW _ QTwTW

we obtain that
2

E(W'QW) = :_NT]\(/[]\QL—H,L( (QT))—_[E (W WQ) M- L+1 L (E (QT))__[E <W WaT L(é)>

March 30, 2015 DRAFT



25
Moreover we notice that
WQW = QW*W = W*WQ =1+ 2Q (50)

Therefore, it holds that

L4 28(Q) = 2700 0Q1) - T E Q)T (£@D) +
where
A= —%E (W*WQTA%V_)LH,L@)) (51)
This leads to the equation
JE(Q) <1 + %Tj\(fi )LH,L([E(QT))) =-1+A (52)

Lemma 2 of [8] (used whefiM, N) is replaced by(M — L + 1, N)) implies that matrix

o ()
I+ C_TM—L+1,L([E(Q))
N

is invertible forz € C*, and that its inverse, denotdd, verifies

jE) <

~ Im(2) (53)

for 2 € C*. (B2) implies that
T

- H -
BQ) =-——+ AHT
Therefore, [(4DB) is equivalent to
* HT g A1yl

Using the same technics as in Proposition 8 (see Eq. 5.3)] afg8vell as[(5B), we obtain immediately
that

ayAH by — 0
It thus remains to establish that

HT .

ay (—— - t*(z)I> by — 0 (54)

z

For this, we use the identity

T
_H7 — i ()1 = -HT <Zt~*1(z) + (HT)‘1> ()

t.(z) andt,(z) satisfy the relatio% =1+ %t*(z). Hence, the right hand side of the above equation
can be written as

T o o (N) T -
-H <(—1 — at,k(z:))I + 1+ ETM—L-H,L (E(Q ))) te(2)
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Corollary 1 and Theorem 2 of [8] imply that
|70 (E@D) ~ tu2)D)|| = 0
if z € CT. This and[(GB) leads to
ayHI T, (EQT(2) — tu(2)T) by — 0

and to [B4). This completes the proof 6f(49).

We now establisH (26). For this, we first remark that for eéehR, the distribution of matrixz y %

coincides with the distribution of . Therefore, it holds that

E (QN(Z)ZNew) — E(Qn(2)Zy)

which implies thatt (Qx(z)Zy) = 0. In order to complete the proof df-(R6), it is sufficient toadsish

that if we denote by:y the random variabley = a} (Qn(2)ZN) by, then, for eaclp > 1, it holds

Eley — E(kn)|? =0 <<$>p> (55)

Choosingp large enough leads toy — E(rxy) = Ky — 0 a.s. as expected[(55) can be proved as above

that

by using the Poincaré-Nash inequality.

We finally justify that for eack > 0, (24,[25,26) hold uniformly w.r.tz on each compact subset of
C — [0,z + €]. We just prove that it the case fdr (26). By item (ii), almostedy, functionz — xx(2)
is analytic onC — [0, z] + ¢]. We use a standard argument based on Montel's theofemn (j1282). We

first justify that for each compact subsétc C — [0,z + €], then it exists a constamt such that

sup [rn(2)] <7 (56)
zel
for each N large enough. We consider the singular value decompodgifionatrix Z y:
Zny =T NyANOy
where A y represents the diagonal matrix of non zero singular valliééya «(z) can be written as

kn(z) = ayTy (A% —21) "  AyOyby

Therefore, it holds that
v (@) < ||(A% =21 7" An| Ja by
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ltem (ii) implies that the entries cA%; are located intd0, 2} + ¢]. for eachN large enough. Therefore,

for eachz € K, it holds that
1
([0, 25 +€],K)
The conclusion follows from the hypothesis that vectagsandby satisfysup v (||ay]], [|ba]]) < +oc.

A2 —) A H<
H(N Z) N_dist

(56) implies that the sequence of analytic functigrs;)y>1 is a normal family . Therefore, it exists a
subsequence extracted framy )y~ that converges uniformly on each compact subsét ofl0, z; + €]
towards a certain analytic function.. As (26) holds for each € C*, functionk, is identically zero. We
have thus shown that each converging subsequence extfemteds y ) y>1 converges uniformly towards

0 on each compact subset 6f— [0,z + €]. This, in turn, shows that the whole sequence converges

uniformly on each compact subset ©f— [0, z;” + ¢] as expected.
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