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Performance analysis of spatial smoothing

schemes in the context of large arrays.
Gia-Thuy Pham, Philippe Loubaton,Fellow, IEEEand Pascal Vallet,Member, IEEE,

Abstract

This paper adresses the statistical behaviour of spatial smoothing subspace DoA estimation schemes

using a sensor array in the case where the number of observationsN is significantly smaller than the

number of sensorsM , and that the smoothing parameterL is such thatM andNL are of the same order

of magnitude. This context is modelled by an asymptotic regime in whichNL andM both converge

towards∞ at the same rate. As in recent works devoted to the study of (unsmoothed) subspace methods

in the case whereM andN are of the same order of magnitude, it is shown that it is stillpossible

to derive improved DoA estimators termed as Generalized-MUSIC with spatial smoothing (G-MUSIC

SS). The key ingredient of this work is a technical result showing that the largest singular values and

corresponding singular vectors of low rank deterministic perturbation of certain Gaussian block-Hankel

large random matrices behave as if the entries of the latter random matrices were independent identically

distributed. This allows to conclude that when the number ofsources and their DoA do not scale with

M,N,L, a situation modelling widely spaced DoA scenarios, then both traditional and Generalized

spatial smoothing subspace methods provide consistent DoAestimators whose convergence speed is

faster than 1

M
. The case of DoA that are spaced of the order of a beamwidth, which models closely

spaced sources, is also considered. It is shown that the convergence speed of G-MUSIC SS estimates is

unchanged, but that it is no longer the case for MUSIC SS ones.

I. INTRODUCTION

The statistical analysis of subspace DoA estimation methods using an array of sensors is a topic that

has received a lot of attention since the seventies. Most of the works were devoted to the case where the
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number of available samplesN of the observed signal is much larger than the number of sensorsM of the

array (see e.g. [14] and the references therein). More recently, the case whereM andN are large and of

the same order of magnitude was addressed for the first time in[10] using large random matrix theory. [10]

was followed by various works such as [7], [17], [6], [5]. Thenumber of observations may also be much

smaller than the number of sensors. In this context, it is well established that spatial smoothing schemes,

originally developped to address coherent sources ([4], [13], [11]), can be used to artificially increase the

number of snapshots (see e.g. [14] and the references therein, see also the recent related contributions [15],

[16] devoted to the case whereN = 1). Spatial smoothing consists in consideringL < M overlapping

arrays withM − L+ 1 sensors, and allows to generate artificiallyNL snapshots observed on a virtual

array ofM −L+1 sensors. The corresponding(M −L+1)×NL matrix, denotedY(L)
N , collecting the

observations is the sum of a low rank component generated by(M −L+1)-dimensional steering vectors

with a noise matrix having a block-Hankel structure. Subspace methods can still be developed, but the

statistical analysis of the corresponding DoA estimators was addressed in the standard regime where

M − L + 1 remains fixed whileNL converges towards∞. This context is not the most relevant when

M is large becauseL must be chosen in such a way that the number of virtual sensorsM − L+ 1 be

small enough w.r.t.NL, thus limiting the statistical performance of the estimates. In this paper, we study

the statistical performance of spatial smoothing subspaceDoA estimators in asymptotic regimes where

M −L+1 andNL both converge towards∞ at the same rate, whereLM → 0 in order to not affect the

aperture of the virtual array, and where the number of sources K does not scale withM,N,L. For this,

it is necessary to evaluate the behaviour of theK largest eigenvalues and corresponding eigenvectors of

the empirical covariance matrixY
(L)
N Y

(L)∗
N

NL . To address this issue, we prove that the above eigenvalues

and eigenvectors have the same asymptotic behaviour as if the noise contributionV(L)
N to matrix Y

(L)
N ,

a block-Hankel random matrix, was a Gaussian random matrix with independent identically distributed.

To establish this result, we rely on the recent result [8] addressing the behaviour of the singular values of

large block-Hankel random matrices built from i.i.d. Gaussian sequences. [8] implies that the empirical

eigenvalue distribution of matrixV
(L)
N V

(L)∗
N

NL converges towards the Marcenko-Pastur distribution, and that

its eigenvalues are almost surely located in the neigborhood of the support of the above distribution. This

allows to generalize the results of [3] to our random matrix model, and to characterize the behaviour of

the largest eigenvalues and eigenvectors ofY
(L)
N Y

(L)∗
N

NL . We deduce from this improved subspace estimators,

called DoA G-MUSIC SS (spatial smoothing) estimators, which are similar to those of [17] and [5]. We

deduce from the results of [18] that when the DoAs do not scalewith M,N,L, i.e. if the DoAs are

widely spaced compared to aperture array, then both G-MUSICSS and traditional MUSIC SS estimators
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are consistent and converge at a rate faster than1
M . Moreover, when the DoAs are spaced of the order of

1
M , the behaviour of G-MUSIC SS estimates remains unchanged, but the convergence rate of traditional

subspace estimates is lower.

This paper is organized as follows. In section II, we precisethe signal models, the underlying as-

sumptions, and formulate our main results. In section III, we prove that the largest singular values and

corresponding singular vectors of low rank deterministic perturbation of certain Gaussian block-Hankel

large random matrices behave as if the entries of the latter random matrices were independent identically

distributed. In section IV, we apply the results of section III to matrix Y
(L)
N , and follow [5] in order

to propose a G-MUSIC algorithm to the spatial smoothing context of this paper. The consistency and

the convergence speed of the G-MUSIC SS estimates and of the traditional MUSIC SS estimates are

then deduced from the results of [18]. Finally, section V present numerical experiments sustaining our

theoretical results.

Notations :For a complex matrixA, we denote byAT ,A∗ its transpose and its conjugate transpose,

and byTr (A) and‖A‖ its trace and spectral norm. The identity matrix will beI anden will refer to

a vector having all its components equal to0 except then-th equals to1. For a sequence of random

variables(Xn)n∈N and a random variableX, we write

Xn
a.s.−−−→

n→∞
X

whenXn converges almost surely towardsX. Finally, Xn = oP(1) will stand for the convergence ofXn

to 0 in probability, andXn = OP(1) will stand for tightness (boundedness in probability).

II. PROBLEM FORMULATION AND MAIN RESULTS.

A. Problem formulation.

We assume thatK narrow-band and far-field source signals are impinging on a uniform linear array

of M sensors, withK < M . In this context, theM–dimensional received signal(yn)n≥1 can be written

as

yn = AMsn + vn,

where

• AM = [aM (θ1), . . . ,aM (θK)] is theM×K matrix ofM–dimensionals steering vectorsaM (θ1), . . . ,aM (θK),

with θ1, . . . , θK the source signals DoA, andaM(θ) = 1√
M
[1, . . . , ei(M−1)θ ]T ;

• sn ∈ CK contains the source signals received at timen, considered as unknown deterministic ;
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• (vn)n≥1 is a temporally and spatially white complex Gaussian noise with spatial covarianceE[vnv
∗
n] =

σ2I.

The received signal is observed between time1 and timeN , and we collect the available observations

in theM ×N matrix YN defined

YN = [y1, . . . ,yN ] = AMSN +VN , (1)

with SN = [s1, . . . , sN ] andVN = [v1, . . . ,vN ]. We assume thatRank(SN ) = K for eachM,N greater

thanK. The DoA estimation problem consists in estimating theK DoA θ1, . . . , θK from the matrix of

samplesYN .

When the number of observationsN is much less than the number of sensorsM , the standard subspace

method fails. In this case, it is standard to use spatial smoothing schemes in order to artificially increase

the number of observations. In particular, it is well established that spatial smoothing schemes allow to

use subspace methods even in the single snapshot case, i.e. whenN = 1 (see e.g. [14] and the references

therein). If L < M , spatial smoothing consists in consideringL overlapping subarrays of dimension

M − L + 1. At each timen, L snapshots of dimensionM − L+ 1 are thus available, and the scheme

providesNL observations of dimensionM − L + 1. In order to be more specific, we introduce the

following notations. IfL is an integer less thanM , we denote byY(L)
n the (M − L + 1) × L Hankel

matrix defined by

Y(L)
n =




y1,n y2,n . . . . . . yL,n

y2,n y3,n . . . . . . yL+1,n

...
...

...
...

...
...

...
...

...
...

yM−L+1,n yM−L+2,n . . . . . . yM,n




(2)

Column l of matrix Y(L)
n corresponds to the observation on subarrayl at time n. Collecting all the

observations on the various subarrays allows to obtainNL snapshots, thus increasing artificially the

number of observations. We defineY(L)
N as the(M − L+ 1)×NL block-Hankel matrix given by

Y
(L)
N =

(
Y(L)
1 , . . . ,Y(L)

N

)
(3)

In order to expressY(L)
N , we consider the(M −L+1)×L Hankel matrixA(L)(θ) defined from vector

aM (θ) in the same way thanY(L)
n . We remark thatA(L)(θ) is rank 1, and can be written as

A(L)(θ) =
√

L(M − L+ 1)/M aM−L+1(θ) (aL(θ))
T (4)
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We consider the(M − L+ 1)×KL matrix A(L)

A(L) =
(
A(L)(θ1),A(L)(θ2), . . . ,A(L)(θK)

)
(5)

which, of course, is a rankK matrix whose range coincides with the subspace generated bythe (M −
L+ 1)-dimensional vectorsaM−L+1(θ1), . . . ,aM−L+1(θK). Y(L)

N can be written as

Y
(L)
N = A(L) (SN ⊗ IL) +V

(L)
N (6)

where matrixV(L)
N is the block Hankel matrix corresponding to the additive noise. As matrixSN ⊗ IL is

full rank, the extended obervation matrixY(L)
N appears as a noisy version of a low rank component whose

range is theK–dimensional subspace generated by vectorsaM−L+1(θ1), . . . ,aM−L+1(θK). Moreover,

it is easy to check that

E

(
V

(L)
N V

(L)∗
N

NL

)
= σ2IM−L+1

Therefore, it is potentially possible to estimate the DoAs(θk)k=1,...,K using a subspace approach based

on the eigenvalues / eigenvectors decomposition of matrixY
(L)
N Y

(L)∗
N /NL. The asymptotic behaviour of

spatial smoothing subspace methods is standard in the regimes whereM−L+1 remains fixed whileNL

converges towards∞. This is due to the law of large numbers which implies that theempirical covari-

ance matrixY(L)
N Y

(L)∗
N /NL has the same asymptotic behaviour thanA(L) (SNS∗

N ⊗ IL/NL) A(L)∗ +

σ2IM−L+1, In this context, the orthogonal projection matrix̂Π
(L)
N onto the eigenspace associated to the

M−L+1−K smallest eigenvalues ofY(L)
N Y

(L)∗
N /NL is a consistent estimate of the orthogonal projection

matrixΠ(L) on the noise subspace, i.e. the orthogonal complement ofsp{aM−L+1(θ1), . . . ,aM−L+1(θK)}.

In other words, it holds that ∥∥∥Π̂(L)
N −Π(L)

∥∥∥→ 0 a.s. (7)

The traditional pseudo-spectrum estimateη̂
(t)
N (θ) defined by

η̂
(t)
N (θ) = aM−L+1(θ)

∗Π̂
(L)
N aM−L+1(θ)

thus verifies

sup
θ∈[−π,π]

∣∣∣η̂(t)N (θ)− η(θ)
∣∣∣ a.s.−−−−→

N→∞
0. (8)

whereη(θ) = aM−L+1(θ)
∗Π(L)aM−L+1(θ) is the MUSIC pseudo-spectrum. Moreover, theK MUSIC

traditional DoA estimates, defined formally, fork = 1, . . . ,K, by

θ̂
(t)
k,N = argmin

θ∈Ik

η̂
(t)
N (θ), (9)
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whereIk is a compact interval containingθk and such thatIk ∩ Il = ∅ for k 6= l, are consistent, i.e.

θ̂
(t)
k,N

a.s.−−−−→
N→∞

θk. (10)

However, the regime whereM − L + 1 remains fixed whileNL converges towards∞ is not very

interesting in practice because the sizeM −L+1 of the subarrays may be much smaller that the number

of antennasM , thus reducing the resolution of the method. We therefore study spatial smoothing schemes

in regimes where the dimensionsM −L+1 andNL of matrix Y
(L)
N are of the same order of magnitude

and whereL
M → 0 in order to keep unchanged the aperture of the array. More precisely, we assume that

integersN andL depend onM and that

M → +∞, N = O(Mβ),
1

3
< β ≤ 1, cN =

M − L+ 1

NL
→ c∗ (11)

In regime (11),N thus converges towards∞ but at a rate that may be much lower thanM thus

modelling contexts in whichN is much smaller thanM . As N → +∞, it also holds thatMNL → c∗.

Therefore, it is clear thatL = O(Mα) whereα = 1−β verifies with0 ≤ α < 2/3. L may thus converge

towards∞ (even faster thanN if β < 1/2) but in such a way thatLM → 0. As in regime (11)N depends

on M , it could be appropriate to index the various matrices and DoA estimators by integerM rather

than by integerN as in definitions (5) and (9). However, we prefer to use the index N in the following

in order to keep the notations unchanged. We also denote projection matrixΠ(L) and pseudo-spectrum

η(θ) by Π
(L)
N andηN (θ) because they depend onM . Moreover, in the following, the notationN → +∞

should be understood as regime (11) for someβ ∈ (1/3, 1].

B. Main results.

In regime (11), (7) is no more valid. Hence, (10) is questionable. In this paper, we show that it is

possible to generalize the G-MUSIC estimators introduced in [5] in the case whereL = 1 to the context

of spatial smoothing schemes in regime (11) and establish the following results. Under the separation

condition that theK non zero eigenvalues of matrix1LA
(L)
(
SNS∗

N

N ⊗ IL

)
A(L)∗ are above the threshold

σ2√c∗ for eachN large enough, we deduce from [18] that:

• the spatial smoothing traditional MUSIC estimates(θ̂
(t)
k,N )k=1,...,K and the G-MUSIC SS estimates,

denoted(θ̂k,N )k=1,...,K are consistent and verify

M(θ̂
(t)
k,N − θk) → 0 a.s., (12)

M(θ̂k,N − θk) → 0 a.s. (13)

March 30, 2015 DRAFT
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(12) and (13) hold when the DoA(θk)k=1,...,K do not scale withM,N . In pratice, this assumption

corresponds to practical situations where the DoA are widely spaced because when the DoA(θk)k=1,...,K

are fixed, the ratio
mink 6=l |θk − θl|

(2π)/M

converges towards∞. We deduce from [18] that:

• If K = 2 and that the 2 DoAs scale withM,N is such a way thatθ2,N − θ1,N = O( 1
M ), then the

G-MUSIC SS estimates still verify (13) while the traditional MUSIC SS estimates no longer verify

(12)

As in the caseL = 1, the above mentioned separation condition ensures that theK largest eigenvalues

of the empirical covariance matrix(Y(L)
N Y

(L)∗
N )/NL correspond to theK sources, and the signal and

noise subspaces can be separated. In order to obtain some insights on this condition, and on the potential

benefit of the spatial smoothing, we study the separation condition whenM andN converge towards∞
at the same rate, i.e. whenMN → d∗, or equivalently thatβ = 1 and thatL does not scale withN . In this

case, it is clear thatc∗ coincides withc∗ = d∗/L. Under the assumption thatSNS∗

N

N converges towards a

diagonal matrixD whenN increases, then we establish that the separation conditionholds if

λK

(
A∗

M−L+1AM−L+1D
)
>

σ2
√
d∗√
L

(14)

for each(M,N) large enough. IfL = 1, the separation condition introduced in the context of (un-

smoothed) G-MUSIC algorithms ([5]) is of course recovered,i.e.

λK (A∗
MAMD) > σ2

√
d∗

If M is large and thatL << M , matrix A∗
M−L+1AM−L+1 is close fromA∗

MAM and the separation

condition is nearly equivalent to

λK (A∗
MAMD) >

σ2
√
d∗√
L

Therefore, it is seen that the use of the spatial smoothing scheme allows to reduce the thresholdσ2
√
d∗

corresponding to G-MUSIC method without spatial smoothingby the factor
√
L. Therefore, ifM and

N are the same order of magnitude, our asymptotic analysis allows to predict an improvement of the

performance of the G-MUSIC SS methods whenL increases providedL << M . If L becomes too large,

the above rough analysis is no more justified and the impact ofthe diminution of the number of antennas

becomes dominant, and the performance tends to decrease.
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III. A SYMPTOTIC BEHAVIOUR OF THE LARGEST SINGULAR VALUES AND CORRESPONDING

SINGULAR VECTORS OF FINITE RANK PERTURBATIONS OF CERTAIN LARGE RANDOM

BLOCK-HANKEL MATRICES.

In this section,N,M,L still satisfy (11) whileK is a fixed integer that does not scale withN . We

consider the(M + L − 1) × NL block-Hankel random matrixV(L)
N defined previously, and introduce

matrix ZN defined

ZN =
1√
NL

V
(L)
N

in order to simplify the notations. The entries ofZN have of course varianceσ2/NL. In the following,

BN represents a deterministic(M + L− 1)×NL matrix verifying

sup
N

‖BN‖ < +∞, Rank(BN ) = K, (15)

for eachN large enough. We denote byλ1,N > λ2,N . . . > λK,N the non zero eigenvalues of matrix

BNB∗
N arranged in decreasing order, and by(uk,N )k=1,...,K and (ũk,N )k=1,...,K the associated left and

right singular vectors ofBN . The singular value decomposition ofBN is thus given by

BN =

K∑

k=1

λ
1/2
k,Nuk,N ũ∗

k,N = UNΛ
1/2
N Ũ∗

N

Moreover, we assume that:

Assumption 1. TheK non zero eigenvalues(λk,N)k=1,...,K of matrix BNB∗
N converge towardsλ1 >

λ2 > . . . > λK whenN → +∞.

Here, for ease of exposition, we assume that the eigenvalues(λk,N )k=1,...,K have multiplicity 1 and

that λk 6= λl for k 6= l. However, the forthcoming results can be easily adapted if someλk coincide.

We define matrixXN as

XN = BN + ZN (16)

XN can thus be interpreted as a rankK perturbation of the block-Hankel matrixZN . The purpose of this

section is to study the behaviour of theK largest eigenvalues(λ̂k,N )k=1,...,K of matrix XNX∗
N as well

as of their corresponding eigenvectors(ûk,N)k=1,...,K . It turns out that(λ̂k,N )k=1,...,K and(ûk,N )k=1,...,K

behave as if the entries of matrixZN where i.i.d. To see this, we have first to precise the behaviour of

the eigenvalues of matrixZNZ∗
N in the asymptotic regime (11).
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A. Behaviour of the eigenvalues of matrixZNZ∗
N .

We first recall the definition of the Marcenko-Pastur distribution µσ2,c of parametersσ2 andc (see e.g.

[1]). µσ2,c is the probability distribution defined by

dµσ2,c(x) = δ0[1− c−1]+ +

√
(x− x−) (x+ − x)

2σ2cπx
1[x−,x+](x) dx

with x− = σ2(1−√
c)2 andx+ = σ2(1 +

√
c)2. Its Stieltjes transformmσ2,c(z) defined by

mσ2,c(z) =

∫

R

dµσ2,c(λ)

λ− z

is known to satisfy the fundamental equation

mσ2,c(z) =
1

−z + σ2 1
1+σ2cmσ2,c(z)

(17)

or equivalently,

mσ2,c(z) =
1

−z(1 + σ2m̃σ2,c(z))
(18)

m̃σ2,c(z) =
1

−z(1 + σ2cmσ2,c(z))
(19)

wherem̃σ2,c(z) is known to coincide with Stieltjes transform of the Marcenko-Pastur distributionµσ2c,c−1 =

cµσ2,c + (1− c)δ0.

In order to simplify the notations, we denote bym∗(z) andm̃∗(z) the Stieltjes transforms of Marcenko-

Pastur distributionsµσ2,c∗ andµσ2c∗,c
−1
∗

. m∗(z) and m̃∗(z) verify Equations (18) and (19) forc = c∗.

We also denote byx−∗ andx+∗ the termsx−∗ = σ2(1 − √
c∗)2 andx+∗ = σ2(1 +

√
c∗)2. We recall that

functionw∗(z) defined by

w∗(z) =
1

z m∗(z) m̃∗(z)
(20)

is analytic onC−[x−∗ , x
+
∗ ], verifiesw∗(x+∗ ) = σ2√c∗, and increases fromσ2√c∗ to +∞ whenx increases

from x+∗ to +∞ (see [3], section 3.1). Moreover, ifφ∗(w) denotes function defined by

φ∗(w) =
(w + σ2)(w + σ2c∗)

w
(21)

then,φ∗ increases fromx+∗ to +∞ whenw increases fromσ2√c∗ to +∞. Finally, it holds that

φ∗(w∗(z)) = z (22)

for eachz ∈ C − [x−∗ , x
+
∗ ].

We denote byQN (z) andQ̃N (z) the so-called resolvent of matricesZNZ∗
N andZ∗

NZN defined by

QN(z) = (ZNZ∗
N − zIM−L+1)

−1 , Q̃N (z) = (Z∗
NZN − zINL)

−1

March 30, 2015 DRAFT
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Then, the results of [8] imply the following proposition.

Proposition 1. • (i) The eigenvalue distribution of matrixZNZ∗
N converges almost surely towards the

Marcenko-Pastur distributionµσ2,c∗, or equivalently, for eachz ∈ C − R+,

1

M − L+ 1
Tr(QN (z)) −m∗(z) → 0 a.s. (23)

• (ii) For each ǫ > 0, almost surely, forN large enough, all the eigenvalues ofZNZ∗
N belong to

[σ2(1−√
c∗)2 − ǫ, σ2(1 +

√
c∗)2 + ǫ] if c∗ ≤ 1, and to [σ2(1−√

c∗)2 − ǫ, σ2(1 +
√
c∗)2 + ǫ]∪ {0}

if c∗ > 1.

• (iii) Moreover, ifaN ,bN are(M−L+1)–dimensional deterministic vectors satisfyingsupN (‖aN‖, ‖bN‖) <
+∞ , then it holds that for eachz ∈ C+

a∗N (QN(z) −m∗(z)I)bN → 0 a.s. (24)

Similarly, if ãN and b̃N areNL–dimensional deterministic vectors verifyingsupN (‖ãN‖, ‖b̃N‖) <
+∞, then for eachz ∈ C+, it holds that

ã∗N

(
Q̃N(z) − m̃∗(z)I

)
b̃N → 0 a.s. (25)

Moreover, for eachz ∈ C+, it holds that

a∗N (QN (z)ZN )bN → 0 a.s. (26)

Finally, for eachǫ > 0, convergence properties (24, 25, 26) hold uniformly w.r.t.z on each compact

subset ofC − [0, x+∗ + ǫ].

The proof is given in the Appendix.

Remark 1. Proposition 1 implies that in a certain sense, matrixZNZ∗
N behaves as if the entries of

ZN were i.i.d because Proposition 1 is known to hold for i.i.d. matrices. In the i.i.d. case, (23) was

established for the first time in [9], the almost sure location of the eigenvalues ofZNZ∗
N can be found

in [1] (see Theorem 5-11), while (24), (25) and (26) are trivial modifications of Lemma 5 of [5].

We notice that the convergence towards the Marcenko-Pasturdistribution holds as soon asN → +∞
and M−L+1

NL → c∗. In particular, the convergence is still valid ifN = O(Mβ) for each0 < β ≤ 1, or

equivalently ifL = O(Mα) for each0 ≤ α < 1. L can therefore converge towards∞ much faster than

N . However, the hypothesis thatβ > 1/3, which is also equivalent toL = O(Mα) with α < 2/3, is

necessary to establish item (ii).
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B. TheK largest eigenvalues and eigenvectors ofXNX∗
N .

While matrix ZN does not meet the conditions formulated in [3], Proposition1 allows to use the

approach used in [3], and to prove that theK largest eigenvalues and corresponding eigenvectors of

XNX∗
N . behave as if the entries ofZN were i.i.d. In particular, the following result holds.

Theorem 1. We denote bys, 0 ≤ s ≤ K, the largest integer for which

λs > σ2√c∗ (27)

Then, fork = 1, . . . , s, it holds that

λ̂k,N
a.s.−−−−→

N→∞
ρk = φ(λk) =

(λk + σ2)(λk + σ2c)

λk
> x+∗ . (28)

Moreover, fork = s+ 1, . . . ,K, it holds that

λ̂k,N → σ2(1 +
√
c∗)

2 a.s. (29)

Finally, for all deterministic sequences of unit norm vectors (d1,N ), (d2,N ), we have fork = 1, . . . , s

d∗
1,N ûk,N û∗

k,Nd2,N =

h∗(ρk)d
∗
1,Nuk,Nu∗

k,Nd2,N + o(1) a.s., (30)

where functionh∗(z) is defined by

h∗(z) =
w∗(z)2 − σ4c∗

w∗(z)(w∗(z) + σ2c∗)
(31)

For the reader’s convenience, we provide in the appendix some insights on the approach developed in

[3] to prove (28) and (29). For more details on (30), see the proof of Theorem 2 in [5] as well as the

identity

h∗(z) =
zm∗(z)2m̃∗(z)

(zm∗(z)m̃∗(z))
′

where ′ represents the derivation w.r.t.z.

IV. D ERIVATION OF A CONSISTENTG-MUSIC METHOD.

We now use the results of section III for matrixXN = Y
(L)
N /

√
NL andBN = 1√

NL
A(L)(SN ⊗ IL).

We recall that(λ̂k,N)k=1,...,M−L+1 and (ûk,N )k=1,...,M−L+1 represent the eigenvalues and eigenvectors

of the empirical covariance matrixY(L)
N Y

(L)∗
N /NL, and that(λk,N)k=1,...,K and (uk,N )k=1,...,K are the

non zero eigenvalues and corresponding eigenvectors of1
LA

(L) (SNS∗
N/N ⊗ IL)A

(L)∗. We recall that

Π
(L)
N represents the orthogonal projection matrix onto the noisesubspace, i.e. the orthogonal complement
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of the space generated by vectors(aM−L+1(θk))k=1,...,K and thatηN (θ) is the corresponding MUSIC

pseudo-spectrum

ηN (θ) = aM−L+1(θ)
∗Π(L)

N aM−L+1(θ)

Theorem 1 allows to generalize immediately the results of [5] and [18] concerning the consistency of

G-MUSIC and MUSIC DoA estimators in the caseL = 1. More precisely:

Theorem 2. Assume that theK non zero eigenvalues(λk,N )k=1,...,K converge towards deterministic

termsλ1 > λ2 > . . . > λK and that

λK > σ2√c∗ (32)

Then, the estimator̂ηN (θ) of the pseudo-spectrumηN (θ) defined by

η̂N (θ) = (aM−L+1(θ))
∗



I−
K∑

k=1

1

h
(
λ̂k,N

) ûk,N û∗
k,N



aM−L+1(θ) (33)

verifies

sup
θ∈[−π,π]

|η̂N (θ)− ηN (θ)| a.s.−−−−→
N→∞

0, (34)

This result can be proved as Proposition 1 in [5].

In order to obtain some insights on condition (32) and on the potential benefits of the spatial smoothing,

we explicit the separation condition (32) whenM andN converge towards∞ at the same rate, i.e. when

M
N → d∗, or equivalently thatβ = 1 and thatL does not scale withN . In this case, it is clear thatc∗

coincides withc∗ = d∗/L. It is easily seen that

1

L
A(L)

(
SNS∗

N

N
⊗ IL

)
A(L)∗ = (M − L+ 1/M) AM−L+1

(
SNS∗

N

N
•AT

LAL

)
A∗

M−L+1 (35)

where• represents the Hadamard (i.e. element wise) product of matrices, and whereB stands for the

complex conjugation operator of the elements of matrixB. If we assume thatSNS
∗

N

N converges towards

a diagonal matrixD whenN increases, thenSNS∗

N

N • (AT
LAL) converges towards the diagonal matrix

D • Diag
(
AT

LAL

)
= D. Therefore,SNS∗

N

N • (AT
LAL) ≃ D when is large enough. Using thatLM → 0,

we obtain that the separation condition is nearly equivalent to

λK

(
AM−L+1D A∗

M−L+1

)
>

σ2
√
d∗√
L

or to

λK

(
A∗

M−L+1AM−L+1D
)
>

σ2
√
d∗√
L

(36)
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for each(M,N) large enough. IfL = 1, the separation condition introduced in the context of (un-

smoothed) G-MUSIC algorithms ([5]) is of course recovered,i.e.

λK (A∗
MAMD) > σ2

√
d∗

for each(M,N) large enough. IfM is large and thatL << M , matrixA∗
M−L+1AM−L+1 is close from

A∗
MAM and the separation condition is nearly equivalent to

λK (A∗
MAMD) >

σ2
√
d∗√
L

Therefore, it is seen that the use of the spatial smoothing scheme allows to reduce the thresholdσ2
√
d∗

corresponding to G-MUSIC method without spatial smoothingby the factor
√
L. Hence, if M and

N are the same order of magnitude, our asymptotic analysis allows to predict an improvement of the

performance of the G-MUSIC methods based on spatial smoothing whenL increases providedL << M .

If L becomes too large, the above rough analysis is no more justified and the impact of the diminution

of the number of antennas becomes dominant, and the performance tends to decrease. This analysis is

sustained by the numerical simulations presented in section V.

We define the DoA G-MUSIC SS estimates(θ̂k,N)k=1,...,K by

θ̂k,N = argmin
θ∈Ik

|η̂N (θ)| , (37)

whereIk is a compact interval containingθk and such thatIk ∩ Il = ∅ for k 6= l. As in [5], (34) as

well as the particular structure of directional vectorsaM−L+1(θ) imply the following result which can

be proved as Theorem 3 of [5]

Theorem 3. Under condition (32), the DoA G-MUSIC SS estimates(θ̂k,N )k=1,...,K verify

M
(
θ̂k,N − θk

)
→ 0 a.s. (38)

for eachk = 1, . . . ,K.

Remark 2. We remark that under the extra assumption thatSNS∗

N

N converges towards a diagonal

matrix,[5] (see also [19] for more general matricesS) proved whenL = 1 that M3/2
(
θ̂k,N − θk

)

converges in distribution towards a Gaussian distribution. It would be interesting to generalize the results

of [5] and [19] to the G-MUSIC estimators with spatial smoothing in the asymptotic regime (11). This

is a difficult task that is not within the scope of the present paper.
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Theorem 1 also allows to generalize immediately the resultsof [18] concerning the consistency of the

traditional estimates(θ̂(t)k,N)k=1,...,K in the caseL = 1. In particular, while the traditional estimatêη(t)N of

the pseudo-spectrum is not consistent, it is shown in [18] that if L = 1, then the arguments of its local

minima (θ̂
(t)
k,N)k=1,...,K are consistent and verify

M
(
θ̂
(t)
k,N − θk

)
→ 0 a.s. (39)

for eachk = 1, . . . ,K if the separation condition is verified. The reader can checkthat Theorem 1 allows

to generalize immediately this behaviour to the traditional DoA MUSIC estimates with spatial smoothing

in regime (11). More precisely, the following result holds.

Theorem 4. Under condition (32), the DoA traditional MUSIC SS estimates (θ̂
(t)
k,N )k=1,...,K verify

M
(
θ̂
(t)
k,N − θk

)
→ 0 a.s. (40)

for eachk = 1, . . . ,K.

Remark 3. It is established in [18] in the caseL = 1 that if SNS∗

N

N converges towards a diagonal matrix,

thenM3/2
(
θ̂
(t)
k,N − θk

)
has a Gaussian behaviour, and that the corresponding variance coincides with

the asymptotic variance ofM3/2
(
θ̂k,N − θk

)
. In particular, if L = 1, the asymptotic performance of

MUSIC and G-MUSIC estimators coincide. It would be interesting to check whether this result still holds

true for the MUSIC and G-MUSIC estimators with spatial smoothing.

Theorems 2 and 3 as well as (39) assume that the DoAs(θk)k=1,...,K are fixed parameters, i.e. do not

scale withM . Therefore, the ratio
mink 6=l |θk − θl|

(2π)/M

converges towards+∞. In practice, this context is thus able to model practical situations in which

supk 6=l |θk − θl| is significantly larger than the aperture of the array. In thecaseL = 1, [18] also

addressed the case where the DoA’s(θk,N )k=1,...,K depend onN,M and verify θk,N − θl,N = O( 1
M ).

This context allows to capture practical situations in which the DoA’s are spaced of the order of a

beamwidth. In order to simplify the calculations, [18] considered the caseK = 2, θ2,N = θ1,N + α
N and

where matrixSNS
∗

N

N → I2. However, the results can be generalized easily to more general situations. It

is shown in [18] that the G-MUSIC estimates still verifiy (40), but that, in general,M
(
θ̂
(t)
k,N − θk

)
does

not converge towards0. The results of [18] can be generalized immediately to the context of G-MUSIC

estimators with spatial smoothing in regime (11). For this,we have to assume thatθ2,N = θ1,N + κ
M
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(in [18], M andN are of the same order of magnitude so that the assumptionsθ2,N = θ1,N + α
N and

θ2,N = θ1,N + κ
M are equivalent), and to follow the arguments of section 4 in [18]. The conclusion of

this discussion is the following Theorem.

Theorem 5. AssumeK = 2, θ2,N = θ1,N + κ
M , and thatSNS

∗

N

N → I2. If the separation condition

1− | sincκ/2| > σ2c∗ (41)

holds, then the G-MUSIC SS estimates(θ̂k,N)k=1,2 defined by

θ̂k,N = argmin
θ∈Ik,N

|η̂N (θ)| , (42)

whereIk,N = [θk,N − κ−ǫ
2N , θk,N + κ−ǫ

2N ] for ǫ small enough, verify

M
(
θ̂k,N − θk,N

)
→ 0 a.s. (43)

In general, the traditional MUSIC SS estimates defined by (42) when the G-MUSIC estimatêηN (θ) is

replaced by the traditional spectrum estimateη̂(t)N (θ) are such thatM
(
θ̂
(t)
k,N − θk,N

)
does not converge

towards0.

V. NUMERICAL EXAMPLES

In this section, we provide numerical simulations illustrating the results given in the previous sections.

We first consider 2 closely spaced sources with DoAsθ1 = 0 and θ2 = π
2M , and we assume that

M = 160 andN = 20. The 2 ×N signal matrix is obtained by normalizing a realization of a random

matrix with NC (0, 1) i.i.d. entries in such a way that the 2 source signals have power 1. The signal to

noise ratio is thus equal toSNR = 1/σ2. Table I provides the minimum value of SNR for which the

separation condition, in its finite length version (i.e. when the limits(λk)k=1,...,K andc∗ are replaced by

(λk,N )k=1,...,K andcN respectively) holds, i.e.

(σ2)−1 =
1

λK,N

√
(M − L+ 1)/NL

It is seen that the minimal SNR first decreases but that it increases ifL is large enough. This confirms

the discussion of the previous section on the effect ofL on the separation condition.

In figure 1, we represent the mean-square errors of the G-MUSIC SS estimator̂θ1 for L = 2, 4, 8, 16

versus SNR. The corresponding Cramer-Rao bounds is also represented. As expected, it is seen that the

performance tends to increase withL until L = 16. In figure 2,L is equal to 16, 32, 64, 96, 128.

ForL = 32, it is seen that the MSE tends to degrade at high SNR w.r.t.L = 16, while the performance

severely degrades for larger values ofL.

March 30, 2015 DRAFT



16

L 2 4 8 16 32 64 96 128

SNR 33.46 30.30 27.46 25.31 24.70 28.25 36.11 51.52

TABLE I: Minimum value of SNR for separation condition
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Fig. 1: Empirical MSE of G-MUSIC SS estimator̂θ1 versus SNR
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Fig. 2: Empirical MSE of G-MUSIC SS estimator̂θ1 versus SNR
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In Figure 3, parameterL is equal to16. We compare the performance of G-MUSIC SS with the

standard MUSIC method with spatial smoothing. We also represent the MSE provided by G-MUSIC and

MUSIC for L = 1. The standard unsmoothed MUSIC method of course completelyfails, while the use

of the G-MUSIC SS provides a clear improvement of the performance w.r.t. MUSIC SS and unsmoothed

G-MUSIC.
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Fig. 3: Empirical MSE of different estimators ofθ1 when L=16

We finally consider the caseL = 128, and compare as above G-MUSIC SS, MUSIC SS, unsmoothed

G-MUSIC and unsmoothed MUSIC. G-MUSIC SS completely fails becauseL andM are of the same

order of magnitude. Theorem 2 is thus no more valid, and the pseudo-spectrum estimate is not consistent.

We now consider 2 widely spaced sources with DoAsθ1 = 0 and θ2 = 52π
M , and keep the same

parameters as above. We consider the caseL = 16, and represent in Fig. 5 the performance of MUSIC,

G-MUSIC, MUSIC-SS, and G-MUSIC-SS. It is first observed that, in contrast with the case of closely

spaced DoAs, MUSIC-SS and G-MUSIC-SS have the same performance when the SNR is above the

threshold 6 dB. This is in accordance with Theorem 4, and tends to indicate that, as in the caseL = 1,

if SNS∗

N

N converges towards a diagonal matrix, then the asymptotic performance of G-MUSIC-SS and

MUSIC-SS coincide (see Remark 3). The comparison between the methods with and without spatial

smoothing also confirm that the use of spatial smoothing schemes allow to improve the performance.
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Fig. 4: Empirical MSE of different estimators ofθ1 when L=128
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Fig. 5: Empirical MSE of different estimators ofθ1 when L=16 and widely spaced DoAs

VI. CONCLUSION

In this paper, we have addressed the behaviour of subspace DoA estimators based on spatial smoothing

in asymptotic regimes whereM andNL converge towards∞ at the same rate. For this, we have evaluated

the behaviour of the largest singular values and corresponding singular vectors of large random matrices

defined as additive low rank perturbations of certain randomblock-Hankel matrices, and established that
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they behave as if the entries of the block-Hankel matrices were i.i.d. Starting from this result, we have

shown that it is possible to generalize the G-estimators introduced in [5], and have deduced from [18]

their properties.

APPENDIX A

INSIGHTS ON THE PROOF OF(28) AND (29).

We first recall that [3] established that for1 ≤ k ≤ K, if λ̂k,N does not converge towards a limit

strictly greater thanx+∗ , then λ̂k,N converges towardsx+∗ . We have therefore to evaluate the behaviour

of the eigenvalues ofXNX∗
N that are greater thanx+∗ + ǫ for someǫ > 0.

If C represents aP ×Q matrix, we denote byC the (P +Q)× (P +Q) hermitian matrix defined by

C =


 0 C

C∗ 0


 . (44)

Then, the non zero eigenvalues ofC coincide with the (positive and negative) square roots of the

non zero eigenvalues of matrixCC∗, and the corresponding eigenvectors are the(P +Q)–dimensional

vectors(aTk ,±bT
k )

T where(ak,bk) represent the pairs of left and right singular vectors ofC. Therefore,

λ > x+∗ + ǫ is eigenvalue ofXNX∗
N if and only if

√
λ > (x+∗ + ǫ)1/2 is eigenvalue of matrixXN . We

consider the singular value decomposition

BN = UNΛ
1/2
N Ũ∗

N

of matrix BN and expressXN as

XN =


 0 ZN

Z∗
N 0


+


 0 UNΛ

1/2
N Ũ∗

N

ŨNΛ
1/2
N U∗

N 0




which can be written as

 0 ZN

ZN∗ 0


+


 UN 0

0 ŨNΛ
1/2
N




︸ ︷︷ ︸
D

J


 U∗

N 0

0 Λ
1/2
N Ũ∗

N




︸ ︷︷ ︸
D∗

whereJ is defined by

J =


 0 IK

IK 0



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Considerx > (x+∗ + ǫ)1/2. Then,x is not a singular value ofZNZ∗
N , and therefore, not an eigenvalue

of ZN . Therefore, it holds that

det(XN − xI) = det(ZN − xI+DJD∗)

= det(ZN − xI)det(I + (ZN − xI)−1DJD∗)

= det(ZN − xI)det(I2K + JD∗(ZN − xI)−1D)

after noticingJ = J−1. For w ∈ C − [−(x+∗ + ǫ)1/2, (x+∗ + ǫ)1/2], we denote bySN (w) the 2K × 2K

matrix defined by

SN (w) = I2K + JD∗(ZN − wI)−1D

Using the identity

(ZN − wI)−1 =


 wQN (w2) QN (w2)ZN

Z∗
NQN (w2) wQ̃N (w2)




we obtain immediately that

(SN (w))1,1 = IK +Λ
1/2
N Ũ∗

NZ∗
NQN (w2)UN

(SN (w))1,2 = wΛ
1/2
N U∗

N Q̃N(w2)ŨNΛ
1/2
N

(SN (w))2,1 = wU∗
NQN(w2)UN

(SN (w))2,2 = IK +U∗
NQN(w2)ZNŨNΛ

1/2
N

Item (iii) of Proposition 1 implies that the elements ofSN (w) converge almost surely, uniformly on the

compact subsets ofC − [−(x+∗ + ǫ)1/2, (x+∗ + ǫ)1/2] towards the elements of matrixS∗(w) defined by

S∗(w) =



 IK wm̃∗(w2)Λ

wm(w2)IK IK





It is easy to check thatdet(SN (w)) anddet(S∗(w)) are functions ofw2. We define functionssN ands∗

on C − [0, x+∗ + ǫ] by sN(w2) = det(SN (w)) and s∗(w2) = det(S∗(w)). It is clear that almost surely,

sN (z) → s∗(z) uniformly on the compact subsets ofC− [0, (x+∗ + ǫ)]. Therefore, in order to precise the

behaviour of the eigenvalues ofXNX∗
N that are greater thanx+∗ + ǫ (i.e. the solutions of the equation

sN (x) = 0 greater thanx+∗ + ǫ), it is first useful to characterize the solutions of the equation s∗(x) = 0.

The equations∗(x) = 0 is equivalent to

ΠK
k=1 (1− λkxm∗(x)m̃∗(x)) = 0

March 30, 2015 DRAFT



21

or equivalently to

w∗(x) = λk

for k = 1, . . . ,K. Using the properties of functionw∗, we obtain immediately that ifǫ < ρs − x+∗ =

φ∗(λs)− x+∗ , then the solutions ofs∗(x) = 0 that are greater thanx+∗ + ǫ coincide with the(ρk)k=1,...,s

defined byρk = φ∗(λk) for k = 1, . . . , s. Using this, it can be proved using appropriate arguments that,

almost surely, forN large enough, then thes greatest eigenvalues(λk,N )k=1,...,s of XNX∗
N are greater

thanx+∗ + ǫ, and thatλk,N → ρk for k = 1, . . . , s 1.

APPENDIX B

PROOF OFPROPOSITION1.

The proof of Proposition 1 is based on the results of [8]. In order to explain this, we denote byWN

theNL× (M − L+ 1) matrix defined by

WN =
1√
cN

Z∗
N

The variance of the entries ofWN is equal to σ2

M−L+1 . Therefore, matrixWN is similar to the matrices

studied in [8] except that the integers(M,N) in [8] should be exchanged by(N,M−L+1). In particular,

after this replacement, it is clear that the asymptotic regime (11) coincides with the regime in [8]. In order

to recall the results of [8], we denote bytN (z), t̃N (z), t∗(z) and t̃∗(z) the Stieltjes transforms of the

Marcenko-Pastur distributions of parameters(σ2, c−1
N ), (σ2c−1

N , cN ), (σ2, c−1
∗ ) and(σ2c−1

∗ , c∗). Moreover,

QN,W (z) and Q̃N,W (z) represent the resolvents of matricesWNW∗
N andW∗

NWN respectively. It is

shown in [8] (see Section 6) that the eigenvalue distribution of WNW∗
N converges almost surely towards

µσ2,c−1
∗

, a statement equivalent to

1

NL
Tr(QN,W (z))− t∗(z) → 0 a.s.

or to
1

M − L+ 1
Tr(Q̃N,W (z)) − t̃∗(z) → 0 a.s.

for eachz ∈ C+. As we have

Z∗
NZN = cNWNW∗

N (45)

1The arguments used in [3] require the uniform convergence ofsN towardss∗ on the setRe(z) > x
+
∗
+ ǫ, a property that is

not established in Proposition 1. However, the proof of the contuinity lemma 2.1 in [2] can be simplified, and only needs the

uniform convergence on compact sets.
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it holds that the resolvent̃QN (z) of Z∗
NZN is equal to

Q̃N (z) = c−1
N QN,W (zc−1

N )

As cN → c∗, it is clear 1
NLTr(Q̃N (z)) behaves as1c∗

1
NLTr(QN,W (zc−1

∗ ). Similarly, 1
M−L+1Tr(QN (z))

behaves as1c∗
1

M−L+1Tr(Q̃N,W (zc−1
∗ )). Therefore, for eachz ∈ C+, it holds that

1

NL
Tr(Q̃N (z))− c−1

∗ t∗(zc
−1
∗ ) → 0 a.s.

and that
1

M − L+ 1
Tr(QN (z))− c−1

∗ t̃∗(zc
−1
∗ ) → 0 a.s.

Using Equations (18, 19), it is easy to verify thatm∗(z) = c−1
∗ t̃∗(zc−1

∗ ) andm̃∗(z) = c−1
∗ t∗(zc−1

∗ ). This

establishes (23) and the convergence of the eigenvalue distribution of ZNZ∗
N towardsµσ2,c∗.

Asymptotic regime (11) implies thatL = O(Mα) = O((M −L+1)α) whereα < 2/3. Therefore, [8]

implies that for eachǫ > 0, almost surely, forN large enough, the eigenvalues ofWNW∗
N are located

in [σ2(1 −
√

c−1
∗ )2 − ǫ, σ2(1 +

√
c−1
∗ )2] ∪ {0}1(c−1

∗ > 1). (45) and the convergence ofcN towardsc∗

lead immediately to item (ii) of Proposition 1.

Using the same arguments as above, (25) appears as a consequence of

ã∗N (QN,W (z)− t∗(z)I) b̃N → 0 a.s. (46)

While (46) does not appear explicitely in [8], it can be deduced rather easily from the various intermediate

results proved in [8]. For this, we first remark that

ã∗N (QN,W (z)− t∗(z)I) b̃N = ã∗N (QN,W (z)− E(QN,W (z))) b̃N + ã∗N (E(QN,W (z)) − t∗(z)I) b̃N

and establish that the 2 terms at the right hand side of the above equation converge towards0. In order to

simplify the notations, we denote byξ the first term. The almost sure convergence ofξ towards0 follows

from the Poincaré-Nash inequality (see e.g. Proposition 2of [8]). Exchanging(M,N) by (N,M−L+1)

in Proposition 6 of [8], we obtain immediately thatE|ξ|2 = O( L
M−L+1) = O( L

M ). As L/M → 0, this

implies thatξ converges in probability towards0. In order to prove the almost sure convergence, we

briefly justify that for eachn, it holds that

E|ξ|2n = O ((L/M)n) (47)

(47) can be established by induction onn. As mentioned above, (47) is verified forn = 1. We now

assume that it holds until integern− 1, and prove (47). For this, we use the obvious relation:

E|ξ|2n = (E|ξ|n)2 +Var(ξn)
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Using the Poincaré-Nash inequality as in the proof of Proposition 6 of [8], we obtain easily that

Var(ξn) ≤ C
L

M
E(|ξ|2n−2)

whereC is a constant that depends onz but not on the dimensionsL,M,N . As (47) is assumed to hold

until integern−1, this implies thatVar(ξn) = O ((L/M)n). The Schwartz inequality leads immediately

to

(E|ξ|n)2 ≤ E(|ξ|2)E(|ξ|2n−2)

which is aO ((L/M)n) term. This establishes (47). AsL = O(Mα) with α < 2/3, it is clear that

(L/M)3 verifies

(L/M)3 =
1

M1+2−3α

Therefore, (47) forn = 3 leads to

E
(
|ξ|6
)
= O

(
1

M1+2−3α

)

As 2−3α > 0, the use of the Markov inequality and of the Borel-Cantelli lemma imply thatξ converges

towards0 almost surely as expected.

It remains to justify that̃a∗N (E(QN,W (z))− t∗(z)I) b̃N converges towards0. Although it is not stated

explicitely in [8], it can immediately deduced from Eq. (5.3) in Proposition 8, as well as on Corollary

1, Theorem 2, and formula (7.3).

(24) is equivalent to

a∗N

(
Q̃N,W (z)− t̃∗(z)I

)
bN → 0 a.s. (48)

It can be proved as above that

a∗N

(
Q̃N,W (z)− E(Q̃N,W (z))

)
bN → 0 a.s.

and establish that

a∗N

(
E(Q̃N,W (z)) − t̃∗(z)I

)
bN → 0 (49)

for eachz ∈ C+. The behaviour of matrixE(Q̃N,W (z)) is not studied in [8]. However, it can be evaluated

using the results of [8]. For this, we first simplify the notations and denote byW,W̃,Q, Q̃ the matrices

WN ,W̃N ,QN,W (z), and Q̃N,W (z). Moreover,Q is a NL × NL block matrix, so that we denote by

Q
n1,n2

i1,i2
its entry (i1 + (n1 − 1)L, i2 + (n2 − 1)L).
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As in [8], we denote byτ (N)(.) andT (N)
M−L+1,L(.) the operators defined by

τ (N)(Q)(i) =
1

NL
Tr (Q(I⊗ Ji

L))

T (N)
M−L+1,L(Q) =

L−1∑

i=−(L−1)

τ (N)(Q)(i)J∗i
M−L+1

whereJL is theL× L ”shift” matrix defined by(JL)i,j = δ(j − i = 1).

Replacing integers(M,N) by integers(N,M − L+ 1) in Equation (4.6) of [8], we obtain that

E

[
(QW)n1

i1,k
(W∗)n2

j,i2

]
=

σ2

M − L+ 1
E

(
Q

n1,n2

i1,i2−(k−j)

)
11≤i2−(k−j)≤L

− σ2

cN

L−1∑

i=−(L−1)

11≤k−i≤M−L+1E

[
τ (N)(Q)(i)(QW)n1

i1,k−i(W
∗)n2

j,n2

]

with 1 ≤ j, k ≤ M − L+ 1, 1 ≤ n1, n2 ≤ N , 1 ≤ i1, i2 ≤ L.

Settingu = k − i, the second term of the righthandside of the above equation can also be written as

σ2

cN

M−L+1∑

u=1

E

[
τ (N)(Q)(k − u)1−(L−1)≤k−u≤L−1(QW)n1

i1,u
(W∗)n2

j,n2

]

Now settingn = n1 = n2, i = i1 = i2, and summing overn and i, we obtain

E (W∗QW)j,k =
σ2

cN
τ (N)(E(Q))(k − j)1−(L−1)≤k−j≤L−1

−σ2

cN
E

(
M−L+1∑

u=1

τ (N)(Q)(k − u)1−(L−1)≤k−u≤L−1(W
∗QW)j,u

)

and using thatτ (N)(Q)(k − u)1−(L−1)≤k−u≤L−1 =
(
T (N)
M−L+1,L(Q)

)
k,u

, we get that

E (W∗QW)j,k =
σ2

cN

(
T (N)
M−L+1,L(E(Q))

)

k,j
− σ2

cN
E

(
T (N)
M−L+1,L(Q)WTQTW

)

k,j

We express matrixQ = E(Q) +
◦
Q, and obtain that

E (W∗QW)j,k =
σ2

cN

(
T (N)
M−L+1,L(E(Q))

)

k,j

− σ2

cN

(
T (N)
M−L+1,L(E(Q))E(WTQTW)

)

k,j

−σ2

cN
E

(
T (N)
M−L+1,L(

◦
Q)WTQTW

)

k,j

Noticing the equation,

WTQTW = Q̃TWTW

we obtain that

E (W∗QW) =
σ2

cN
T (N)
M−L+1,L

(
E(QT )

)
− σ2

cN
E

(
W∗WQ̃

)
T (N)
M−L+1,L

(
E(QT )

)
− σ2

cN
E

(
W∗WQ̃T (N)

M−L+1,L(
◦
Q)

)
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Moreover we notice that

W∗QW = Q̃W∗W = W∗WQ̃ = I+ zQ̃ (50)

Therefore, it holds that

I+ zE(Q̃) =
σ2

cN
T (N)
M−L+1,L(E(Q

T ))− σ2

cN
(I+ zE(Q̃))T (N)

M−L+1,L

(
E(QT )

)
+ ∆̃

where

∆̃ = −σ2

cN
E

(
W∗WQ̃T (N)

M−L+1,L(
◦
Q)

)
(51)

This leads to the equation

zE(Q̃)

(
I+

σ2

cN
T (N)
M−L+1,L(E(Q

T ))

)
= −I+ ∆̃ (52)

Lemma 2 of [8] (used when(M,N) is replaced by(M − L+ 1, N)) implies that matrix

I+
σ2

cN
T (N)
M−L+1,L(E(Q))

is invertible forz ∈ C+, and that its inverse, denotedH, verifies

‖H‖ ≤ |z|
Im(z)

(53)

for z ∈ C+. (52) implies that

E(Q̃) = −HT

z
+ ∆̃HT

Therefore, (49) is equivalent to

a∗N

(
−HT

z
− t̃∗(z)I + ∆̃HT

)
bN → 0

Using the same technics as in Proposition 8 (see Eq. 5.3) of [8] as well as (53), we obtain immediately

that

a∗N∆̃HTbN → 0

It thus remains to establish that

a∗N

(
−HT

z
− t̃∗(z)I

)
bN → 0 (54)

For this, we use the identity

−HT

z
− t̃∗(z)I = −HT

(
I

zt̃∗(z)
+ (HT )−1

)
t̃∗(z)

t∗(z) andt̃∗(z) satisfy the relation −1
zt̃∗(z)

= 1+ σ2

cN
t∗(z). Hence, the right hand side of the above equation

can be written as

−HT

(
(−1− σ2

cN
t∗(z))I + I+

σ2

cN
T (N)
M−L+1,L

(
E(QT )

))
t̃∗(z)
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Corollary 1 and Theorem 2 of [8] imply that
∥∥∥T (N)

M−L+1,L

(
E(QT )− t∗(z)I

)∥∥∥→ 0

if z ∈ C+. This and (53) leads to

a∗NHTT (N)
M−L+1,L

(
E(QT (z)) − t∗(z)I

)
bN → 0

and to (54). This completes the proof of (49).

We now establish (26). For this, we first remark that for eachθ ∈ R, the distribution of matrixZNeiθ

coincides with the distribution ofZN . Therefore, it holds that

E

(
QN (z)ZNeiθ

)
= E (QN(z)ZN )

which implies thatE (QN(z)ZN ) = 0. In order to complete the proof of (26), it is sufficient to establish

that if we denote byκN the random variableκN = a∗N (QN(z)ZN )bN , then, for eachp ≥ 1, it holds

that

E |κN − E(κN )|2p = O
((

L

M

)p)
(55)

Choosingp large enough leads toκN −E(κN ) = κN → 0 a.s. as expected. (55) can be proved as above

by using the Poincaré-Nash inequality.

We finally justify that for eachǫ > 0, (24, 25, 26) hold uniformly w.r.t.z on each compact subset of

C − [0, x+∗ + ǫ]. We just prove that it the case for (26). By item (ii), almost surely, functionz → κN (z)

is analytic onC− [0, x+∗ + ǫ]. We use a standard argument based on Montel’s theorem ([12],p.282). We

first justify that for each compact subsetK ⊂ C − [0, x+∗ + ǫ], then it exists a constantη such that

sup
z∈K

|κN (z)| ≤ η (56)

for eachN large enough. We consider the singular value decompositionof matrix ZN :

ZN = ΓN∆NΘ∗
N

where∆N represents the diagonal matrix of non zero singular values of ZN . κN (z) can be written as

κN (z) = a∗NΓN

(
∆2

N − zI
)−1

∆NΘ∗
NbN

Therefore, it holds that

|κN (z)| ≤
∥∥∥
(
∆2

N − zI
)−1

∆N

∥∥∥ ‖aN‖‖bN‖
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Item (ii) implies that the entries of∆2
N are located into[0, x+∗ + ǫ]. for eachN large enough. Therefore,

for eachz ∈ K, it holds that
∥∥∥
(
∆2

N − zI
)−1

∆N

∥∥∥ ≤ 1

dist([0, x+∗ + ǫ],K)

The conclusion follows from the hypothesis that vectorsaN andbN satisfysupN (‖aN‖, ‖bN‖) < +∞.

(56) implies that the sequence of analytic functions(κN )N≥1 is a normal family . Therefore, it exists a

subsequence extracted from(κN )N≥1 that converges uniformly on each compact subset ofC− [0, x+∗ +ǫ]

towards a certain analytic functionκ∗. As (26) holds for eachz ∈ C+, functionκ∗ is identically zero. We

have thus shown that each converging subsequence extractedfrom (κN )N≥1 converges uniformly towards

0 on each compact subset ofC − [0, x+∗ + ǫ]. This, in turn, shows that the whole sequence converges

uniformly on each compact subset ofC − [0, x+∗ + ǫ] as expected.
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