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Abstract This paper studies the almost sure location of the eigenvalues of matrices WNW∗
N where WN =

(W
(1)T
N , . . . ,W

(M)T
N )T is a ML ×N block-line matrix whose block-lines (W

(m)
N )m=1,...,M are independent identi-

cally distributed L ×N Hankel matrices built from i.i.d. standard complex Gaussian sequences. It is shown that if

M → +∞ and ML
N → c∗ (c∗ ∈ (0,∞)), then the empirical eigenvalue distribution of WNW∗

N converges almost

surely towards the Marcenko-Pastur distribution. More importantly, it is established using the Haagerup-Schultz-

Thorbjornsen ideas that if L = O(Nα) with α < 2/3, then, almost surely, for N large enough, the eigenvalues of

WNW∗
N are located in the neighbourhood of the Marcenko-Pastur distribution. It is conjectured that the condition

α < 2/3 is optimal.

Keywords Singular value limit distribution of random complex Gaussian large block-Hankel matrices · almost

sure location of the singular values · Marcenko-Pastur distribution · Poincaré-Nash inequality · integration by parts

formula
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1 Introduction

1.1 The addressed problem and the results

In this paper, we consider independent identically distributed zero mean complex valued Gaussian random variables

(wm,n)m=1,...,M,n=1,...,N+L−1 such that E|wm,n|2 = σ2

N and E(w2
m,n) = 0 where M,N, L are integers. We define

the L×N matrices (W(m)
N )m=1,...,M as the Hankel matrices whose entries are given by

(

W
(m)
N

)

i,j
= wm,i+j−1, 1 ≤ i ≤ L, 1 ≤ j ≤ N (1.1)

and WN represents the ML×N matrix

WN =













W
(1)
N

W
(2)
N
...

W
(M)
N













(1.2)
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2 Philippe Loubaton

– the eigenvalue distribution of ML ×ML matrix WNW∗
N converges towards the Marcenko-Pastur distribution

when M → +∞ and when ML and N both converge towards +∞ in such a way that cN = ML
N satisfies cN → c∗

where 0 < c∗ < +∞
– more importantly, that if L = O(Nα) with α < 2/3, then, almost surely, for N large enough, the eigenvalues

WNW∗
N are located in the neighbourhood of the support of the Marcenko-Pastur distribution.

1.2 Motivation

This work is mainly motivated by detection/estimation problems of certain multivariate time series. Consider a

M–variate time series (yn)n∈Z given by

yn =
P−1
∑

p=0

apsn−p + vn = xn + vn (1.3)

where (sn)n∈Z represents a deterministic non observable scalar signal, (ap)p=0,...,P−1 are deterministic unknown

M–dimensional vectors and (vn)n∈Z represent i.i.d. zero mean complex Gaussian M–variate random vectors such

that E(vnv
∗
n) = σ2IM and E(vnv

T
n ) = 0 for each n. The first term of the righthandside of (1.3), that we denote by

xn, represents a "useful" non observable signal on which various kinds of informations have to be infered from the

observation of N consecutive samples (yn)n=1,...,N . Useful informations on (xn) may include:

– Presence versus absence of (xn), which is equivalent to a detection problem

– Estimation of vectors (ap)p=0,...,P−1

– Estimation of sequence (sn) from the observations

The reader may refer e.g. to [30], [25], [31], [1] for more information. A number of existing detection/estimation schemes

are based on the eigenvalues and eigenvectors of matrix
YLY

∗

L
N where YL is the block-Hankel ML × (N − L + 1)

matrix defined by

YL =













y1 y2 . . . . . . yN−L+1

y2 y3
. . .

. . . yN−L+2

...
. . .

. . .
. . .

...

yL yL+1 . . . . . . yN













and where L is an integer usually chosen greater than P . We notice that matrix YL is the sum of deterministic

matrix XL and random matrix VL both defined as YL. The behaviour of the above mentioned detection/estimation

schemes is easy to analyse when ML is fixed and N → +∞ because, in this asymptotic regime, it holds that

‖YLY
∗
L

N
−
(

XLX
∗
L

N
+ σ2IML

)

‖ → 0

where ‖A‖ represents the spectral norm of matrix A. However, this asymptotic regime may be unrealistic because

ML and N appear sometimes to be of the same order of magnitude. It is therefore of crucial interest to evaluate

the behaviour of the eigenvalues of matrix
YLY

∗

L
N when ML and N converge to +∞ at the same rate. Matrix

YL = XL + VL can be interpreted as an Information plus Noise model (see [13]) but in which the noise and the

information components are block-Hankel matrices. We believe that in order to understand the behaviour of the

eigenvalues of
YLY

∗

L
N , it is first quite useful to evaluate the eigenvalue distribution of the noise contribution, i.e.

VLV
∗

L
N , and to check whether its eigenvalues tend to be located in a compact interval. Hopefully, the behaviour

of the greatest eigenvalues of
YLY

∗

L
N may be obtained by adapting the approach of [7], at least if the rank of the

"Information" component XL is small enough w.r.t. ML.

It is clear that if we replace N by N + L − 1 in the definition of matrix VL, matrix WN is obtained from VL√
N

by row permutations. Therefore, matrices
VLV

∗

L
N and WNW∗

N have the same eigenvalues. The problem we study in

the paper is thus equivalent to the characterization of the eigenvalue distribution of the noise part of model YL.
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1.3 On the literature

Matrix WN can be interpreted as a block-line matrix with i.i.d. L ×N blocks (Wm
N )m=1...,M . Such random block

matrices have been studied in the past e.g. by Girko ([16], Chapter 16) as well as in [14] in the Gaussian case. Using

these results, it is easy to check that the eigenvalue distribution of WNW∗
N converges towards the Marcenko-Pastur

distribution when L is fixed. However, the case L→ +∞ and the almost sure location of the eigenvalues of WNW∗
N

around the support of the Marcenko-Pastur distribution cannot be addressed using the results of [16] and [14]. We

note that the L × N blocks (Wm)m=1...,M are Hankel matrices. We therefore also mention the works [21] and [6]

that are equivalent to the study of the eigenvalue distribution of symetric ML ×ML block matrices, each block

being a Toeplitz or a Hankel L × L matrix built from i.i.d. (possibly non Gaussian) entries. When L → +∞ while

M remains fixed, it has been shown using the moments method that the eigenvalue distribution of the above matri-

ces converge towards a non bounded limit distribution. This behaviour generalizes the results of [9] obtained when

M = 1. When M and L both converge to +∞, it is shown in [6] that the eigenvalue distribution converges towards

the semi-circle law. We however note that the almost sure location of the eigenvalues in the neighbourhood of the

support of the semi-circle law is not addressed in [6]. The behaviour of the singular value distribution of random

block Hankel matrix (1.2) was addressed in [5] when M = 1 and L
N → c∗ but when the w1,n for N < n < N +L are

forced to 0. The random variables w1,n are also non Gaussian and are possibly dependent in [5]. It is shown using the

moments method that the singular value distribution converges towards a non bounded limit distribution. The case

of block-Hankel matrices where both M and L converge towards ∞ considered in this paper thus appears simpler

because we show that the eigenvalue distribution of WNW∗
N converges towards the Marcenko-Pastur distribution.

This behaviour is not surprising in view of the convergence towards the semi-circle law proved in [6] when both the

number and the size of the blocks converge to ∞. As mentioned above, the main result of the present paper concerns

the almost sure location of the eigenvalues of WNW∗
N around the support of the Marcenko-Pastur distribution

under the extra-assumption that L = O(Nα) with α < 2/3. This kind of result is known for a long time for L = 1
in more general conditions (correlated non Gaussian entries, see e.g. [4] and the references therein). Haagerup and

Thorbjornsen introduced in [17] an efficient approach to address these issues in the context of random matrices built

on non commutative polynomials of complex Gaussian matrices. The approach of [17] has been generalized to the real

Gaussian case in [29], and used in [11], [22], [12] to address certain non zero mean random matrix models. We also

mention that the results of [17] have been recently generalized in [24] to polynomials of complex Gaussian random

matrices and deterministic matrices.

To our best knowledge, the existing literature does not allow to prove that the eigenvalues of WNW∗
N are located

in the neighbourhood of the bulk of the Marcenko-Pastur distribution. We finally notice that the proof of our main

result would have been quite standard if L was assumed fixed, and rather easy if it was assumed that L→ +∞ and
L
M → 0, a condition very close from L = O(Nα) for α < 1/2. However, the case 1/2 ≤ α < 2/3 needs much more

efforts. As explained below, we feel that 2/3 is the optimal limit.

1.4 Overview of the paper

We first state the main result of this paper.

Theorem 1.1 When M → +∞, and ML and N converge towards ∞ in such a way that cN = ML
N converges towards

c∗ ∈ (0,+∞), the eigenvalue distribution of WNW∗
N converges weakly almost surely towards the Marcenko-Pastur

distribution with parameters σ2, c∗. If moreover

L = O(Nα) (1.4)

where α < 2/3, then, for each ǫ > 0, almost surely for N large enough, all the eigenvalues of WNW∗
N are located

in the interval [σ2(1 − √
c∗)

2 − ǫ, σ2(1 +
√
c∗)

2 + ǫ] if c∗ ≤ 1. If c∗ > 1, almost surely for N large enough, 0 is

eigenvalue of WNW∗
N with multiplicity ML − N , and the N non zero eigenvalues of WNW∗

N are located in the

interval [σ2(1−√
c∗)

2 − ǫ, σ2(1 +
√
c∗)

2 + ǫ]

In order to prove the almost sure location of the eigenvalues of WNW∗
N , we follow the approach of [17] and [29].

We denote by tN (z) the Stieltjes transform associated to the Marcenko-Pastur distribution µσ2,cN with parameters

σ2, cN , i.e. the unique Stieltjes transform solution of the equation

tN (z) =
1

−z + σ2

1+σ2cN tN (z)

(1.5)
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or equivalently of the system

tN (z) =
−1

z
(

1 + σ2 t̃N (z)
) (1.6)

t̃N (z) =
−1

z (1 + σ2cN tN (z))
(1.7)

where t̃N (z) coincides with the Stieltjes transform of µσ2cN ,1/cN = cNµσ2,cN + (1− cN )δ0 where δ0 represents the

Dirac distribution at point 0. We denote by S(0)
N the interval

S(0)
N = [σ2(1−

√
cN )2, σ2(1 +

√
cN )2] (1.8)

and by SN the support of µσ2,cN . It is well known that SN is given by

SN = S(0)
N if cN ≤ 1 (1.9)

SN = S(0)
N ∪ {0} if cN > 1 (1.10)

Theorem 1.1 appears to be a consequence of the following identity:

E

[

1

ML
Tr
(

(

WNW∗
N − z IML

)−1
)

]

− tN (z) =
L

MN

(

ŝN (z) +
L3/2

MN
r̂N (z)

)

(1.11)

where ŝN (z) coincides with the Stieltjes transform of a distribution whose support is included into S(0
N and where

r̂N (z) is a function holomorphic in C
+ satisfying

|r̂N (z)| ≤ P1(|z|)P2 (1/Im(z)) (1.12)

for z ∈ F
(2)
N where F

(2)
N is a subset of C+ defined by

F
(2)
N = {z ∈ C

+,
L2

MN
Q1(|z|)Q2(1/Im(z)) ≤ 1} (1.13)

where P1, P2, Q1, Q2 are polynomials independent of the dimensions L,M,N with positive coefficients. We note that

(1.4) is nearly equivalent to L2

MN → 0 or L
M2 → 0 (in the sense that if α ≥ 2/3, then L2

MN does not converge towards

0), and that F
(2)
N appears arbitrary close from C

+ when N increases. The present paper is essentially devoted to the

proof of (1.11) under the assumption (1.4). For this, we study in the various sections the behaviour of the resolvent

QN (z) of matrix WNW∗
N defined by

QN (z) =
(

WNW∗
N − z IML

)−1
(1.14)

when z ∈ C
+. We use Gaussian tools (integration by parts formula and Poincaré-Nash inequality) as in [27] and [28]

for that purpose.

In section 2, we present some properties of certain useful operators which map matrices A into band Toeplitz

matrices whose elements depend on the sum of the elements of A on each diagonal. Using Poincaré-Nash inequality,

we evaluate in section 3 the variance of certain functional of QN (z) (normalized trace, quadratic forms, and quadratic

forms of the L×L matrix Q̂N (z) obtained as the mean of the M L× L diagonal blocks of QN (z)). In section 4, we

use the integration by parts formula in order to express E (QN (z)) as

E (QN (z)) = IM ⊗RN (z) + ∆N (z)

where RN (z) is a certain holomorphic CL×L valued function depending on a Toeplitzified version of E (QN (z)), and

where ∆N (z) is an error term. The goal of section 5 is to control functionals of the error term ∆N (z). We prove

that for each z ∈ C
+,

∣

∣

∣

∣

1

ML
Tr (∆N (z))

∣

∣

∣

∣

≤ L

MN
P1(|z|)P2 (1/Im(z)) (1.15)

for some polynomials P1 and P2 independent of L,M,N and that, if ∆̂N (z) represents the L× L matrix ∆̂N (z) =
1
M

∑M
m=1 ∆

m,m
N (z), then, it holds that

∣

∣

∣
b∗
1 ∆̂N (z)b2

∣

∣

∣
≤ L3/2

MN
P1(|z|)P2 (1/Im(z)) (1.16)
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for deterministic unit norm L–dimensional vectors b1 and b2. In section 6, we prove that

E

[

1

ML
Tr (QN (z))

]

− tN (z) → 0 (1.17)

for each z ∈ C
+, a property which implies that the eigenvalue distribution of WNW∗

N converges towards the

Marcenko-Pastur distribution. We note that (1.17) holds as soon asM → +∞. At this stage, however, the convergence

rate of the lefthandside of (1.17) is not precised. Under the condition L3/2

MN → 0 (which implies that quadratic forms

of ∆̂N (z) converge towards 0, see (1.16)), we prove in section 8 that

E

[

1

ML
Tr
(

(

WNW∗
N − z IML

)−1
)

]

− tN (z) =
L

MN
r̃N (z) (1.18)

where r̃N (z) is holomorphic in C
+ and satisfies

|r̃N (z)| ≤ P1(|z|)P2(1/Imz)

for each z ∈ F
(3/2)
N , where F

(3/2)
N is defined as F

(2)
N (see (1.13)), but when L2

MN is replaced by L3/2

MN . In order to

establish (1.18), it is proved in section 7 that the spectral norm of a Toeplitzified version of matrix RN (z)− tN (z) IL

is upperbounded by a term such as L3/2

MN P1(|z|)P2 (1/Im(z)). (1.18) and Lemma 5.5.5 of [2] would allow to establish

quite easily the almost sure location of the eigenvalues of WNW∗
N under the hypothesis L

M → 0. However, this

condition is very restrictive, and, at least intuitively, somewhat similar to L fixed. In section 9, we establish that

under condition (1.4), which is very close from the condition L2

MN → 0, or L
M2 → 0, function r̃N (z) can be written

as r̃N (z) = ŝN (z) + L3/2

MN r̂N (z) where ŝN (z) and r̂N (z) verify the conditions of (1.11). We first prove that

E

[

1

ML
Tr (QN (z)− IM ⊗RN (z))

]

=
L

MN

(

sN (z) +
L

MN
rN (z)

)

(1.19)

where sN (z) and rN (z) satisfy the same properties than ŝN (z) and r̂N (z). For this, we compute explicitely sN (z),

and verify that it coincides with the Stieltjes transform of a distribution whose support is included into S(0)
N . The

most technical part of the paper is to establish that

E

[

1

ML
Tr (QN (z)− IM ⊗RN (z))

]

− L

MN
sN (z) (1.20)

converges towards 0 at rate
(

L
MN

)2
. For this, the condition L2

MN → 0 appears to be fundamental because it allows,

among others, to control the behaviour of the solutions of L–dimensional linear systems obtained by inverting the

sum of a diagonal matrix with a matrix with O( L
MN ) entries. Using the results of section 7 concerning the spectral

norm of a Toeplitzified version of RN (z) − tN (z) IL, we obtain easily (1.11) from(1.19). Theorem 1.1 is finally

established in section 10. For this, we follow [17], [29] and [2] (Lemma 5-5-5). We consider a smooth approximation φ

of 1[σ2(1−√
c∗)2−ǫ,σ2(1+

√
c∗)2+ǫ](c) that vanishes on S(0)

N for each N large enough, and establish that almost surely,

Tr
(

φ(WNW∗
N )
)

= NO(
L5/2

(MN)2
) + [ML−N ]+ = O

(

(
L

M2
)3/2

)

+ [ML−N ]+ (1.21)

(1.4) implies that L
M2 → 0 and that the righthandside of (1.21) converges towards [ML−N ]+ almost surely. This,

in turn, establishes that the number of non zero eigenvalues of WNW∗
N that are located outside [σ2(1 − √

c∗)2 −
ǫ, σ2(1 +

√
c∗)2 + ǫ] converges towards zero almost surely, and is thus equal to 0 for N large enough as expected.

We have not proved that this property does not hold if L = O(Nα) with α ≥ 2/3. We however mention that the

hypothesis α < 2/3 is used at various crucial independent steps:

– it is used extensively to establish that (1.20) converges towards 0 at rate
(

L
MN

)2

– it is nearly equivalent to the condition L2

MN → 0 or L
M2 → 0 which implies

– that the set F
(2)
N defined by (1.13)) is arbitrarily close from C

+, a property that appears necessary to generalize

Lemma 5-5-5 of [2]

– that the righthandside of (1.21) converges towards [ML−N ]+
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Table 1.1 Empirical mean of the largest eigenvalue versus L/M2

L/M2 2−11 2−8 2−5 1/4

λ1,N 2.91 2.92 2.94 3

We therefore suspect that the almost sure location of the eigenvalues of WNW∗
N cannot be established using the

approach of [17] and [29] if α ≥ 2/3. It would be interesting to study the potential of combinatorial methods in

order to be fully convinced that the almost sure location of the eigenvalues of WNW∗
N does not hold if α ≥ 2/3.

We finally mention that we have performed numerical simulations to check whether it is reasonable to conjecture

that the almost sure location property of the eigenvalues of WNW∗
N holds if and only if α < 2/3. For this, we

have generated 10.000 independent realizations of the largest eigenvalue λ1,N of WNW∗
N for σ2 = 1, N = 214,

cN =ML/N = 1/2 and for the following values of (M,L) that seem to be in accordance with the asymptotic regime

considered in this paper: (M,L) = (28, 25), (M,L) = (27, 26), (M,L) = (26, 27), (M,L) = (25, 28), corresponding

to ratios L
M2 equal respectively to 2−11, 2−8, 2−5, and 1/4. As condition α < 2/3 is nearly equivalent to L

M2 → 0,
the first 3 values of (M,L) are in accordance with the asymptotic regime L = O(Nα) with α < 2/3 while it is of

course not the case for the last configuration. The almost sure location property of course implies that the largest

eigenvalue converges towards (1+
√
c∗)2. In order to check this property, we have evaluated the empirical mean λ1,N

of the 10.000 realizations of λ1,N , and compared λ1,N with (1 +
√

1/2)2 ≃ 2.91.

The values of λ1,N in terms of L
M2 are presented in Table 1.1. It is seen that the difference between λ1,N and

(1 +
√

1/2)2 ≃ 2.91 increases significantly with the ratio L
M2 , thus suggesting that λ1,N does not converge almost

surely towards (1 +
√
c∗)2 when L

M2 does not converge towards 0.

1.5 General notations and definitions

Assumptions on L,M,N

Assumption 1.1 – All along the paper, we assume that L,M,N satisfy M → +∞, N → +∞ in such a way that

cN = ML
N → c∗, where 0 < c∗ < +∞. In order to short the notations, N → +∞ should be understood as the

above asymptotic regime.

– In sections 7 and 8, L,M,N also satisfy L3/2

MN → 0 or equivalently L
M4 → 0.

– In sections 9 and 10, the extra condition L = O(Nα) with α < 2/3 holds.

In the following, we will often drop the index N , and will denote WN , tN ,QN , . . . by W, t,Q, . . . in order to short

the notations. The N columns of matrix W are denoted (wj)j=1,...,N . For 1 ≤ l ≤ L, 1 ≤ m ≤ M , and 1 ≤ j ≤ N ,

Wm
i,j represents the entry (i+ (m− 1)L, j) of matrix W.

C∞(R) (resp. C∞b (R), C∞c (R)) denotes the space of all real-valued smooth functions (resp. bounded smooth func-

tions, smooth functions with compact support) defined on R.

If A is a ML×ML matrix, we denote by Am1,m2

i1,i2
the entry (i1 +(m1 − 1)L, i2 +(m2 − 1)L) of matrix A, while

Am1,m2 represents the L× L matrix (Am1,m2

i1,i2
)1≤(i1,i2)≤L. We also denote by Â the L× L matrix defined by

Â =
1

M

M
∑

m=1

Am,m (1.22)

For each 1 ≤ i ≤ L and 1 ≤ m ≤ M , fmi represents the vector of the canonical basis of CML whose non zero

component is located at index i+ (m− 1)L. If 1 ≤ j ≤ N , ej is the jth-vector of the canonical basis of CN .

If A and B are 2 matrices, A ⊗ B represents the Kronecker product of A and B, i.e. the block matrix whose

block (i, j) is Ai,j B. ‖A‖ represents the spectral norm of matrix A.

If x ∈ R, [x]+ represents max(x,0). C+ denotes the set of complex numbers with strictly positive imaginary

parts. The conjuguate of a complex number z is denoted z∗ or z depending on the context. Unless otherwise stated, z

represents an element of C+. If A is a square matrix, Re(A) and Im(A) represent the Hermitian matrices Re(A) =
A+A

∗

2 and Im(A) = A−A
∗

2i respectively.

If (AN )N≥1 (resp. (bN )N≥1) is a sequence of matrices (resp. vectors) whose dimensions increase with N ,

(AN )N≥1 (resp. (bN )N≥1) is said to be uniformly bounded if supN≥1 ‖AN‖ < +∞ (resp. supN≥1 ‖bN‖ < +∞).
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If x is a complex-valued random variable, the variance of x, denoted by Var(x), is defined by

Var(x) = E(|x|2)− |E(x)|2

The zero-mean random variable x− E(x) is denoted x◦.
Nice constants and nice polynomials. A nice constant is a positive constant independent of the dimensions

L,M,N and complex variable z. A nice polynomial is a polynomial whose degree is independent from L,M,N , and

whose coefficients are nice constants. In the following, P1 and P2 will represent generic nice polynomials whose values

may change from one line to another, and C(z) is a generic term of the form C(z) = P1(|z|)P2(1/Imz).
Properties of matrix Q(z). We recall that Q(z) verifies the so-called resolvent identity

Q(z) = − IML

z
+

1

z
Q(z)WW∗ (1.23)

and that it holds that

Q(z)Q∗(z) ≤ IML

(Imz)2
(1.24)

and that

‖Q(z)‖ ≤ 1

Im(z)
(1.25)

for z ∈ C
+. We also mention that

Im(Q(z)) > 0, Im(zQ(z)) > 0, ifz ∈ C
+ (1.26)

Gaussian tools. We present the versions of the integration by parts formula (see Eq. (2.1.42) p. 40 in [28] for

the real case and Eq. (17) in [19] for the present complex case) and of the Poincaré-Nash (see Proposition 2.1.6 in

[28] for the real case and Eq. (18) in [19] for the complex case) that we use in this paper.

Proposition 1.1 Integration by parts formula. Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random vector

such that E[ξ] = 0, E[ξξT ] = 0 and E[ξξ∗] = Ω. If Γ : (ξ) 7→ Γ (ξ, ξ) is a C1 complex function polynomially bounded

together with its derivatives, then

E[ξpΓ (ξ)] =
K
∑

m=1

ΩpmE

[

∂Γ (ξ)

∂ξm

]

. (1.27)

Proposition 1.2 Poincaré-Nash inequality. Let ξ = [ξ1, . . . , ξK ]T be a complex Gaussian random vector such

that E[ξ] = 0, E[ξξT ] = 0 and E[ξξ∗] = Ω. If Γ : (ξ) 7→ Γ (ξ, ξ) is a C1 complex function polynomially bounded

together with its derivatives, then, noting ∇ξΓ = [ ∂Γ∂ξ1 , . . . ,
∂Γ
∂ξK

]T and ∇
ξ
Γ = [ ∂Γ

∂ξ1

, . . . , ∂Γ
∂ξK

]T ,

Var(Γ (ξ)) ≤ E

[

∇ξΓ (ξ)T Ω ∇ξΓ (ξ)
]

+ E

[

∇
ξ
Γ (ξ)∗ Ω ∇

ξ
Γ (ξ)

]

(1.28)

The above two propositions are used below in the case where ξ coincides with the LMN–dimensional vector

vec(WN ). In the following, the particular structure Wm
i,j = wm,i+j−1 of WN is encoded by the correlation structure

of the entries of WN :

E

(

Wm1

i1,j1
W

m2

i2,j2

)

=
σ2

N
δ(i1 − i2 = j2 − j1) δ(m1 = m2) (1.29)

A useful property of the Stieltjes transform tN (z) of the Marcenko-Pastur µσ2,cN .

The following lemma is more or less known. A proof is provided in the Appendix of [23] for the reader’s convenience.

Lemma 1.1 It holds that

σ4cN |ztN (z)t̃N (z)|2 < 1 (1.30)

for each z ∈ C
+. Moreover, for each N and for each z ∈ C

+, it holds that

1− σ4cN |ztN (z)t̃N (z)|2 > C
(Imz)4

(η2 + |z|2)2 (1.31)

for some nice constants C and η. Finally, for each N , it holds that

(

1− σ4cN |zt(z)t̃(z)|2
)−1

≤ C max

(

1,
1

(dist(z,S(0)
N ))2

)

(1.32)

for some nice constant C and for each z ∈ C − S(0)
N .
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2 Preliminaries

In this section, we introduce certain Toeplitzification operators, and establish some useful related properties.

Definition 2.1 – If A is a K ×K Toeplitz matrix, we denote by (A(k))k=−(K−1),...,K−1 the sequence such that

Ak,l = A(k − l).
– For any integer K, JK is the K × K “shift” matrix defined by (JK)i,j = δ(j − i = 1). In order to short the

notations, matrix J∗
K is denoted J−1

K , although JK is of course not invertible.

– For any PK×PK block matrix A withK×K blocks (Ap1,p2)1≤(p1,p2)≤P , we define (τ (P )(A)(k))k=−(K−1),...,K−1

as the sequence

τ (P )(A)(k) =
1

PK
Tr
[

A(IP ⊗ Jk
K)
]

=
1

PK

∑

i−j=k

P
∑

p=1

A
(p,p)
i,j =

1

PK

P
∑

p=1

K
∑

u=1

Ap,p
k+u,u 11≤k+u≤K (2.1)

– For any PK × PK block matrix A and for 2 integers R and Q such that R ≥ Q and Q ≤ K, matrix T (P )
R,Q(A)

represents the R ×R Toeplitz matrix given by

T (P )
R,Q(A) =

Q−1
∑

q=−(Q−1)

τ (P )(A)(q) J∗q
R (2.2)

In other words, for (i, j) ∈ {1, 2, . . . , R}, it holds that

(

T (P )
R,Q(A)

)

i,j
= τ (P )(A)(i− j) 1|i−j|≤Q−1 (2.3)

When P = 1, sequence (τ (1)(A)(k))k=−(K−1),...,K−1 and matrix T (1)
R,Q(A) are denoted (τ(A)(k))k=−(K−1),...,K−1

and matrix TR,Q(A) in order to simplify the notations. We note that if A is a PK × PK block matrix, then,

sequence (τ (P )(A)(k))k=−(K−1),...,K−1 coincides with sequence
(

τ
(

Â
)

(k)
)

k=−(K−1),...,K−1
where we recall

that Â = 1
P

∑P
p=1 A

p,p; matrix T (P )
R,Q(A) is equal to TR,Q(Â).

The reader may check that the following straightforward identities hold:

– If A is a R×R Toeplitz matrix, for any R×R matrix B, it holds that

1

R
Tr(AB) =

R−1
∑

k=−(R−1)

A(−k)τ(B)(k) =
1

R
Tr
(

ATR,R(B)
)

(2.4)

– If A and B are both R×R matrices, and if Q ≤ R, then,

1

R
Tr
(

TR,Q(A)B
)

=

Q−1
∑

q=−(Q−1)

τ(A)(−q) τ(B)(q) =
1

R
Tr
(

ATR,Q(B)
)

(2.5)

– If A is a PK × PK matrix, if B is a R ×R matrix, and if R ≥ Q and Q ≤ K, then it holds that

1

R
Tr
(

BT (P )
R,Q(A)

)

=

Q−1
∑

k=−(Q−1)

τ(B)(k) τ (P )(A)(−k) = 1

PK
Tr
((

IM ⊗ TK,Q(B)
)

A
)

(2.6)

– If C is a PK × PK matrix, B is a K ×K matrix and D,E R×R matrices with K ≤ R, then, it holds that

1

K
Tr
[

BTK,K

(

DT (P )
R,K(C)E

)]

=
1

PK
Tr
[

C
(

IP ⊗ TK,K [ETR,K(B)D]
)]

(2.7)

We now establish useful properties of matrix T (P )
R,Q(A).
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Proposition 2.1 If A is a PK × PK matrix, then, for each integer R ≥ K, it holds that

∥

∥

∥
T (P )
R,K(A)

∥

∥

∥
≤ sup

ν∈[0,1]

∣

∣

∣

∣

∣

aK(ν)∗
(

1

P

P
∑

p=1

Ap,p

)

aK(ν)

∣

∣

∣

∣

∣

≤ ‖A‖ (2.8)

where aK(ν) represents the K–dimensional vector defined by

aK(ν) =
1√
K

(

1, e2iπν , . . . , e2iπ(K−1)ν
)T

(2.9)

If A is a K ×K matrix and if R ≤ K, then, it holds that

∥

∥TR,R(A)
∥

∥ ≤ sup
ν∈[0,1]

∣

∣aK(ν)∗AaK(ν)
∣

∣ ≤ ‖A‖ (2.10)

Proof. We first establish (2.8). As R ≥ K, matrix T (P )
R,K(A) is a submatrix of the infinite band Toeplitz matrix with

(i, j) elements τ (P )(A)(i − j)1|i−j|≤K−1. The norm of this matrix is known to be equal to the L∞ norm of the

corresponding symbol (see [8], Eq. (1-14), p. 10). Therefore, it holds that

‖T (P )
R,K(A)‖ ≤ sup

ν∈[0,1]

∣

∣

∣

∣

∣

∣

K−1
∑

k=−(K−1)

τ (P )(A)(k)e−2iπkν

∣

∣

∣

∣

∣

∣

We now verify the following useful identity:

K−1
∑

k=−(K−1)

τ (P )(A)(k)e−2iπkν = aK(ν)∗
(

1

P

P
∑

p=1

A(p,p)

)

aK(ν) (2.11)

Using the definition (2.1) of τ (P )(A)(k), the term
∑K−1

k=−(K−1) τ
(P )(A)(k)e−2iπkν can also be written as

K−1
∑

k=−(K−1)

τ (P )(A)(k)e−2iπkν =
1

K

K−1
∑

k=−(K−1)

Tr

((

1

P

P
∑

p=1

A(p,p)

)

e−2iπkνJk
K

)

or equivalently as

Tr





(

1

P

P
∑

p=1

A(p,p)

)

1

K





K−1
∑

k=−(K−1)

e−2iπkνJk
K









It is easily seen that

1

K





K−1
∑

k=−(K−1)

e−2iπkνJk
K



 = aK(ν)aK(ν)∗

from which (2.11) and (2.8) follow immediately.

In order to justify (2.10), we remark that R ≤ K implies that TR,R(A) is a submatrix of TK,K(A) whose norm

is bounded by supν |aK(ν)∗AaK(ν)| by (2.8).

We also prove that the operators T preserve the positivity of matrices.

Proposition 2.2 If A is a PK × PK positive definite matrix, then, for each integer R ≥ K, it holds that

T (P )
R,K(A) > 0 (2.12)

If A is a K ×K positive definite matrix and if R ≤ K, then, it holds that

TR,R(A) > 0 (2.13)
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Proof. We first prove (2.12). (2.11) implies that

K−1
∑

k=−(K−1)

τ (P )(A)(k)e−2iπkν > 0

for each ν. (τ (P )(A)(k))k=−(K−1),...,K−1 thus coincide the Fourier coefficients of a positive function. Elementary

results related the trigonometric moment problem (see e.g. [18], 1.11 (a)) imply that for each R ≥ K, matrix T (P )
R,K(A)

is positive definite. We finally justify (2.13). As R ≤ K, matrix TR,R(A) is a submatrix of TK,K(A) which is positive

definite by (2.12).

We finally give the following useful result proved in the Appendix.

Proposition 2.3 If A is a K ×K matrix and if R ≥ K, then, it holds that

TR,K(A)
(

TR,K(A)
)∗ ≤ TR,K(AA∗) (2.14)

If A is a K ×K matrix and if R ≤ K, then

TR,R(A)
(

TR,R(A)
)∗ ≤ TR,R(AA∗) (2.15)

3 Poincaré-Nash variance evaluations

In this section, we take benefit of the Poincaré-Nash inequality to evaluate the variance of certain important terms.

In particular, we prove the following useful result.

Proposition 3.1 Let A be a deterministic ML × ML matrix for which supN ‖A‖ ≤ κ, and consider 2 ML–

dimensional deterministic vectors a1,a2 such that supN ‖ai‖ ≤ κ for i = 1, 2 as well as 2 L–dimensional deterministic

vectors b1,b2 such that supN ‖bi‖ ≤ κ for i = 1, 2. Then, for each z ∈ C
+, it holds that

Var

(

1

ML
Tr (AQ(z))

)

≤ C(z) κ2
1

MN
(3.1)

Var
(

a∗1Q(z)a2
)

≤ C(z) κ4
L

N
(3.2)

Var

(

b∗
1

[

1

M

M
∑

m=1

(Q(z))
m,m

]

b2

)

≤ C(z) κ4
L

MN
(3.3)

where C(z) can be written as C(z) = P1(|z|)P2

(

1
Im(z)

)

for some nice polynomials P1 and P2. Moreover, if G is a

N ×N deterministic matrix verifying supN ‖G‖ ≤ κ, the following evaluations hold:

Var

(

1

ML
Tr
(

AQ(z)WGW∗)
)

≤ C(z) κ4
1

MN
(3.4)

Var
(

a∗1Q(z)WGW∗a2
)

≤ C(z) κ6
L

N
(3.5)

Var

(

b∗
1

[

1

M

M
∑

m=1

(

Q(z)WGW∗)m,m

]

b2

)

≤ C(z) κ6
L

MN
(3.6)

where C(z) can be written as above.

Proof. We first establish (3.1) and denote by ξ the random variable ξ = 1
MLTr (AQ(z)). As the various entries of 2

different blocks Wm1 ,Wm2 are independent, the Poincaré-Nash inequality can be written as

Var ξ ≤
∑

m,i1,i2,j1,j2

E

[(

∂ξ

∂W
m
i1,j1

)∗

E

(

Wm
i1,j1W

m
i2,j2

)

∂ξ

∂W
m
i2,j2

]

+ (3.7)

∑

m,i1,i2,j1,j2

E

[

∂ξ

∂Wm
i1,j1

E

(

Wm
i1,j1W

m
i2,j2

)

(

∂ξ

∂Wm
i2,j2

)∗]

(3.8)
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In the following, we just evaluate the right hand side of (3.7), denoted by β, because the behaviour of the term defined

by (3.8) can be established similarly. It is easy to check that

∂Q

∂W
m
i,j

= −QWej(f
m
i )TQ

so that
∂ξ

∂W
m
i,j

= − 1

ML
Tr
(

AQWej(f
m
i )TQ

)

which can also be written − 1
ML (f

m
i )TQAQWej . We recall that E

(

Wm
i1,j1W

m
i2,j2

)

= σ2

N δ(i1 − i2 = j2 − j1) (see

(1.29)). Therefore, β is equal to the mathematical expectation of the term

1

(ML)2
σ2

N

∑

m,i1,i2,j1,j2

δ(j2 − j1 = i1 − i2)e
T
j1W

∗Q∗A∗Q∗fmi1 (f
m
i2 )

TQAQWej2

We put u = i1 − i2 and remark that
∑

m,i1−i2=u fmi1 (f
m
i2 )

T = IM ⊗ J∗u
L . We thus obtain that

β =
1

(ML)2
σ2

N
E





L−1
∑

u=−(L−1)

∑

j2−j1=u

eTj1W
∗Q∗A∗Q∗(IM ⊗ J∗u

L )QAQWej2





Using that
∑

j2−j1=u ej2e
T
j1 = J∗u

N , we get that

β =
1

ML

σ2

N
E





L−1
∑

u=−(L−1)

1

ML
Tr
(

QAQWJ∗u
N W∗Q∗A∗Q∗(IM ⊗ J∗u

L )
)





If B is a ML×N matrix, the Schwartz inequality as well as the inequality (xy)1/2 ≤ 1/2(x+ y) lead to

∣

∣

∣

∣

1

ML
Tr
(

BJ∗u
N B∗(IM ⊗ J∗u

L )
)

∣

∣

∣

∣

≤ 1

2ML
Tr
(

BJ∗u
N Ju

NB∗)+
1

2ML
Tr
(

B∗(IM ⊗ J∗u
L Ju

L)B
)

It is clear that matrices J∗u
N Ju

N and J∗u
L Ju

L are less than IN and IL respectively. Therefore,

∣

∣

∣

∣

1

ML
Tr
(

BJ∗u
N B∗(IM ⊗ J∗u

L )
)

∣

∣

∣

∣

≤ 1

ML
Tr
(

BB∗) (3.9)

Using (3.9) for B = QAQW for each u leads to

β ≤ σ2

MN
E

[

1

ML
Tr
(

QAQWW∗Q∗A∗Q∗)
]

The resolvent identity (1.23) can also be written as QWW∗ = I + zQ. This implies that the greatest eigenvalue

of QWW∗Q∗ coincides with the greatest eigenvalue of (I + zQ)Q∗ which is itself less than ‖Q‖ + |z|‖Q‖2. As

‖Q‖ ≤ 1
Imz , we obtain that

QWW∗Q∗ ≤ 1

Imz

(

1 +
|z|
Imz

)

I. (3.10)

Therefore, it holds that

β ≤ 1

Imz

(

1 +
|z|
Imz

)

1

MN
E

[

1

ML
Tr
(

QAA∗Q∗)
]

(3.11)

We eventually obtain that

β ≤ κ2
1

MN
C(z)

1

(Imz)3

(

1 +
|z|
Imz

)

The conclusion follows from the observation that

1

(Imz)3

(

1 +
|z|
Imz

)

≤
[

1

(Imz)3
+

1

(Imz)4

]

(|z|+ 1)
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In order to prove (3.2) and (3.3), we remark that

a∗1 Qa2 = ML
1

ML
Tr
(

Qa2a
∗
1

)

b∗
1

[

1

M

M
∑

m=1

(Q(z))
m,m

]

b2 = L
1

ML
Tr
(

Q(IM ⊗ b2b
∗
1)
)

(3.2) and (3.3) follow immediately from this and inequality (3.11) used in the case A = a2a
∗
1 and A = IM ⊗ b2b

∗
1

respectively.

We finally provide a sketch of proof of (3.4), and omit the proof of (3.6) and (3.5) which can be obtained as above.

We still denote by ξ the random variable ξ = 1
MLTr (Q(z)WGW∗), and only evaluate the behaviour of the right

hand side β of (3.7). After easy calculations using tricks similar to those used in the course of the proof of (3.1), we

obtain that

β ≤ 2σ2

MN
E

[

1

ML
Tr
(

QWGW∗AQWW∗Q∗A∗WG∗W∗Q∗)
]

+ (3.12)

2σ2

MN
E

[

1

ML
Tr
(

G∗W∗Q∗A∗AQWG
)

]

(3.13)

The term defined by (3.13) is easy to handle because Q∗A∗AQ ≤ κ2

(Im(z))2 I. Therefore, (3.13) is less than

2σ2κ2

(Im(z))2
1

MN E

[

1
MLTr (WGG∗W∗)

]

which is itself lower bounded by 1
MN

2σ4κ4

(Im(z))2 because E

(

1
MLTr(WW∗)

)

=

σ2. To evaluate the righthandside of (3.12), we use (3.10) twice, and obtain immediately that is less than
C(z)κ4

MN .

4 Expression of matrix E(Q) obtained using the integration by parts formula

In this section, we use the integration by parts formula in order to express E (Q(z)) as a term which will appear to be

close from t(z)IML where we recall that t(z) represents the Stieltjes transform of the Marcenko-Pastur distribution

µσ2,cN . For this, we have first to introduce useful matrix valued functions of the complex variable z and to study

their properties.

Lemma 4.1 For each z ∈ C
+, matrix IN + σ2cNT (M)

N,L (E(Q(z))) is invertible. We denote by H(z) its inverse, i.e.

H(z) =
[

IN + σ2cNT (M)
N,L (E(Q(z)))

]−1
(4.1)

Then, function z → H(z) is holomorphic in C
+ and verifies

H(z)H(z)∗ ≤
(

|z|
Imz

)2

IN (4.2)

Moreover, for each z ∈ C
+, matrix −z I+ σ2 TL,L (H(z)) is invertible. We denote by R(z) its inverse, i.e.

R(z) =
[

−zIL + σ2TL,L(H(z))
]−1

(4.3)

Then, function z → R(z) is holomorphic in C
+, and it exists a positive matrix valued measure µR carried by R

+,

satisfying µR(R+) = IL, and for which

R(z) =

∫

R+

dµR(λ)

λ− z

Finally, it holds that

R(z)R(z)∗ ≤
(

1

Imz

)2

IL (4.4)
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Proof. The proof is sketched in the appendix.

In order to be able the integration by parts formula, we use the identity (1.23) which implies that

E

[

Qm1,m2

i1,i2

]

= −1

z
δ(i1 − i2)δ(m1 −m2) +

1

z
E

[

(

QWW∗)m1,m2

i1,i2

]

(4.5)

We express (QWW∗)m1,m2

i1,i2
as

(

QWW∗)m1,m2

i1,i2
=

N
∑

j=1

(

Qwjw
∗
j

)m1,m2

i1,i2
=

N
∑

j=1

(Qwj)
m1

i1
W

m2

i2,j

where we recall that (wj)j=1,...,N represent the columns of W. In order to be able to evaluate E
[

(

Qwjw
∗
j

)m1,m2

i1,i2

]

, it

is necessary to express E
[

(

Qwkw
∗
j

)m1,m2

i1,i2

]

= E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

for each pair (k, j). For this, we use the identity

E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

=
∑

i3,m3

E

(

Qm1,m3

i1,i3
Wm3

i3,k
W

m2

i2,j

)

and use the integration by parts formula

E

(

Qm1,m3

i1,i3
Wm3

i3,k
W

m2

i2,j

)

=
∑

i′ ,j′

E

(

Wm3

i3,k
W

m3

i′ ,j′

)

E





∂
(

Qm1,m3

i1,i3
W

m2

i2,j

)

∂W
m3

i′ ,j′





It is easy to check that

∂
(

Qm1,m3

i1,i3
W

m2

i2,j

)

∂W
m3

i′ ,j′
= Qm1,m3

i1,i3
δ(m2 = m3)δ(i

′

= i2)δ(j = j
′

)−
(

Qwj′

)m1

i1
Qm3,m3

i′ ,i3
W

m2

i2,j

(1.1) implies that E
(

Wm3

i3,k
W

m3

i′ ,j′

)

= σ2

N δ(i3 − i
′

= j
′ − k). Therefore, we obtain that

E

(

Qm1,m3

i1,i3
Wm3

i3,k
W

m2

i2,j

)

=
σ2

N
δ(i3 − i2 = j − k)δ(m2 = m3)E

(

Qm1,m3

i1,i3

)

− σ2

N

∑

i′ ,j′

δ(i3 − i
′

= j
′

− k) E

[

(

Qwj′

)m1

i1

(

w∗
j

)m2

i2
Qm3,m3

i′ ,i3

]

and that

E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

=
σ2

N

∑

i3,m3

δ(i3 − i2 = j − k)δ(m2 = m3)E
(

Qm1,m3

i1,i3

)

− σ2

N

∑

i3,m3

∑

i′ ,j′

δ(i3 − i
′

= j
′

− k) E

[

(

Qwj′

)m1

i1

(

w∗
j

)m2

i2
Qm3,m3

i′ ,i3

]

We put i = i
′

− i3 in the above sum, and get that

E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

=
σ2

N
E

(

Qm1,m2

i1,i2−(k−j)

)

11≤i2−(k−j)≤L

− σ2cN

L−1
∑

i=−(L−1)

11≤k−i≤N E



(Qwk−i)
m1

i1

(

w∗
j

)m2

i2

1

ML

∑

i′−i3=i

∑

m3

Qm3,m3

i′ ,i3





or, using the definition (2.1),

E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

=
σ2

N
E

(

Qm1,m2

i1,i2−(k−j)

)

11≤i2−(k−j)≤L (4.6)

− σ2cN

L−1
∑

i=−(L−1)

11≤k−i≤N E

[

τ (M)(Q)(i) (Qwk−i)
m1

i1

(

w∗
j

)m2

i2

]
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Setting u = k − i, the second term of the righthandside of the above equation can also be written as

− σ2cNE

[

N
∑

u=1

τ (M)(Q)(k − u)1−(L−1)≤k−u≤L−1 (Qwu)
m1

i1

(

w∗
j

)m2

i2

]

or, using the observation that τ (M)(Q)(k − u)1−(L−1)≤k−u≤L−1 =
(

T (M)
N,L (Q)

)

k,u
(see Eq. (2.3)), as

− σ2cN E













eTk T (M)
N,L (Q)













(Qw1)
m1

i1

(

w∗
j

)m2

i2
(Qw2)

m1

i1

(

w∗
j

)m2

i2
...

(QwN )m1

i1

(

w∗
j

)m2

i2

























We express matrix Q as Q = E(Q) +Q◦ and define the following N ×N matrices Am1,m2

i1,i2
,Bm1,m2

i1,i2
,Υm1,m2

i1,i2

(

Am1,m2

i1,i2

)

k,j
= E

[

(Qwk)
m1

i1

(

w∗
j

)m2

i2

]

(

Bm1,m2

i1,i2

)

k,j
= E

[

Qm1,m2

i1,i2−(k−j)11≤i2−(k−j)≤L

]

Υ
m1,m2

i1,i2
= −σ2cN E











T (M)
N,L (Q◦)











(Qw1)
m1

i1
(Qw2)

m1

i1
...

(QwN )m1

i1











(

(w∗
1)

m2

i2
(w∗

2)
m2

i2
. . . (w∗

N )m2

i2

)











We notice that matrix




















(Qw1)
m1

i1
(Qw2)

m1

i1
...

(QwN )m1

i1











(

(

wH
1

)m2

i2

(

wH
2

)m2

i2
. . .
(

wH
N

)m2

i2

)











can also be written as






wT
1 QT

...

wT
NQT







(

fm1

i1

) (

fm2

i2

)T
(w1, . . . ,wN )

or as

WTQT (fm1

i1

) (

fm2

i2

)T
W

Therefore,

Υ
m1,m2

i1,i2
= −σ2cN E

[

T (M)
N,L (Q◦) WTQT (fm1

i1

) (

fm2

i2

)T
W
]

(4.7)

It is useful to notice that matrix Bm1,m2

i1,i2
is a band Toeplitz matrix whose (k, l) element is zero if |k − l| ≥ L. It is

clear that Eq. (4.6) is equivalent to

[

IN + σ2cNT (M)
N,L (E(Q))

]

Am1,m2

i1,i2
=
σ2

N
Bm1,m2

i1,i2
+ Υ

m1,m2

i1,i2

Lemma 4.1 implies that matrix
[

IN + σ2cNT (M)
N,L (E(Q(z)))

]

is invertible for each z ∈ C
+, and we recall that its

inverse is denoted H(z). We obtain that

Am1,m2

i1,i2
=
σ2

N
H Bm1,m2

i1,i2
+ HΥ

m1,m2

i1,i2
(4.8)

The term E (QWW∗)m1,m2

i1,i2
coincides with Tr

(

Am1,m2

i1,i2

)

, so that

E

(

QWW∗)m1,m2

i1,i2
= σ2

1

N
Tr
(

H Bm1,m2

i1,i2

)

+ Tr
(

H Υ
m1,m2

i1,i2

)

(4.9)
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As matrix Bm1,m2

i1,i2
is Toeplitz, it holds that (see Eq. (2.4))

1

N
Tr
(

H Bm1,m2

i1,i2

)

=
N−1
∑

u=−(N−1)

τ(H)(u)E
(

Qm1,m2

i1,i2+u

)

11≤i2+u≤L

which also coincides with

1

N
Tr
(

H Bm1,m2

i1,i2

)

=
L−1
∑

u=−(L−1)

τ(H)(u)E
(

Qm1,m2

i1,i2+u

)

11≤i2+u≤L

because 11≤i2+u≤L = 0 if |u| ≥ L. Setting v = i2 + u, this term can be written as

1

N
Tr
(

H Bm1,m2

i1,i2

)

=
L
∑

v=1

E

(

Qm1,m2

i1,v

)

τ(H)(v − i2)

or, using definition (2.3), as

1

N
Tr
(

H Bm1,m2

i1,i2

)

=
L
∑

v=1

E

(

Qm1,m2

i1,v

)

(

TL,L(H)
)

v,i2

=
(

E(Qm1,m2)TL,L(H)
)

i1,i2

Eq. (4.9) eventually leads to

E

[(

QWW∗)m1,m2
]

= σ2E(Qm1,m2)TL,L(H) + Υ (H)m1,m2 (4.10)

where, for each N ×N matrix F, Υ (F) represents the ML×ML matrix defined by

Υ (F)m1,m2

i1,i2
= Tr

(

F Υ
m1,m2

i1,i2

)

(4.11)

(4.7) implies that matrix Υ (F) can be written as

Υ (F) = −σ2cNE
[

QW
(

T (M)
N,L (Q◦)

)T
FTW∗

]

(4.12)

By (1.23), it holds that (QWW∗)m1,m2 = δ(m1 = m2) IL + zQm1,m2 . Therefore, we deduce from (4.10) that

E(Qm1,m2)
(

−zIL + σ2TL,L(H)
)

= ILδ(m1 = m2) − Υ (H)m1,m2 (4.13)

By Lemma 4.1, −zIL + σ2TL,L(H(z)) is invertible for z ∈ C
+ and we recall that its inverse is denoted by R. We

thus obtain that

E(Q) = IM ⊗R+∆ (4.14)

where ∆ is the ML×ML matrix defined by

∆ = −Υ (H) (IM ⊗R) (4.15)

The above evaluations also allow to obtain a similar expression of matrix E(QWGW∗) where G is a N ×N matrix.

For this, we express E
[

(QWGW∗)m1,m2

i1,i2

]

as

E

[

(QWGW∗)m1,m2

i1,i2

]

=
N
∑

(k,j)=1

Gk,jE
[

(Qwk)
m1

i1
(w∗

j )
m2

i2

]

or equivalently as

E

[

(QWGW∗)m1,m2

i1,i2

]

= Tr
(

GTAm1,m2

i1,i2

)

Therefore, using (4.8), it holds that

E

[

(

QWGW∗)m1,m2

i1,i2

]

=
σ2

N
Tr
(

GTHB
m1,m2

i1,i2

)

+ Tr
(

GTHΥ
m1,m2

i1,i2

)

Replacing matrix H by matrix GTH in the above calculations, we obtain that

E

[

QWGW∗] = σ2E(Q)
(

IM ⊗ TL,L(G
TH)

)

+ Υ (GTH)

Using (4.14), we eventually get that

E

(

QWGW∗) = σ2
(

IM ⊗R TL,L(G
TH)

)

+ σ2∆
(

IM ⊗ TL,L(G
TH)

)

+ Υ (GTH) (4.16)
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5 Controls of the error term ∆

In this section, we evaluate the behaviour of various terms depending on ∆, i.e. normalized traces 1
MLTr∆A,

quadratic forms a∗1∆a2, and quadratic forms of matrix ∆̂ = 1
M

∑M
m=1 ∆

m,m. Using rough estimates based on the

results of section 3 and the Schwartz inequality, we establish that the normalized traces are O( L
MN ), and that two

other terms are O(
√

L
M

L
N ) and O(L

3/2

MN ) respectively. We first establish the following proposition.

Proposition 5.1 Let A be a ML×ML matrix satisfying supN ‖A‖ ≤ κ. Then, it holds that

∣

∣

∣

∣

1

ML
Tr∆A

∣

∣

∣

∣

≤ κ
L

MN
C(z) (5.1)

where C(z) can be written as C(z) = P1(|z|)P2

(

(Imz)−1
)

for some nice polynomials P1 and P2.

Proof. As matrix R verifies ‖R‖ ≤ (Imz)−1, it is sufficient to establish (5.1) when ∆ is replaced by Υ (H). In order

to simplify the notations, matrix Υ (H) is denoted by Υ in this section. We denote by γ the term γ = 1
MLTrΥA

which is given by

γ =
1

M

∑

m1,m2

1

L

∑

i1,i2

Υ
m1,m2

i1,i2
Am2,m1

i2,i1

Using the expression (4.12) of matrix Υ , we obtain that γ can be written as

γ = −σ2E
[

1

N
Tr

(

(

T (M)
N,L (Q◦)

)T
HTW∗AQW

)]

Using Eq. (2.6) and the identity τ (M)
(

(Q◦)T
)

(−u) = τ (M) (Q◦) (u), we get that

γ = −σ2cNE





L−1
∑

u=−(L−1)

τ (M)(Q◦)(u)
1

ML
Tr
(

QWJu
NHTW∗A

)



 (5.2)

(3.1, 3.4) imply that E
∣

∣

∣
τ (M)(Q◦)(−u)

∣

∣

∣

2
and Var

(

1
MLTr

(

QWJu
NHTWA

))

are upperbounded by terms of the

form C(z)
MN and κ2 C(z)

MN respectively. The Cauchy-Schwartz inequality thus implies immediately (5.1).

We now evaluate the behaviour of quadratic forms of matrix ∆ and of matrix ∆̂.

Proposition 5.2 Let a1 and a2 2 ML–dimensional vectors such that supN ‖ai‖ ≤ κ for i = 1,2. Then, it holds

that

a∗1∆a2 ≤ κ2 C(z)

√

L

M

L

N
(5.3)

for each z ∈ C
+, where C(z) is as in Proposition 5.1. Let bi, i = 1, 2 be 2 deterministic L–dimensional vectors such

that supN ‖bi‖ < κ. Then, it holds that

∣

∣

∣

∣

∣

b∗
1

(

1

M

M
∑

m=1

∆
m,m

)

b2

∣

∣

∣

∣

∣

≤ κ2 C(z)
L3/2

MN
(5.4)

Proof. As above, it is sufficient to establish the proposition when ∆ is replaced by Υ . We first establish (5.3). We

remark that a∗1Υa2 =ML 1
MLTr(Υa2a

∗
1). Using Eq. (5.2) in the case A = a2a

∗
1, we obtain that

a∗1Υa2 = −σ2E





L−1
∑

u=−(L−1)

τ (M)(Q◦)(u) a∗1QWJu
NHTW∗a2





(3.5, 3.1) and the Schwartz inequality lead immediately to

∣

∣a∗1Υa2
∣

∣ ≤ κ2 C(z)L
1√
MN

√

L

N
= κ2 C(z)

√

L

M

L

N
.
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We now establish (5.4). We remark that

b∗
1

(

1

M

M
∑

m=1

Υ
m,m

)

b2 = L
1

ML
Tr
(

Υ (IM ⊗ b2b
∗
1)
)

Using Eq. (5.2) in the case A = IM ⊗ b2b
∗
1, we obtain immediately that

b∗
1

(

1
M

∑M
m=1 Υ

m,m
)

b2 =
∑L−1

u=−(L−1) E

[

τ (M)(Q◦)(u)b1
∗
(

1
M

∑M
m=1(QWJu

NHTW∗)m,m
)

b2

] (5.5)

(5.4) thus appears as a direct consequence of (3.1), 3.6) and of the Schwartz inequality.

We finally mention a useful corollary of (5.4).

Corollary 5.1 It holds that

‖T (M)
N,L (E(Q)− (IM ⊗R)) ‖ ≤ C(z)

L3/2

MN
(5.6)

for each z ∈ C
+ where C(z) can be written as C(z) = P1(|z|)P2

(

(Imz)−1
)

for some nice polynomials P1 and P2.

Taking into account Proposition 2.1, (5.6) follows immediately from (5.4) by considering the unit norm vector b =
aL(ν).

6 Convergence towards the Marcenko-Pastur distribution

In the following, we establish that
1

ML
Tr (E(Q(z))− t(z)IML) → 0 (6.1)

for each z ∈ C
+. (3.1) does not imply in general that 1

MLTr (Q(z)− E(Q(z))) converges towards 0 almost surely

(this would be the case if M was of the same order of magnitude than Nκ for some κ > 0). However, the reader may

check using the Poincaré-Nash inequality that the variance of
[

1
MLTr(Q

◦(z))
]2

is a O( 1
(MN)2

) term. As

E

∣

∣

∣

∣

1

ML
Tr(Q◦(z))

∣

∣

∣

∣

4

=

∣

∣

∣

∣

∣

E

[

1

ML
Tr(Q◦(z))

]2
∣

∣

∣

∣

∣

2

+Var

[

1

ML
Tr(Q◦(z))

]2

(3.1) implies that the fourth-order moment of 1
MLTr (Q

◦(z)) is also a O( 1
(MN)2

) term, and that 1
MLTr (Q(z)− E(Q(z)))

converges towards 0 almost surely. Consequently, (6.1) allows to prove that the eigenvalue value distribution of WW∗

has almost surely the same behaviour than the Marcenko-Pastur distribution µσ2,cN . As cN → c∗, this of course es-

tablishes the almost sure convergence of the eigenvalue distribution of WNW∗
N towards the Marcenko-Pastur µσ2,c∗ .

In the following, we thus prove (6.1). (4.14) and Proposition 5.1 imply that for each uniformly bounded L × L

matrix A, then, it holds that

1

ML
Tr [(E(Q(z))− IM ⊗R(z)) (IM ⊗A)] = O(

L

MN
) (6.2)

for each z ∈ C
+. We now establish that

1

ML
Tr [(IM ⊗R(z)− t(z)IML) (IM ⊗A)] → 0

or equivalently that
1

L
Tr [(R(z)− t(z)IL)A] → 0 (6.3)

for each z ∈ C
+. For this, we first mention that straighforward computations lead to

R− tI = −σ4cN zt(z)t̃(z) R TL,L

(

HT (M)
N,L [E(Q)− tIML]

)

(6.4)

Therefore,
1

L
Tr [(R− tIL)A] = −σ4cN zt(z)t̃(z)

1

L
TrARTL,L

(

HT (M)
N,L [E(Q)− tIML]

)



18 Philippe Loubaton

Direct application of (2.7) to the case P =M,K = L,R = L,C = E(Q)− tIML,B = AR and D = H implies that

1

L
Tr ((R− tIL)A) = −σ4cN zt(z)t̃(z)

1

ML
Tr
[

(E(Q)− tIML)
(

IM ⊗ TL,L(TN,L(AR)H
)]

In the following, we denote by G(A) the L× L matrix defined by

G(A) = TL,L

(

TN,L(AR)H
)

(6.5)

Writing that E(Q)− tIML = E(Q)− IM ⊗R+ IM ⊗R− tIML, we obtain that

1

L
Tr [(R− tIL)A] = −σ4cN zt(z)t̃(z) 1

MLTr [(E(Q)− IM ⊗R) (IM ⊗G(A))]− (6.6)

σ4cN zt(z)t̃(z) 1
LTr [(R− tIL)G(A)]

We now prove that

sup
‖B‖≤1

∣

∣

∣

∣

1

L
Tr ((R− tIL)B)

∣

∣

∣

∣

= O(
L

MN
) (6.7)

when z belongs to a certain domain. For this, we first remark that (2.8) implies that ‖G(A)‖ ≤ ‖H‖‖R‖‖A‖. By

Lemma 4.1, it holds that ‖H‖‖R‖ ≤ |z|
(Im(z))2 . Consequently, we obtain that

‖G(A)‖ < |z|
(Im(z))2

‖A‖ (6.8)

This implies that for each L× L matrix A such that ‖A‖ ≤ 1, then, it holds that
∣

∣

∣

∣

1

ML
Tr [(E(Q)− IM ⊗R) (IM ⊗G(A))]

∣

∣

∣

∣

≤ |z|
(Im(z))2

sup
‖B‖≤1

∣

∣

∣

∣

1

ML
Tr [(E(Q)− IM ⊗R))B]

∣

∣

∣

∣

,

∣

∣

∣

∣

1

L
Tr [(R− tIL)G(A)]

∣

∣

∣

∣

≤ |z|
(Im(z))2

sup
‖B‖≤1

∣

∣

∣

∣

1

L
Tr [(R− tIL)B]

∣

∣

∣

∣

Proposition 5.1 implies that

sup
‖B‖≤1

∣

∣

∣

∣

1

ML
Tr [(E(Q)− IM ⊗R))B]

∣

∣

∣

∣

= O(
L

MN
)

This and Eq. (6.6) eventually imply that

sup
‖B‖≤1

∣

∣

∣

∣

1

L
Tr ((R− tIL)B)

∣

∣

∣

∣

≤ O(
L

MN
) + σ4cN |zt(z)t̃(z)| |z|

(Im(z))2
sup

‖B‖≤1

∣

∣

∣

∣

1

L
Tr ((R− tIL)B)

∣

∣

∣

∣

It also holds that |zt(z)t̃(z)| ≤ |z|
(Im(z))2 . Therefore, if z belongs to the domain σ4cN

|z|2
(Im(z))4 <

1
2 , we obtain that

sup
‖B‖≤1

∣

∣

∣

∣

1

L
Tr [(R− tIL)B]

∣

∣

∣

∣

= O(
L

MN
) (6.9)

This establishes (6.3) for each uniformly bounded L × L matrix A whenever z is well chosen. Moreover, for these

values of z, 1
LTr ((R− t I)A), and thus 1

MLTr (E(Q(z)− t(z) IML)A), are O( L
MN ) terms. A standard application

of Montel’s theorem implies that (6.3) holds on C
+. This, in turn, establishes (6.1).

Remark 6.1 We have proved that for each uniformely bounded L× L matrix A, then it holds that

1

ML
Tr [(E(Q(z)− t(z)IML)) (IM ⊗A)] → 0

for each z ∈ C
+. It is easy to verify that matrix IM ⊗A can be replaced by any uniformly bounded ML×ML matrix

B. In effect, Proposition 5.1 implies that it is sufficient to establish that

1

ML
Tr [(IM ⊗R(z)− t(z)IML)B] → 0

The above term can also be written as

1

L
Tr

[

(R(z)− t(z) IL)

(

1

M

M
∑

m=1

Bm,m

)]

and converges towards 0 because matrix 1
M

∑M
m=1 B

m,m is uniformly bounded.
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7 Convergence of the spectral norm of TN,L(R(z) − t(z)IN )

From now on, we assume that L,M,N satisfy the following extra-assumption:

Assumption 7.1 L3/2

MN → 0 or equivalently, L
M4 → 0.

The goal of this section is prove Theorem 7.1 which will be used extensively in the following.

Theorem 7.1 Under assumption 7.1, it exists 2 nice polynomials P1 and P2 for which

‖TN,L(R(z)− t(z)IN )‖ ≤ sup
ν∈[0,1]

∣

∣aL(ν)
∗ (R(z)− t(z)IL)aL(ν)

∣

∣ ≤ L3/2

MN
P1(|z|)P2(

1

Im(z)
) (7.1)

for each z ∈ C
+.

Proof.

First step. The first step consists in showing that

sup
ν∈[0,1]

∣

∣aL(ν)
∗ (R(z)− t(z)IL)aL(ν)

∣

∣→ 0 (7.2)

for each z ∈ C
+, which implies that ‖TN,L (R− tIL) ‖ → 0 for each z ∈ C

+ (see (2.8)). We first establish that (7.2)

holds for certain values of z, and extend the property to C
+ using Montel’s theorem. We take (6.4) as a starting

point, and write E(Q− t IML) as

E(Q− t IML) = E(Q)− IM ⊗R+ (IM ⊗R− t IML)

(6.4) can thus be rewritten as

R− t IL = −σ4cN z t(z) t̃(z)RTL,L

(

H T (M)
N,L [E(Q)−RM ]

)

− (7.3)

σ4cNz t(z) t̃(z)RTL,L

(

H TN,L [R− t IL]
)

Therefore, for each deterministic uniformly bounded L–dimensional vector b, then, it holds that

b∗ (R− t I)b = −zt(z)t̃(z)σ4cNb∗RTL,L

(

H T (M)
N,L [E(Q)− IM ⊗R]

)

b− (7.4)

zt(z)t̃(z)σ4cNb∗RTL,L

(

H TN,L [R− t I]
)

b (7.5)

Proposition 2.1 implies that

‖TL,L

(

TN,L [R− t I] H
)

‖ ≤ ‖H‖ ‖TN,L [R− t I] ‖ ≤ ‖H‖ sup
ν

∣

∣aL(ν)
∗ (R− t I)aL(ν)

∣

∣

and that

‖TL,L

(

H T (M)
N,L [E(Q)− IM ⊗R]

)

‖ ≤ ‖H‖ ‖T (M)
N,L [E(Q)− IM ⊗R] ‖ ≤ ‖H‖ sup

ν

∣

∣

∣
aL(ν)

∗
∆̂aL(ν)

∣

∣

∣

where we recall that ∆ = E(Q) − IM ⊗ R and that ∆̂ = 1
M

∑M
m=1 ∆

(m,m). We denote by β and δ the terms

β = supν |aL(ν)∗ (R− t I) aL(ν)| and δ = supν

∣

∣

∣
aL(ν)

∗ ∆̂aL(ν)
∣

∣

∣
. We remark that δ = O

(

L3/2

MN

)

(see (5.4)). We

choose b = aL(µ) in (7.4), evaluate the modulus of the left handside of (7.4), and take the supremum over µ. This

immediately leads to

β ≤ |zt(z)t̃(z)|σ4cN‖R‖‖H‖δ + |zt(z)t̃(z)|σ4cN‖R‖‖H‖β (7.6)

Moreover, (see Lemma (4.1)), it holds that

|zt(z)t̃(z)|σ4cN‖R‖‖H‖ ≤ σ4cN
|z|2

(Im(z))4

(7.6) implies that if z satisfies

σ4cN
|z|2

(Im(z))4
≤ 1

2
, (7.7)
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then β = O
(

L3/2

MN

)

and therefore, converges towards 0. We now extend this property on C
+ using Montel’s theorem.

For this, we consider an integer sequence K(N) for which L(N)
K(N)

→ 0, and denote for each N and 0 ≤ k ≤ K(N) by

ν
(N)
k the element of [0,1] defined by ν

(N)
k = k

K(N) . We denote by φ(k,N) the one-to-one correspondance between the

set of integer couples (k,N), k ≤ K(N) and the set of integers N defined by φ(0,0) = 0, φ(k + 1, N) = φ(k,N) + 1
for k < K(N) and φ(0,N + 1) = φ(K(N),N) + 1. Each integer n can therefore be written in a unique way as

n = φ(k,N) for a certain couple (k,N), 0 ≤ k ≤ K(N). We define a sequence of analytic functions (gn(z))n∈N

defined on C
+ by

gφ(k,N)(z) = aL(ν
(N)
k )∗ (R(z)− t(z) IL)aL(ν

(N)
k ) (7.8)

If z satisfies (7.7), the sequence gn(z) converges towards 0. Moreover, (gn(z))n∈N is a normal family of C+. Consider

a subsequence extracted from (gn)n∈Z converging uniformly on compact subsets of C+ towards an analytic function

g∗. As g∗(z) = 0 if z satifies (7.7), function g∗ is zero. This shows that all convergent subsequences extracted from

(gn)n∈N converges towards 0, so that the whole sequence (gn)n∈N converges towards 0. This immediately implies

that

lim
N→+∞

sup
0≤k≤K(N)

|gφ(k,N)(z)| = 0 (7.9)

for each z ∈ C
+. For each ν ∈ [0,1], it exists an index k, 0 ≤ k ≤ K(N) such that |ν − ν

(N)
k | ≤ 1

2K(N) . It is easily

checked that

‖aL(ν)− aL(ν
(N)
k )‖ = O

(

L(N)|ν − ν
(N)
k |

)

= O
(

L(N)

K(N)

)

) = o(1)

and that
∣

∣

∣
aL(ν)

∗ (R(z)− t(z) IL)aL(ν)− aL(ν
(N)
k )∗ (R(z)− t(z) IL) aL(ν

(N)
k )

∣

∣

∣
→ 0

for each z ∈ C
+. We deduce from (7.9) that (7.2) holds for each z ∈ C

+ as expected.

Second step. The most difficult part of the proof consists in evaluating the rate of convergence of

supν |aL(ν)∗(R(z)− t(z)IN )aL(ν)|.
By (2.11), the quadratic form aL(ν)

∗(R(z)− t(z)IN )aL(ν) can also be written as

aL(ν)
∗(R(z)− t(z)IN )aL(ν) =

L−1
∑

l=−(L−1)

τ(R− t I)(l)e−2iπlν

where we recall that τ(R− t I)(l) = 1
LTr

(

(R− t I)Jl
L

)

. In order to study more thoroughly

supν |aL(ν)∗(R(z)− t(z)IN )aL(ν)|, it is thus possible to evaluate the coefficients (τ(R− t I)(l))l=−(L−1),...,L−1. In

the following, for a L× L matrix X, we denote by τ (X) the 2L− 1–dimensional vector defined by

τ (X) = (τ(X)(−(L− 1)), . . . , τ(X)(L− 1))
T

(7.3) can be associated to a linear equation whose unknown is vector τ(R−t I). Writing TN,L [R− t I] as
∑L−1

l=−(L−1) τ(R−
t I)(l)J∗l

N , multiplying (7.3) from both sides by Jk
L, and taking the normalized trace, we obtain that

τ(R− t I) = τ (Γ ) +D(0) τ(R− t I) (7.10)

where D(0) is the (2L− 1)× (2L− 1) matrix whose entries D
(0)
k,l , (k, l) ∈ {−(L− 1), . . . , L− 1)} are defined by

D
(0)
k,l = −σ4cNz t(z) t̃(z)

1

L
Tr
[

RTL,L

(

HJ∗l
N

)

Jk
L

]

and where matrix Γ represents the first term of the righthanside of (7.3), i.e.

Γ = −σ4cN z t(z) t̃(z)RTL,L

(

H T (M)
N,L [E(Q)− IM ⊗R]

)

(7.11)

Equation (7.10) should be inverted, and the effect of the inversion on vector τ (Γ ) should be analysed in order to

evaluate the behaviour of ‖TN,L(R(z)− t(z)IN )‖. The invertibility of matrix I−D(0) and the control of its inverse

are however non trivial, and need some efforts.
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In the following, we denote by Φ(0) the operator defined on C
L×L by

Φ
(0)(X) = −σ4cNz t(z) t̃(z)RTL,L

(

H TN,L [X]
)

(7.12)

for each L× L matrix X. Eq. (7.3) can thus be written as

R− t IL = Γ +Φ
(0)(R− t IL)

We also remark that matrix Γ is given by

Γ = Φ
(0)
(

E(Q̂)−R
)

(7.13)

Moreover, it is clear that vector τ

(

Φ(0)(X)
)

can be written as

τ

(

Φ
(0)(X)

)

= D(0)
τ (X) (7.14)

In order to study the properties of operator Φ(0) and of matrix D(0), we introduce the operator Φ and the corre-

sponding (2L− 1)× (2L− 1) matrix D defined respectively by

Φ(X) = σ4cNRTL,L

(

H TN,L [X]H∗)R∗ (7.15)

and

Dk,l = σ4cN
1

L
Tr
[

RTL,L

(

HJ∗l
NH∗

)

R∗Jk
L

]

(7.16)

for (k, l) ∈ {−(L− 1), . . . , L− 1)}. Matrix D of course satisfies

τ (Φ(X)) = Dτ (X) (7.17)

Before establishing the relationships between (Φ0,D
(0)) and (Φ,D), we prove the following proposition.

Proposition 7.1 – If X is positive definite, then matrix Φ(X) is also positive definite. Moreover, if X1 ≥ X2,

then Φ(X1) ≥ Φ(X2).
– It exists 2 nice polynomials P1 and P2 and an integer N1 such that the spectral radius ρ(D) of matrix D verifies

ρ(D) < 1 for N ≥ N1 and for each z ∈ EN where EN is the subset of C+ defined by

EN = {z ∈ C
+,
L3/2

MN
P1(|z|)P2(1/Imz) ≤ 1}. (7.18)

– for N ≥ N1, matrix I − D is invertible for z ∈ EN . If we denote by f = (f−(L−1), . . . , f0, . . . , fL−1)
T the

(2L− 1)–dimensional vector defined by

f = (I−D)−1
τ (I) = (I−D)−1e0 (7.19)

where e0 = (0, . . . , 0, 1,0, . . . , 0)T , then, for each ν ∈ [0,1], the term
∑L−1

l=−(L−1) fl e
−2iπlν is real and positive,

and

sup
ν∈[0,1]

L−1
∑

l=−(L−1)

fl e
−2iπlν ≤ C

(|η1|2 + |z|2)2
(Imz)4

(7.20)

for some nice constants C and η1.

Proof. The first item follows immediately from the basic properties of operators T . The starting point of the proof

of item 2 consists in writing matrix E(Q̂) = 1
M

∑M
m=1 E(Q

m,m) as E(Q̂) = R+ ∆̂, and in expressing the imaginary

part of E(Q̂) as Im
(

E(Q̂)
)

= Im
(

E(∆̂)
)

+ Im(R). Writing Im(R) as

Im(R) =
R−R∗

2i
=

1

2i
R
(

R−∗ −R−1
)

R∗

and expressing R−1 in terms of H, and using the same tricks for H, we eventually obtain that

Im
(

E(Q̂)
)

= Im
(

E(∆̂)
)

+ ImzRR∗ + σ4cN RTL,L

[

H TN,L

(

Im
(

E(Q̂)
))

H∗
]

R∗ (7.21)
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In order to simplify the notations, we denote by X and Y the matrices Im
(

E(Q̂)
)

and Im
(

E(∆̂)
)

+ ImzRR∗

respectively. (7.21) implies that for each z ∈ C
+, then the positive definite matrix X satisfies

X = Y +Φ(X) (7.22)

Iterating this relation, we obtain that for each n ≥ 1

X = Y +
n
∑

k=1

Φ
k(Y) +Φ

n+1(X) (7.23)

The general idea of the proof is to recognize that matrix TN,L(Y) is positive definite if z belongs to a set EN defined

by (7.18). This implies that for z ∈ EN , then Φk(Y) > 0 for each k ≥ 1. Therefore, (7.23) and Φn+1(X) > 0 imply

that for each n, the positive definite matrix
∑n

k=1 Φ
k(Y) satisfies

n
∑

k=1

Φ
k(Y) ≤ X−Y (7.24)

so that the series
∑+∞

k=1 Φ
k(Y) appears to be convergent for z ∈ EN . As shown below, this implies that ρ(D) < 1.

We begin to prove that TN,L(Y) is positive definite on a set EN .

Lemma 7.1 It exists 2 nice polynomials P1 and P2, a nice constant η1 and an integer N1 such that

TN,L(Y) >
(Imz)3

32(η21 + |z|2)2 I (7.25)

for N ≥ N1 and z ∈ EN where EN is defined by (7.18).

Proof. We show that it exist a nice constant η1 > 0 and 2 nice polynomials P1 and P2 such that for each ν ∈ [0,1],

aL(ν)
∗YaL(ν) >

(Imz)3

16(η21 + |z|2)2 − L3/2

MN
P1(|z|)P2(1/Imz) (7.26)

For this, we first note that

aL(ν)
∗RR∗aL(ν) ≥

∣

∣aL(ν)
∗RaL(ν)

∣

∣

2 ≥
(

aL(ν)
∗Im(R)aL(ν)

)2

As R(z) is the Stieltjes transform of a positive matrix-valued measure µR (see Lemma 4.1), it holds that

aL(ν)
∗Im(R)aL(ν) = Imz

∫

R+

aL(ν)
∗ dµR(λ) aL(ν)

|λ − z|2

We claim that it exists η1 > 0 and an integer N0 such that

aL(ν)
∗
µR ([0, η1]) aL(ν) >

1

2
(7.27)

for each ν ∈ [0,1] and for each N > N0. In effect, as cN → c∗, it exists a nice constant η1 for which µσ2,cN ([0, η1]) >
3
4

for each N . We consider the sequence of analytic functions (gn(z))n∈N defined by (7.8). If n = φ(k,N), gn(z) is the

Stieltjes transform of measure µn defined by µn = aL(ν
(N)
k )∗µR aL(ν

(N)
k ) − µσ2,cN . Therefore, (7.9) implies that

sequence (µn)n∈N converges weakly towards 0. As the Marcenko-Pastur distribution is absolutely continuous, this

leads to

lim
N→+∞

sup
0≤k≤K(N)

∣

∣

∣
aL(ν

(N)
k )∗ µR ([0, η1]) aL(ν

(N)
k )− µσ2,cN ([0, η1])

∣

∣

∣
= 0

This implies the existence of N
′

0 ∈ N such that

sup
0≤k≤K(N)

aL(ν
(N)
k )∗µR ([0, η1]) aL(ν

(N)
k ) >

5

8

for each N ≥ N
′

0. As mentioned above, for each ν ∈ [0,1], it exists an index k, 0 ≤ k ≤ K(N) such that |ν − ν
(N)
k | ≤

1
2K(N)

. As

‖aL(ν)− aL(ν
(N)
k )‖ = O

(

L(N)|ν − ν
(N)
k |

)

= o(1)
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it is easy to check that

aL(ν)
∗
µR ([0, η1])aL(ν)− aL(ν

(N)
k )∗µR ([0, η1])aL(ν

(N)
k ) → 0

which implies the existence of an integer N0 ≥ N
′

0 for which

sup
ν∈[0,1]

aL(ν)
∗
µR ([0, η1]) aL(ν) >

1

2

for each N ≥ N0, as expected.

It is clear that

aL(ν)
∗Im(R)aL(ν) ≥ Imz

∫ η1

0

aL(ν)
∗ dµR(λ) aL(ν)

|λ− z|2

As |λ − z|2 ≤ 2(λ2 + |z|2) ≤ 2(η21 + |z|2) if λ ∈ [0, η1], it holds that

aL(ν)
∗Im(R)aL(ν) ≥

Imz

4(η21 + |z|2)

and that

aL(ν)
∗RR∗aL(ν) ≥

(Imz)2

16(η21 + |z|2)2

for each ν ∈ [0,1]. (5.4) implies that for each ν,

∣

∣

∣
aL(ν)

∗ Im∆̂aL(ν)
∣

∣

∣
≤ L3/2

MN
P1(|z|)P2(

1

Imz
) (7.28)

for some nice polynomials P1 and P2, which, in turn, leads to (7.26). If we denote by EN the subset of C+ defined

by L3/2

MN P1(|z|)P2(
1

Imz ) <
1
2

(Imz)3

16(η2
1+|z|2)2 , then, Y = Im(∆̂) + ImzRR∗ verifies

inf
ν∈[0,1]

aL(ν)
∗YaL(ν) >

(Imz)3

32(η21 + |z|2)2 (7.29)

for each z ∈ EN . As

aL(ν)
∗YaL(ν) =

L−1
∑

l=−(L−1)

τ(Y)(l)e−2iπlν

we obtain that

inf
ν∈[0,1]

L−1
∑

l=−(L−1)

τ(Y)(l)e−2iπlν >
(Imz)3

32(η21 + |z|2)2

for z ∈ EN . If we denote α(z) = (Imz)3

32(η2
1+|z|2)2 , this implies that (τ(Y)(l)− α δ(l = 0))

L−1
l=−(L−1) coincide with Fourier

coefficients of a positive function. Therefore, matrix TN,L(Y)−αI is positive definite (see [18], 1.11 (a)), which implies

that (7.25) holds. Lemma 7.1 follows from the observation that the set EN can be written as (7.18) for some other

pair of nice polynomials P1, P2.

We now complete the proof of item 2 of Proposition (7.1). We establish that for N fixed and large enough and

z ∈ EN , then for each L–dimensional vector b, Dnb → 0 when n → +∞, a property equivalent to ρ(D) < 1.
We emphasize that in the forthcoming analysis, N , and therefore L, are assumed to be fixed parameters. As matrix

TN,L(Y) > α(z)IN > 0 on the set EN for N large enough, (7.24) is valid there. This implies that the positive definite

matrix-valued series
∑+∞

n=1 Φ
n(Y) is convergent, in the sense that for each unit norm L–dimensional vector u, then

∑+∞
n=1 u

∗Φn(Y)u < +∞. Using the polarization identity, we obtain that the series
∑+∞

n=1 u
∗
1Φ

n(Y)u2 is convergent

for each pair of unit norm vectors (u1,u2). This implies that each entry of Φn(Y) converges towards 0 when n→ +∞,

and that the same property holds true for each component of vector τ (Φn(Y)). This vector of course coincides with

Dnτ (Y). We have thus shown that Dnτ (Y) → 0 when n → +∞. We now establish that this property holds, not

only for vector τ (Y), but also for each (2L−1)–dimensional vector. We consider any positive hermitian L×L matrix

Z such that TN,L(Y)− TN,L(Z) ≥ 0. Then, it is clear that for each n ≥ 1, 0 ≤ Φn(Z) ≤ Φn(Y), and that the series
∑∞

n=1 Φ
n(Z) is convergent. As above, this implies that Dnτ (Z) → 0 when n→ +∞. If now Z is any positive hermi-

tian matrix, it holds that 0 ≤ TN,L

(

α(z)
‖Z‖ Z

)

≤ TN,L(Y) because TN,L(Z) ≤ ‖TN,L(Z)‖ I ≤ ‖Z‖ I. This implies that
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Dn
(

α(z)
‖Z‖ τ (Z)

)

→ 0, or equivalently that Dnτ (Z) → 0 for each positive hermitian matrix Z. This property holds

in particular for positive rank one matrices hh∗, and thus for linear combination (with complex coefficients) of such

matrices, and in particular for hermitian (non necessarily positive) matrices. We now consider any L×L matrix B. It

can be written as B = Re(B) + i Im(B), i.e. as a linear combination of hermitian matrices. Therefore, it holds that

Dnτ (B) → 0 for any L×Lmatrix. The conclusion follows from the obvious observation that any (2L−1)–dimensional

vector b can be written as b = τ (B) for some L×L matrix B. This completes the proof of item 2 of Proposition (7.1).

We finally establish item 3. We assume that z ∈ EN and that N is large enough. We first remark that, as

TN,L(Y) ≥ α(z)IN , then, for each n ≥ 1, it holds that Φn(Y) ≥ α(z)Φn(I). We also note that Φn(I) > 0 for each

n which implies that

aL(ν)
∗
Φ

n(Y) aL(ν) ≥ α(z) aL(ν)
∗
Φ

n(I) aL(ν) > 0

for each ν. We also remark that this inequality also holds for n = 0 (see (7.29)). We recall that for each L×L matrix

B, then

aL(ν)
∗BaL(ν) =

L−1
∑

l=−(L−1)

τ (B)(l)e−2iπlν (7.30)

Using this identity for B = Φn(Y) and B = Φn(I) and using that τ (I) = e0, we obtain that

L−1
∑

l=−(L−1)

(Dn
τ (Y)) (l)e−2iπlν ≥ α(z)

L−1
∑

l=−(L−1)

(Dne0) (l)e
−2iπlν > 0

As (I−D)−1 =
∑+∞

n=0 D
n, we finally obtain that

0 <
L−1
∑

l=−(L−1)

fle
−2iπlν ≤ 1

α(z)

L−1
∑

l=−(L−1)

(

(I−D)−1
τ (Y)

)

(l)e−2iπν

The conclusion follows from the observation that τ (X) = τ (Y) + D τ (X) and that τ (X) = (I−D)−1
τ (Y).

Therefore,
L−1
∑

l=−(L−1)

(

(I−D)−1
τ (Y)

)

(l)e−2iπν

coincides with aL(ν)
∗XaL(ν), a term which is upperbounded by 1

Imz on C
+.

We now make the appropriate connections between (Φ0,D
(0)) and (Φ,D), and establish the following Proposition.

Proposition 7.2 If N is large enough and if z belongs to the set EN defined by (7.18), matrix I−D(0) is invertible,

and for each matrix L× L matrix X, it holds that

sup
ν∈[0,1]

∣

∣

∣

∣

∣

∣

L−1
∑

l=−(L−1)

(

(I−D(0))−1
τ (X)

)

(l)e−2iπlν

∣

∣

∣

∣

∣

∣

≤ ‖TN,L(X)‖
2





1

1− σ4cN |zt(z)t̃(z)|2
+

L−1
∑

l=−(L−1)

fle
−2iπlν





(7.31)

Proof. We first establish by induction that

(Φ(0))n(X)
(

Φ
(0))n(X)

)∗
≤ ‖TN,L(X)‖2

(

σ4cN |zt(z)t̃(z)|2
)n

Φ
n(I) (7.32)

for each n ≥ 1. We first verify that (7.32) holds for n = 1. Using Proposition (2.3), we obtain that

TL,L

(

HTN,L(X)
) [

TL,L

(

HTN,L(X)
)]∗ ≤ TL,L

(

HTN,L(X)TN,L(X)∗H∗)

Remarking that TN,L(X)TN,L(X)∗ ≤ ‖TN,L(X)‖2 I, we get that

TL,L

(

HTN,L(X)
) [

TL,L

(

HTN,L(X)
)]∗ ≤ ‖TN,L(X)‖2 TL,L

(

HH∗)
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This and the identity Φ(I) = σ4cNRTL,L(HH∗)R∗ imply immediately (7.32) for n = 1. We assume that (7.32)

holds until integer n− 1. By Proposition 2.3, we get that

(Φ(0))n(X)
(

(Φ(0))n(X)
)∗

≤
∣

∣

∣
σ4cNzt(z)t̃(z)

∣

∣

∣

2
RTL,L

[

HTN,L

(

(Φ(0))n−1(X)
)(

TN,L

(

(Φ(0))n−1(X)
))∗

H∗
]

R∗ (7.33)

Using again Proposition (2.3), we obtain that

TN,L

(

(Φ(0))n−1(X)
)(

TN,L

(

(Φ(0))n−1(X)
))∗

≤ TN,L

(

(Φ(0))n−1(X)
[

(Φ(0))n−1(X)
]∗)

(7.32) for integer n− 1 yields to

(Φ(0))n(X)
(

(Φ(0))n(X)
)∗

≤ ‖TN,L(X)‖2 (σ4cN )n+1 |zt(z)t̃(z)|2nRTN,L

(

HΦ
n−1(I)H∗

)

R∗

(7.32) for integer n directly follows from Φn(I) = σ4cN RTN,L

(

HΦn−1(I)H∗)R∗.
We now prove that if z ∈ EN defined by (7.18) and if N is large enough, then, for each (2L−1)–dimensional vector

x, it holds that
(

D(0)
)n

x → 0, a condition which is equivalent to ρ(D(0)) < 1. For this, we observe that each vector

x can be written as x = τ (X) for some L× L matrix X. The entries of Toeplitz matrix TL,L

(

(Φ(0))n(X)
)

are the

components of vector
(

D(0)
)n

τ (X). Therefore, condition
(

D(0)
)n

x → 0 is equivalent to ‖TL,L

(

(Φ(0))n(X)
)

‖ →
0. We now prove that

sup
ν∈[0,1]

∣

∣

∣
aL(ν)

∗(Φ(0))n(X)aL(ν)
∣

∣

∣
→ 0

a condition which implies ‖TL,L

(

(Φ(0))n(X)
)

‖ → 0 by Proposition 2.1, and thus that ρ(D(0)) < 1. It is clear that

∣

∣

∣
aL(ν)

∗(Φ(0))n(X)aL(ν)
∣

∣

∣

2
≤ aL(ν)

∗(Φ(0))n(X)
(

(Φ(0))n(X)
)∗

aL(ν) (7.34)

Inequality (7.32) implies that

aL(ν)
∗(Φ(0))n(X)

(

(Φ(0))n(X)
)∗

aL(ν) ≤ ‖TN,L(X)‖2
(

σ4cN |zt(z)t̃(z)|2
)n

aL(ν)
∗
Φ

n(I)aL(ν) (7.35)

By (1.31), it exists 2 nice constants C and η > 0 such that

σ4cN |zt(z)t̃(z)|2 ≤ 1− C
(η2 + |z|2)2
(Im(z))4

(7.36)

for N large enough. Moreover, it has been shown before that each entry of matrix Φn(I) converges towards 0, which

implies that supν∈[0,1] aL(ν)
∗Φn(I)aL(ν) → 0 (we recall that L is assumed fixed in the present analysis). Therefore,

sup
ν∈[0,1]

aL(ν)
∗(Φ(0))n(X)

(

(Φ(0))n(X)
)∗

aL(ν) → 0

which implies that ‖TL,L

(

(Φ(0))n(X)
)

‖ and
(

D(0)
)n

τ (X) converge towards 0. We have thus established that

ρ(D(0)) < 1, and that matrix I−D(0) is invertible.

We finally establish Eq. (7.31). Using (I−D(0))−1 =
∑+∞

n=0

(

D(0)
)n

and

L−1
∑

l=−(L−1)

(

(D(0))nτ (X)
)

(l) e−2iπlν = aL(ν)
∗(Φ(0))n(X)aL(ν)

we first remark that
∣

∣

∣

∣

∣

∣

L−1
∑

l=−(L−1)

(

(I−D(0))−1
τ (X)

)

(l) e−2iπlν

∣

∣

∣

∣

∣

∣

≤
+∞
∑

n=0

∣

∣

∣
aL(ν)

∗(Φ(0))n(X)aL(ν)
∣

∣

∣
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Inequalities (7.34, 7.35) imply that

∣

∣

∣
aL(ν)

∗(Φ(0))n(X)aL(ν)
∣

∣

∣
=

∣

∣

∣

∣

∣

∣

L−1
∑

l=−(L−1)

(

(D(0))nτ (X)
)

(l) e−2iπlν

∣

∣

∣

∣

∣

∣

is less than ‖TN,L(X)‖
(

σ4cN |zt(z)t̃(z)|2
)n/2

(aL(ν)
∗Φn(I)aL(ν))

1/2
. Using the inequality |ab| ≤ (a2+b2)

2 , we ob-

tain that
∣

∣

∣
aL(ν)

∗(Φ(0))n(X)aL(ν)
∣

∣

∣
≤ ‖TN,L(X)‖

2

[(

σ4cN |zt(z)t̃(z)|2
)n

+ aL(ν)
∗
Φ
n(I)aL(ν)

]

Summing over n eventually leads to (7.32).

We are now in position to establish the main result of this section, which, eventually, implies (7.1).

Proposition 7.3 It exists 2 nice polynomials P1 and P2 for which

sup
ν∈[0,1]

∣

∣aL(ν)
∗ (R(z)− t(z) IL) aL(ν)

∣

∣ ≤ L3/2

MN
P1(|z|)P2(

1

Im(z)
) (7.37)

for N large enough and for each z ∈ C
+

Proof. We recall that aL(ν)
∗ (R(z)− t(z) IL) aL(ν) coincides with

∑L−1
l=−(L−1) τ(R−tI)(l)e−2iπlν (see (2.11)), and

recall that by Eq. (7.3), vector τ (R− tI) satisfies the equation

τ (R− tI) = τ (Γ ) +D(0)
τ (R− tI)

where matrix Γ is defined by (7.11). Proposition 7.1, Proposition 7.2 used in the case X = Γ as well as (7.36) imply

that for N large and z ∈ EN , it holds that

∣

∣

∣

∣

∣

∣

L−1
∑

l=−(L−1)

τ(R− tI)(l)e−2iπlν

∣

∣

∣

∣

∣

∣

≤ C
(|z|2 + η22)

2

(Im(z))4
‖TN,L(Γ )‖ (7.38)

for some nice constant C and for η2 = max(η, η1). It is clear that

‖TN,L(Γ )‖ ≤ P1(|z|)P2(
1

Im(z)
) ‖T (M)

N,L (E(Q)−RM ) ‖ (7.39)

Corollary 5.1 thus implies that (7.37) holds for N large enough and z ∈ EN . It remains to establish that (7.37)

also holds on the complementary Ec
N of EN . For this, we remark that on Ec

N , 1 < L3/2

MN P1(|z|)P2(
1

Im(z) ). As

supν∈[0,1] |aL(ν)∗ (R(z)− t(z) IL) aL(ν)| ≤ 2
Im(z) on C

+, we obtain that

sup
ν∈[0,1]

∣

∣aL(ν)
∗ (R(z)− t(z) IL) aL(ν)

∣

∣ ≤ 1

Im(z)

L3/2

MN
P1(|z|)P2(

1

Im(z)
)

for z ∈ Ec
N . This, in turn, shows that (7.37) holds for N large enough and for each z ∈ C

+.

Remark 7.1 We note that this property also implies that any quadratic form of R− t I converges towards 0 at rate
L3/2

MN . Using the polarization identity, it is sufficient to prove that b∗ (R− t I)b is a O(L
3/2

MN ) term for each uniformly

bounded deterministic vector b. We consider Eqs. (7.4, 7.5), and note that the righthandside of (7.4) and (7.5) are

bounded, up to constant terms depending on z (and not on the dimensions L,M,N) by ‖T (M)
N,L [E(Q)−RM ] ‖ and

‖TN,L (R− t I) ‖ respectively.
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8 Proof of (1.18)

The purpose of this section is to establish the identity (1.18). For this, we have essentially to control the term
1
LTr (R− t I). More precisely, we prove the following proposition.

Proposition 8.1 It exists nice polynomials P1 and P2 such that

sup
‖A‖≤1

∣

∣

∣

∣

1

L
Tr [(R− tIL)A]

∣

∣

∣

∣

≤ L

MN
P1(z)P2(1/Imz) (8.1)

for each z ∈ F
(3/2)
N where F

(3/2)
N is a subset of C+ defined by

F
(3/2)
N = {z ∈ C

+,
L3/2

MN
Q1(z)Q2(1/Imz) ≤ 1} (8.2)

for some nice polynomials Q1 and Q2.

Proof. In the following, we denote by β(A) the term 1
LTr [(R− tIL)A]. We write (6.6) as

1

L
Tr [(R− tIL)A] = −σ4cN zt(z)t̃(z) 1

MLTr [(E(Q)− IM ⊗R) (IM ⊗G(A))]− (8.3)

σ4cN zt(z)t̃(z)
1
LTr

(

R− tI)TL,L

[(

TN,L(AR)
)

H
])

We denote by ǫ(A) the first term of the righthandside of (8.3). (6.8) and Proposition 5.1 imply that sup‖A‖≤1 |ǫ(A| ≤
L

MN P1(|z|)P2(1/Imz) for some nice polynomials P1 and P2. In order to evaluate the contribution of the second term

of the righthandside of (8.3), we remark that matrices R(z) and H(z) should be “close” from t(z)IL and −zt̃(z) IN
respectively. It is thus appropriate to rewrite (8.3) as

1

L
Tr ((R− t I)A) = −zt(z)t̃(z)σ4cN

1

ML
Tr [(E(Q− IM ⊗R) IM ⊗G(A)]+ (8.4)

(zt(z)t̃(z))2σ4cN
1

L
Tr
[

(R− t I)TL,L

(

TN,L(A)
)]

+

(zt̃(z))2t(z)σ4cN
1

L
Tr
[

(R− t I)TL,L

(

TN,L [A(R− t I)]
) ]

−

z(t(z))2t̃(z)σ4cN
1

L
Tr
[

(R− t I)TL,L

(

TN,L(A)(H+ zt̃(z) I)
)]

−

zt(z)t̃(z)σ4cN
1

L
Tr
[

(R− t I) TL,L

(

TN,L [A(R− t I)] (H+ zt̃(z) I)
)]

We denote by α1(A), α2(A), α3(A), and α4(A) the second, third, fourth and fifth terms of the righthandside of the

above equation respectively.

We first study the term α1(A). We first recall that for each z ∈ C
+ and N large enough, it holds that

σ4cN |zt(z)t̃(z)|2 < 1−C
(Imz)4

(η2 + |z|2)2

where C and η are nice constants (see Eq. (1.31)). Moreover, for each A, ‖A‖ ≤ 1, it is clear that

∣

∣

∣

∣

1

L
Tr
[

(R− t I)TL,L

(

TN,L(A)
)]

∣

∣

∣

∣

≤ sup
‖B‖≤1

|β(B)| ‖TL,L

(

TN,L(A)
)

‖ ≤ sup
‖B‖≤1

|β(B)|

because ‖TL,L

(

TN,L(A)
)

‖ ≤ ‖A‖ ≤ 1 (see Proposition 2.1). This shows that

sup
‖A‖≤1

|α1(A)| ≤
(

1−C
(Imz)4

(η2 + |z|2)2

)

sup
‖A‖≤1

|β(A|

We now evaluate the behaviour of α2(A). We first use (2.7) to obtain that

α2(A) = (zt̃(z))2t(z)σ4cN
1

L
Tr
[

A (R− t I)TL,L

(

TN,L(R− t I)
)]
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We remark that for each matrix A, ‖A‖ ≤ 1, it holds that
∣

∣

∣

∣

1

L
Tr
[

(R− t I)TL,L

(

TN,L(R− t I)
)

A
]

∣

∣

∣

∣

≤ sup
‖B‖≤1

β(B) ‖A‖‖TN,L(R− t I)‖

(7.1) implies that

sup
‖A‖≤1

|α2(A)| < sup
‖A‖≤1

β(A)
L3/2

MN
P1(|z|)P2(1/Imz)

for each z ∈ C
+. The terms α3(A) and α4(A) can be handled similarly by writing H+ zt̃(z)I as

H+ zt̃(z)I = σ2cNzt̃(z) H T (M)
N,L (E(Q)− IM ⊗R) + σ2cNzt̃(z) H TN,L (R− t I)

In particular, it can be shown that for i = 3, 4 and N large enough, it holds that

sup
‖A‖≤1

|αi(A)| < sup
‖A‖≤1

β(A)
L3/2

MN
P1(|z|)P2(1/Imz)

Therefore, it holds that

sup
‖A‖≤1

|β(A)| ≤ sup
‖A‖≤1

|ǫ(A)|+ sup
‖A‖≤1

β(A)

[(

1− C
(Imz)4

(η + |z|2)2
)

+
L3/2

MN
P1(|z|)P2(1/Imz)

]

We define the set F
(3/2)
N as

F
(3/2)
N = {z ∈ C

+,
L3/2

MN
P1(|z|)P2(1/Imz) ≤ C/2

(Imz)4

(η2 + |z|2)2 }

which can also be written as

F
(3/2)
N = {z ∈ C

+,
L3/2

MN
Q1(|z|)Q2(1/Imz) ≤ 1}

for some nice polynomials Q1 and Q2. Then, it is clear that for each z ∈ F
(3/2)
N , then it holds that

sup
‖A‖≤1

|β(A)| ≤ 2/C
(η2 + |z|2)2

(Imz)4
sup

‖A‖≤1

|ǫ(A)| ≤ L

MN
P1(|z|)P2(1/Imz)

for some nice polynomials P1 and P2. This completes the proof of Proposition 8.1.

We conclude this section by the corollary:

Corollary 8.1 The mathematical expectation of the Stieltjes transform 1
MLTr(Q(z)) of the empirical eigenvalue

distribution of WW∗ can be written for z ∈ C
+ as

E

[

1

ML
Tr (Q(z))

]

= t(z) +
L

MN
r̃(z) (8.5)

where r̃(z) is holomorphic in C
+ and satisfies

|r̃(z)| ≤ P1(|z|)P2(
1

Im(z)
) (8.6)

for each z ∈ F
(3/2)
N defined by (8.2).

Proof. In order to establish (8.5), we have to prove that
∣

∣

∣

∣

1

ML
Tr (E(Q(z))) − t(z)

∣

∣

∣

∣

≤ P1(|z|)P2(
1

Im(z)
)

L

MN

for z ∈ F
(3/2)
N . E(Q(z)) − t(z)I can be written as

E(Q(z)) − t(z)IML = ∆(z) + IM ⊗R(z) − t(z) IML

Therefore, Proposition 5.1 implies that we have just to verify that
∣

∣

∣

∣

1

L
Tr(R− t IL)

∣

∣

∣

∣

≤ P1(|z|)P2(
1

Im(z)
)

L

MN

for z ∈ F
(3/2)
N , a consequence of Proposition 8.1.
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9 Expansion of 1

MLTr (E(QN (z))) − tN (z).

Notations and definitions used in section 9. In order to simplify the exposition of the results presented in this

section, we define the following simplified notations:

– Let (βN )N≥1 be a sequence depending on N . A term φN (z) depending on N defined for z ∈ C
+ will be said to

be a O(βN ) term if it exists 2 nice polynomials P1 and P2 such that

|φN (z)| ≤ βNP1(|z|)P2(1/Imz)

for N large enough and for each z belonging to a set defined as F
(2)
N , but possibly with other nice polynomials.

– CN (z, u1, . . . , uk) will represent a generic term depending on N , z, and on indices u1, . . . , uk ∈ {−(L−1), . . . , L−
1}, and satisfying supu1,...,uk

|CN ((z, u1, . . . , uk)| = O(1) in the sense of the above definition of operator O(.).
Very often, we will not mention the dependency of CN (z, u1, . . . , uk) w.r.t. N and z, and use the notation

C(u1, . . . , uk).
– By a real distribution, we mean a real valued continuous (in an appropriate sense) linear form D defined on the

space C
∞
c (R) of all real valued compactly supported smooth functions defined on R. Such a distribution can of

course be extended to complex valued smooth functions defined on R by setting < D,φ1 + iφ2 >=< D, φ1 >

+i < D, φ2 > for φ1, φ2 ∈ C∞c (R). We also recall that a compactly supported distribution D can be extended to

a continuous linear form to the space C∞
b (R) of all bounded smooth functions. In particular, < D, 1 > represents

< D,φ > where φ is any function of C∞c (R) that is equal to 1 on the support of D.

From now on, we assume that L satisfies the condition

L = O(Nα), where α < 2
3 (9.1)

which implies that
L2

MN
→ 0, i.e.

L

M2
→ 0 (9.2)

The goal of this section is to establish the following theorem.

Theorem 9.1 Under (9.1), 1
MLTr (E(QN (z))) − tN (z) can be expanded as

1

ML
Tr (E(QN (z))) − tN (z) =

L

MN

(

ŝN (z) +
L3/2

MN
r̂N (z)

)

(9.3)

where ŝN (z) coincides with the Stieltjes transform of a distribution D̂N whose support is included into S(0)
N =

[σ2(1 − √
cN )2, σ2(1 +

√
cN )2] and which verifies < D̂N , 1 >= 0, and where |r̂N (z)| ≤ P1(|z|)P2(

1
Imz ) when z

belongs to a set F
(2)
N defined by

F
(2)
N = {z ∈ C

+,
L2

MN
Q1(|z|)Q2(1/Imz) ≤ 1} (9.4)

for some nice polynomials Q1 and Q2.

As shown below in section 10, (9.3) provides the desired almost sure location of the eigenvalues of WNW∗
N . In order

to establish (9.3), we express 1
MLTr (E(QN (z))) − tN (z) as

1

ML
Tr (E(QN (z))) − tN (z) =

1

ML
Tr∆N (z) +

1

L
Tr (RN (z) − tN (z) I)

and study the 2 terms separately. We first establish that if (9.1) holds, then

1

ML
Tr∆N (z) =

L

MN
sN (z) +

(

L

MN

)2

rN (z) (9.5)

where sN (z) is the Stieltjes transform of a distribution whose support is included in S(0)
N , and where

|rN (z)| ≤ P1(|z|)P2(1/Imz)

for some nice polynomials P1 and P2 and for z ∈ F
(2)
N . Using Theorem 7.1, (9.3) will follow easily from (9.5).

The proof of (9.5) is quite demanding. It needs to establish a number of intermediate results that are presented

in subsection 9.2, and used in subsection 9.3.
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9.1 Useful results concerning the Stieltjes transforms of compactly supported distributions.

Before establishing (9.5), we need to recall some results concerning the Stieltjes transform of compactly supported

real distributions, and to establish that the so-called Hellfer-Sjöstrand formula, valid for probability measures, can

be generalized to compactly supported distributions.

The following useful result was used in [29], Theorem 5.4 and Lemma 5.6 (see also Theorem 4.3 in [11]).

Lemma 9.1 If D is a real distribution with compact support Supp(D), its Stieltjes transform s(z) is defined for each

z ∈ C − Supp(D) by

s(z) =< D,
1

λ− z
> .

Then, s is analytic on C − Supp(D) and verifies the following properties:

– (a) s(z) → 0 if |z| → +∞
– It exists a compact K ⊂ R containing Supp(D) such that

– (b) s(z∗) = (s(z))∗ for each z ∈ C −K
– (c) It exists an integer n0 and a constant C such that for each z ∈ C −K,

|s(z)| ≤ CMax

(

1

(Dist(z,K))n0
, 1

)

(9.6)

– If φ is an element of C∞c (R), then the following inversion formula holds

1

π
lim

y→0+

∫

φ(λ) Im(s(λ+ iy)) dλ =< D,φ > (9.7)

– If lim|z|→+∞ |zs(z)| = 0, then, it holds that

< D, 1 >= 0 (9.8)

Conversely, if K is a compact subset of R, and if s(z) is a function analytic on C−K satisfying (a), (b), (c), then s(z)
is the Stieltjes transform of a compactly supported real distribution D such that Supp(D) ⊂ K. In this case, Supp(D)
is the set of singular points of s(z).

Remark 9.1 – We note that (9.6) of course implies that

|s(z)| ≤ CMax

(

1

(Imz)n0
, 1

)

≤ C

(

1 +
1

(Imz)n0

)

(9.9)

for each z ∈ C − R.

– We have chosen to present Lemma 9.1 as it is stated in [29]. However, we mention that (b) and (c) hold for each

compact subset K of R containing Supp(D). n0 does not depend on the compact K and is related to the order of

D. However, the constant C does depend on K. .

We now provide a useful example of such functions s(z).

Lemma 9.2 If p ≥ 1, then function sN (z) defined by

sN (z) = (tN (z))p(zt̃N (z))q
1

(

1− aN σ4cN (z tN (z) t̃N (z))2
)n

for |aN | ≤ 1 coincides with the Stieltjes transform of a real bounded distribution DN whose support is included in SN

for each integers q ≥ 0 and n ≥ 0. Moreover, DN satisfies (9.8) as soon as p ≥ 2.

Proof. It is clear that sN (z∗) = (sN (z))∗ and that sN (z) → 0 if |z| → +∞ because p ≥ 1 and that zt̃(z) → −1.
We use Lemma 1.1 to manage the term

1
(

1− aN σ4cN (z tN (z) t̃N(z))2
)n

and use that |tN (z)| ≤ 1
dist(z,SN ) for z ∈ C − SN We also remark that

zt̃N (z) = cN

∫

SN

z

λ− z
dµσ2,cN (λ)− (1− cN )
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or equivalently that

zt̃N (z) = cN

∫

SN

λ

λ− z
dµσ2,cN (λ) − 1

Therefore,

|zt̃N (z)| ≤ C (1 +
1

dist(z,SN )
) ≤ C max

(

1,
1

dist(z,SN )

)

for each z ∈ C − SN . Moreover, it holds that zs(z) → 0 if |z| → +∞ as soon as p ≥ 2.

We now briefly justify that the Hellfer-Sjöstrand formula can be generalized to compactly supported distributions.

In order to introduce this formula, used in the context of large random matrices in [2], [3] and [26], we have to define

some notations. χ is a function of C∞c (R) with support [−1,1], and which is equal to 1 in a neighborhood of 0. If

φ(x) ∈ C∞c (R), we denote by φk the function of C∞c (R2, C) defined for z = x+ iy by

φk(z) =
k
∑

l=0

φ(l)(x)
(iy)l

l!
χ(y)

Function ∂φk is the "derivative"

∂φk(z) =
∂φk(z)

∂x
+ i

∂φk(z)

∂y

and is given by

∂φk(z) = φ(k+1)(x)
(iy)k

k!
(9.10)

in the neighborhood of 0 in which χ(y) = 1. If s(z) is the Stieltjes transform of a probability measure µ, s(z) verifies

|s(z)| ≤ 1
Imz on C

+. Therefore, (9.10) implies that if k ≥ 1, then function ∂φk(z) s(z) is well defined near the real

axis. The Hellfer-Sjöstrand allows to reconstruct
∫

φ(λ) dµ(λ) as:

∫

φ(λ) dµ(λ) =
1

π
Re

(
∫

C+

∂φk(z) s(z) dxdy

)

(9.11)

The following Lemma extends formula (9.11) to real compactly supported distributions.

Lemma 9.3 We consider a compactly supported distribution D and s(z) is Stieljes transform. Then, if k is greater

than the index n0 defined by (9.9), then ∂φk(z) s(z) is well defined near the real axis, and

< D, φ >=
1

π
Re

(
∫

C+

∂φk(z) s(z) dxdy

)

(9.12)

Sketch of proof. It is clear that ∂φk(z) s(z) is well defined near the real axis. Therefore, the integral at the

righthandside of (9.12) exists. By linearity, it is sufficient to establish (9.12) if D coincides with a derivative of a

Dirac distribution D = δ
(p)
λ0

for p ≤ n0 − 1, i.e. s(z) = 1
(λ0−z)p+1 . Using the integration by parts formula and the

analyticity of s(z) on C
+, we obtain that

1

π
Re

(
∫

C+

∂φk(z) s(z) dxdy

)

= lim
ǫ→0

1

π
Re

(

−i
∫

R

φk(x+ iǫ)s(x+ iǫ)dx

)

< D, φ > is of course equal to

< D, φ >= (−1)p < δλ0
, φ(p) >

As the Hellfer-Sjöstrand formula is valid for measure δλ0
and that the Stieltjes transform of δλ0

is 1
λ0−z , it holds that

< δλ0
, φ(p) >= lim

ǫ→0

1

π
Re

(

−i
∫

R

(

φ(p)
)

k
(x+ iǫ)

1

λ0 − (x+ iǫ)
dx

)

It is clear that
(

φ(p)
)

k
(x+ iǫ) = dp

dxpφk(x+ iǫ). Therefore, the integration by parts leads to

∫

R

(

φ(p)
)

k
(x+ iǫ)

1

λ0 − (x+ iǫ)
dx = (−1)p

∫

R

φk(x+ iǫ)
1

(λ0 − (x+ iǫ))p+1
dx

from which (9.12) follows immediately.
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9.2 Some useful evaluations.

(4.15) and (5.2) imply that 1
MLTr (∆(z)) is given by

1

ML
Tr (∆(z)) = σ2cN

L−1
∑

l1=−(L−1)

E

(

τ (M)(Q◦)(l1)
1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗R)

)◦)

In order to establish (9.5), it is necessary to evaluate the righthandside of the above equation up to O( L
MN )2 terms us-

ing the integration by parts formula. If we denote by κ(2)(l1, l2) the term defined by κ(2)(l1, l2) = E

(

τ (M)(Q◦)(l1)τ (M)(Q◦)(l2)
)

,

then, we establish in the following that

1

ML
Tr (∆(z)) = (σ2cN )2

L−1
∑

l1,l2=−(L−1)

κ(2)(l1, l2) E

[

1

ML
Tr
(

QWJl2
NHTW∗

(

IM ⊗ σ2RTL,L(HJ∗l1
N H)R

))

]

− (σ2cN )2
L−1
∑

l1,l2=−(L−1)

κ(2)(l1, l2) E

[

1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(IM ⊗R)
)

]

+
σ4cN
MLN

L−1
∑

l1,i=−(L−1)

E

[

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Jl1

L )QWJi
NHTW∗(IM ⊗ σ2RTL,L(HJ∗l1

N H)R
)

]

− σ4cN
MLN

L−1
∑

l1,i=−(L−1)

E

[

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Jl1

L )QWJi
NHTJl1

NHTW∗(IM ⊗R
)

]

+ (σ2cN )2
L−1)
∑

l1,l2=−(L−1)

E

[

τ (M)(Q◦)(l1)τ
(M)(Q◦)(l2)

1

ML
Tr
(

QWJl2
NHTW∗

(

IM ⊗ σ2RTL,L(HJ∗l1
N H)R

))◦]

− (σ2cN )2
L−1
∑

l1,l2=−(L−1)

E

[

τ (M)(Q◦)(l1)τ
(M)(Q◦)(l2)

1

ML
Tr
(

QWJl2
NHT Jl1

NHTW∗(IM ⊗R)
)◦]

(9.13)

We evaluate in closed form the third and the fourth term of the righthandside of (9.13) up to O( L
MN )2, prove that

κ(2)(u1, u2) =
1

MN C(z, u1)δ(u1 + u2 = 0) + O( L
(MN)2

), and establish that the 2 last terms of (9.13) are O( L
MN )2.

In Paragraph 9.2.1, we calculate useful quantities similar to the third and the fourth term of the righthandside of

(9.13), and in Paragraph 9.2.2, we evaluate κ(2)(u1, u2).

9.2.1 Evaluation of the third and fourth terms of the righthandside of (9.13).

We first state 2 technical Lemmas.

Lemma 9.4 We consider uniformy bounded ML×ML matrices (Cs)s=1,...,r and A, and a uniformly bounded N×N
matrix G. Then, for each p ≥ 2, it holds that

E

(

1

ML
Tr (Πr

s=1QCs)
◦
)p

= O(
1

(MN)p/2
) (9.14)

E

[

1

ML
Tr
(

(Πr
s=1QCs)WGW∗A

)◦
]p

= O(
1

(MN)p/2
) (9.15)

Proof. We just provide a sketch of proof. We first establish (9.14) and (9.15) by induction for even integers p = 2q.
For q = 1, we use the Poincaré-Nash inequality, and for q ≥ 1, we take benefit of the identity

E|x|2q =
∣

∣E(xq)
∣

∣

2
+Var(xq)

and of the Poincaré-Nash inequality. We obtain (9.14) and (9.15) for odd integers using the Schwartz inequality.

We now evaluate the expectation of normalized traces of matrices such as Πr
s=1QCs. Proposition 9.1 is used in

the sequel in the case r = 2 and r = 3.
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Proposition 9.1 For each ML×ML deterministic uniformly bounded matrices (Cs)s=1,...,r+1 and A, it holds that

E

(

1

ML
Tr
(

Πr+1
s=1QCs

)

)

= E

(

1

ML
Tr
[

(Πr
s=1QCs)(IM ⊗R)Cr+1)

]

)

+O(
L

MN
)

(9.16)

+σ2cN

r
∑

s=1

L−1
∑

i=−(L−1)

E

[

1

ML
Tr
(

(Πr
t=sQCs)Q(IM ⊗ Ji

L)
)

]

E

[

1

ML
Tr
(

(Πs−1
t=1QCs)QWJi

NHTW∗(IM ⊗R)Cr+1
)

]

and that

E

[

1

ML
Tr
(

(Πr
s=1QCs)QWGW∗A

)

]

= E

(

1

ML
Tr
[

Πr
s=1QCs(IM ⊗ σ2RTL,L(G

TH))A)
]

)

+O(
L

MN
)+

σ2cN

r
∑

s=1

L−1
∑

i=−(L−1)

E

[

1

ML
Tr
(

(Πr
t=sQCs)Q(IM ⊗ Ji

L)
)

]

E

[

1

ML
Tr(Πs−1

t=1QCs)QWJi
NHTW∗(IM ⊗ σ2RTL,L(G

TH))A

]

− σ2cN

r
∑

s=1

L−1
∑

i=−(L−1)

E

[

1

ML
Tr
(

(Πr
t=sQCs)(Q(IM ⊗ Ji

L)
)

]

E

[

1

ML
Tr
(

(Πs−1
t=1QCs)QWJi

NHTGW∗A
)

]

(9.17)

The proof of this result is similar to the proof of (4.14) and (4.16), but is of course more tedious. To establish (9.16)

and (9.17), it is sufficient to evaluate matrix E

[

Πr
s=1Q

ns,n
′

s

ls,l
′

s

QWGW∗
]

using the integration by parts formula for

each multi-indices (l
′

1, . . . , l
′

r) and (n
′

1, . . . , n
′

r). A proof is provided in [23].

We now use Proposition 9.1 to study the behaviour of certain useful terms. For this, it is first necessary to give

the following lemma. If A is a matrix, |||A|||∞ is defined as

|||A|||∞ = sup
i

∑

j

|Ai,j |

Lemma 9.5 We consider the (2L−1)×(2L−1) diagonal matrix D(z) = Diag(d(−(L−1), z), . . . , d(0), . . . , d(L−1, z)
where for each l ∈ Z, d(l, z) is defined as

d(l, z) = σ4cN (z t(z) t̃(z))2 (1− |l|/L)+ (1− |l|/N)+ (9.18)

We consider a (2L− 1)× (2L− 1) deterministic matrix Υ whose entries (ǫk,l)−(L−1)≤k,l≤L−1 depend on z, L,M,N

and satisfy

|ǫk,l| ≤
L

MN
P1(|z|)P2(

1

Im(z)
) (9.19)

for some nice polynomials P1 and P2 for each z ∈ C
+. Then, for each z belonging to a set EN defined by

EN = {z ∈ C
+,

L2

MN
Q1(|z|)Q2(

1

Im(z)
) < 1} (9.20)

for some nice polynomials Q1, Q2, matrix (I− (D+ Υ )) is invertible and for each L,M,N , and for each z ∈ EN , it

holds that

sup
L,M,N

||| (I− (D+ Υ ))
−1 |||∞ < C

(η2 + |z|2)2
(Im(z))4

(9.21)

for some nice constants η and C.
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Proof. It is well known (see e.g. [20], Corollary 6.1.6 p. 390) that

ρ(D+ Υ ) ≤ |||D+ Υ |||∞

Therefore, we obtain that

ρ(D+ Υ ) ≤ σ4cN |z t(z) t̃(z)|2 + L2

MN
P1(|z|)P2(

1

Im(z)
)

As σ4cN |z t(z) t̃(z)|2 ≤ 1−C
(Im(z))4

(η2+|z|2)2 for some nice constants C and η (see Eq. 1.31)), we get that

ρ(D+ Υ ) < 1− C

2

(Im(z))4

(η2 + |z|2)2

if z satisfies

C
(Im(z))4

(η2 + |z|2)2 − L2

MN
P1(|z|)P2(

1

Im(z)
) >

C

2

(Im(z))4

(η2 + |z|2)2

a condition that can be written as z ∈ EN for well chosen nice polynomials Q1, Q2. We note that a similar result

holds for ρ(|D|+ |Υ |) where for any matrix A, |A| is the matrix defined by (|A|)i,j = |A|i,j . This implies that for

z ∈ EN , matrices I − D − Υ and I − |D| − |Υ | are invertible, and that (I − D − Υ )−1 =
∑+∞

n=0(D + Υ )n and

(I− |D| − |Υ |)−1 =
∑+∞

n=0(|D|+ |Υ |)n. We note that for each k, l, | ((D+ Υ )n)k,l | ≤ ((|D|+ |Υ |)n)k,l. Therefore,

∣

∣

∣

∣

(

(I−D− Υ )−1
)

k,l

∣

∣

∣

∣

≤
(

(I− |D| − |Υ |)−1
)

k,l
(9.22)

We denote by 1 the 2L−1 dimensional vector with all components equal to 1, and by b the vector b = (I− |D| − |Υ |) 1.

It is clear that for each l ∈ {−(L− 1), . . . , L− 1}, bl is equal to

bl = 1− σ4cN |z t(z) t̃(z)|2 (1− |l|/L)(1− |l|/N) −
∑

k

|ǫl,k|

which is greater than C
2

(Im(z))4

(η2+|z|2)2 if z ∈ EN . Therefore, for each l, for z ∈ EN , it holds that

1 =
∑

k

(I− |D| − |Υ |)−1
l,k bk >

C

2

(Im(z))4

(η2 + |z|2)2
∑

k

(I− |D| − |Υ |)−1
l,k

which implies that

||| (I− (|D|+ |Υ )|)−1 |||∞ <
2

C

(η2 + |z|2)2
(Im(z))4

(9.21) follows immediately from (9.22).

We now introduce ω(u1, u2, z) defined for −(L− 1) ≤ ui ≤ (L− 1) for i = 1, 2 by

ω(u1, u2, z) =
1

ML
Tr (Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2

L )) (9.23)

and prove the following result.

Proposition 9.2 E(ω(u1, u2, z)) can be expressed as

E (ω(u1, u2, z)) = δ(u1 + u2 = 0)ω(u1, z) +O(
L

MN
) (9.24)

for each z ∈ EN where EN is defined by (9.20) and where ω(u1, z) is defined by

ω(u1, z) =
(1− |u1|/L) t2(z)

1− σ4cN (z t(z) t̃(z))2(1− |u1|/L)(1− |u1|/N)
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Proof. We use (9.16) for r = 1,C1 = (IM ⊗ Ju1

L ),C2 = (IM ⊗ Ju2

L ). Using that

E

(

1

ML
Tr(QC1(IM ⊗R)C2)

)

=
1

ML
Tr
(

(IM ⊗R)C1(IM ⊗R)C2)
)

+O(
L

MN
)

we obtain that

E(ω(u1, u2)) =
1

L
Tr (RJu1

L RJu2

L ) + σ2cN

L−1
∑

i=−(L−1)

E

(

1

ML
Tr(QWJi

NHTW∗(IM ⊗RJu2

L )

)

E(ω(u1, i))+O(
L

MN
)

(9.25)

For each u1 fixed, this equation can be interpreted as a linear system whose unknowns are the

(E(ω(u1, u2)))u2=−(L−1),...,L−1. (4.16) implies that

E

(

1

ML
Tr(QWJi

NHTW∗(IM ⊗RJu2

L )

)

=
σ2

L
TrRTL,L(HJ∗i

LH)RJu2

L +O(
L

MN
)

Moreover, we check that, up to a O( L
MN ) term, matrices R and H can be replaced into the righthandside of the

above equation by t(z)IL and −zt̃(z)IL respectively. In other words,

E

(

1

ML
Tr(QWJi

NHTW∗(IM ⊗RJu2

L )

)

= σ2(zt(z) t̃(z))2
1

L
Tr
(

TL,L(J
∗i
L )Ju2

L

)

+O(
L

MN
)

= δ(i− u2) σ
2(zt(z) t̃(z))2(1− |u2|/L)(1− |u2|/N) +O(

L

MN
)

We write RTL,L

(

HJ∗i
NH

)

RJu2

L as

RTL,L

(

HJ∗i
NH

)

RJu2

L = (R− tI)TL,L

(

HJ∗i
NH

)

RJu2

L +

t TL,L

(

(H+ zt̃I)J∗i
NH

)

RJu2

L − ztt̃TL,L

(

J∗i
N (H+ zt̃I)

)

RJu2

L +

t(zt̃)2TL,L

(

J∗i
N

)

(R− t I)Ju2

L + t2(zt̃)3TL,L

(

J∗u
N

)

Ju2

L

The terms 1
LTr

(

(R− t I)TL,L

(

HJ∗i
NH

)

RJu2

L

)

and 1
LTr

(

TL,L

(

J∗i
N

)

(R− t I)Ju2

L

)

are O( L
MN ) by Proposition 8.1.

We just study the term 1
LTr

(

t TL,L

(

(H+ zt̃I)J∗i
NH

)

RJu2

L

)

and omit 1
LTr

(

TL,L

(

J∗i
N (H+ zt̃I)

)

RJu2

L

)

because it

can be handled similarly. We express H+ zt̃I as

H+ zt̃I = σ2cN zt̃HT (M)
N,L (E(Q)− t I)

= σ2cN zt̃HT (M)
N,L (E(Q)− IM ⊗R) + σ2cN zt̃HTN,L (R− t I)

Property (2.7) and Proposition 8.1 imply that 1
LTr

(

tTL,L

(

(H+ zt̃I)J∗i
NH

)

RJu2

L

)

is a O( L
MN ). We have thus shown

that for i, u2 ∈ −(L− 1), . . . , L− 1, then, it holds that

σ2cN E

(

1

ML
Tr(QWJi

NHTW∗(IM ⊗RJu2

L )

)

= δ(i+ u2 = 0) d(i, z) +O(
L

MN
) (9.26)

Similarly, it holds that

1

L
Tr (RJu1

L RJu2

L ) = t(z)2
1

L
Tr(Ju1

L Ju2

L ) +O(
L

MN
)

= δ(u1 + u2 = 0) (t(z))2 (1− |u1|/L) +O(
L

MN
)

We denote by ω(u1) the (2L− 1) dimension vector (ω(u1, u2))u2=−(L−1),...,L−1, and by γ(u1) the vector such

that

γ(u1)u2 = δ(u1 + u2 = 0) (t(z))2 (1− |u1|/L)

The linear system (9.25) can be written as

E(ω(u1)) = (D+ Υ ) E(ω(u1)) + γ(u1) + ǫ
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where the elements of matrix Υ and the components of vector ǫ are O( L
MN ) terms. Matrices D and Υ verify the

assumptions of Lemma 9.5. Therefore, it holds that

E(ω(u1)) = (I−D− Υ )−1 (γ(u1) + ǫ)

when z belongs to a set EN defined as in (9.20). Writing matrix (I−D− Υ )−1
as

(I−D− Υ )−1 = (I−D)−1 + (I−D− Υ )−1
Υ (I−D)−1

we obtain that

E(ω(u1)) = (I−D)−1
γ(u1) + (I−D− Υ )−1

Υ (I−D)−1
γ(u1) + (I−D− Υ )−1

ǫ

(9.21) implies that for each u2,
(

(I−D− Υ )−1
ǫ

)

u2

= O(
L

MN
)

Moreover, as vector γ(u1) has only 1 non zero component, it is clear that each component of vector Υ (I−D)−1
γ(u1)

is a O( L
MN ) term. Hence, (9.21) leads to

(

(I−D− Υ )−1
Υ (I−D)−1

γ(u1)
)

u2

= O(
L

MN
)

This establishes (9.24). We notice that Lemma 9.5 plays an important role in the above calculations. The control

of ||| (I− (|D|+ |Υ )|)−1 |||∞ allows in particular to show that E(ω(u1, u2)) = O( L
MN ) if u1 + u2 6= 0, instead of

O( L2

MN ) in the absence of control on ||| (I− (|D|+ |Υ )|)−1 |||∞. As Lemma 9.5 is a consequence of L2

MN → 0, this

discussion confirms the importance of condition (9.1), and strongly suggests that it is a necessary condition to obtain

positive results.

It is also necessary to evaluate E(ω(u1, u2, u3, z)) where ω(u1, u2, u3, z) is defined by

ω(u1, u2, u3, z) = E

[

1

ML
Tr (Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2

L )Q(IM ⊗ Ju3

L ))

]

(9.27)

It holds that for z ∈ EN defined as in (9.20)

Proposition 9.3 E(ω(u1, u2, u3, z)) can be expressed as

E(ω(u1, u2, u3, z)) = δ(u1 + u2 + u3 = 0)ω(u1, u2, z) +O(
L

MN
) (9.28)

where ω(u1, u2, z) is given by

(t(z))3
1
LTr(J

u2

L Ju1

L J
∗(u1+u2)
L ) + σ6c2N (zt(z) t̃(z))3 (1− |u1|/L)(1− |u2|/L)(1− |u1 + u2|/L)+ 1

NTr(Ju1

N Ju2

N J
∗(u1+u2)
N )

(1− d(u1, z)) (1− d(u2, z)) (1− d(u1 + u2, z))
(9.29)

Proof. The proof is somewhat similar to the proof of Proposition 9.2, but it needs rather tedious calculations. We just

provide the main steps and omit the straightforward details. We use again (9.16), but for r = 2, and Cs = (IM ⊗Jus

L )
for s = 1, 2,3. We obtain immediately that

E(ω(u1, u2, u3)) =
1

ML
E [Tr (Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2

L RJu3

L ))]+ (9.30)

σ2cN

L−1
∑

i=−(L−1)

E

[

1

ML

(

Tr(QWJi
NHTW∗(IM ⊗RJu3

L )
)

]

E(ω(u1, u2, i))+

σ2cN

L−1
∑

i=−(L−1)

1

ML
E

[

Tr
(

Q(IM ⊗ Ju1

L )QWJi
NHTW∗(IM ⊗RJu3

L )
)]

E(ω(u2, i)) +O(
L

MN
)

(9.30) can still be interpreted as a linear system whose unknown are the (E(ω(u1, u2, u3)))u3∈{−(L−1),...,L−1}. The

matrix governing the system is the same matrix D+ Υ as in the proof of Proposition 9.2 (but for a different matrix

Υ ). In order to use the same arguments, it is sufficient to establish that

1

ML
E [Tr (Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2

L RJu3

L ))] = C(u1, u2, z)δ(u1 + u2 + u3 = 0) +O(
L

MN
) (9.31)
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and

L−1
∑

i=−(L−1)

1

ML
E

[

Tr
(

Q(IM ⊗ Ju1

L )QWJi
NHTW∗(IM ⊗RJu3

L )
)]

E(ω(u2, i)) =

C(u1, u2, z)δ(u1 + u2 + u3 = 0) +O(
L

MN
) (9.32)

To check (9.31), we use (9.16) for r = 1,C1 = IM ⊗ Ju1

L ,C2 = IM ⊗ Ju2

L RJu3

L . This leads to

1

ML
E [Tr (Q(IM ⊗ Ju1

L )Q(IM ⊗ Ju2

L RJu3

L ))] =
1

L
Tr (RJu1

L RJu2

L RJu3

L )+

σ2cN

L−1
∑

i=−(L−1)

E(ω(u1, i)) E

[

1

ML

(

Tr(QWJi
NHTW∗(IM ⊗R2Ju2

L RJu3

L )
)

]

+O(
L

MN
)

Up to a O( L
MN ) term, it is possible to replace R(z) by t(z)I into the first term of the righthandside of the above

equation. This leads to

1

L
Tr (RJu1

L RJu2

L RJu3

L ) = (t(z))3
1

L
TrJu1

L Ju2

L Ju3

L +O(
L

MN
)

= (t(z))3
1

L
TrJu1

L Ju2

L J
∗(u1+u2)
L δ(u1 + u2 + u3 = 0) +O(

L

MN
)

Similarly, it is easy to check that

E

[

1

ML

(

Tr(QWJi
NHTW∗(IM ⊗R2Ju2

L RJu3

L )
)

]

= C(u2, u3, z)δ(i = u2 + u3) +O(
L

MN
)

As E(ω(u1, i, z)) = ω(u1, z)δ(i+ u1 = 0) +O( L
MN ), we get immediately that if u1 + u2 + u3 6= 0, then,

σ2cN

L−1
∑

i=−(L−1)

E(ω(u1, i)) E

[

1

ML

(

Tr(QWJi
NHTW∗(IM ⊗R2Ju2

L RJu3

L )
)

]

= O(
L

MN
) + LO

(

(
L

MN
)2
)

(9.31) follows from the observation that, as L2

MN → 0, then L( L
MN )2 = L2

MN
L

MN = o( L
MN ).

Finally, (9.32) holds because, using (9.17) for r = 1,C1 = IM ⊗ Ju1

L , G = Ji
NHT , A = IM ⊗RJu3

L , it can be

shown that

1

ML
E

[

Tr
(

Q(IM ⊗ Ju1

L )QWJi
NHTW∗(IM ⊗RJu3

L )
)]

= C(u1, u3, z) δ(i = u1 + u3) +O(
L

MN
)

As E(ω2(i, u2, z)) = δ(i+ u2 = 0)ω(u2, z) +O( L
MN ), L2

MN → 0 implies (9.32).

The calculation of ω(u1, u2, z) is omitted.

We now define and evaluate the following useful terms. If p ≥ 1 and q ≥ 1, for each integers i, u1, u2, l1, . . . , lp,

k1, . . . , kq belonging to {−(L− 1), . . . , L− 1}, we define

βp,q(i, u1, l1, . . . , lp, k1, . . . , kq, u2, z)

as

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Ju1

L )QWJi
NHTΠp

j=1(J
lj
NHT )W∗

(

IM ⊗Πq
n=1(RTL,L(HJ∗kn

N H))RJu2

L

))

(9.33)

We also define βp,0(i, u1, l1, . . . , lp, u2, z) as

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Ju1

L )QWJi
NHTΠp

j=1(J
lj
NHT )W∗ (IM ⊗RJu2

L )
)

(9.34)

and β0,q(i, u1, k1, . . . , kq , u2, z) is defined similarly. We finally denote by β(i, u1, u2, z) the term β0,0(i, u1, u2, z), i.e.

β(i, u1, u2, z) =
1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Ju1

L )QWJi
NHTW∗(IM ⊗RJu2

L )
)

(9.35)
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Proposition 9.4 For p ≥ 0 and q ≥ 0, it holds that

E (βp,q(i, u1, l1, . . . , lp, k1, . . . , kq, u2, z)) = δ(u1 +u2 =
∑

j

lj +
∑

n

kn) βp,q(i, u1, l1, . . . , lp, k1, . . . , kq, z)+O(
L

MN
)

(9.36)

where for each i, u1, l1, . . . , lp, k1, . . . , kq, function z → βp,q(i, u1, l1, . . . , lp, k1, . . . , kq , z) is the Stieljes transform of

a distribution D whose support is included into SN and such that < D,1 >= 0. Moreover, if cN > 1, for each

i, l1, function z → β1,0(i, l1, l1, z) is analytic in a neighbourhood of 0, while 0 is pole of multiplicity 1 of functions

z → zβ(i, l1, z) and z → β0,1(i, l1, z) where we denote β0,0(i, l1, z) by β(i, l1, z) in order to simplify the notations.

Finally, function s(i, l1, z) defined by

s(i, l1, z) = −σ2β1,0(i, l1, l1, z) + σ2β0,1(i, l1, l1, z) + (9.37)

σ6cN
(

zt(z)t̃(z)
)2
zt̃(z)

(

1 + σ2zt(z)t̃(z)(1− |l1|/L)(1− |l1|/N)
)

(

1− |l1|/N
1− d(l1, z)

β(i, l1, z)

)

is the Stieltjes transform of a distribution D whose support is included in S(0)
N and verifying < D,1 >= 0.

Proof. In order to simplify the notations, we just establish the first part of the proposition when p = q = 0, i.e. for

the term β(i, u1, u2, z) = β0,0(i, u1, u2, z). Then, we check that

E (β(i, u1, u2, z)) = δ(u1 + u2 = 0) β(i, u1, z) +O(
L

MN
) (9.38)

where β(i, u, z) is given by

β(i, u, z) =
5
∑

j=1

βj(i, u, z)

with

β1(i, u, z) =
σ2t(z)4(z t̃(z))2(1− |i|/N) 1

LTr(J
i
LJ

u
LJ

∗i
L J∗u

L )

1− d(i, z)
,

β2(i, u, z) = σ6cN t(z)
3(z t̃(z))4ω(i, u)(1− |i+ u|/N) (1− |i|/N)

1

L
Tr(Ju+i

L J∗i
L J∗u

L ),

β3(i, u, z) = σ4cN t(z)
2(z t̃(z))3ω(i, u)1|i+u|≤L−1 (1− |u1|/L)

1

N
Tr(Ju+i

N J∗u
N J∗i

N ),

β4(i, u, z) = σ6cN t(z)
4(z t̃(z))4ω(u)(1− |u|/N)(1− |i|/N)

1

L
Tr(Ji

LJ
u
LJ

∗i
L J∗u

L )+

σ10c2N t(z)
4(z t̃(z))6ω(u)ω(i)(1− |i|/N)2(1− |u|/N)

1

L
Tr(Ji

LJ
u
LJ

∗i
L J∗u

L )−

σ8c2N t(z)
3(z t̃(z))5ω(u)ω(i)(1− |i|/N)

1

N
Tr(Ju

NJi
NJ

∗(i+u)
N )

1

L
Tr(Ju+i

L J∗i
L J∗u

L ),

β5(i, u, z) = σ4cN t(z)
3(z t̃(z))3ω(u)

1

N
Tr(J∗i

NJu
NJi−u

N )
1

L
Tr(Ju

LJ
u−i
L J∗u

L )+

σ8c2N t(z)
3(z t̃(z))5ω(u)ω(i)(1− |i|/N)

1

N
Tr(J∗i

NJu
NJi−u

N )
1

L
Tr(Ju

LJ
u−i
L J∗u

L )+

σ6c2N t(z)
2(z t̃(z))4ω(i)ω(u)(1− |u|/L) 1

N
Tr(J∗i

NJu
NJi

NJ∗u
N )
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The proof is based on (9.17) for r = 2, with C1 = IM ⊗ Ji
L, C2 = IM ⊗ Ju1

L , G = Ji
NHT , A = IM ⊗RJu2

L . It holds

that

E(β(i, u1, u2)) =
1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Ju1

L )(IM ⊗ σ2RTL,L(HJ∗i
NH)RJu2

L )
)]

+

σ2cN

L−1
∑

j=−(L−1)

E(ω(i, u1, j))
1

ML
E

[

Tr
(

QWJj
NHTW∗(IM ⊗ σ2RTL,L(HJ∗i

NH)RJu2

L )
)]

+

σ2cN

L−1
∑

j=−(L−1)

E(ω(u1, j))
1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)QWJj

NHTW∗(IM ⊗ σ2RTL,L(HJ∗i
NH)RJu2

L )
)]

−

σ2cN

L−1
∑

j=−(L−1)

E(ω(i, u1, j))
1

ML
E

[

Tr
(

QWJj
NHTJi

NHTW∗(IM ⊗RJu2

L )
)]

−

σ2cN

L−1
∑

j=−(L−1)

E(ω(u1, j))
1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)QWJj

NHTJi
NHTW∗(IM ⊗RJu2

L )
)]

Using (9.16), it is easy to check that

1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Ju1

L )(IM ⊗ σ2RTL,L(HJ∗i
NH)RJu2

L )
)]

= δ(u1 + u2 = 0)C(i, u1, z) +O(
L

MN
),

1

ML
E

[

Tr
(

QWJj
NHTW∗(IM ⊗ σ2RTL,L(HJ∗i

NH)RJu2

L )
)]

= δ(j = u2 − i)C(i, u2, z) +O(
L

MN
),

1

ML
E

[

Tr
(

QWJj
NHTJi

NHTW∗(IM ⊗RJu2

L )
)]

= δ(j = u2 − i)C(i, u2, z) +O(
L

MN
),

1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)QWJj

NHTW∗(IM ⊗ σ2RTL,L(HJ∗i
NH)RJu2

L )
)]

= δ(j = u2)C(i, u2, z) +O(
L

MN
),

1

ML
E

[

Tr
(

Q(IM ⊗ Ji
L)QWJj

NHT Ji
NHTW∗(IM ⊗RJu2

L )
)]

= δ(j = u2)C(i, u2, z) +O(
L

MN
)

Proposition 9.2 and Proposition 9.3 immediately imply that E(β(i, u1, u2)) can be written as (9.38). We omit the

proof of the expression of β(i, u, z). Moreover, Lemma 9.2 implies that function z → β(i, u, z) is the Stieltjes transform

of a distribution D whose support is included in SN and which verifies < D, 1 >= 0.

We now establish the second part of the proposition, and assume that cN > 1. In this case, 0 is pole of multiplicity

1 of t(z) and t̃(z) is analytic at 0. It is easy to check that for each j = 1, . . . , 5, 0 is pole with multiplicity 1 of function

z → zβj(i, l1, z), and thus of function z → z β(i, l1, z). As for function z → β0,1(i, l1, l1, z), it can be shown that

β0,1(i, l1, l1, z) = σ2 (1− |l1|/N) t(z) (zt̃(z))2β(i, l1, z) (9.39)

from which we deduce immediately that 0 is pole with multiplicity 1 of β0,1(i, l1, l1, z). The analytic expression of

β1,0(i, l1, l1, z) (not provided) allows to conclude immediately that 0 may be pole with multiplicity 1, but it can be

checked that the corresponding residue vanishes. Therefore, function z → β1,0(i, l1, l1, z) appears to be analytic in a

neighbourhood of 0, and thus coincides with the Stieltjes transform of a distribution whose support is included into

S(0)
N . In order to complete the proof of the proposition, it remains to check that function z → s(i, l1, z) is analytic in

a neighbourhood of 0. As 0 is pole of zβ(i, l1, z) and β0,1(i, l1, l1, z) with multiplicity 1, it is sufficient to verify that

lim
z→0

z

[

β0,1(i, l1, l1, z) + σ4cN
(

zt(z)t̃(z)
)2
zt̃(z)

(

1 + σ2zt(z)t̃(z)(1− |l1|/L)(1− |l1|/N)
)

(

1− |l1|/N
1− d(l1, z)

β(i, l1, z)

)]

= 0

This property follows immediately from (9.39).
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9.2.2 Evaluation of κ(2)(l1, l2).

The treatment of the terms κ(2)(l1, l2) appears to be difficult, and also needs a sharp evaluation for each r of the

term of κ(r)(u1, . . . , ur) defined for u1, . . . , ur ∈ {−(L− 1), . . . , L− 1} by

κ(r)(u1, . . . , ur) = E

(

Πr
s=1 τ

(M)(Q◦)(us)
)

(9.40)

Lemma 9.4 and the Hölder inequality immediately lead to κ(r)(u1, . . . , ur) = O( 1
(MN)r/2 ), but this evaluation is not

optimal, and has to be refined, in particular if r = 2. More precisely, the following result holds.

Proposition 9.5 If z belongs to a set EN defined as in (9.20), then, for r = 2, it holds that

κ(2)(u1, u2) =
1

MN
C(z, u1) δ(u1 + u2 = 0) + O(

L

(MN)2
) (9.41)

More generally, if r ≥ 2, and if (u1, u2, . . . , ur) are integers such that −(L− 1) ≤ ui ≤ (L− 1) for i = 1, . . . , r for

which uk + ul 6= 0 for each k, l, k 6= l, then, it holds that

κ(r)(u1, . . . , ur) =
1√
MN

O(
1

(MN)r/2
) (9.42)

The proof of this result is quite intricate. The goal of paragraph 9.2.2 is to establish Proposition 9.5.

In order to evaluate κ(r)(u1, . . . , ur), we state the following result. It can be proved by calculating, for each

integers (l1, l
′

1, n1, n
′

1, . . . , lr, l
′

r, nr, n
′

r), matrix

E

[

Πr
s=1(Q

◦)ns,n
′

s

ls,l
′

s

QWGW∗
]

by the integration by parts formula. This calculation is provided in [23].

Proposition 9.6 We consider integers (u1, u2, . . . , ur), (v1, v2, . . . , vr) such that −(L−1) ≤ ui ≤ (L−1), −(L−1) ≤
vi ≤ (L− 1) for i = 1, . . . , r. Then, it holds that

E

[

Πr
s=1 τ

(M)(Q◦)(us)
]

= −E
[

Πr−1
s=1 τ

(M)(Q◦)(us)
] 1

ML
Tr (∆(IM ⊗ Jur

L ))+

σ2cN

L−1
∑

l1=−(L−1)

E

(

Πr−1
s=1 τ

(M)(Q◦)(us) τ
(M)(Q◦)(l1)

)

E

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]

+

σ2cN

L−1
∑

l1=−(L−1)

E

(

Πr−1
s=1 τ

(M)(Q◦)(us) τ
(M)(Q◦)(l1)

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]◦)

+

σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E

[

Πt6=s,r τ
(M)(Q◦)(ut)

]

E(β(i, us, ur))+
σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E

[

Πt6=s,r τ
(M)(Q◦)(ut) β(i, us, ur)

(0)
]

(9.43)

and that

E

[

Πr
s=1 τ

(M)(Q◦)(vs)

(

1

ML
Tr(QWGW∗A)

)◦]

= κ(r)(v1, . . . , vr) ǫ(G,A) +

σ2cN

L−1
∑

l2=−(L−1)

E

[

Πr
s=1τ

(M)(Q◦)(vs) τ
(M)(Q◦)(l2)

1

ML
Tr
(

QWJl2
NHTW∗

(

IM ⊗ σ2RTL,L(G
TH)

)

A
)

]

−

σ2cN

L−1
∑

l2=−(L−1)

E

[

Πr
s=1τ

(M)(Q◦)(vs) τ
(M)(Q◦)(l2)

1

ML
Tr
(

QWJl2
NHTGW∗A∗

)

]

+

σ2

MLN

∑

s≤r,|i|≤L−1

E

[

Πt6=s τ
(M)(Q◦)(vt)

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Jvs

L )QWJi
NHTW∗

(

IM ⊗ σ2RTL,L(G
TH)

)

A
)

]

− σ2

MLN

∑

s≤r,|i|≤L−1

E

[

Πt6=s τ
(M)(Q◦)(vt)

1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Jvs

L )QWJi
NHTGW∗A

)

]

(9.44)



On the almost sure location of the singular values of certain Gaussian block-Hankel large random matrices 41

where we recall that β(i, us, ur) is defined by (9.33) and where ǫ(G,A) is defined by

ǫ(G,A) = σ2cNE

(

1

ML

(

QWT (M)
N,L (Q◦)THT

(

GW∗A−W∗
(

IM ⊗ σ2RTL,L(G
TH)

)

A
))

)

In order to evaluate κ(r)(u1, . . . , ur−1, ur), we interpret (9.43) as a linear system whose unknowns are the

(κ(r)(u1, . . . , ur−1, ur))ur=−(L−1),...,L−1, the integers (us)s=1,...,r−1 being considered as fixed.

Structure of the linear system. We now precise the structure of this linear system. We denote by

κ(r) = (κ(r)(u1, . . . , ur−1, ur))ur=−(L−1),...,L−1 the corresponding 2L− 1–dimensional vector. We remark that the

second term of the righthandside of (9.43) coincides with component ur of the action of vector κ(r) on the matrix

whose entry (ur, l1) is

σ2cN E

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]

This matrix appears to be close from a diagonal matrix because

σ2cN E

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]

= δ(l1 + ur = 0) d(ur, z) +O(
L

MN
)

(see (9.26)). We now study the fourth and the fifth term of the righthandside of (9.43). We introduce y1,ur and y2,ur

defined by

y1,ur =
σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E(β(i, us, ur)) E
[

Πt6=s,r τ
(M)(Q◦)(ut)

]

and

y2,ur =
σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E

[

Πt6=s,r τ
(M)(Q◦)(ut) β(i, us, ur)

◦
]

(9.45)

and denote by y1 and y2 the corresponding 2L−1–dimensional related vectors. We first evaluate the behaviour of y1.

(9.38) and the rough evaluation E

[

Πt6=(s,r) τ
(M)(Q◦)(ut)

]

= O( 1
(MN)r/2−1 ) based on Lemma 9.4 and the Hölder

inequality imply that vector y1 can be written as

y1 = y∗
1 + z1 (9.46)

where all the components of z1 are L
MNO( 1

(MN)r/2 ) terms, or equivalently L√
MN

O( 1
(MN)(r+1)/2 ) = o( 1

(MN)(r+1)/2 )

and where y∗
1 is defined by

y∗
1,ur

=
σ2

MN





1

L

r−1
∑

s=1

L−1
∑

i=−(L−1)

β(i, us) δ(us + ur = 0)



 κ(r−2) ((ut)t6=(s,r)

)

(9.47)

so that

y∗
1,ur

= 0 if ur 6= −us for each s = 1, . . . , r − 1 (9.48)

Hence, (9.47,9.48) imply that

y1,ur = O(
1

(MN)r/2
) 1ur∈{−u1,...,−ur−1} +

L√
MN

O(
1

(MN)(r+1)/2
) 1ur∈{−u1,...,−ur−1}c (9.49)

We note that if r = 3, y1,u3 = 0 for each u3 because for each s = 1, 2, the term E

[

Πt6=s,3 τ
(M)(Q◦)(ut)

]

is identically

zero. Therefore, for r = 3, it holds that y∗
1 = 0.

As for y2, we notice that Lemma 9.4 and the Hölder inequality lead to

y2,ur = O(
1

(MN)(r+1)/2
) (9.50)

We remark that if r = 2, then y2,u = 0 for each u because the term Πt6=s,r τ
(M)(Q◦)(us) disappears, and that y2,u

represents the mathematical expectation of a zero mean term.
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In order to evaluate the third term of the righthandside of (9.43), we define x̃(ur, l1) by

x̃(ur, l1) = E

(

Πr−1
s=1 τ

(M)(Q◦)(us) τ
(M)(Q◦)(l1)

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]◦)

, (9.51)

and x̃(ur) by

x̃(ur) =
L−1
∑

l1=−(L−1)

x̃(ur, l1) (9.52)

In order to have a better understanding of x̃(ur), we expand x̃(ur, l1) for each l1 using (9.44). We define (v1, . . . , vr)
by vs = us for s ≤ r−1 and vr = l1, while G and A represent the matrices G = Jl1

NHT , and A = (IM ⊗RJur

L ). We

denote by (si(ur, l1))i=1,...,5 the i-th term of the righthandside of (9.44), and denote by (si(ur))i=1,...,5 the term

si(ur) =
L−1
∑

l1=−(L−1)

si(ur, l1)

and by si vector si = (si(ur))ur=−(L−1),...,L−1. Vector s1 plays a particular role because s1(ur, l1) is equal to

s1(ur, l1) = κ(r)(u1, . . . , ur−1, l1) ǫ(J
l1
NHT , I⊗RJur

L ) = κ(r)(u1, . . . , ur−1, l1)O(
L

MN
)

We remark that vector s1 coincides with the action of vector κ(r) on matrix
(

ǫ(Jl1
N , I⊗RJur

L )
)

−(L−1)≤ur,l1≤(L−1)
.

We define by x(ur, l1) and x(ur) the terms

x(ur, l1) =
5
∑

i=2

si(ur, l1), x(ur) =
L−1
∑

l1=−(L−1)

x(ur, l1) (9.53)

and vector x represents the 2L− 1–dimensional vector (x(ur))ur=−(L−1),...,L−1.

We finally consider the first term of the righthandside of (9.43), and denote by ǫ the 2L− 1–dimensional vector

whose components (ǫur )ur=−(L−1),...,L−1 are given by

ǫur = −E
[

Πr−1
s=1 τ

(M)(Q◦)(us)
] 1

ML
Tr (∆(IM ⊗ Jur

L ))

We notice that if r = 2, vector ǫ is reduced to 0.

This discussion and (9.26) imply that (9.43) can be written as

κ
(r) = (D+ Υ ) κ

(r) + y1,∗ + z1 + y2 + ǫ+ σ2cN x (9.54)

where we recall that D represents the diagonal matrix D = Diag(d(−(L− 1), z), . . . , d((L− 1), z)) and where the

entries of matrix Υ are defined by

Υur ,l1 = σ2cN E

[

1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗RJur

L )
)

]

−Dur ,l1 + σ2cN ǫ(Jl1
NHT , (IM ⊗RJur

L ))

It is clear the each entry of Υ is a O( L
MN ) term.



On the almost sure location of the singular values of certain Gaussian block-Hankel large random matrices 43

Overview of the proof of Proposition 9.5. We now present unformally the various steps of the proof of Proposition

9.5, and concentrate on the proof of Eq. (9.42) in order to simplify the presentation. The particular case r = 2 is

however briefly considered at the end of the overview, but it is of course detailed in the course of the proof.

First step: inversion of the linear system (9.54). Lemma 9.5 implies that if z belongs to a set EN defined

as (9.20), matrix (I−D− Υ ) is invertible. Therefore, vector κ(r) can be written as

κ
(r) = (I−D− Υ )−1

(

y1,∗ + z1 + y2 + ǫ+ σ2cN x
)

Using (9.21) and the properties of the components of vectors z1,y2 and ǫ, we obtain easily that

(

(I−D− Υ )−1y1,∗
)

ur

=
1

1− d(ur, z)
y∗
1,ur

+
L√
MN

O(
1

(MN)(r+1)/2
),

(

(I−D− Υ )−1y2

)

ur

= O(
1

(MN)(r+1)/2
),

and that

∣

∣

∣

∣

κ(r)(u1, . . . , ur)−
1

1− d(ur, z)
y∗
1,ur

∣

∣

∣

∣

≤ |κ(r−1)(u1, . . . , ur−1)| O(
L

MN
)+C sup

u
|x(u)|+O(

1

(MN)(r+1)/2
) (9.55)

If multi-index (u1, . . . , ur) satisfies uk + ul 6= 0 for k 6= l, then y∗
1,ur

= 0 (see Eq. (9.48)). Therefore, in order to

establish (9.42), it is necessary to evaluate supu |x(u)|.

Second step: evaluation of supu |x(u)|. In order to evaluate supu |x(u)|, we express x(ur, l1) as x(ur, l1) =
∑5

i=2 si(ur, l1) (see Eq. (9.53)), and study each term si(ur) =
∑

l1
si(ur, l1) for i = 2, 3, 4,5. s4(ur) and s5(ur) can

be written as κ(r−1)(u1, . . . , ur−1)O( L
MN )δ(ur = 0) + o

(

1
(MN)(r+1)/2

)

. The terms s2(ur) and s3(ur) have a more

complicated structure. We just address s3(ur) because the behaviour of s2(ur) is similar. s3(ur, l1) can be written

as s3(ur, l1) =
∑

l2
s3(ur, l1, l2) where

s3(ur, l1, l2) = −σ2cNE

[

Πr−1
s=1 τ

(M)(Q◦)(us)τ (M)(Q◦)(l1)τ
(M)(Q◦)(l2)

1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(I⊗RJur

L )
)

]

We define s3(ur, l1, l2) and x̃
(1)
3 (ur, l1, l2) by

s3(ur, l1, l2) = −σ2cNκ(r+1)(u1, . . . , ur−1, l1, l2) E

[

1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(I⊗RJur

L )
)

]

(9.56)

and

x̃
(1)
3 (ur, l1, l2) =

− σ2cNE

[

Πr−1
s=1 τ

(M)(Q◦)(us)τ
(M)(Q◦)(l1)τ

(M)(Q◦)(l2)
1

ML
Tr
(

QWJl2
NHT Jl1

NHTW∗(I⊗RJur

L )
)◦]

(9.57)

Then, it holds that

s3(ur, l1, l2) = s3(ur, l1, l2) + x̃
(1)
3 (ur, l1, l2)

and obtain that s3(ur) = s3(ur)+x̃
(1)
3 (ur) where s3(ur) and x̃

(1)
3 (ur) are defined as the sum over l1, l2 of s3(ur, l1, l2)

and x̃
(1)
3 (ur, l1, l2). Similarly, s2(ur) can be expressed as s2(ur) = s2(ur) + x̃

(1)
2 (ur) where s2(ur) and x̃

(1)
2 (ur) are

defined in the same way than s3(ur) and x̃
(1)
3 (ur). The behaviour of (sj(ur))j=2,3 is easy to analyse because it can

be shown that

sj(ur) =
∑

l1

Cj(ur, l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1) +

∑

l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O(
L

MN
)
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Therefore, (9.55) implies that

∣

∣

∣

∣

κ(r)(u1, . . . , ur)−
1

1− d(ur, z)
y∗
1,ur

∣

∣

∣

∣

≤ |κ(r−1)(u1, . . . , ur−1)| O(
L

MN
) +

C sup
u

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| +
∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O(
L

MN
) +

sup
u
x̃(1)(u) +O(

1

(MN)(r+1)/2
) (9.58)

where x̃(1)(u) is the positive term defined by

x̃(1)(u) = |x̃(1)2 (u)|+ |x̃(1)3 (u)|

Therefore, if ur + us 6= 0 for s = 1, . . . , r − 1, then, y∗
1,ur

= 0 and it holds that

∣

∣

∣
κ(r)(u1, . . . , ur)

∣

∣

∣
≤ |κ(r−1)(u1, . . . , ur−1)|O(

L

MN
) +

C sup
u

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| +
∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O(
L

MN
) +

sup
u
x̃(1)(u) +O(

1

(MN)(r+1)/2
) (9.59)

In order to manage supu x̃
(1)(u), we expand x̃

(1)
j (u, l1, l2) using (9.44) when r is exchanged by r + 1. In the same

way than x̃(u) defined by (9.52), it holds that

x̃
(1)
j (u) =

5
∑

i=1

s
(1)
j,i (u)

where the terms (s
(1)
j,i (u))i=1,...,5 are defined in the same way than (si(u))i=1,...,5. We define x̃

(2)
j,i (u) for i = 2,3 by

the fact that

s
(1)
j,i (u) = s

(1)
j,i (u) + x̃

(2)
j,i (u)

We define x̃(2)(u) as the positive term given by

x̃(2)(u) =
∑

(i,j)=(2,3)

|x̃(2)j,i (u)|

The terms x̃
(2)
j,i (u) can be developed similarly, and pursuing the iterative process, we are able to define for each q ≥ 3

the positive terms x̃(q)(u) which are the analogs of x̃(1)(u) and x̃(2)(u). In order to characterize the behaviour of

supu x̃
(1)(u), we express x̃(1)(u) as

x̃(1)(u) =

p−1
∑

q=1

(

x̃(q)(u)− x̃(q+1)(u)
)

+ x̃(p)(u)

where the choice of p depends on the context. The term x̃(p)(u) is easy to control because the Hölder inequality leads

immediately to x̃(p)(u) =
(

L√
MN

)p+1
O( 1

(MN)r/2 ).

Moreover, it is shown that

x̃(q)(u)− x̃(q+1)(u) ≤
∑

li,i=1,...,q+1

|κ(r+q)(u1, . . . , ur−1, li, i = 1, . . . , q + 1)|O(
L

MN
) +

C
∑

li,i=1,...,q+1

|κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 1, u−
q+1
∑

i=1

li)| +

∑

li,i=1,...,q+2

|κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 2)|O(
L

MN
) + o(

1

(MN)(r+1)/2
) (9.60)
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This allows to evaluate
∑p−1

q=1

(

x̃(q)(u)− x̃(q+1)(u)
)

in the course of the proof.

Third step: establishing (9.42). (9.59) suggests that the rough evaluation κ(r)(u1, . . . , ur) = O( 1
(MN)r/2 )

can be improved when uk + ul 6= 0 for k 6= l. The first term of the righthandside of (9.59) can also be written as

L√
MN

1√
MN

∣

∣

∣
κ(r−1)(u1, . . . , ur−1)

∣

∣

∣

Even if we evaluate κ(r−1)(u1, . . . , ur−1) as O( 1
(MN)(r−1)/2 ), it is clear the first term of the righthandside of (9.59)

appears as a L√
MN

O( 1
(MN)r/2 ). A factor L√

MN
is thus obtained w.r.t. the rate O( 1

(MN)r/2 ). One may imagine

that using the information that ui + uj 6= 0 for 1 ≤ i, j ≤ r − 1, i 6= j, should allow to improve the above rough

evaluation of κ(r−1)(u1, . . . , ur−1), and thus the evaluation of the first term of the righthandside of (9.59). A similar

phenomenon is observed for the second term and the third terms of the righthandside of (9.59). We just consider

the second term. If each term κ(r+1)(u1, . . . , ur−1, l1, u − l1) is roughly evaluated as O( 1
(MN)(r+1)/2 ), taking into

account the sum over l1, the second term of the righthandside of (9.59) is decreased by a factor L√
MN

w.r.t. the

rough evaluation O( 1
(MN)r/2 ).

In order to formalize the above discussion, it seems reasonable to be able to prove (9.42) from (9.59) using

induction technics. However, this needs some care because |κ(r)(u1, . . . , ur)| is controlled by |κ(r−1)(u1, . . . , ur−1)|
and by similar terms of orders greater than r. In order to establish (9.42), it is proved in Proposition 9.10 that if

(u1, . . . , ur) satisfy ut + us 6= 0 for 1 ≤ t, s ≤ r and t 6= s, then, for each q ≥ 1, for each r ≥ 2, it holds that

κ(r)(u1, . . . , ur) = max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
) (9.61)

This leads immediately to (9.42) because, as L = O(Nα) with α < 2/3, it exists q for which
(

L√
MN

)r−1+q
=

o
(

1√
MN

)

. In order to establish (9.61), we first show in Proposition 9.9 that for each r ≥ 2 and each integer

1 ≤ p ≤ r − 1, if integers u1, . . . , ur ∈ {−(L− 1), . . . , L− 1} satisfy

ur + us 6= 0 s = 1, . . . , r − 1
ur−1 + us 6= 0 s = 1, . . . , r − 2

...
...

...

ur−p+1 + us 6= 0 s = 1, . . . , r − p

(9.62)

then, it holds that

κr(u1, . . . , ur) = max

((

L√
MN

)p

,
1√
MN

)

O(
1

(MN)r/2
) (9.63)

Using (9.59) as well as the above evaluation of supu x̃
(1)(u), we prove Proposition 9.9 by induction on r: we verify

that it holds for r = 2, assume that it holds until integer r0 − 1, and establish it is true for integer r0. For this, we

prove that for each r ≥ r0 and for each multi-index (u1, . . . , ur) satisfying (9.62) for p ≤ r0 − 1, then (9.63) holds.

This is established by induction on integer p in Lemma 9.6.

We note that (9.63) used for integer p = r−1 coincides with (9.61) for q = 0. (9.61) is established for each integer

q by induction on integer q. It is first established by induction on r that (9.61) holds for each r for q = 1. Then,

(9.61) is assumed to hold for each r until integer q − 1, and we prove by induction on r that it holds for integer q.

For this, it appears necessary to evaluate

∑

l1

∣

∣

∣
κ(r+1)(u1, . . . , ur−1, l1,−l1)

∣

∣

∣

where u1, . . . , ur−1 verify uk + ul 6= 0 for each k, l ∈ 1, 2, . . . , r − 1 (see Lemma 9.7). This expression corresponds to

the second term of the righthandside of (9.59) for u = 0.

Fourth step: establishing (9.41). For r = 2, the term O( 1
(MN)(r+1)/2 ) at the righhandside of (9.58) is replaced

by a O( L
(MN)2

) term because vector y2 whose components are defined by (9.45) is identically 0. Moreover, the first
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term at the righthandside of (9.58) vanishes. Using (9.42), it is easy to prove that the third term of the righthandside

of (9.58) is o
(

L
(MN)2

)

. (9.41) follows in turn from the evaluation

∑

l1

∣

∣

∣
κ(3)(u1, l1,−l1)

∣

∣

∣
= O(

L

(MN)2
)

which is proved in Lemma 9.8.

Proof of Proposition 9.5. We now complete the proof of Proposition 9.5. In order to evaluate κ(r)(u1, . . . , ur), we

use (9.54) and Lemma 9.5. We write that

κ
(r) = (I−D− Υ )−1

(

y1,∗ + z1 + y2 + ǫ+ σ2cN x
)

We first evaluate each component of the first 3 terms of the righthandside of the above equation. Vector (I − D −
Υ )−1 y1,∗ can also be written as

(I−D− Υ )−1 y1,∗ = (I−D)−1 y1,∗ + (I−D− Υ )−1
Υ (I−D)−1y1,∗

As vector y1,∗ has at most r − 1 non zero components which are O( 1
(MN)r/2 ) terms and that the entries of Υ

are O( L
MN ) terms, the entries of vector Υ (I −D)−1y1,∗ are L√

MN
O( 1

(MN)(r+1)/2 ) = o( 1
(MN)(r+1)/2 ) terms. (9.21)

implies that the entries of (I−D−Υ )−1Υ (I−D)−1y1,∗ are L√
MN

O( 1
(MN)(r+1)/2 ) terms as well. Therefore, it holds

that
(

(I−D− Υ )−1 y1,∗
)

ur

=
1

1− d(ur, z)
y∗
1,ur

+
L√
MN

O(
1

(MN)(r+1)/2
)

and that this term is reduced to a L√
MN

O( 1
(MN)(r+1)/2 ) if ur does not belong to {−u1, . . . ,−ur−1}. (9.21) implies

that
(

(I−D− Υ )−1 z1

)

ur

=
L√
MN

O(
1

(MN)(r+1)/2
)

and that
(

(I−D− Υ )−1 y2

)

ur

= O(
1

(MN)(r+1)/2
)

for r ≥ 3, while this term is zero for r = 2 because y2 = 0 in this case. If ur does not belong to {−u1, . . . ,−ur−1}, the

contributions of the above 3 terms to κ(r)(u1, . . . , ur) are at most O( 1
(MN)(r+1)/2 ) terms, which corresponds to what

is expected because we recall that the goal of the subsection is to establish that κ(r)(u1, . . . , ur) = O( 1
(MN)(r+1)/2 )

if uk + ul 6= 0 for k 6= l (see (9.42)). Finally, (9.21) implies that

(

(I−D− Υ )−1
ǫ

)

ur

= κ(r−1)(u1, . . . , ur−1)O(
L

MN
) (9.64)

and that

sup
u

∣

∣

∣

(

(I−D− Υ )−1 x
)

u

∣

∣

∣
≤ C sup

u
|x(u)| (9.65)

Therefore, it holds that

∣

∣

∣

∣

κ(r)(u1, . . . , ur)−
1

1− d(ur, z)
y∗
1,ur

∣

∣

∣

∣

≤ |κ(r−1)(u1, . . . , ur−1)| O(
L

MN
)+C sup

u
|x(u)|+O(

1

(MN)(r+1)/2
) (9.66)

where we recall that y∗
1,ur

= 0 if ur does not belong to {−u1, . . . ,−ur−1}. We note that if r = 2, (9.66) can be

written as
∣

∣

∣

∣

κ(2)(u1, u2)−
1

1− d(u2, z)
y∗
1,u2

∣

∣

∣

∣

≤ C sup
u

|x(u)|+O(
L

(MN)2
) (9.67)

because y2 = ǫ = 0.

In order to establish (9.42), it is necessary to study the behaviour of supu |x(u)|. We express x(ur) as x(ur) =
∑L−1

l1=−(L−1) x(ur, l1) and evaluate the 4 terms si(ur) =
∑L−1

l1=−(L−1) si(ur, l1) for i = 2,3, 4, 5. We just study si(ur)
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for i = 3 and i = 5 because s2(ur) (resp. s4(ur)) has essentially the same behaviour than s3(ur) (resp. s5(ur)).
s3(ur, l1) is given by

s3(ur, l1) =
L−1
∑

l2=−(L−1)

s3(ur, l1, l2)

where

s3(ur, l1, l2) = −σ2cNE

[

Πr−1
s=1 τ

(M)(Q◦)(us)τ
(M)(Q◦)(l1)τ

(M)(Q◦)(l2)
1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(I⊗RJur

L )
)

]

We define s3(ur, l1, l2) and x̃
(1)
3 (ur, l1, l2) by

s3(ur, l1, l2) = −σ2cNκ(r+1)(u1, . . . , ur−1, l1, l2) E

[

1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(I⊗RJur

L )
)

]

(9.68)

and

x̃
(1)
3 (ur, l1, l2) =

− σ2cNE

[

Πr−1
s=1 τ

(M)(Q◦)(us)τ
(M)(Q◦)(l1)τ

(M)(Q◦)(l2)
1

ML
Tr
(

QWJl2
NHT Jl1

NHTW∗(I⊗RJur

L )
)◦]

(9.69)

Then, it holds that

s3(ur, l1, l2) = s3(ur, l1, l2) + x̃
(1)
3 (ur, l1, l2)

We also define s3(ur, l1), s3(ur), x̃
(1)
3 (ur, l1) and x̃

(1)
3 (ur) as s3(ur, l1) =

∑

l2
s3(ur, l1, l2), s3(ur) =

∑

l1
s3(ur, l1),

x̃
(1)
3 (ur, l1) =

∑

l2
x̃
(1)
3 (ur, l1, l2) and x̃

(1)
3 (ur) =

∑

l1
x̃
(1)
3 (ur, l1). It is easy to check that

E
1

ML
Tr
(

QWJl2
NHT Jl1

NHTW∗(I⊗RJur

L )
)

= C(ur, l1)δ(l2 = ur − l1) +O(
L

MN
)

Therefore, s3(ur) is equal to

s3(ur) =
∑

l1

C(ur, l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1) +

∑

l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O(
L

MN
)

We now evaluate s5(ur). For this, we recall that we denote β1,0(i, us, l1, ur) the term

β1,0(i, us, l1, ur) =
1

ML
Tr
(

Q(IM ⊗ Ji
L)Q(IM ⊗ Jus

L )QWJi
NHTJl1

NHTW∗ (IM ⊗RJur

L )
)

We notice that

s5(ur, l1) = s5,1(ur, l1) + s5,2(ur, l1)

where

s5,1(ur, l1) = − σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E

[(

Πt6=(s,r) τ
(M)(Q◦)(ut) τ

(M)(Q◦)(l1)
)

β1,0(i, us, l1, ur)
]

and

s5,2(ur, l1) = − σ2

MLN

L−1
∑

i=−(L−1)

E

[

Πt≤r−1 τ
(M)(Q◦)(ut) β1,0(i, l1, l1, ur)

]

We first evaluate s5,1(ur) =
∑

l1
s5,1(ur, l1). We express β1,0(i, us, l1, ur) as

β1,0(i, us, l1, ur) = E (β1,0(i, us, l1, ur)) + β1,0(i, us, l1, ur)
◦

and notice that s5,1(ur, l1) = s5,1(ur, l1) + s̃5,1(ur, l1) where

s5,1(ur, l1) = − σ2

MLN

L−1
∑

i=−(L−1)

r−1
∑

s=1

κ(r−1)((ut)t6=(s,r), l1) E (β1,0(i, us, l1, ur))
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and

s̃5,1(ur, l1) = − σ2

MLN

r−1
∑

s=1

L−1
∑

i=−(L−1)

E

[

Πt6=s,r τ
(M)(Q◦)(ut) τ

(M)(Q◦)(l1) β1,0(i, us, l1, ur)
◦
]

It is clear that s̃5,1(ur, l1) = O( 1
(MN)(r+2)/2 ) which implies that

∑

l1

s̃5,1(ur, l1) =
L√
MN

O(
1

(MN)(r+1)/2
) = o(

1

(MN)(r+1)/2
) (9.70)

Proposition 9.4 implies that

E (β1,0(i, us, l1, ur)) = β1,0(i, us, l1)δ(l1 = ur + us) +O(
L

MN
) (9.71)

Using the rough evaluation κ(r−1)((ut)t6=s,r, l1) = O( 1
(MN)(r−1)/2 ), we get immediately that

s5,1(ur) =
∑

l1

s5,1(ur, l1) = O(
1

(MN)(r+1)/2
) (9.72)

We finally notice that if r = 2, s5,1(ur) is reduced to 0.

We define s̃5,2(ur, l1) and s5,2(ur, l1) in the same way, and obtain easily that

∑

l1

s̃5,2(ur, l1) =
L√
MN

O(
1

(MN)(r+1)/2
) = o(

1

(MN)(r+1)/2
) (9.73)

The behaviour of
∑

l1
s5,2(ur, l1) is however different from the behaviour of

∑

l1
s5,1(ur, l1) if ur = 0. Indeed,

E (β1,0(i, l1, l1, ur)) = β1,0(i, l1, l1)δ(ur = 0) +O(
L

MN
)

It is easy to check that the contribution of the O( L
MN ) terms to

∑

l1
s5,2(ur, l1) is a o

(

1
(MN)(r+1)/2

)

term. Therefore,

s5,2(ur) =
∑

l1

s5,2(ur, l1) =
∑

l1





1

L

L−1
∑

i=−(L−1)

β1,0(i, l1, l1)





1

MN
κ(r−1)(u1, . . . , ur−1) δ(ur = 0) + o

(

1

(MN)(r+1)/2

)

= κ(r−1)(u1, . . . , ur−1)O(
L

MN
) δ(ur = 0) + o

(

1

(MN)(r+1)/2

)

(9.74)

As above, s5,2(ur) is reduced to 0 if r = 2.

The reader may check that the terms s2(ur) = s2(ur) + x̃
(1)
2 (ur) and s4(ur) have exactly the same behaviour

than s3(ur) and s5(ur). For the reader’s convenience, we mention that x̃
(1)
2 (ur) is defined as

x̃
(1)
2 (ur) =

∑

l1,l2

x̃
(1)
2 (ur, l1, l2)

where x̃
(1)
2 (ur, l1, l2) is the term given by

σ2cNE

[

Πr−1
s=1 τ

(M)(Q◦)(us)τ
(M)(Q◦)(l1)τ

(M)(Q◦)(l2)
1

ML
Tr
(

QWJl2
NHTW∗(I⊗ σ2RTL,L(HJ∗l1

N H)RJur

L )
)◦]

(9.75)

In sum, we have proved the following useful result.
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Proposition 9.7 If r ≥ 2, for each ur, it holds that

x(ur) =
∑

l1

C(ur, l1)κ
(r+1)(u1, . . . , ur−1, l1, ur − l1) +

∑

l1,l2

κ(r+1)(u1, . . . , ur−1, l1, l2)O(
L

MN
) (9.76)

+κ(r−1)(u1, . . . , ur−1)O(
L

MN
) δ(ur = 0) + x̃

(1)
2 (ur) + x̃

(1)
3 (ur) +O(

1

(MN)(r+1)/2
)

while if r = 2,

x(u2) =
∑

l1

C(u2, l1)κ
(3)(u1, l1, u2 − l1) +

∑

l1,l2

κ(3)(u1, l1, l2)O(
L

MN
) (9.77)

+x̃(1)2 (u2) + x̃
(1)
3 (u2) +O(

L

(MN)2
) (9.78)

(9.66) thus leads to the Proposition:

Proposition 9.8 For r ≥ 2, it holds that

∣

∣

∣

∣

κ(r)(u1, . . . , ur)−
y∗
1,ur

1− d(ur, z)

∣

∣

∣

∣

≤ |κ(r−1)(u1, . . . , ur−1)|O(
L

MN
) +

C sup
u

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| +
∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O(
L

MN
) +

sup
u

|x̃(1)2 (u)|+ sup
u

|x̃(1)3 (u)|+O(
1

(MN)(r+1)/2
) (9.79)

while for r = 2,

∣

∣

∣

∣

κ(2)(u1, u2)−
y∗
1,u2

1− d(u2, z)

∣

∣

∣

∣

≤ C sup
u

∑

l1

|κ(3)(u1, l1, u− l1)| +

∑

l1,l2

|κ(3)(u1, l1, l2)|O(
L

MN
) + sup

u
|x̃(1)2 (u)|+ sup

u
|x̃(1)3 (u)|+O(

L

(MN)2
) (9.80)

We now establish Proposition 9.9 introduced into the overview of the proof of Proposition 9.5.

Proposition 9.9 For each r ≥ 2 and for each integer p, 1 ≤ p ≤ r−1, if integers u1, . . . , ur ∈ {−(L−1), . . . , L−1}
satisfy

ur + us 6= 0 s = 1, . . . , r − 1
ur−1 + us 6= 0 s = 1, . . . , r − 2

...
...

...

ur−p+1 + us 6= 0 s = 1, . . . , r − p

(9.81)

then, it holds that

κr(u1, . . . , ur) = max

((

L√
MN

)p

,
1√
MN

)

O(
1

(MN)r/2
) (9.82)

We prove the proposition by induction on r. We first check (9.82) if r = 2. In this case, the integer p is necessarily equal

to 1 and (9.81) reduces to u1 + u2 6= 0. We use (9.80). Using the rough evaluations κ(3)(v1, v2, v3) = O( 1
(MN)3/2 )

and supu |x̃(1)j (u)| = O( L2

(MN)2
) = ( L√

MN
)2O( 1

MN ) for j = 2,3, we obtain immediately that (9.82) holds if r = 2.

We now assume that (9.82) holds until integer r0−1 and prove that it is true for integer r0. For this, we establish

that for each r ≥ r0 and for each u1, . . . , ur, (9.82) holds provided (9.81) is true until p ≤ r0 − 1. We first verify that

(9.82) holds for each r ≥ r0 and for p = 1 as soon as ur + us 6= 0 s = 1, . . . , r− 1. For this, we use (9.79). y∗
1,ur

is of

course equal to 0. Moreover, as κ(r−1)(u1, . . . , ur−1) = O( 1
(MN)(r−1)/2 ), it is clear that

|κ(r−1)(u1, . . . , ur−1)|O(
L

MN
) =

L√
MN

O(
1

(MN)r/2
)
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as expected. Using that κ(r+1)(v1, . . . , vr+1) = O( 1
(MN)(r+1)/2 ) for each (v1, . . . , vr+1), we obtain immediately that

sup
u

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| =
L√
MN

O(
1

(MN)r/2
)

and
∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O(
L

MN
) =

L2

MN

L√
MN

O(
1

(MN)r/2
)

Finally, the Hölder inequality leads to

sup
u

|x̃(1)2 (u)|+ sup
u

|x̃(1)3 (u)| = O(
L2

(MN)(r+2)/2
) = (

L√
MN

)2O(
1

(MN)r/2
) (9.83)

Next, we consider the case p = 2 for the reader’s convenience. We consider r ≥ r0, and assume that ur + us 6=
0 s = 1, . . . , r − 1 as well as ur−1 + us 6= 0 s = 1, . . . , r − 2. We again use (9.79) and remark that y∗

1,ur
= 0. As

ur−1 + us 6= 0 s = 1, . . . , r − 2, the use of (9.82) for integer r − 1, multi-index (u1, . . . , ur−1) and p = 1 (proved

above) implies that κ(r−1)(u1, . . . , ur−1) =
L√
MN

O( 1
(MN)(r−1)/2 ), and that

κ(r−1)(u1, . . . , ur−1)O(
L

MN
) = (

L√
MN

)2O(
1

(MN)r/2
)

We now evaluate
∑

l1
|κ(r+1)(u1, . . . , ur−1, l1, u− l1)|. It is clear that

κ(r+1)(u1, . . . , ur−1, l1, u− l1) = κ(r+1)(l1, u− l1, u1, . . . , ur−1)

As ur−1 + us 6= 0 s = 1, . . . , r− 2, the use of (9.82) for integer r+1, multi-index (l1, u− l1, u1, . . . , ur−1) and p = 1
leads to

κ(r+1)(u1, . . . , ur−1, l1, u− l1) =
L√
MN

O(
1

(MN)(r+1)/2
)

as soon as ur−1 + l1 6= 0 and ur−1 + u− l1 6= 0, or equivalently if l1 6= −ur−1 and l1 6= u+ ur−1. Therefore,

∑

l1 6=(−ur−1,u+ur−1)

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| = (
L√
MN

)2O(
1

(MN)r/2
)

If l1 = −ur−1 or l1 = u+ ur−1, we use the rough evaluation

κ(r+1)(u1, . . . , ur−1, l1, u− l1) = (
1√
MN

)O(
1

(MN)r/2
)

Therefore, we obtain that

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| = max

(

(

L√
MN

)2

,
1√
MN

)

O(
1

(MN)r/2
)

We now consider
∑

l1,l2
|κ(r+1)(u1, . . . , ur−1, l1, l2)|O( L

MN ). We remark that

κ(r+1)(u1, . . . , ur−1, l1, l2) = κ(r+1)(l1, l2, u1, . . . , ur−1) Therefore, if ur−1 + l1 6= 0 and ur−1 + l2 6= 0, (9.82) for

integer r + 1, multi-index (l1, l2, u1, . . . , ur−1) and p = 1 implies that

κ(r+1)(u1, . . . , ur−1, l1, l2) =
L√
MN

O(
1

(MN)(r+1)/2
)

If l1 = −ur−1 or l2 = −ur−1, we use again that

κ(r+1)(u1, . . . , ur−1, l1, l2) = (
1√
MN

)O(
1

(MN)r/2
)

so that for i, j = 1, 2, i 6= j, it holds that

∑

li=−ur−1,lj

|κ(r+1)(u1, . . . , ur−1, li, lj)|O(
L

MN
) =

L2

MN
(

1√
MN

)O(
1

(MN)r/2
) = o(

1

(MN)(r+1)/2
)
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We finally obtain that

∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)|O(
L

MN
) = max

(

(

L√
MN

)4

,
1√
MN

)

O(
1

(MN)r/2
)

Finally, the first evaluation (9.83) of x̃
(1)
2 (ur) and x̃

(1)
3 (ur) establishes (9.82) for each r ≥ r0 and for p = 2 if

ur + us 6= 0 for s = 1, . . . , r − 1 and ur−1 + us 6= 0 for s = 1, . . . , r − 2.
In order to complete the proof of (9.82) for each r ≥ r0 and for each p ≤ r0 − 1, we assume that (9.82) holds for

each r ≥ r0 and for each p ≤ p0 where p0 ≤ r0 − 2, and prove that it also holds for p = p0 +1. For this, we establish

the following Lemma.

Lemma 9.6 Assume that for each t ≥ r0 − 1 and for each integer p, 1 ≤ p ≤ p0 ≤ r0 − 2, it holds that

κ(t)(v1, . . . , vt) = max

((

L√
MN

)p

,
1√
MN

)

O(
1

(MN)t/2
) (9.84)

for each multi-index (v1, . . . , vt) satisfying

vt + vs 6= 0 s = 1, . . . , t− 1
vt−1 + vs 6= 0 s = 1, . . . , t− 2

...
...

...

vt−p+1 + us 6= 0 s = 1, . . . , t− p

(9.85)

Then, for each r ≥ r0 and for each multi-index (u1, . . . , ur) satisfying (9.81) for p = p0 + 1, it holds that

κ(r−1)(u1, . . . , ur−1)O( L
MN ),

∑

l1
|κ(r+1)(u1, . . . , ur−1, l1, u−l1)|,

∑

l1,l2
|κ(r+1)(u1, . . . , ur−1, l1, l2)|O( L

MN ), supu |x̃(1)j (u)|

for j = 2, 3 are max

(

(

L√
MN

)(p0+1)
, 1√

MN

)

O( 1
(MN)r/2 ) terms.

Using (9.79), (9.82) for p = p0 + 1 follows immediately from Lemma 9.6. Consequently, (9.82) holds for each r ≥ r0
until index p ≤ (r0 − 1), and in particular for r = r0 and p ≤ (r0 − 1). This completes the proof of Proposition 9.9.

Proof of Lemma 9.6. We consider a multi-index (u1, . . . , ur) satisfying (9.81) for p = p0 + 1 and remark that

it verifies
ur−1 + us 6= 0 s = 1, . . . , r − 2
ur−2 + us 6= 0 s = 1, . . . , r − 3

...
...

...

ur−p0 + us 6= 0 s = 1, . . . , r − p0 − 1

(9.86)

Therefore, (9.84) used for t = r − 1, p = p0 and multi-index (v1, . . . , vr−1) with vs = us leads to

κ(r−1)(u1, . . . , ur−1) = max

((

L√
MN

)p0

,
1√
MN

)

O(
1

(MN)(r−1)/2
)

Therefore,

κ(r−1)(u1, . . . , ur−1)O(
L

MN
) =

L√
MN

max

((

L√
MN

)p0

,
1√
MN

)

O(
1

(MN)r/2
)

which, of course, also coincides with a max

(

(

L√
MN

)p0+1
, 1√

MN

)

O( 1
(MN)r/2 ) term. We now study the term

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)|

Using (9.84) for t = r+ 1 and multi-index l1, u− l1, u1, . . . , ur−1, we obtain that

κ(r+1)(u1, . . . , ur−1, l1, u− l1) = max

((

L√
MN

)p0

,
1√
MN

)

O(
1

(MN)(r+1)/2
)

if l1 is such that ur−j+l1 6= 0 and ur−j+u−l1 6= 0 for each j = 1, . . . , p0. The sum of the terms |κ(r+1)(u1, . . . , ur−1, l1, u−
l1)| over these values of l1 is therefore a
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Lmax
((

L√
MN

)p0

, 1√
MN

)

O( 1
(MN)(r+1)/2 ) term, or equivalently a L√

MN

((

L√
MN

)p0

, 1√
MN

)

O( 1
(MN)r/2 ) term,

which, of course, is also a

max

(

(

L√
MN

)p0+1

,
1√
MN

)

O(
1

(MN)r/2
)

term. If l1 is equal to −ur−j0 or to ur−j0 + u for some j0 = 1, . . . , p0, we use the rough evaluation

κ(r+1)(u1, . . . , ur−1, l1, u− l1) = O(
1

(MN)(r+1)/2
) =

1√
MN

O(
1

(MN)r/2
)

This discussion implies that

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1, u− l1)| = max

(

(

L√
MN

)p0+1

,
1√
MN

)

O(
1

(MN)r/2
)

The evaluation of
∑

l1,l2
|κ(r+1)(u1, . . . , ur−1, l1, l2)|O( L

MN ) is similar and is thus omitted.

In order to complete the proof of Lemma 9.6, it remains to prove that that

sup
u

|x̃(1)j (u)| ≤ max

(

(

L√
MN

)(p0+1)

,
1√
MN

)

O(
1

(MN)r/2
)

for j = 2, 3. For this, we study in more details supu |x̃(1)j (u)| for j = 2,3. We expand x̃
(1)
j (u, l1, l2) using (9.44) when

r is exchanged by r + 1. In the same way than x̃(u) defined by (9.52), it holds that

x̃
(1)
j (u) =

5
∑

i=1

s
(1)
j,i (u)

where the terms (s(1)j,i (u))i=1,...,5 are defined in the same way than (si(u))i=1,...,5. We define x̃
(2)
j,i (u) for i = 2,3 by

the fact that

s
(1)
j,i (u) = s

(1)
j,i (u) + x̃

(2)
j,i (u)

We define x̃(1)(u) as the positive term

x̃(1)(u) = |x̃(1)2 (u)|+ |x̃(1)3 (u)|

and, similarly, x̃(2)(u) is given by

x̃(2)(u) =
∑

(i,j)=(2,3)

|x̃(2)j,i (u)|

A rough evaluation (based on the Hölder inequality and on (9.36)) of the various terms s
(1)
j,i (u) for i = 4, 5 leads

to s
(1)
j,i (u) =

L√
MN

O( 1
(MN)(r+1)/2 ). After some calculations, we obtain that

x̃(1)(u) ≤
∑

l1,l2

|κ(r+1)(u1, . . . , ur−1, l1, l2)| O(
L

MN
)+

C
∑

l1,l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u− l1 − l2)|+

∑

l1,l2,l3

|κ(r+2)(u1, . . . , ur−1, l1, l2, l3)|O(
L

MN
) + x̃(2)(u) +

L√
MN

O(
1

(MN)(r+1)/2
) (9.87)
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The first term of the righthandside of (9.87) corresponds to the contribution of s
(1)
j,1 (u) while the second and the third

terms are due to s
(1)
j,2 (u) and s

(1)
j,3 (u). The term L√

MN
O( 1

(MN)(r+1)/2 ) is due to the s
(1)
j,i (u) for i = 4, 5. The terms

x̃
(2)
j,i (u) can of course be also developed and we obtain similarly

x̃(2)(u) ≤
∑

l1,l2,l3

|κ(r+2)(u1, . . . , ur−1, l1, l2, l3)| O(
L

MN
)+

C
∑

l1,l2,l3

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3, u− l1 − l2 − l3)|+

∑

l1,l2,l3,l4

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3, l4)|O(
L

MN
) + x̃(3)(u) + (

L√
MN

)2O(
1

(MN)(r+1)/2
) (9.88)

The term ( L√
MN

)2O( 1
(MN)(r+1)/2 ) is due to the terms (s

(2)
k1,k2,i

(u)) for i = 4, 5 and k1, k2 = 2,3: it is easily seen using

the Hölder inequality that their order of magnitude is L√
MN

smaller than the order of magnitude of the (s
(1)
k,i )i=4,5

for k = 2, 3. More generally, it holds that

x̃(q)(u) ≤
∑

li,i=1,...,q+1

|κ(r+q)(u1, . . . , ur−1, li, i = 1, . . . , q + 1)|O(
L

MN
)+

C
∑

li,i=1,...,q+1

|κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 1, u−
q+1
∑

i=1

li)|+

∑

li,i=1,...,q+2

|κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 2)|O(
L

MN
) + x̃(q+1)(u) + (

L√
MN

)qO(
1

(MN)(r+1)/2
)

(9.89)

We remark that the Hölder inequality leads to

sup
u

x̃(p)(u) =

(

L√
MN

)p+1

O(
1

(MN)r/2
) (9.90)

for each p. We express x̃(1)(u) as

x̃(1)(u) =

p0−1
∑

q=1

(x̃(q)(u)− x̃(q+1)(u)) + x̃(p0)(u) (9.91)

We now prove that for each q, then it holds that

x̃(q)(u)− x̃(q+1)(u) ≤
(

L√
MN

)q

max

(

(
L√
MN

)p0+1,
1√
MN

)

O(
1

(MN)r/2
) (9.92)

(9.89) implies that x̃(q)(u)− x̃(q+1)(u) is upperbounded by the sum of 4 terms. We just study the second term, i.e.

∑

li,i=1,...,q+1

|κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 1, u−
q+1
∑

i=1

li)|

because, as the fourth term ( L√
MN

)qO( 1
(MN)(r+1)/2 ), it can be easily checked that the first and the third term

are negligible w.r.t. the righthandside of inequality (9.92). If the integers l1, . . . , lq+1, u −
∑q+1

i=1 li do not belong

{−ur−1, . . . ,−ur−p0}, (9.84) for t = r + q + 1 and for multi-index (l1, . . . , lq+1, u −
∑q+1

i=1 li, u1, . . . , ur−1) implies

that

κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 1, u−
q+1
∑

i=1

li) = max

(

(

L√
MN

)(p0)

,
1√
MN

)

O(
1

(MN)(r+q+1)/2
)
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Therefore, the sum over all these integers can be upperbounded by

Lq+1 max

(

(

L√
MN

)(p0)

,
1√
MN

)

O(
1

(MN)(r+q+1)/2
) =

(

L√
MN

)q
L√
MN

max

(

(
L√
MN

)p0 ,
1√
MN

)

O(
1

(MN)r/2
)

which, of course, is a
(

L√
MN

)q
max

(

( L√
MN

)p0+1, 1√
MN

)

O( 1
(MN)r/2 ) term as expected.

If at least one of the index l1, . . . , lq+1, u −
∑q+1

i=1 li is equal an integer (−ur−i)i=1,...,p0
, we use the rough

evaluation

κ(r+q+1)(u1, . . . , ur−1, li, i = 1, . . . , q + 1, u−
q+1
∑

i=1

li) = O(
1

(MN)(r+q+1)/2
)

The sum over the corresponding multi-indices is thus a LqO( 1
(MN)(r+q+1)/2 ) =

(

L√
MN

)q
O( 1

(MN)(r+1)/2 ). This

completes the proof of (9.92). Therefore, (9.91) and (9.90) imply that

sup
u

x̃(1)(u) = max

(

(
L√
MN

)p0+1,
1√
MN

)

O(
1

(MN)r/2
)

as expected. This, in turn, completes the proof of Lemma 9.6.

We now improve the evaluation of Proposition 9.9 when (u1, . . . , ur) satisfy ut + us 6= 0 for 1 ≤ t, s ≤ r and

t 6= s, or equivalently if (u1, . . . , ur) verify (9.81) for p = r − 1. More precisely, we prove the following result.

Proposition 9.10 Assume that (u1, . . . , ur) satisfy ut + us 6= 0 for 1 ≤ t, s ≤ r and t 6= s. Then, for each q ≥ 1,
for each r ≥ 2, it holds that

κ(r)(u1, . . . , ur) = max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
) (9.93)

Proof. We prove this result by induction on integer q. We first establish (9.93) for q = 1 by induction on integer r.

If r = 2, we have to check that if u1 + u2 6= 0, then it holds that

κ(2)(u1, u2) = max

(

(

L√
MN

)2

,
1√
MN

)

O(
1

MN
) (9.94)

For this, we use (9.80). We have already mentioned that the Hölder inequality leads to

sup
u

x̃(1)(u) =

(

L√
MN

)2

O(
1

MN
)

We study the term

sup
u

∑

l1

|κ(3)(u1, l1, u− l1)|

Proposition 9.9 in the case r = 3 and p = 1 implies that

κ(3)(u1, l1, u− l1) =
L√
MN

O(
1

(MN)3/2
)

as soon as l1 6= −u1 and l1 6= u+ u1. Therefore,

∑

l1 6=(−u1,u+u1)

|κ(3)(u1, l1, u− l1)| =
(

L√
MN

)2

O(
1

MN
)

If l1 = −u1 or l1 = u+u1, we use the rough evaluation κ(3)(u1, l1, u− l1) = O( 1
(MN)3/2 ), and we finally obtain that

∑

l1

|κ(3)(u1, l1, u− l1)| = max

(

(

L√
MN

)2

,
1√
MN

)

O(
1

MN
)
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as expected. The term
∑

l1,l2

|κ(3)(u1, l1, l2)|O(
L

MN
)

is evaluated similarly. We have thus established (9.94).

We assume that (9.93) holds for q = 1 until index r0 − 1 and prove that it also holds for index r0. We take (9.79)

as a starting point. We consider (u1, . . . , ur0) satisfying ut+us 6= 0 for 1 ≤ t, s ≤ r0, or equivalently (9.81) for r = r0
and p = r0 − 1. (9.93) for q = 1, r = r0 − 1 and multi-index (u1, . . . , ur0−1) leads to

κ(r0−1)(u1, . . . , ur0−1) = max

(

(

L√
MN

)r0−2+1

,
1√
MN

)

O(
1

(MN)(r0−1)/2
)

and to

κ(r0−1)(u1, . . . , ur0−1)O(
L

MN
) =

L√
MN

max

(

(

L√
MN

)r0−1

,
1√
MN

)

O(
1

(MN)r0/2
)

which, of course, is a max

(

(

L√
MN

)r0−1+1

, 1√
MN

)

O( 1
(MN)r0/2 ) term as expected. We now evaluate

∑

l1

|κ(r0+1)(u1, . . . , ur0−1, l1, u− l1)|

If l1+us 6= 0 and u−l1+us 6= 0 for s = 1, . . . , r0−1, Proposition 9.9 for r = r0+1, multi-index (l1, u−l1, u1, . . . , ur−1)
and p = r0 − 1 implies that

κ(r0+1)(u1, . . . , ur0−1, l1, u− l1) = max

(

(

L√
MN

)r0−1

,
1√
MN

)

O(
1

(MN)(r0+1)/2
)

and that the sum of the |κ(r0+1)(u1, . . . , ur0−1, l1, u− l1)| over these indices is a

L√
MN

max

(

(

L√
MN

)r0−1

,
1√
MN

)

O(
1

(MN)r0/2
)

term. If l1 + us = 0 or u− l1 + us = 0 for some integer s, we use as previously that

κ(r0+1)(u1, . . . , ur0−1, l1, u− l1) =
1√
MN

O(
1

(MN)r0/2
)

This, in turn, implies that

sup
u

∣

∣

∣

∣

∣

∣

∑

l1

κ(r0+1)(u1, . . . , ur0−1, l1, u− l1)

∣

∣

∣

∣

∣

∣

= max

(

(

L√
MN

)r0−1+1

,
1√
MN

)

O(
1

(MN)r0/2
)

as expected.

The term
∑

l1,l2

|κ(r0+1)(u1, . . . , ur0−1, l1, l2)| O(
L

MN
)

can be evaluated similarly. Finally, it is easy to show as in the proof of Lemma 9.6 that supu x̃
(1)(u) behaves as

expected.

This completes the proof of (9.93) for each r and q = 1. In order to establish the proposition for each q, we

assume that it is true until integer q − 1 and prove that it holds for integer q. We prove this statement by induction

on integer r, and begin to consider r = 2. We of course use (9.80) for u1 + u2 6= 0. It is easy to check as previously

that the term supu x̃
(1)(u) is as expected, and that it is also the case for

∑

l1,l2
|κ(3)(u1, l1, l2)|O( L

MN ). However,

the term

sup
u

∑

l1

|κ(3)(u1, l1, u− l1)|
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appears more difficult to evaluate. If u 6= 0, it is easy to check that
∑

l1
|κ(3)(u1, l1, u− l1)| is a

max

(

(

L√
MN

)1+q

,
1√
MN

)

O(
1

MN
)

term because, except if u1 + l1 = 0 or u1 + u − l1 = 0 (the contribution of these particular values to the sum is a

O( 1
(MN)3/2 ) term), (9.93) used for r = 3 and integer q − 1 implies that

κ(3)(u1, l1, u− l1) = max

(

(

L√
MN

)1+q

,
1√
MN

)

O(
1

(MN)3/2
)

and that
∑

l1 6=−u1,u1+u

|κ(3)(u1, l1, u− l1)| =
L√
MN

max

(

(

L√
MN

)1+q

,
1√
MN

)

O(
1

(MN)
)

If u = 0, the sum becomes
∑

l1

|κ(3)(u1, l1,−l1)|

(9.93) for r = 3 and integer q − 1 cannot be used to evaluate κ(3)(u1, l1,−l1) because l1 − l1 = 0. We have thus to

study separately this kind of term. For this, we prove the following lemma.

Lemma 9.7 We consider an integer r ≥ 2 and assume the following hypotheses:

– for each integer s and for each v1, . . . , vs such that vs1 + vs2 6= 0, 1 ≤ s1, s2 ≤ s, s1 6= s2, it holds that

κ(s)(v1, . . . , vs) = max

(

(

L√
MN

)s−1+q−1

,
1√
MN

)

O(
1

(MN)s/2
) (9.95)

– for each s ≤ r − 1, and each v1, . . . , vs such that vs1 + vs2 6= 0, 1 ≤ s1, s2 ≤ s, s1 6= s2, it holds that

κ(s)(v1, . . . , vs) = max

(

(

L√
MN

)s−1+q

,
1√
MN

)

O(
1

(MN)s/2
) (9.96)

Then, if u1, . . . , ur−1 verify us1 + us2 6= 0, 1 ≤ s1, s2 ≤ r − 1, s1 6= s2, it holds that

∑

l1

|κ(r+1)(u1, . . . , ur−1, l1,−l1)| = max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
) (9.97)

Proof. We evaluate κ(r+1)(u1, . . . , ur−1, l1,−l1) using (9.79) when r is replaced by r + 1 and for multi-index

(u1, . . . , ur−1, l1,−l1). If l1 = ±us for some s, the term κ(r+1)(u1, . . . , ur−1, l1,−l1) is a O( 1
(MN)(r+1)/2 ). It is

thus sufficient to prove (9.97) when the sum is over the integers l1 that do not belong to {−u1, . . . ,−ur−1} and

{u1, . . . , ur−1}. In order to simplify the notations, we do not mention in the following that the sum does not take

into account {−u1, . . . ,−ur−1} and {u1, . . . , ur−1}.
If l1 does not belong to {−u1, . . . ,−ur−1} and {u1, . . . , ur−1}, component −l1 of vector y∗

1 corresponding to

κ = (κr+1(u1, . . . , ur−1, l1, u))u=−(L−1),...,(L−1) can be written as

y∗
1,−l1 = κ(r−1)(u1, . . . , ur−1)O(

1

MN
)

(see (9.47)). Therefore, for l1 6= ±us, s = 1, . . . , r − 1, (9.79)) implies that

|κ(r+1)(u1, . . . , ur−1, l1,−l1)| ≤ |κ(r−1)(u1, . . . , ur−1)|O(
1

MN
) + |κ(r)(u1, . . . , ur−1, l1)|O(

L

MN
)+

C sup
u

∑

l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u− l2)|+

∣

∣

∣

∣

∣

∣

∑

l2,l3

κ(r+2)(u1, . . . , ur−1, l1, l2, l3)O(
L

MN
)

∣

∣

∣

∣

∣

∣

+

sup
u

|x̃(1)2,l1
(u)|+ sup

u
|x̃(1)3,l1

(u)|+O(
1

(MN)(r+2)/2
) (9.98)
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where we indicate that the terms x̃
(1)
j (u) associated to (u1, . . . , ur−1, l1, u) depend on l1 (these terms also depend

on (us)s≤r−1 but it is not useful to mention this dependency). In the following, we denote by α(1)(u1, . . . , ur−1) the

term

α(1)(u1, . . . , ur−1) =
∑

l1

|κ(r+1)(u1, . . . , ur−1, l1,−l1)|

(9.98) implies that

α(1)(u1, . . . , ur−1) ≤ |κ(r−1)(u1, . . . , ur−1)| O(
L

MN
) +

∑

l1

|κ(r)(u1, . . . , ur−1, l1)|O(
L

MN
)+

C sup
u

∑

l1,l2

|κ(r+2)(u1, . . . , ur−1, l1, l2, u− l2)|+

∣

∣

∣

∣

∣

∣

∑

l1,l2,l3

κ(r+2)(u1, . . . , ur−1, l1, l2, l3)O(
L

MN
)

∣

∣

∣

∣

∣

∣

+

sup
u

∑

l1

|x̃(1)2,l1
(u)|+ sup

u

∑

l1

|x̃(1)3,l1
(u)|+O(

L

(MN)(r+2)/2
) (9.99)

(9.96) for s = r − 1 implies that

|κ(r−1)(u1, . . . , ur−1)| = max

(

(

L√
MN

)r−2+q

,
1√
MN

)

O(
1

(MN)(r−1)/2
)

and that

|κ(r−1)(u1, . . . , ur−1)|O(
L

MN
) =

L√
MN

max

(

(

L√
MN

)r−2+q

,
1√
MN

)

O(
1

(MN)r/2
)

which, of course, is also a max

(

(

L√
MN

)r−1+q
, 1√

MN

)

O( 1
(MN)r/2 ) term as expected. In order to evaluate the

second term of the righthandside of (9.99), we first notice that if l1 ∈ {−u1, . . . ,−ur−1}, the Hölder inequality leads

to

|κ(r)(u1, . . . , ur−1, l1)| O(
L

MN
) = o(

1

(MN)(r+1)/2
)

If l1 + us 6= 0 for each s = 1, . . . , r − 1, we use (9.95) for s = r and (v1, . . . , vr) = (u1, . . . , ur−1, l1). It holds that

κ(r)(u1, . . . , ur−1, l1) = max

(

(

L√
MN

)r−1+q−1

,
1√
MN

)

O(
1

(MN)r/2
)

so that

∑

l1 6=−us,s=1,...,r−1

|κ(r)(u1, . . . , ur−1, l1)| O(
L

MN
) = (

L√
MN

)2 max

(

(

L√
MN

)r−1+q−1

,
1√
MN

)

O(
1

(MN)r/2
)

which is a max

(

(

L√
MN

)r−1+q
, 1√

MN

)

O( 1
(MN)r/2 ) term. The fourth term of the righthandside of (9.99) is evalu-

ated similarly. Moreover, following the arguments used to establish Lemma 9.6, it can be shown that

sup
u

∑

l1

|x̃(1)2,l1
(u)|+ sup

u

∑

l1

|x̃(1)3,l1
(u)| = max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
)

It remains to evaluate the third term of the righhandside of (9.99). The supremum over u 6= 0 is as expected, but the

term corresponding to u = 0 has also to be evaluated. We denote α(2)(u1, . . . , ur−1) the term

α(2)(u1, . . . , ur−1) =
∑

l1,l2

|κ(r+2)(u1, . . . , ur−1, l1, l2,−l2)|

The previous discussion implies that

α(1)(u1, . . . , ur−1) ≤ C α(2)(u1, . . . , ur−1) +max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
)
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It can be shown similarly that

α(2)(u1, . . . , ur−1) ≤ C α(3)(u1, . . . , ur−1) +max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
)

where

α(3)(u1, . . . , ur−1) =
∑

l1,l2,l3

|κ(r+3)(u1, . . . , ur−1, l1, l2, l3,−l3)|

More generally, if α(p)(u1, . . . , ur−1) is defined by

α(p)(u1, . . . , ur−1) =
∑

li,i=1,...,p

|κ(r+p)(u1, . . . , ur−1, (li, i = 1, . . . , p),−lp)|

it holds that

α(p−1)(u1, . . . , ur−1) ≤ C α(p)(u1, . . . , ur−1) +max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
)

and consequently that

α(1)(u1, . . . , ur−1) ≤ C α(p)(u1, . . . , ur−1) +max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
) (9.100)

The Hölder inequality leads immediately to

α(p)(u1, . . . , ur−1) = (
L√
MN

)pO(
1

(MN)r/2
)

and choosing p = r − 1 + q provides (9.97).

We finally complete the proof of Proposition 9.10. The use of Lemma 9.7 for r = 2 establishes immediately that

if (9.93) holds until integer q − 1 for each s, then, it also holds for integer q and r = 2. We assume that (9.93) holds

for integer q until integer r − 1, i.e. that both (9.95) and (9.96) hold, and prove that it also holds for integer r, i.e.

that

κ(r)(u1, . . . , ur) = max

(

(

L√
MN

)r−1+q

,
1√
MN

)

O(
1

(MN)r/2
)

For this, we use (9.79). All the terms of the righthandside of (9.79) are easily seen to be as expected, except the

second one. However, Lemma 9.7 implies that the second term is also a max

(

(

L√
MN

)r−1+q
, 1√

MN

)

O( 1
(MN)r/2 ).

This completes the proof of Proposition 9.10.

We are now in position to establish (9.42)

Corollary 9.1 If (u1, . . . , ur) satisfy ut + us 6= 0 for t 6= s, 1 ≤ t, s ≤ r, then (9.42) holds for r ≥ 2.

Proof. As L = Nα with α < 2/3, it exists an integer q0 for which ( L√
MN

)r−1+q0 = o( 1√
MN

). Therefore,

max

(

(

L√
MN

)r−1+q0

,
1√
MN

)

=
1√
MN

(9.93) for q = q0 thus implies (9.42).

It remains to establish (9.41). For this, we take (9.80) as a starting point, and prove that the righthandside of

(9.80) is a O( L
(MN)2

) term. We first justify that:

sup
u
x̃(1)(u) = O(

L

(MN)2
) (9.101)
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We use the decomposition (9.91) of x̃(1)(u) for the following convenient value of p: we recall that the Hölder inequality

implies that

x̃(p)(u) = (
L√
MN

)p+1O(
1

MN
)

As L = Nα with α < 2/3, it exists p for which

(
L√
MN

)p+1 = o(
L

MN
)

For such a value of p, it holds that

x̃(p)(u) = o(
L

(MN)2
)

Using (9.87) for r = 2 as well as (9.42), it is easy to check that x̃(1)(u)− x̃(2)(u) is a O( L
(MN)2

) term, and that the

same holds true for x̃(q)(u)− x̃(q+1)(u) for each q ≥ 1. This establishes (9.101).

(9.42) implies that the second term of the righhandside of (9.80) is a O
(

( L
MN )3

)

= o( L
(MN)2

)) term. It remains

to establish that
∑

l1

|κ3(u1, l1,−l1)| = O(
L

(MN)2
) (9.102)

Lemma 9.7 for q = q0 (where q0 is defined in the proof of Corollary 9.1 for r = 2) implies that this term is O( 1
(MN)3/2 ),

but this evaluation is not sufficient to prove (9.41). Using (9.42), we now evaluate κ(r+1)(u1, . . . , ur−1, l1,−l1) when

us1 + us2 6= 0 for s1 6= s2, −(L− 1) ≤ s1, s2 ≤ L− 1 and for r ≥ 2.

Lemma 9.8 We consider r ≥ 2 and a multi-index (u1, . . . , ur−1, l1,−l1) such that us1 + us2 6= 0 for s1 6= s2,

−(L− 1) ≤ s1, s2 ≤ L− 1. Then,

– if l1 ± us 6= 0 for s = 1, . . . , r − 1, it holds that

κ(r+1)(u1, . . . , ur−1, l1,−l1) = O(
1

(MN)(r+2)/2
) (9.103)

– if l1 ± us = 0 for some s = 1, . . . , r − 1,

κ(r+1)(u1, . . . , ur−1, l1,−l1) =
L√
MN

O(
1

(MN)(r+1)/2
) (9.104)

Proof. The proof is similar to the proof of Lemma 9.7. We take (9.98) as a starting point, but just evaluate

κ(r+1)(u1, . . . , ur−1, l1,−l1) instead of α(1)(u1, . . . , ur−1) by iterating (9.98). Using (9.42), it is easy to check that

for each l1,

sup
u

|x̃(1)j,l1
(u)| = O(

1

(MN)(r+2)/2
)

We first assume that l1 ± us 6= 0 for s = 1, . . . , r− 1. (9.42) implies that the first term of the righthandside of (9.98)

is O(( 1
(MN)(r+2)/2 ) (and is identically 0 if r = 2). The second term is L√

MN
O(( 1

(MN)(r+2)/2 ) while the fourth term

is ( L√
MN

)2O(( 1
(MN)(r+2)/2 ). The supremum over u 6= 0 of the third term is O(( 1

(MN)(r+2)/2 ) which implies that

|κ(r+1)(u1, . . . , ur−1, l1,−l1)| ≤
∑

l2

∣

∣

∣
κ(r+2)(u1, . . . , ur−1, l1, l2,−l2)

∣

∣

∣
+O(

1

(MN)(r+2)/2
)

As in the proof Lemma (9.7), we iterate this inequality until an index p for which

∑

l2,...,lp

∣

∣

∣
κ(r+p)(u1, . . . , ur−1, l1, l2, . . . , lp,−lp)

∣

∣

∣
= O(

Lp−1

(MN)(r+p)/2
)

is a o(( 1
(MN)(r+2)/2 ) term. This, in turn, proves (9.103). (9.104) follows directly from the use of the Hölder inequality

in (9.98).

We now complete the proof of (9.102). For this, we remark that

∑

l1

|κ3(u1, l1,−l1)| =
∑

l1 6=±u1

|κ3(u1, l1,−l1)|+ 2|κ3(u1,−u1, u1)|
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Lemma 9.8 implies that
∑

l1 6=±u1

|κ3(u1, l1,−l1)| = O
(

L

(MN)2

)

and that

|κ3(u1,−u1, u1)| = O
(

L

(MN)2

)

This establishes (9.102) as well as (9.41).

9.3 Expansion of 1
MLTr (∆(z)).

In the following, we establish (9.5). We recall that (5.2) implies that 1
MLTr (∆(z)) is given by

1

ML
Tr (∆(z)) = σ2cN

L−1
∑

l1=−(L−1)

E

(

τ (M)(Q◦)(l1)
1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗R)

)◦)

In the following, we denote by x̃(l1) and x̃ the terms defined by

x̃(l1) = E

(

τ (M)(Q◦)(l1)
1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗R)

)◦)

and

x̃ =
L−1
∑

l1=−(L−1)

E

(

τ (M)(Q◦)(l1)
1

ML
Tr
(

QWJl1
NHTW∗(IM ⊗R)

)◦)

x̃(l1) and x̃ appear to be formally similar to x̃(0, l1) and x̃(0) defined by (9.51) and (9.52) in the particular case

r = 1. While we have considered in the previous subsection the case r ≥ 2, a number of evaluations and results can

be adapted to the easier case r = 1. As in subsection 9.2, we expand x̃(l1) and x̃ using (9.44) in the case r = 1,
v1 = l1, G = Jl1

NHT and A = (IM ⊗R). Using the same notations as in subsection 9.2, we obtain that

x̃(l1) =
5
∑

j=2

sj(l1)

and

x̃ =
5
∑

j=2

sj

where sj =
∑

l1
sj(l1). We note that the term s1 is reduced to 0 in the present context. It is easy to check that

s4(l1) =
σ2

MN

L−1
∑

i=−(L−1)

E (β0,1(i, l1, l1, 0))

and that

s5(l1) = − σ2

MN

L−1
∑

i=−(L−1)

E (β1,0(i, l1, l1, 0))

where the terms β are defined by (9.33). Proposition 9.4 immediately implies that

s4 =
σ2

MN

∑

l1

(

1

L

∑

i

β0,1(i, l1, l1)

)

+O
(

(
L

MN
)2
)

or equivalently,

s4(z) = σ2
L

MN
β0,1(z) + O(

L2

(MN)2
)
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where β0,1(z) is defined as

β0,1(z) =
1

L2

∑

l1,i

β0,1(i, l1, l1)(z)

Similarly, it holds that

s5(z) = −σ2 L

MN
β1,0(z) + O(

L2

(MN)2
)

where

β1,0(z) =
1

L2

∑

l1,i

β1,0(i, l1, l1)(z)

We have now to evaluate s2(z) and s3(z). For j = 2, 3, sj can be written as

sj = sj + x̃
(1)
j

We first evaluate s3 and s2. s3 is equal to

s3 = −σ2cN
∑

l1,l2

κ(2)(l1, l2)E

[

1

ML
Tr
(

QWJl2
NHTJl1

NHTW∗(IM ⊗R)
)

]

We remark that

E

[

1

ML
Tr
(

QWJl2
NHT Jl1

NHTW∗(IM ⊗R)
)

]

= −σ2t(z)2(zt̃(z))3(1− |l1|/N)δ(l1 + l2 = 0) +O(
L

MN
)

We also have to evaluate κ(2)(l1, l2). Using (9.47), (9.80), and the observation that the righthandside of (9.80) is a

O( L
(MN)2

) term (see (9.41)), we obtain that

κ(2)(l1, l2) =
σ2

MN

1

1− d(l1, z)

1

L

∑

i

β(i, l1) δ(l1 + l2 = 0) + O(
L

(MN)2
)

Therefore, s3 can be written as

s3(z) = σ6cN t(z)
2(zt̃(z))3

1

L2

∑

i,l1

1− |l1|/N)

1− d(l1, z)
β(i, l1)

L

MN
+ O(

L2

(MN)2
)

Similar calculations lead to

s2 = σ8cN t(z)
3(zt̃(z))4

1

L2

∑

i,l1

(1− |l1|/N)2(1− |l1|/L)
1− d(l1, z)

β(i, l1)
L

MN
+ O(

L2

(MN)2
)

Therefore, it holds that

s2(z) + s3(z) + s4(z) + s5(z) =
L

MN

1

L2

∑

i,l1

s(i, l1, z) + x̃
(1)
2 (z) + x̃

(1)
3 (z) +O(

L2

(MN)2
) (9.105)

where s(i, l1, z) is defined by (9.37). Proposition 9.4 implies that function sN (z) defined by

sN (z) = σ2cN
1

L2

∑

i,l1

sN (i, l1, z)

coincides with the Stieltjes transform of a distribution whose support is included into S(0)
N and satisfying (9.8) for

K = S(0)
N . In order to complete the proof of (9.5), we finally prove that x̃(1) = |x̃(1)2 |+ |x̃(1)3 | is a O( L2

(MN)2
) term.

For this, we remark that x̃(1) verifies (9.87) in the case r = 1 and u = 0. However, the term L√
MN

O( 1
(MN)(r+1)/2 )

(for r = 1) is replaced by a O( L2

(MN)2
) term. This term corresponds to the contribution of the s

(1)
j,i for j = 2, 3 and

i = 4, 5. In the present context, r = 1 and it is easy to check that s
(1)
j,i is identically zero and that s

(1)
j,i coincides with
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s̃
(1)
j,i , which, using the Hölder inequality, appears to be a O( L2

(MN)2
) term. In order to prove that x̃(1) = O( L2

(MN)2
),

we use (9.91) as in the proof of Lemma 9.6. The Hölder inequality implies that

x̃(p) =

(

L√
MN

)p+1

O(
1√
MN

) =

(

L√
MN

)p

O(
L

MN
)

As L = Nα with α < 2/3, it exists an integer p1 such that

(

L√
MN

)p1

= o

(

L

MN

)

Therefore, using (9.91) for p = p1, we obtain as in the proof of Lemma 9.6 that x̃(1) = O( L2

(MN)2
) as expected. This,

in turn, completes the proof of (9.5).

9.4 Evaluation of E
(

1
MLTr(QN (z))

)

− tN (z).

In order to establish (9.3), we evaluate 1
LTr(RN (z)) − tN (z). For this, we use (8.4) for A = I. We claim that the

third, fourth, and fifth terms of the righthandside of (8.4) are O( L5/2

(MN)2
). We just check the third term. It is clear

that
∣

∣

∣

∣

1

L
Tr
(

(R− tI)TL,L

[

TN,L(R− tI)
])

∣

∣

∣

∣

≤ sup
‖A‖≤1

∣

∣

∣

∣

1

L
Tr ((R− tI)A)

∣

∣

∣

∣

‖TN,L(R− tI)‖

Proposition 8.1 and (7.1) immediately implies that the third term of the righthandside of (8.4) is a O( L5/2

(MN)2
) term.

The fourth and the fifth term can be addressed similarly. The first term is equal to

−σ4cN (zt(z)t̃(z))
1

ML
Tr
(

∆ (IM ⊗ TL,L

[

TN,L(R)H
])

Writing that R = tI+R − tI and H = −zt̃(z) +H + zt̃(z), and using (5.1), Proposition 8.1 and (7.1), we obtain

that
1

ML
Tr
(

∆ (IM ⊗ TL,L

[

TN,L(R)H
])

= −zt(z)t̃(z) 1

ML
Tr(∆) + O(

L5/2

(MN)2
)

Therefore, we deduce from (8.4) that

1

L
Tr(RN (z))− tN (z) =

dN (0, z)

1− dN (0, z)

1

ML
Tr(∆N (z)) + O(

L5/2

(MN)2
)

This, in turn, implies that

E

(

1

ML
Tr(QN (z))

)

− tN (z) =
L

MN

sN (z)

1− dN (0, z)
+ O(

L5/2

(MN)2
)

and that (9.3) holds with ŝN (z) = sN (z)
1−dN(0,z) , which has the same properties that sN (z). This, in turn, establishes

Theorem 9.1.

10 Almost sure location of the eigenvalues of WW∗

Under condition (9.1), we finally establish that the eigenvalues of WNW∗
N lie almost surely in a neighbourhood of

the support of the Marcenko-Pastur distribution.

Theorem 10.1 If c∗ ≤ 1, for each ǫ > 0, almost surely, it exists N0 ∈ N such that all the eigenvalues of WNW∗
N

belong to [σ2 (1−√
c∗)

2− ǫ, σ2 (1 +√
c∗)

2+ ǫ] for N > N0. If c∗ > 1, for each ǫ > 0, almost surely, it exists N0 ∈ N

such that the N non zero eigenvalues of WNW∗
N belong to [σ2 (1−√

c∗)
2 − ǫ, σ2 (1 +

√
c∗)

2 + ǫ] for N > N0.

The proof follows [17] and the Lemma 5.5.5 of [2] which needs to verify conditions that are less demanding than in

[17].

We first establish the following lemma.
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Lemma 10.1 For all ψ ∈ C∞b (R) constant on the complementary of a compact interval, and vanishing on SN for

each N large enough, it holds that:

E

[

Tr
(

ψ(WNW∗
N )
)]

= O
(

(
L

M2
)3/2

)

(10.1)

E

∣

∣Tr
(

ψ(WNW∗
N )
)

− E

(

ψ(WNW∗
N )
)∣

∣

2l
= O

[

(

L3/2

M4

)l
]

(10.2)

for each l ≥ 1.

Proof. In order to establish (10.1), we first justify that for each smooth compactly supported function ψc, then, it

holds that

E

[

Tr
(

ψc(WNW∗
N )
)]

−ML

∫

ψc(λ) dµσ2,cN (λ) −ML
L

MN
< D̂N , ψc >= O

(

(
L

M2
)3/2

)

(10.3)

(10.3) is a consequence of Theorem 9.1. In order to prove (10.3), we cannot use Theorem 6.2 of [17] because function

r̂N (z) defined by (9.3) does not satisfy |r̂N (z)| ≤ P1(|z|)P2(1/Imz) for each z ∈ C
+, but when z belongs to the set

F
(2)
N defined by (9.4). To solve this issue, we use the approach of [2] based on the Hellfer-Sjöstrand formula which is

still valid when |r̂N (z)| is controled by P1(|z|)P2(1/Imz) for z ∈ F
(2)
N .

As we have proved in Lemma 9.3 that the Hellfer-Sjöstrand formula is valid for compactly supported distributions,

(10.3) follows directly from Lemma 5.5.5 of [2] provided we verify that for each nice constants C0, C
′

0, it exist nice

constants C1, C2, C3 and an integer N0 such that

∣

∣

∣

∣

1

ML
E (TrQN (z)) − tN (z) − L

MN
ŝN (z)

∣

∣

∣

∣

≤ C2
L5/2

(MN)2
1

(Imz)C3
(10.4)

for each z in the domain |Re(z)| ≤ C0,
1

NC1
≤ Im(z) ≤ C

′

0 and for each N > N0.

In order to check that (10.4) holds, we fix nice constants C0, C
′

0, and first show that it exists C1 such that the

above domain, denoted EN,C1
, is included in the set F

(2)
N defined by (9.4) for N large enough. It is clear that for

each z ∈ EN,C1
, it holds that

Q1(|z|)Q2(1/Imz) ≤ Q1

(

(C2
0 + C

′2
0 )1/2

)

Q2(N
C1) ≤ CNq2C1

for some nice constant C, where q2 = Deg(Q2). Hence,

L2

MN
Q1(|z|)Q2(1/Imz) ≤ C

L2

MN
Nq2C1

Using that N = O(ML), we obtain immediately that

L2

MN
Q1(|z|)Q2(1/Imz) ≤ C

L1+q2C1

M2−q2C1

Condition (9.1) implies that

L1+q2C1

M2−q2C1
= O(

1

N2−3α−q2C1
)

We choose C1 > (2 − 3α)/q2 so that L1+q2C1

M2−q2C1
→ 0. Therefore, L2

MN Q1(|z|)Q2(1/Imz) is less than 1 for N large

enough. We have thus shown the existence of a nice constant C1 for which DN,C1
⊂ F

(2)
N for N large enough. Hence,

for each z ∈ EN,C1
,

∣

∣

∣

∣

1

ML
E (TrQN (z)) − tN (z) − L

MN
ŝN (z)

∣

∣

∣

∣

≤ L5/2

(MN)2
P1(|z|)P2(1/Imz)

We now prove that if z ∈ EN,C1
, then P1(|z|)P2(1/Imz) ≤ C2

1
(Imz)C3

for some nice constants C2 and C3. We

remark that P1(|z|) ≤ P1

(

(C2
0 + C

′2
0 )1/2

)

and denote by p2 and (P2,i)i=0,...,p2
the degree and the coefficients of

P2 respectively. If Imz ≤ 1, it is clear that P2(1/Imz) ≤
(
∑p2

i=0 P2,i

)

1
(Imz)p2

. This completes the proof of (10.4) if
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C
′

0 ≤ 1. If C
′

0 > 1, it remains to consider the case where z ∈ DN,C1
verifies 1 < Imz ≤ C

′

0. It is clear that 1
Imz ≤ C

′

0
Imz .

Therefore,

P2(1/Imz) ≤ P2

(

C
′

0

Imz

)

≤
(

p2
∑

i=0

P2,i

)

(C
′

0)
p2

(Imz)p2

In sum, we have proved that P1(|z|)P2(1/Imz) ≤ C2
1

(Imz)p2
for some nice constant C2 and for each z ∈ EN,C1

,

which, in turn, establishes (10.4).

(9.12) allows to follow the arguments of the proof of Lemma 5.5.5 of [2], and to establish (10.3). In order to

prove (10.1), we follow [17]. We denote by κ the constant for which ψ(λ) = κ outside a compact subset. Function

ψc = ψ − κ is thus compactly supported, and is equal to −κ on SN for N large enough. Therefore,
∫

ψc(λ) dµσ2,cN (λ) = −κ and < D̂N , ψc >= 0

and (10.3) implies (10.1).

The proof of (10.2) is based on the Poincaré-Nash inequality, and is rather standard. A proof is provided in [23].

As L3/2

M3 → 0, (10.1) and (10.2) for l large enough imply that

Tr
(

ψ(WNW∗
N )
)

→ 0 a.s. (10.5)

Consider a function ψ ∈ C∞b (R) such that

– ψ(x) = 1 if x ∈
(

[σ2 (1−√
c∗)

2 − ǫ, σ2 (1 +
√
c∗)

2 + ǫ] ∪ [−ǫ, ǫ] 1c∗>1

)c

– ψ(x) = 0 if x ∈
(

[σ2 (1−√
c∗)

2 − ǫ/2, σ2 (1 +
√
c∗)

2
+ ǫ/2] ∪ [−ǫ/2, ǫ/2] 1c∗>1

)

– 0 ≤ ψ(x) ≤ 1 elsewhere

Such a function ψ satisfies the hypotheses of Lemma 10.1. It is clear that the number of eigenvalues of WNW∗
N

located into
(

[σ2 (1−√
c∗)

2 − ǫ, σ2 (1 +
√
c∗)

2
+ ǫ] ∪ [−ǫ, ǫ] 1c∗>1

)c
is less than Tr (ψ(WNW∗

N )), which, by (10.5),

converges almost surely towards 0. This completes the proof of Theorem 10.1 if c∗ ≤ 1. If c∗ > 1, we consider a

function ψc ∈ C∞c (R) such that

– ψc(x) = 1 if x ∈ [−ǫ/2, ǫ/2]
– ψc(x) = 0 if x ∈ [−ǫ, ǫ]c
– 0 ≤ ψc(x) ≤ 1 elsewhere

As 0 does not belong to the support of D̂N , it holds that < D̂N , ψc >= 0 for each N large enough. Using (10.3) and

the observation that function ψc satisfies also (10.2), we obtain as above that almost surely, for N large enough, the

interval [−ǫ, ǫ] contains ML−N eigenvalues of WNW∗
N . As ML −N coincides with the multiplicity of eigenvalue

0, this implies that the N remaining (non zero) eigenvalues are located into [σ2 (1−√
c∗)

2 − ǫ, σ2 (1 +
√
c∗)

2
+ ǫ].

This establishes Theorem 10.1 if c∗ > 1.

A Proof of Proposition 2.3.

We first establish (2.14). For this, we first remark that, as K coincides with the size of square matrix A, then, for i, j ∈
{1, 2, . . . , R}, it holds that

(

TR,K(A)
)

i,j
= τ(A)(i − j)1|i−j|≤(K−1) is equal to

(

TR,K(A)
)

i,j
=

1

K

K
∑

k=1

Ak+i−j,k11≤k+i−j≤K

We establish that for each R–dimensional vector b, then, ‖b∗TR,K(A)‖2 ≤ b∗TR,K(AA∗)b. For this, we note that component
r of b∗TR,K(A) is equal to

(

b∗TR,K(A)
)

r
=

R
∑

i=1

bi

1

K

K
∑

k=1

Ak+i−r,k 11≤k+i−r≤K

Therefore,

‖b∗TR,K(A)‖2 =
R
∑

r=1

∣

∣

∣

∣

∣

1

K

K
∑

k=1

R
∑

i=1

biAk+i−r,k 11≤k+i−r≤K

∣

∣

∣

∣

∣

2
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and is thus less that the term a defined by

a =
R
∑

r=1

1

K

K
∑

k=1

∣

∣

∣

∣

∣

R
∑

i=1

biAk+i−r,k 11≤k+i−r≤K

∣

∣

∣

∣

∣

2

a can also be written as

a =
∑

(i,j)=1,...,R

bibj

1

K

R
∑

r=1

K
∑

k=1

Ak+i−rAk+j−r,k 11≤k+i−r≤K,1≤k+j−r≤K

We denote by u the index u = k − r, and rewrite a as

a =
∑

(i,j)=1,...,R

bibj

1

K

K
∑

k=1

∑

u∈Z

11≤k−u≤R Au+i,kAu+j,k 11≤u+i≤K,1≤u+j≤K

or equivalently as,

a =
K
∑

k=1

∑

u∈Z

11≤k−u≤R

1

K

∣

∣

∣

∣

∣

R
∑

i=1

biAu+i,k 11≤u+i≤K

∣

∣

∣

∣

∣

2

Therefore, a satisfies

a ≤
K
∑

k=1

∑

u∈Z

1

K

∣

∣

∣

∣

∣

R
∑

i=1

biAu+i,k 11≤u+i≤K

∣

∣

∣

∣

∣

2

or equivalently

a ≤
∑

(i,j)=1,...,R

bibj

1

K

∑

u∈Z

(AA∗)u+i,u+j 11≤u+i≤K,1≤u+j≤K

We define index k as k = u+ j, and remark that

1

K

∑

u∈Z

(AA∗)u+i,u+j 11≤u+i≤K,1≤u+j≤K =
1

K

K
∑

k=1

(AA∗)k+i−j,k 11≤k+i−j≤K =
(

TR,K(AA∗)
)

i,j

Therefore, we have shown that
‖b∗TR,K(A)‖2 ≤ a ≤ b∗TR,K(AA∗)b

In order to prove (2.15), it is sufficient to remark that the entry (i, j), (i, j) ∈ {1, 2, . . . , R} of matrix TR,R(A) is still equal to

(

TR,R(A)
)

i,j
=

1

K

K
∑

k=1

Ak+i−j,k 11≤k+i−j≤K

because R ≤ K, and to follow the proof of (2.14).

B Proof of Lemma 4.1

We use the same ingredients than in the proof of Lemma 5-1 of [15]. Therefore, we just provide a sketch of proof. The invertibility

of IN + σ2cNT
(M)
N,L

(E(Q(z))) for z ∈ C
+ is a direct consequence of Im (Q(z)) > 0 on C

+ (see (1.26)) as well as of Proposition

2.2. In order to prove (4.2), we first establish that function G(z) defined by

G(z) = −
H(z)

z

coincides with the Stieltjes transform of a positive CN×N matrix valued measure ν carried by R
+ such that ν(R+) = IN , i.e.

G(z) =

∫

R

+

dν(λ)

λ− z

For this, it is sufficient to check that Im(G(z)) and Im(zG(z)) are both positive on C
+, and that limy→+∞ −iyG(iy) = IN

(see proof of Lemma 5-1 of [15]). We omit the corresponding derivations. It is clear that

Im(G(z)) = Im(z)

∫

R

+

dν(λ)

|λ− z|2
≤

1

Im(z)
IN

for z ∈ C
+. Im(G(z)) can also be written as

Im(G(z)) =
H(z)

z

1

2i

[

zH−1(z) − z∗
(

H−1(z)
)∗

] H(z)∗

z∗
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or equivalently as

Im(G(z)) =
H(z)

z

[

Im(z) + σ2cNT
(M)
N,L

(Im(zQ(z)))
] H(z)∗

z∗

As Im(zQ(z)) > 0 on C
+ (see (1.26)), this implies that

1

Im(z)
IN ≥ Im(G(z)) >

Im(z)

|z|2
H(z)H(z)∗

which implies (4.2). The other statements of Lemma 4.1 are proved similarly.
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