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Abstract
Relying on the recently introduced multi-algebras,
we present a general approach for reasoning about
temporal sequences of qualitative information that
is generally more efficient than existing techniques.
Applying our approach to the specific case of se-
quences of topological information about constant-
size regions, we show that the resulting formalism
has a complete procedure for deciding consistency,
and we identify its three maximal tractable sub-
classes containing all basic relations.

1 Introduction
The ability to reason about temporal and spatial information
together is essential for the resolution of complex tasks in a
physical and dynamic environment. Several qualitative for-
malisms of different expressiveness have been proposed to
describe the world and reason about it [see, e.g., Chen et al.,
2015]. Temporal sequences of qualitative information, which
are our focus in this paper, are sequences of descriptions,
each one representing the state of the world at a specific
time. Spatio-temporal reasoning tasks include the ordering of
such temporal sequences [Sioutis et al., 2015] as well as the
construction of interpolating temporal sequences, which are
useful, for example, within spatial planning [Ragni & Wölfl,
2005; Westphal et al., 2011]; but the main task consists in de-
ciding the consistency of temporal sequences. This problem
is complex because, in general, temporal consistency and spa-
tial consistency cannot be decided independently. In addition,
the consistency of a description depends on the properties of
spatio-temporal entities. For example, enforcing the continu-
ity of movements is essential to reason about a physical en-
vironment [Galton, 2000]. It can also be necessary to ensure
that certain attributes of entities – such as size, position, ori-
entation, or shape – are preserved over time, and to impose
restrictions on movements that are allowed between instants
of the sequence. These constraints create temporal interde-
pendencies which impact the consistency of descriptions.
Example 1. Consider this temporal sequence: A blue box is
in a red box during a first period. During a second period, the
∗This is a revised version of the article published at IJCAI 2017

(a special case has been added to the proof of Prop. 5).

red box is in a green box, and either the blue box is in the red
box or the red box is in the blue box. During a third period,
the green box is in the blue box. This description is consistent
with deformable boxes but inconsistent with rigid boxes.

Several approaches deal with temporal interdependencies
by using (conceptual) neighborhood graphs [Freksa, 1992].
Note that the inconsistency of the description in Example 1
actually only depends on the size of objects being constant;
the fact that the boxes are undeformable is not used directly.
Size preservation is thus an important temporal interdepen-
dency, notably required when reasoning about rigid objects,
but also useful when considering deformable regions having
a constant size, such as articulated solid bodies, deformable
bodies (for certain deformations), or liquids. Unfortunately,
few formalisms deal with constant-size regions and, as we
will show, they all have significant disadvantages.

In this paper, we propose a general framework to reason
about temporal sequences of qualitative information, based
on the recently introduced multi-algebras [Cohen-Solal et al.,
2017]. Our approach can represent various kinds of interde-
pendencies, notably those of neighborhood graphs, and it has
computational advantages compared to known approaches.
Moreover, we instantiate our framework in the specific case
of sequences of topological information about constant-size
regions moving continuously (such as rigid or articulated
bodies). We show that the resulting formalism is complete
for deciding consistency; in addition, leveraging general the-
orems from the multi-algebra framework, we identify its three
maximal tractable subclasses containing all basic relations.

2 Background and Related Work
2.1 Qualitative Formalisms
We recall the main concepts relative to qualitative temporal
and spatial reasoning; details and references can be found in
Ligozat [2013]. In qualitative reasoning, information about
spatial or temporal entities of the world is given using binary
relations from a finite set B. For example, the relative size of
two entities x and y is entirely characterized by an element
of the set BPA = {<,=,>}. Relations from B are called ba-
sic: exactly one of them holds between any two entities. A
composite relation (or simply a relation) is actually a set of
basic relations, that is, a subset of B; it represents less precise
information – e.g., “x {<,=} y” means that either x < y or



Figure 1: The 8 relations of RCC8 in the plane.

Figure 2: Neighborhood graphs of RCC8: (a) if region size can
change; (b) for constant-size regions.

x = y, while “x BPA y” gives no information. The set A= 2B

of all relations built from B forms a non-associative relation
algebra. The point algebra PA, whose basic relations are BPA,
is one of the simplest examples. Another well-known algebra
is RCC8, which describes topological relations between re-
gions, i.e., in this paper, nonempty regular closed subsets of
Rd . The basic relations of RCC8 are illustrated in Fig. 1.

Descriptions are often given as qualitative constraint net-
works. A network N over an algebraA is a finite set E of entity
variables, together with one relation fromA (a constraint) for
each pair of distinct variables. We denote by Nxy the relation
between entities x and y (implicitly, Nyx = Nxy) : e.g., the net-
work such that Nxy = {PO}, Nyz = {TPP}, and Nxz = {DC}
describes the topology of three unknown entities x,y,z. Note
that all relations are basic in this network: it is then called a
scenario. A fundamental question about such a description is
its consistency: can we find entities satisfying it? Algebras are
in fact equipped with operators over relations, intersection ∩,
converse ·̄, and (weak) composition �, which enable a form of
deductive reasoning: their application can remove some basic
relations from a composite one, yielding more specific infor-
mation. From the first two constraints in the scenario shown
above, we can infer that the basic relation between x and z
must be in {PO,NTPP,TPP}; since this is disjoint from Nxz,
we can conclude that the scenario is inconsistent.

2.2 Neighborhood Graphs
Neighborhood graphs have been proposed to reason about
change [Freksa, 1992]. They encode the ways relations be-
tween entities can change over time: Two basic relations are
connected in a neighborhood graph if by continuously de-
forming two entities satisfying the first relation, we can make
them satisfy the second one without any other relation oc-
curring during the deformation. The two graphs in Fig. 2
[Gerevini & Nebel, 2002] show the neighborhood of topo-
logical relations, for variable-size and constant-size regions.
Suppose that TPP holds between two regions; deform them
continously until the relation does not hold, then stop imme-
diately. As Fig. 2.a shows, the new relation can only be NTPP,
PO, or EQ in general, but if the regions have a constant size,
then Fig. 2.b indicates that it can only be NTPP or PO.

One of the applications of neighborhood graphs is to en-
sure that a temporal sequence of scenarios N1, . . . ,Nm – each

Ni describing the situation at some fixed instant ti – is com-
patible with the property of continuity without intermediary
relations (or continuous qualitative change) [Westphal et al.,
2013], which is notably useful for qualitative planning [Ragni
& Wölfl, 2005; Westphal et al., 2011]. A temporal sequence
of scenarios is considered consistent if there exist entities
evolving continuously and satisfying Ni at each instant ti;
continuity without intermediary relations is the additional re-
quirement that at any time between two fixed instants ti and
ti+1, each pair of entities x,y only satisfies either Nxy

i or Nxy
i+1.

For example, the sequence “x TPP y, then x DC y” has no con-
tinuous solution without intermediary relations; in fact, a tem-
poral sequence (r1, . . . ,rm) of basic RCC8 relations satisfies
continuity without intermediary relations if and only if it re-
spects the neighborhood graph of RCC8, that is, for 1≤ i<m,
either ri+1 = ri, or (ri,ri+1) is an edge in the graph.

2.3 Related Work

There are many studies about qualitative change, notably
based on neighborhood graphs [e.g., Wu et al., 2014; San-
tos & Moreira, 2009], and about its applications [e.g., Cui et
al., 1992; Dylla & Moratz, 2004]. On the other hand, reason-
ing about the simple temporal sequences of descriptions pre-
sented in the previous section is not largely studied. The only
work that we know of is the general approach of Westphal et
al. [2013], which duplicates all variables for each instant to
add transition contraints enforcing the interdependencies.

However, spatio-temporal formalisms of higher expres-
siveness have been studied, in which the ordering of tem-
poral entities is uncertain. In the formalism of Gerevini &
Nebel [2002], descriptions consist of RCC8 relations that
hold during temporal intervals, together with relations be-
tween these intervals: e.g., an interval I is before or after an-
other interval, and during I the relation {DC,PO} holds be-
tween two regions. Ragni & Wölfl [2006] introduced a similar
formalism about directional relations of spatial points. The
approach of Sioutis et al. [2014] has a different expressive-
ness – time entities are points and not intervals.

We are not aware of other “algebraic” qualitative spatio-
temporal formalisms; but note that spatio-temporal reasoning
is also studied in the context of logics [Bennett et al., 2002].
Spatio-temporal logics are more expressive, but less efficient:
while deciding consistency is typically NP-complete with al-
gebraic approaches, it is generally PSPACE-hard for logics.

Only two approaches, to our knowledge, deal with the
preservation of region sizes in the context of evolving topo-
logical relations. The first one is the logic of Galton [1993],
based on Allen’s temporal logic. It allows for reasoning
about rigid bodies with topological relations, but requires the
knowledge of the precise size relation for each pair of regions.
The second one is the formalism of Gerevini & Nebel [2002]
mentioned above. It enforces size preservation by using the
size and topology combination, duplicating all variables for
each time interval I. It also ensures an evolution without in-
termediary relations thanks to a neighborhood graph. Yet, it
is not clear whether or not this formalism ensures continu-
ous movement; and no algorithm has been proposed to reason
about non-basic descriptions.



3 Multi-Algebras for Temporal Sequences
Multi-algebras have recently been introduced [Cohen-Solal
et al., 2017] in order to encompass into a common algebraic
framework several forms of algebra combinations, notably
loose integrations [Wölfl & Westphal, 2009] and multi-scale
representations [Cohen-Solal et al., 2015], but also temporal
sequences. The latter application was illustrated with the sim-
ple example of temporal sequences of directional information
(i.e., relations from PA) that enforce continuity without inter-
mediary relations. We show here how this approach gener-
alizes to any qualitative formalism, and, focusing on RCC8,
how it can be adapted to the size preservation constraint.

3.1 Temporal Sequences and Projections
The relation between two entities in a temporal sequence of
qualitative information can be seen as a tuple of relations, the
ith relation being the one that holds at the ith instant in the
sequence. Thus, the sequence in which a region x is inside
another region y, then they overlap, and finally x is outside
y corresponds to the tuple ({TPP,NTPP},{PO},{EC,DC}).
Such relations are exactly the kind that multi-algebras are
well-suited to represent. A multi-algebra is indeed a Carte-
sian product of algebras A1×·· ·×Am, a multi-algebra rela-
tion R hence being a tuple R = (R1, . . . ,Rm) of classical re-
lations Ri ∈ Ai. The multi-algebra of m-instant temporal se-
quences of topological information is thus simply RCC8m.
Yet, algebras in the product can also be distinct, which al-
lows for combining information of heterogeneous nature into
a relation: multi-algebras actually generalize loose integra-
tions. For example, the well-known combination of topol-
ogy and relative size [Gerevini & Renz, 2002] corresponds
to the multi-algebra RCC8×PA: its relation ({DC},{<,=})
describes the fact that the two regions considered are discon-
nected and that the size of the first one is smaller or equal.

In most aspects, a multi-algebra behaves like several al-
gebras independently gathered together: several classical no-
tions can be transparently generalized to this framework by
being applied componentwise. Thus, for two relations R and
R′, we write R ⊆ R′ if Ri ⊆ R′i holds for each i, and R is said
to be basic when each Ri is basic. More importantly, multi-
algebras are equipped with composition, converse, and inter-
section operators, which are simply applied componentwise
(e.g., R � R′ is defined by ∀i : (R � R′)i = Ri � R′i). It makes
sense for temporal sequences, since it corresponds to apply-
ing the classical operators at all instants independently.

Nevertheless, the elements of the tuple are not always inde-
pendent. For example, in order to guarantee continuity with-
out intermediary relations on temporal sequences, each pair
of successive relations must satisfy the neighborhood graph.
In multi-algebras, interdependencies of this kind between in-
dividual components are enforced by additional operators,
called projections. There is one projection for each ordered
pair of algebras in the Cartesian product, which represents
the interdependencies between the relations of these algebras.
Formally, a projection � j

i :Ai 7→ A j is a function associating,
to each relation r of the algebraAi, the relation r′ of the alge-
bra A j corresponding to the following semantics: if r holds,
then r′ must hold. For instance, Table 1 gives the projections

b TPP NTPP PO EC DC EQ
�PA

RCC8 b < < BPA BPA BPA =

b < =

�RCC8
PA b TPP NTPP PO EC DC EQ PO EC DC

Table 1: Projections of basic relations between RCC8 and PA.

for the basic relations in the size-topology combination: the
projection of {TPP} into PA is �PA

RCC8{TPP} = {<}, since a
region strictly included in another can only have a smaller
size. The projections of other relations can be deduced from
the table using formulas �r =

⋃
b∈r �{b} and � r̄ =

⋃
b∈�r{b̄}.

Projections can enforce any neighborhood graph G: since
it puts restrictions on basic relations of successive instants,
but does not impose anything in other cases, the projection
of b ∈ B from an instant i to an instant j is defined by
� j

i {b}= {b′ : (b,b′) ∈ G}∪{b} if |i− j|= 1, and � j
i {b}= B

if |i− j|> 1. Using this, given any qualitative algebraA with
a neighborhood graph G, we can build a multi-algebra rep-
resenting temporal sequences of information from A in the
context of continuity without intermediary relations. In the
case of topological information, we get:

Definition 2. Let m ∈N∗. The multi-algebra TTwir of tempo-
ralized topology without intermediary relations is the Carte-
sian product RCC8m equipped with projections enforcing the
neighborhood graph in Fig. 2.a.

However, if we want to reason about constant-size regions,
neighborhood graphs are not sufficient. Consider the relation
(TPP,PO,TPP): it respects the graph of Fig. 2.b, but no pair
of constant-size regions can satisfy it. This problem can be
solved by reasoning about region sizes explicitly, in addi-
tion to the spatial reasoning. In a multi-algebra, this can be
done by adding the point algebra to the Cartesian product.
For topological reasoning, this yields RCC8m×PA: each re-
lation is a tuple consisting of m topological relations (one for
each instant) plus an extra relation indicating the relative size
of the two regions. Projections from and to the added algebra
are exactly those of the size-topology combination – which is
thus a special case (m = 1) of this multi-algebra.

Definition 3. Let m ∈N∗. The multi-algebra TTcs of tempor-
alized topology of constant-size regions is the Cartesian prod-
uct RCC8m×PA equipped with the following projections: for
all b, � j

i b = BRCC8 (no interdependency) for 1≤ i, j≤m, and
�m+1

i b and �i
m+1 b defined by Table 1 for 1≤ i≤ m.

The multi-algebra TTwir,cs of temporalized topology of
constant-size regions without intermediary relations is the
Cartesian product RCC8m×PA equipped with projections � j

i
enforcing the neighborhood graph in Fig. 2.b for 1≤ i, j≤m,
and the projections �m+1

i and �i
m+1 of TTcs for 1≤ i≤ m.

These multi-algebras only ensure relative size preservation,
but for some formalisms this suffices to guarantee the exis-
tence of a solution with constant-size regions. This technique
of adding an algebra to the Cartesian product is a priori ap-
plicable to the preservation of other region attributes, such as
orientation or position – as long as the added algebra can be
meaningfully combined with the temporalized algebra.



3.2 Semantics of Temporal Sequences
As we have seen, multi-algebras are equipped with operators
(composition, converse, intersection, and several projections)
that can be used to reason about their relations. To prove
that reasoning using a specific multi-algebra is correct and/or
complete, we need to define the semantics of its relations, i.e.,
the way they are actually interpreted. This requires expliciting
a domain – the set of entities considered – and an interpreta-
tion function associating to each relation all pairs of entities
that are considered as correct realizations of this relation.

In our context, we reason about regions that move contin-
uously; an entity is thus what we call a continuous evolution
of a region, that is, a continuous function indicating at each
instant the current “state” of the region.1 We consider two do-
mains: the set RI of all continuous evolutions during an inter-
val I ⊆ R, and its strict subset RI

cs containing all continuous
evolutions of a constant-size region. More formally, RI (resp.
RI

cs) is the set of continuous functions f from I to the set of
regions of Rd (resp. to the set of measurable regions of Rd

satisfying ∃s∈R∗+ : ∀t ∈ I : µ( f (t)) = s, with µ a measure of
region sizes). We can now define the semantics of TTcs (for
space reasons, we do not define those of TTwir and TTwir,cs):

Definition 4. Let m ∈N∗, and let (τ1, . . . ,τm) ∈Rm be an or-
dered sequence of m distinct instants. The interpretation func-
tion of TTcs is the function ϕTTcs : RCC8m×PA→ (R

[τ1,τm]
cs )2

associating to each relation R the set of all pairs of region
evolutions ( f , f ′) satisfying R, i.e., verifying the RCC8 con-
straints at the corresponding instant (∀i∈ {1, . . . ,m} : f (τi)Ri
f ′(τi)) and the size constraints (µ( f (τ1)) Rm+1 µ( f ′(τ1))).

This semantics satisfies good properties: the triple (TTcs,

R
[τ1,τm]
cs ,ϕTTcs) actually constitutes a loosely combined for-

malism [Cohen-Solal et al., 2017]. This guarantees that rea-
soning is sound: using the operators to eliminate basic rela-
tions from a relation does not change its interpretation.

3.3 Deciding Consistency for Temporal Sequences
We have used multi-algebra relations to represent temporal
sequences between two entities; like in the classical case,
more complex descriptions can be given as qualitative con-
straint networks, whose constraints are multi-algebra rela-
tions. The following is an example of a network N (in fact a
scenario) over RCC8m×PA: Nxy = (TPP,PO,PO,<), Nyz =
(PO,TPP,PO,<), and Nxz = (PO,PO,TPP,>).

Using the previous section, we can formally define a so-
lution of a network as an assignment, to each entity variable
from E, of one entity from the domain U considered, such that
all constraints are satisfied: i.e., a set {ux}x∈E ⊆U verifying
∀x,y ∈ E : (ux,uy) ∈ ϕ(Nxy). Note that one solution of a net-
work satisfies exactly one scenario. To decide the consistency
of a network, an intuitive method is to apply reasoning rules:
using multi-algebra operators, we repeatedly remove “impos-
sible” basic relations from the constraints. When nothing can
be further removed, the resulting network N is said to be al-
gebraically closed – because it is both closed under composi-

1We cannot detail this for space reasons, but formally the notion
of continuity requires one to specify a topology for the set of regions.

tion (∀x,y,z∈ E : Nxz⊆Nxy�Nyz) and closed under projection
(∀x,y ∈ E : Nxy

j ⊆ � j
i Nxy

i for all distinct i, j).
Computing the algebraic closure of a network can yield

empty relations, i.e., unsatisfiable constraints. Since reason-
ing is sound, this means that the initial network was incon-
sistent. An algebraically closed network containing no empty
relation is called algebraically consistent, in the sense that al-
gebraic reasoning cannot prove its inconsistency. Yet, in the
general case, we cannot conclude anything about the consis-
tency of an algebraically consistent network – even if it is a
scenario. Having no inconsistent closed scenario is a funda-
mental property of a formalism, which depends on its inter-
pretation function. This property is important because it pro-
vides a complete procedure for deciding consistency – a sim-
ple search for a closed scenario, typically using a branch-and-
bound algorithm that applies the algebraic closure. A formal-
ism or fragment satisfies the stronger property of algebraic
tractability when algebraically closing a network, which can
be done in polynomial time, suffices to decide its consistency.

3.4 Computational Advantages of Multi-Algebras
Multi-algebras are well-suited for reasoning about temporal
sequences with a large number of interdependencies, because,
unlike other approaches such as that of Westphal et al. [2013]
or Gerevini & Nebel [2002], there is no need to duplicate
the entities for each instant of the sequence so that interde-
pendency constraints can be added between an entity and
itself at a different time (e.g., for preserving region sizes).
In particular, the algebraic closure can be enforced in time
Θ(m · n3 +m2 · n2) with multi-algebras, whereas it is in time
Θ(m3 · n3) if variables are duplicated. Not duplicating vari-
ables has a second advantage: a branch-and-bound search for
a closed scenario of a network (to decide its consistency in
intractable cases) has a significantly smaller depth. However,
contrary to that of Westphal et al. [2013], our approach can-
not prevent qualitative changes on distinct pairs of entities to
occur “in parallel” between instants.

4 Temporalized Topology with Constant Sizes
We now focus on TTcs, that is, on the case of size preservation
for temporal sequences of topological information; solutions
must be continuous, but intermediary relations may occur. We
show that reasoning with TTcs is complete, and we identify its
maximal tractable subclasses containing all basic relations.

4.1 Completeness of Reasoning for TTcs

This section shows a fundamental result: the algebraic closure
suffices to decide the consistency of all scenarios over TTcs.
Note that the proof is very specific to the RCC8 case – there
is no guarantee that a similar result holds for any other spatial
algebra A. In particular, a necessary condition is the consis-
tency of all closed scenarios for the corresponding combina-
tion A×PA (i.e., the m = 1 case); this notably does not hold
if A is the interval algebra [Ligozat, 2013, Ch. 8].

Proposition 5. Algebraically closed scenarios over TTcs are
consistent (considering regions of Rd , d ≥ 2).



Proof. Let N be an algebraically closed scenario over TTcs,
with n entity variables x1, . . . ,xn and m instants τ1, . . . ,τm. We
show that it is possible to assign to each xi an element fi

of R[τ1,τm]
cs (a continuous evolution of a constant-size region)

such that all constraints are satisfied. Since we only have to
prove the existence of one solution, in order to make the proof
as simple and clear as possible, we choose a specific form for
our regions and their moves, and we make them satisfy rela-
tions in a very specific way. In particular, since intermediary
relations are allowed, we can deal with each instant indepen-
dently; in fact, we only have to show that for any closed RCC8
scenario, our regions can be moved one by one and continu-
ously so that, starting from a fixed configuration where they
are all disjoint, we get a configuration satisfying the scenario.
Since this continuous evolution can be reversed, the initial
configuration can be used as an intermediary configuration
between all instants, ensuring that the evolution is continuous
throughout the whole sequence.

Region size. Since N is closed by composition and closed
scenarios are consistent for PA, we can associate to each
entity an integer rank(xi) ∈ {1, . . . ,n} such that the ranks
satisfy the size constraints. Without loss of generality, we
assume that the xi are in ascending order with respect to
their ranks, and that ranks are successive integers (∀i ∈
{2, . . . ,n} : rank(xi−1)≤ rank(xi)≤ rank(xi−1)+1). Entities
of rank 1 are the smallest regions, entities of rank 2 are the
second smallest, etc. Of course, the rank of an entity does not
depend on the instant we consider: this will guarantee that the
size of an entity does not change between instants.

Region definition. Let us consider a closed RCC8 sce-
nario. We write Ri j for the basic RCC8 relation that must
hold between xi and x j at this instant. We build each region
as a disjoint union of subregions, namely, closed balls of Rd :
this allows us to make a region interact with each other re-
gion independently. For each i, subregions of xi all have the
same radius 3rank(xi) (for it to be more than two times the ra-
dius of lower-rank balls – the reason for this will be clear
later); they remain disjoint at all times, even while they move
(this is never a problem in Rd , d ≥ 2), so that the size of xi re-
mains constant. There are n primary subregions in xi, denoted
P j

i (1 ≤ j ≤ n), which will be used to enforce “local” rela-
tions (notably EC and PO) with each other region x j. Since
xi may have to include (because of TPP or NTPP relations)
all regions of lower rank, which in the worst case could all
be disconnected (DC), we add to xi as many secondary sub-
regions as there are subregions of (strictly) lower rank. Thus,
for each k such that rank(xk) < rank(xi), for each subregion
P of xk, we add to xi a subregion Pi(P) reserved for covering
P if needs be. Note that entities of the same rank have exactly
the same number of subregions, and thus the same size.

Starting configuration. Initially, all balls are disjoint and
their centers all lie on a single line, chosen arbitrarily and
called the axis (we also choose “left” and “right” directions
along the axis). Except during moves, the center of each ball
is always on the axis. We call the interaction zone Z(P) of
ball P, the fixed area centered around the initial position of P
– note that interaction zones never move. We suppose that in-
teraction zones are disjoint, and that each one is large enough

P j
i = Pi

j

(a)

P j
i

Pi
j (c)

P j
i

Pi
j

(e)

P j
i

Pi
j

(b)

P j
i

Pi
j

(d)

P j
i (or Pi(·))

(f)

Figure 3: In blue, all possible configurations in a nonempty interac-
tion zone Z(P j

i ) at the end of Step 1: (a) Ri j = PO and rank(xi) =
rank(x j); (b) Ri j = PO and rank(xi) < rank(x j); (c) Ri j = EC and
rank(xi) = rank(x j); (d) Ri j = EC and rank(xi) < rank(x j); (e)
Ri j = TPP; (f) Ri j ∈ {DC,NTPP} (this is also the configuration in
all interaction zones of secondary balls and of subregions Pi

i ). The
red cross marks the interaction point. Dotted, paler balls are possible
positions of the smallest secondary balls during Step 2 (in green, the
special cases).

to contain a ball of radius 3n+1 (larger than any subregion).
Initially each Z(P) only contains its P. We make sure at all
times that there is at most one subregion of each entity in
each zone: this is a simple way to ensure that subregions
of an entity always remain disjoint. We write Zi = {Z(Pi) |
Pi subregion of xi} for the set of interaction zones of entity xi.

If Ri j = EQ for some i, j, we can move each subregion of
x j so that it becomes equal to a distinct subregion of xi. Since
the network is closed, this is always possible (xi and x j have
the same rank) and harmless (∀k : Rik = R jk). We can then
identify xi and x j, that is, we can lock their subregions so that
they always move together. Thus, in the following, we can
assume without loss of generality that i 6= j ⇐⇒ Ri j 6= EQ.

Step 1: “local” relations. For each pair i, j such that i < j
(the order is irrelevant here), we do the following: (i) if Ri j =
PO, move Pi

j to make its center coincide with that of P j
i (see

Fig. 3.a,b); (ii) if Ri j =EC, move Pi
j to make its leftmost point

coincide with the rightmost point of P j
i (see Fig. 3.c,d); (iii) if

Ri j = TPP, move Pi
j to make its rightmost point coincide with

the rightmost point of P j
i (see Fig. 3.e). It is not hard to see

that, at the end of this pass, there is at most two subregions in
each interaction zone (and they belong to distinct regions, so
the size of each region has not changed), no P j

i such that i < j
has moved, and all relations PO and EC are verified.

Step 2: inclusions. We now “only” need to make our re-
gions satisfy the TPP and NTPP relations. Note that in Step 1,
we have guaranteed an interior connection for each TPP re-
lation, so this is out of the way – we just have to enforce the
inclusions. This is the hardest part: we must cover all sub-
regions from the included entity while avoiding side effects
on other entities, and we must also take care of not undo-
ing previous moves. To achieve this, (i) we process entities
in ascending size order, ensuring that when we process xi, no
subregion of xk with k ≤ i can move again; and (ii) for each
entity, we do not iterate on its relations but on its interaction
zones, treating all balls that happen to be there. Subregions
of xi that moved to another zone have already been processed
(subregions can only move to zones of lower-index entities).

Concretely: For each i from 1 to n, consider each interac-
tion zone Z(Pi) ∈Zi. If it is empty, Pi moved to another zone:



we do nothing. Otherwise, there can only be six configura-
tions, shown in Fig. 3. For each k from i+1 to n, we examine
whether we need to add a subregion of xk in this zone. It is
never necessary if there is already one, but otherwise it must
be done in two cases: (i) Rik ∈ {TPP,NTPP}, so Pi must be
covered by a subregion of xk; (ii) the zone contains a ball of
some other entity x j, which was moved there in Step 1 or ear-
lier in this iteration, and R jk ∈ {TPP,NTPP} (this case can
concern several balls, each from a distinct entity). If there is
at least one ball to cover and no subregion of xk is there, then
we move subregion Pk(Pi) from its starting position (by con-
struction, it has not moved) to Z(Pi), so that it covers all balls
that need to be covered and does not overlap any ball that
must not be overlapped.

To achieve this, except in two special cases, it is enough
to simply make the center of Pk(Pi) coincide with the inter-
action point of Z(Pi) (see Fig. 3), which only depends on its
configuration at the end of Step 1. The first special case oc-
curs when the zone has been used to enforce EC (Fig. 3.c,d)
and we must cover the ball on the left (resp. right) without
overlapping the ball on the right (resp. left). In this case, we
make Pk(Pi) tangent to the interaction point, positioning its
center on the left (resp. right) side of the axis (green dotted
balls in Fig. 3.c,d). The second special case occurs when the
zone has been used to enforce TPP (Fig. 3.e) and we must
cover the ball P j

i by being covered by the ball Pi
j (when we

have R jk =TPP). In this case, we make Pk(Pi) tangent to the
interaction point, positioning its center on the left side of the
axis (the green dotted ball in Fig. 3.e).

We can prove, using the composition table of RCC8, that
no resulting inclusion or overlap can contradict any constraint
in the scenario (in particular, if Pk(Pi) is larger than all balls
present, it covers them all).

Hence, searching for an algebraically closed scenario is
sufficient to decide the consistency of any network over TTcs:
reasoning with TTcs is complete for deciding consistency.

4.2 Tractable Subclasses of TTcs

Prop. 5 entails that deciding consistency on TTcs is in NP
(exhibiting a closed scenario proves the consistency of a
network). Yet, since any RCC8 network has an equivalent
polynomial-size TTcs network, deciding consistency on TTcs
is actually NP-complete. Consequently, we now turn to the
identification of tractable fragments, and notably subsets of
TTcs that are closed under composition, intersection and con-
verse – called subclasses [Ligozat, 2013]. Our results rely
on the theorems of Cohen-Solal et al. [2017], which pro-
vide sufficient conditions for a multi-algebra subclass to be
algebraically tractable. Space constraints prevent us from de-
tailing these conditions, but our proofs contain all arguments
necessary to check them using the original paper as reference.

Before identifying maximal tractable subclasses of TTcs,
we prove the tractability of an intermediary subclass: the
Cartesian product of m instances of the (non-convex) maxi-
mal distributive subalgebra of RCC8 [Long & Li, 2015], de-
noted RCC8max, and of PAmax = {<,=,>, 6=,BPA}.
Proposition 6. The subclass RCC8max

m×PAmax of TTcs is
algebraically tractable.

Proof. We weaken all the projections from PA (Am+1) to
RCC8 (Ai with i < m+1): we consider that �RCC8

PA b = BRCC8
for all b ∈ BPA. We will prove that the subclass with weak-
ened projections is algebraically tractable, which directly en-
tails that the original subclass also is.

We apply the slicing theorem of Cohen-Solal et al. [2017,
Th. 24] to the subclass with weakened projections, using
identity functions as refinements: (I) Algebraically closed
scenarios for the weakened projections are consistent, be-
cause they are closed for the original projections and by
Prop. 5. (II) C1: networks over RCC8max and PAmax that are
closed under composition are minimal [Long & Li, 2015].
(III) C2: the subclass is simple because (i) RCC8max×PAmax
(m = 1) with weakened projections is simple [Cohen-Solal et
al., 2017], (ii) between two relations Ri and R j over RCC8,
there is no direct interdependency (�RCC8

RCC8 b = BRCC8 for all
b), and (iii) being closed under projection is a local property.
(IV) C3: �-consistent relations are consistent. Indeed, this is
true for basic relations (Prop. 5); for non-basic ones, we can
choose a basic PA relation, then independently pick a compat-
ible RCC8 relation for each instant, since, once again, Ri and
R j are independent when i, j < m+1. (V) Finally, by similar
arguments as for condition C2, the subclass is �-closed.

Now, we identify the three maximal tractable subclasses
of TTcs containing all basic relations, based on the classical
subclasses of RCC8, namely Ĥ8, C8, and Q8 [Renz, 1999].

Theorem 7. The maximal tractable subclasses of TTcs that
contain BRCC8 are Ĥm

8 ×PA, Cm
8 ×PA, and Qm

8 ×PA.

Proof. Let S be Ĥ8, C8, or Q8. We use the refinement theo-
rem of Cohen-Solal et al. [2017, Th. 26] to show that S ×PA
is algebraically tractable, by refining it to RCC8max

m×PAmax
using H = (hS , . . . ,hS ,hmax), with hS the usual refinement
of S to basic relations [Gerevini & Renz, 2002, Fig. 2] and
hmax the refinement of PA to the basic relations of maximal
dimension [see Cohen-Solal et al., 2017]. (I) C1: Sm × PA
is algebraically stable by H, because (i) it is the case for
m = 1 [Cohen-Solal et al., 2017], (ii) there is no direct inter-
dependency between the instants of the sequence, and (iii) be-
ing closed under projection/composition are local proper-
ties. (II) C2: RCC8max

m × PAmax is algebraically tractable
(Prop. 6). (III) Sm × PA is �-closed using the same argu-
ments as for C1. Hence, by the refinement theorem, Sm×PA
is tractable. Now, since Ĥ8, C8, andQ8 are the only three sub-
classes of RCC8 that contain all basic relations and that are
maximal for tractability (assuming P 6= NP) [Renz, 1999],
Ĥm

8 ×PA, Cm
8 ×PA, and Qm

8 ×PA are thus also maximal.

5 Conclusion and Perspectives
We propose a general approach, based on multi-algebras, to
reason about temporal sequences of qualitative information,
which is more efficient than state-of-the-art approaches. We
notably introduce the new formalism of temporalized topol-
ogy of constant-size regions, whose reasoning is complete for
deciding consistency. Moreover, we have identified its maxi-
mal tractable subclasses containing all basic relations.



This article is limited to temporal sequences, but its ideas
can notably be applied to the more temporally expressive ap-
proach of Sioutis et al. [2014], providing it with a complete
reasoning procedure dealing with topological relations be-
tween constant-size regions.

Future work will focus on the enforcement of continuity
without intermediary relations, with and without size preser-
vation; we conjecture that deciding consistency is also com-
plete in these cases. We also plan to show that multi-algebras
can enforce dominance diagrams [Galton, 2000], which gen-
eralize neighborhood graphs, and address continuity without
intermediary states [Westphal et al., 2013].
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