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Abstract

We study the problem of consistency checking for constraint
networks over combined qualitative formalisms. We propose
a framework which encompasses loose integrations and a
form of spatio-temporal reasoning. In particular, we identify
sufficient conditions ensuring the polynomiality of consis-
tency checking, and we use them to find tractable subclasses.

1 Introduction
Temporal and spatial reasoning is omnipresent in our daily
lives. Computers can achieve them using quantitative ap-
proaches; however, for human-computer interaction, quan-
titative data is often unavailable or unnecessary. This is
why research has been carried out about qualitative ap-
proaches to temporal and spatial reasoning – such as the
interval algebra of Allen (1983) – not only in artificial
intelligence but also in geographical information systems,
databases, and multimedia (Chittaro and Montanari 2000;
Chen et al. 2015). Some recent research has focused on
the combination of qualitative approaches in order to in-
crease their number of applications. One of the most pop-
ular combinations is loose integration (Wölfl and Westphal
2009). Spatio-temporal formalisms are other kinds of com-
binations (Ligozat 2013), allowing the processing of tempo-
ral sequences of spatial information (Westphal et al. 2013).
Multi-scale reasoning, the ability to reason at different lev-
els of detail, is also a form of combination (Hobbs 1985;
Li and Nebel 2007; Cohen-Solal, Bouzid, and Niveau 2015).

This paper introduces a formal framework capturing the
common structure of loose integrations, multi-scale repre-
sentations, and temporal sequences of spatial information;
all of these can indeed be seen as tuples of constraint net-
works having interdependencies. With loose integrations,
each network is based on a different formalism, whereas
with multi-scale and spatio-temporal representations all net-
works are based on the same formalism but hold on different
scales and different time periods, respectively. Moreover, in
each case, constraints in one network of the tuple can en-
tail constraints between the same variables in the other net-
∗This is a revised version of the article published at AAAI 2017
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works. The entailed constraints correspond to how the ini-
tial constraints are transformed by formalism change, scale
change, or temporal transition, respectively.

We study in particular consistency checking in the con-
text of our framework; we focus on general results that are
common to the three kinds of combination, using a sim-
ple, well-known instance of a loose integration as a running
example. Specifically, we identify sufficient conditions so
that the generalized algebraic closure can be used to check
the consistency of networks over some subclass – which is
therefore tractable. To sum up, we propose a framework for
representing knowledge, reasoning, and identifying tractable
fragments, in a unified way, for the three kinds of combina-
tion; however, for space reasons, this paper only applies it to
loose integrations and spatio-temporal sequences.

We begin by recalling concepts related to temporal and
spatial formalisms, then we give some background on com-
binations of formalisms, notably loose integrations and
spatio-temporal sequences. Section 3 introduces our frame-
work and Section 4 establishes our tractability results, which
are then illustrated on the combination of size and topology.

2 Background and Related Work
Qualitative Temporal and Spatial Formalisms
In the context of qualitative temporal and spatial reasoning,
we are particularly interested in checking the consistency of
temporal or spatial descriptions, encoded by relations be-
tween spatial or temporal entities of a set U . Each relation is
a set of basic relations from a set B: this represents the un-
certainty about the actual basic relation – e.g., x {<,=} y
means that either x < y or x = y. The set of all relations
forms a non-associative relation algebra A = 2B (Ligozat
2013, Ch. 11). Well-known algebras include the interval al-
gebra of Allen (1983), but also the point algebra PA (Vi-
lain, Kautz, and van Beek 1989), whose basic relations are
BPA = {<,=,>}, and the algebra RCC8 of topological rela-
tions (Randell, Cui, and Cohn 1992), whose basic relations
are described in Fig. 1. There are several operators over re-
lations in A: inverse of a relation r, denoted by r̄, intersec-
tion of r1 and r2, denoted by r1∩r2, and (weak) composition
of r1 and r2 (Renz and Ligozat 2005), denoted by r1 �r2.
These operators allow one to reason, by reducing the un-
certainty about basic relations of entities: x r y ⇐⇒ y r̄ x;



Figure 1: The 8 relations of RCC8 in the plane.

x r1 y ∧ x r2 y ⇐⇒ x (r1∩ r2) y; and x r1 y ∧ y r2 z =⇒
x (r1 � r2) z. For example, if we know that x{EC}y and
y{NTPP}z, we can deduce that x{PO,NTPP,TPP}z.

A temporal or spatial description can be modeled by a
qualitative constraint network – a labeled graph in which
nodes are entity variables and edges are labeled with a bi-
nary relation of A. More formally, a qualitative constraint
network N over a set of relations S ⊆ 2B is a pair N = (E,C)
where E is a finite set of entity variables of U and C is a
set of constraints over S, i.e., tuples (x,r,y) with x,y ∈ E ,
x 6= y and r ∈ S . An example of a network over RCC8 is
N = ({x,y,z},{(x,{EC},y),(y,{NTPP},z)}). Like all net-
works in this paper, it is normalized, in the sense that for
each pair {x,y} there is at most one constraint, whose rela-
tion is denoted Nxy (implicitly, Nyx = Nxy). If there is no
constraint between two entities, the constraint is implicit,
and the corresponding relation is the whole set B. We say
that a network N refines another network N′ if it holds that
∀x,y ∈ E : Nxy ⊆ (N′)xy, which we denote by N ⊆ N′.

The notion of solution of a constraint network depends on
a semantics, which is given by an interpretation function ϕ

mapping any relation r of the algebra to the set of all pairs
of entities from the domain U satisfying r. When ϕ verifies
specific properties, the triple (A,U,ϕ) constitutes a qual-
itative formalism (Ligozat 2013, Ch. 11). Thus, a solution
of a constraint network N is a set {ux}x∈E ⊆ U such that
∀x,y ∈ E : (ux,uy) ∈ ϕ(Nxy). A fundamental problem is to
determine whether a constraint network has at least one so-
lution, in which case it is said to be consistent. To each solu-
tion of a network N corresponds a unique scenario of N, i.e.,
a network S ⊆ N such that ∀x,y ∈ E : Sxy ∈ B. For instance,
our example RCC8 network is not a scenario (Nxz is not ba-
sic). Finding a solution of a network N amounts to finding
a consistent scenario S of N, since any solution of S is a so-
lution of N. Because consistency checking is NP-complete
for many algebras, some research focuses on tractable sub-
classes, i.e., sets S ⊆ 2B that are closed under intersection,
weak composition and inversion, such that it is polynomial
to decide the consistency of any network whose relations are
in S (see Ligozat 2013).

A constraint network is algebraically closed – a key con-
cept to find consistent scenarios in a purely algebraic way –
if Nxz ⊆ Nxy �Nyz for all x,y,z ∈ E. We can obtain from any
network N an algebraically closed network having the same
solutions by computing its algebraic closure. It can be done
(in polynomial time) by repeatedly replacing each Nxz by
(Nxy �Nyz) ∩ Nxz until a fixed point is reached. If the re-
sulting network is not trivially inconsistent (i.e., if none of
its relations is the empty set), it is said to be �-consistent.
In the literature, �-consistency is often conflated with path-
consistency, because for some formalisms they are equiva-
lent (Renz and Ligozat 2005). An algebraically closed sce-

nario is always �-consistent by definition, but note that it
is not necessarily consistent for any formalism (Renz and
Ligozat 2005). However, when all the algebraically closed
scenarios of a formalism are consistent, the consistency of
a network can be decided by searching for an algebraically
closed scenario, using backtracking methods based on alge-
braic closure (Ladkin and Reinefeld 1992). For some sub-
classes, any �-consistent network is consistent, so there is
no need to backtrack: such subclasses are thus tractable.

Combined Spatial and Temporal Formalisms
Some research has recently been focusing on combining
qualitative formalisms. One of these combinations, which
our framework encompasses, is the loose integration of two
qualitative formalisms and its biconstraint networks (two
networks having interdependencies) (Westphal and Woelfl
2008). The consistency checking problem is then to decide
whether there is a solution satisfying both networks.

Example 1. The loose integration of qualitative size and
topology of Gerevini and Renz (2002), which we call QST,
describes the relation between two regions both in terms of
topology and in terms of their relative size; e.g., “x and y are
disjoint and the size of x is smaller than that of y”.

To reason on QST, Gerevini and Renz generalized the
path-consistency algorithm, which simply computes the
algebraic closure, into the bipath-consistency algorithm,
which enforces �-consistency on both networks while simul-
taneously propagating their interdependencies. Subclasses
for which bipath-consistency decides consistency have been
found for several combinations of formalisms (Gerevini and
Renz 2002; Li and Cohn 2012; Cohn et al. 2014).

The framework introduced in this paper encompasses
loose integrations (generalized to m formalisms) as specific
combinations, but does not cover all ways of combining for-
malisms. Tight integrations (Wölfl and Westphal 2009) are
more expressive than loose integrations, at the cost of dras-
tically increasing the number of relations. Another combi-
nation is that of Meiri (1996), which deals with heteroge-
neous entities that are points and intervals. The correspond-
ing relations are relations between a point and an interval,
two intervals, and two points, respectively. In this combina-
tion, whose complexity has been studied in depth by Jons-
son and Krokhin (2004), there is only one relation per pair
of entities; in constrast, loose integrations feature several re-
lations (from different formalisms) between the same enti-
ties, which increases expressiveness by allowing the use of
complementary relations. This complementarity is the main
asset of loose integration (and its major difficulty). Note
that there also exist combinations with non-qualitative for-
malisms (Meiri 1996; Bennett et al. 2002)

Spatio-Temporal Formalisms
Spatio-temporal formalisms are also combinations, which
integrate space and time information in particular ways.

Westphal et al. (2013) proposed a method to reason about
temporal sequences of spatial information, which actually
share the same structure as loose integrations and are thus
covered by our framework. They model such sequences as



Figure 2: (a) An evolution of space points. (b) The neighborhood
graph of the point algebra.

tuples of constraint networks, each corresponding to a time
instant. They introduce two kinds of solutions, depending
on the desired dynamics of entities (moving continuously)
over time. Our framework covers the weaker “T2-solutions”,
which guarantee that between successive instants of the se-
quence, for each pair of entities, only the relation of the first
instant and then the relation of the second instant hold.

Example 2. The following is a temporal sequence of 3 net-
works describing spatial points moving along a line: x ≤
y < z at the first instant, x = y = z at the second, and then
x > y > z at the third instant. This description has temporally
continuous solutions without intermediary relations between
the instants, such as that of Figure 2 (a).

In fact, the T2 condition forces relations at successive
instants to be “neighbors” according to the neighborhood
graph of PA (Freksa 1991), shown in Figure 2 (b). In this
graph, for example, the only neighbor relation of “<” is “=”.
The T2 condition thus ensures that, if x < y at one instant,
then at any neighbor instant, either x < y or x = y.

Gerevini and Nebel (2002) proposed a similar formalism
based on time intervals but with uncertainty on the schedul-
ing of intervals, so it is not encompassed by our framework.

3 Representation and Reasoning with
Multi-Algebras

This section introduces multi-algebras, which constitute the
underlying structure of loose integrations and temporal se-
quences. It shows how one can reason about multi-algebra
relations, then provides them with a formal semantics, and
finally generalizes constraint networks and their algebraic
closure to this broader setting.

Projections and Multi-Algebras
Let us introduce the general building blocks of our frame-
work, beginning with projections, which aim at represent-
ing the interdependencies of relations from different for-
malisms. The projection of a relation r from a formalism
onto another is the set of basic relations of the other formal-
ism which may hold given that r holds.

Definition 3. Let A = 2B and A′ = 2B
′

be two algebras. A
projection operator is a function � : A→A′ which satisfies
(i) ∀b ∈ B, �{b̄}= �{b}, and (ii) ∀r ∈ A, � r =

⋃
b∈r �{b}.

We can now define multi-algebras, the key objects of our
framework, which are Cartesian products of algebras (each
corresponding to one of the combined formalisms, or one in-
stant in a temporal sequence) associated with projection op-
erators representing the interdependencies of their relations.

Definition 4. A multi-algebra A is the Cartesian product
of m algebras A1, . . . ,Am (with m ∈ N∗), equipped with
m(m−1) projection operators � j

i : Ai→A j (for any distinct
i, j ∈ {1, . . . ,m}). We call relations the elements R of A, al-
though they are actually m-tuples of relations; Ri denotes the
(classical) relation associated with Ai in R. We say that R is
basic when all Ri are basic (R ∈ B1×·· ·×Bm).

Note that a multi-algebra with m = 1 (“mono-algebra”) is
exactly a classical algebra, as it has no projection operators.

Example 5. The multi-algebra corresponding to QST (see
Ex. 1) is the Cartesian product RCC8×PA of the RCC8 al-
gebra (see Fig. 1) and the point algebra PA (for region sizes),
with the interdependency operators of QST as projections.
One of its relations is ({TPP},{<,=}), and the projection of
{TPP} into PA is �PA

RCC8{TPP}= {<} (since TPP is the “tan-
gential proper part” relation and a region strictly included in
another always has a smaller size).

Example 6. The multi-algebra PAm can be used to repre-
sent sequences of binary relations between points on a line,
as in Ex. 2: the ith PA corresponds to the ith instant of the
sequence, thus Ri is the relation at instant i. The projections
enforcing the neighborhood graph of Fig. 2 are � j

i {<} =
{<,=}, � j

i {>}= {>,=}, and � j
i {=}=B, if instants i and j

are neighbors (i.e., |i− j|= 1), and ∀b∈B : � j
i {b}=B (i.e.,

no constraint), if they are not. For instance, PA×PA×PA is
the multi-algebra corresponding to three instants. The rela-
tion ({<,=},{=},{>}) of this multi-algebra represents a
possible 3-instant sequence of relations.

When there is no ambiguity, we use a lighter notation for
relations, thus writing ({TPP,EQ},{<}) as (TPP EQ,<),
and ({<,=},{=},{<,>}) as (≤,=, 6=), for example.

Reasoning about Multi-Algebra Relations

We can reason about multi-algebra relations by applying the
classical rules componentwise: for instance, in QST (Ex. 5),
if x (TPP,≤) y and y (DC,=) z, then x (DC,≤) z (since TPP�
DC is DC and ≤ � = is ≤). It is thus natural to introduce
composition �, intersection ∩, and inversion ·̄ operators over
multi-algebra relations which simply work componentwise
(e.g., (R �R′)i = Ri �R′i). These operators are also useful to
apply classical concepts to our generalized framework (for
the same reason, we also write R⊆ R′ if Ri ⊆ R′i for each i).
They are, however, not sufficient for reasoning: we also need
to propagate the interdependencies inside each relation.

Definition 7. The projection closure of R ∈ A, denoted by
�(R), is obtained from R by repeatedly replacing each R j by
R j ∩ (� j

i Ri) for all distinct i, j until a fixed point is reached.

Example 8. In QST, since �PA
RCC8{TPP}= {<} (Ex. 5), the

projection closure of (TPP,≤) is �(TPP,≤)= (TPP,<), and
also �(TPP,≥) = (∅,∅), which proves that this relation is
not feasible (indeed, a region cannot be inside another while
having a larger surface). In the context of Ex. 6, �(<, 6=,
>) = (∅,∅,∅), so this 3-instant sequence is not feasible.



Semantics and Consistency of Relations
Using these operators, we can now give multi-algebra re-
lations a proper semantics, taking an approach similar to
the classical case. For this, we set B = (B1, . . . ,Bm) and
B ∈ R ⇐⇒ B ⊆ R∧ B ∈ B1 × ·· · × Bm, i.e. B is a basic
relation of R.

Definition 9. A (loosely) combined qualitative formalism is
a triple (A,U,ϕ), where A is a multi-algebra, U is an entity
domain, and the interpretation ϕ : A→ 2U×U satisfies:1

ϕ(�R) = ϕ(R)

ϕ(R̄) = ϕ(R)

ϕ
(
(∅, . . . ,∅)

)
=∅

ϕ(R�R′)⊇
(
ϕ(R)◦ϕ(R′)

)
∩ϕ(B)

ϕ(R∩R′) = ϕ(R)∩ϕ(R′)

ϕ(R) =
⋃

B∈R

ϕ(B)

with R,R′ ∈A and ◦ the true composition of relations on U .

These straightforward requirements ensure that the oper-
ators are sound (i.e., do not remove valid pairs of entities),
and that a relation is consistent (i.e., has a nonempty inter-
pretation) if and only if it contains a consistent basic relation.

Example 10. We call temporalized point calculus (TPC) the
combined formalism representing temporal sequences of the
point algebra interpreted spatially. Its multi-algebra is sim-
ply PAm (for sequences of length m), as described in Ex. 6.
Its interpretation function (which we cannot define formally
for space reasons) associates with each relation the set of
pairs of points evolving continuously on R along the time
of the sequence, satisfying at each instant of the sequence
the corresponding relation, and not satisfying other relations
between these instants (this is the T2 condition; see Ex. 2).

The combined formalism corresponding to the loose inte-
gration of m formalisms is straightforward to define (it can
be checked that all requirements of Def. 9 are satisfied):

Definition 11. The loose integration of m qualitative for-
malisms (A1,U,ϕ1), . . . ,(Am,U,ϕm) over the same do-
main U is the combined formalism (A,U,ϕ), where A
is the multi-algebra A1 × ·· · × Am with each � j

i satisfy-
ing ∀b ∈ Bi : � j

i {b} = {b′ ∈ B j | ϕi(b)∩ϕ j(b′) 6= ∅}, and
ϕ : (r1, . . . ,rm) 7→ ϕ1(r1)∩·· ·∩ϕm(rm).

Example 12. QST is exactly the loose integration of the
RCC8 formalism and of the formalism interpreting PA in
terms of region sizes; we recover the multi-algebra of Ex. 5.
On the other hand, it can be shown that TPC (Ex. 10) is not a
loose integration (the interpretations at every instant cannot
be defined independently from one another).

Now, while in classical formalisms any basic relation
is consistent, this is no longer the case in combined for-
malisms: because of interdependencies, multi-algebra rela-
tions (even basic ones) can be inconsistent. In particular, we
have seen (Ex. 8) that the projection closure of a relation can

1Mistaken axiom ϕ(R ∪ R′) = ϕ(R) ∪ ϕ(R′) has been fixed
in this revised version. This property of qualitative formalisms is
indeed lost by loose integration: for example, relations of QST
({DC},∅) and (∅,{=}) have an empty interpretation, although
the interpretation of ({DC},{=}) is nonempty.

Figure 3: A network N over PA3 and its three slices.

Figure 4: (a) An algebraically consistent, yet inconsistent, QST net-
work. (b) A consistent scenario (see Ex. 16).

be empty. Closing a relation under its projection operators
can thus help detecting its inconsistency: if �R is empty, we
can conclude that R is inconsistent. Otherwise, �R is “con-
sistent with respect to projections”, or �-consistent.
Definition 13. A multi-algebra relation R is �-consistent if
R = �(R) and Ri 6=∅ for each i.

However, observe that while projections can remove pair-
wise inconsistencies, consistency ultimately depends on the
interpretation function. Hence, �-consistency does not im-
ply consistency in general, although it is the case for some
combined formalisms: we can prove in particular that any
�-consistent relation of TPC and QST (Ex. 10, 12) is consis-
tent. In such cases, closing a relation by projection suffices
to check its consistency.

Multi-Algebra Networks and Algebraic Closure
We simply model descriptions from combined formalisms as
qualitative constraint networks over multi-algebras, which
work exactly like classical networks except that constraints
between entity variables are m-tuples of relations. For exam-
ple, the network N in Fig. 3 corresponds to the temporal se-
quence of 3 networks over the point algebra shown in Ex. 2;
relation Nxy is the sequence of relations between x and y. It
is important to note that N can equivalently be seen as a tu-
ple of classical networks over each Ai, as shown in Fig. 3,
where Ni is the network at instant i:
Definition 14. Let N = (E,C) be a network over some multi-
algebra A. The ith slice of N, denoted by Ni, is the network
(E,Ci) over Ai, where Ci = {(x,Ri,y) | (x,R,y) ∈ C}.

We directly adapt the notions of solution, consistency and
scenario (Sect. 2) to networks over multi-algebras (with re-
spect to a combined formalism; we often omit this precision
when doing so is harmless). For instance, a solution of the
network in Fig. 3 is the evolution in Fig. 2 (a). Other notions
must be generalized:
Definition 15. A network N over a multi-algebra A1 ×
·· ·×Am is trivially inconsistent if ∃i ∈ {1, . . . ,m} : ∃x,y ∈
E : Nxy

i =∅. It is algebraically closed if Nxz ⊆ Nxy �Nyz and
Nxy = �Nxy for all x,y,z ∈ E. It is algebraically consistent if
it is algebraically closed and not trivially inconsistent.



For networks over multi-algebras, being algebraically
closed is being closed under both composition and projec-
tion. This cleanly generalizes the classical case, since any
relation of a mono-algebra is vacuously closed under pro-
jection.

Algebraic consistency generalizes bipath-consistency to
m dimensions, and works in the same way – it is a necessary
condition for consistency that can be used to filter out incon-
sistent networks. It can be enforced by alternately closing
each relation Nxy under projection and each slice Ni under
composition until a fixed point is reached.

Example 16. The network N over QST in Fig. 4 (a) is alge-
braically consistent. However, if we remove “=” from Nxy

PA,
the network is no longer algebraically closed because it is
not closed under projection, as {NTPP,EQ} * �RCC8

PA {>}
(since clearly EQ /∈ �RCC8

PA {>}). Now, while N is alge-
braically consistent (and although NPA and NRCC8 are con-
sistent), it is actually inconsistent: First, “=” of Nxy

PA does
not belong to any consistent scenario of NPA (van Beek and
Cohen 1989, p. 13). Second, NTPP of Nxy is not feasible ei-
ther (for NRCC8). The only remaining relation, x (EQ,>) y,
is also not feasible, since its projection closure is empty.

However, by adding DC to Nyz
RCC8, the network remains

algebraically consistent, but this time it becomes consistent.
Indeed, Fig. 4 (b) shows one of its consistent scenarios.

4 Tractability Results
Let us now study the problem of checking the consistency
of networks over multi-algebras. Since this problem is NP-
complete for many formalisms, we proceed as in the clas-
sical case: we focus on subsets, and notably on subclasses,
of multi-algebras. Then, we present two theorems providing
conditions under which a subclass is tractable.

Algebraically Tractable Subclasses
We first introduce two kinds of multi-algebra subsets,
namely subclasses and the more specific subalgebras:

Definition 17. A subclass of a multi-algebra A is a set of
relations S ⊆A which is closed under componentwise com-
position, intersection, and inversion. If S contains the basic
relations (i.e., B1×·· ·×Bm ⊆ S), we call it a subalgebra.

For example, H8×PA – where H8 is a well-known subal-
gebra of RCC8 (Gerevini and Renz 2002) – is a subalgebra
of the multi-algebra RCC8× PA. Subalgebras are particu-
larly interesting subclasses since all scenarios of the multi-
algebra are scenarios of these subclasses. Moreover, the
most studied subclasses are subalgebras (Nebel and Bürckert
1995; Ligozat 1996; Renz 1999; Long and Li 2015).

The following notion of slice of a multi-algebra subset is
a kind of reverse operator of the Cartesian product. It will
allow us to lift tractability results from the classical setting
to the multi-algebra setting.

Definition 18. The ith slice of a multi-algebra subset S ⊆A,
denoted Si, is the subset of Ai defined by Si = {Ri | R ∈ S}.

Note that S is a subset of S1 × ·· · × Sm, the Cartesian
product of its slices. It is also not hard to see that, when S is

a subclass, each slice Si is a subclass ofAi, and the Cartesian
product of the Si is also a subclass of A.

Recall that the algebraic closure is classically used to de-
tect inconsistent networks, providing a consistency checking
procedure that is polynomial and sound (since the operators
are sound, thanks to Def. 9), but incomplete. We focus on
subclasses for which the procedure is complete:

Definition 19. A subclass S is said to be algebraically
tractable when, for any network N over S, if the algebraic
closure of N is not trivially inconsistent then N is consistent.

Clearly, for a subclass to be algebraically tractable, all
the algebraically closed scenarios over this subclass must
be consistent; this depends on the interpretation function of
the combined formalism. For instance, some algebraically
closed scenarios over the combination of RCC8 (with
weak connectedness) and the rectangle algebra are incon-
sistent (Cohn et al. 2014); consequently, no subalgebra of
this combination can be algebraically tractable.

One could think that if all algebraically consistent net-
works over a subclass S are consistent, then S is alge-
braically tractable; but this is not sufficient because, contrary
to the classical case, the algebraic closure of a network over
a subclass S is not necessarily over S. It clearly becomes
sufficient if S is �-closed, i.e., if the projection closure of
any relation of S is in S (∀R ∈ S : �R ∈ S).

Proposition 20. A �-closed subclass over which alge-
braically consistent networks are consistent is algebraically
tractable.

Now, under which conditions does a �-closed subclass
verify that its algebraically consistent networks are consis-
tent? In the following we state two complementary theorems
providing such conditions. With the first theorem, a subalge-
bra inherits its tractability from that of its slices, whereas
with the second theorem, tractability is inherited from a
smaller subset of relations by refinement.

Inheriting Tractability from Subalgebra Slices
In this section, we focus on conditions ensuring that a subal-
gebra S is tractable by using the tractability of its slices Si.
One of the conditions is that each slice be scenarizable by
a refinement (a refinement of a multi-algebra subset S is a
mapping h : S →A such that h(R)⊆ R for all R ∈ S).

Definition 21. A mono-subalgebra S is scenarizable by a
refinement h if for any �-consistent network N over S and
any x,y ∈ E, (i) h(Nxy) 6= ∅ and (ii) for any b ∈ h(Nxy)
there exists an algebraically closed scenario S⊆ N such that
Sxy = b.

When all the algebraically closed scenarios over S are
consistent (see remark after Def. 19), this property actually
entails the algebraic tractability of S. Indeed, from any �-
consistent network over S, we can obtain a consistent sce-
nario by (i) choosing a pair of variables, (ii) replacing their
relation by a basic relation of the refinement, (iii) comput-
ing the algebraic closure – and repeating these steps until a
scenario is obtained. Finding a refinement by which a subal-
gebra S is scenarizable is a classical method to prove that S



is tractable. For example, the point algebra PA and the pre-
convex subclass of the interval algebra are scenarizable by
hmax, the refinement by the basic relations of “maximal di-
mension” (Ligozat 2013, Ch. 2): hmax(r)= {b∈ r | dim(b)=
dim(r)}.

Now, considering a subalgebra S whose each slice Si is
scenarizable by some hi, a natural idea would be to apply the
classical technique by combining h1, . . . ,hm into a specific
form of refinement over multi-algebra relations:

Definition 22. A multi-refinement of a multi-algebra subset
S is a refinement of the form H = (h1, . . . ,hm) with each hi a
refinement of Si, defined as H : R 7→ (h1(R1), . . . ,hm(Rm)).

However, even if each Si is scenarizable by hi, there is in
fact no guarantee that the multi-refinement H = (h1, . . . ,hm)
can be used to find a consistent scenario using an adaptation
of the “scenarizability by h” method. Additional require-
ments are needed to ensure that the individual refinements
work well together with respect to projections. First, the re-
finement of �-consistent relations (Def. 13) by H must be
consistent; but this is not sufficient for any algebraically con-
sistent network to remain consistent after refinement. Con-
sequently, we assume in addition the following property:

Definition 23. A network is simple when closing it under
projection and then under composition makes it either alge-
braically consistent or trivially inconsistent.

A subalgebra S is simple if any network over S is simple.

Since being closed is a local property, it can be shown
that enumerating all 3-variable bi-networks over each Si×
S j suffices to check that a subalgebra S is simple.

Using the previous properties, we state our first theorem:

Theorem 24 (Slicing theorem). Let S be a subalgebra
whose algebraically closed scenarios are consistent, and
H = (h1, . . . ,hm) be a multi-refinement. If we have:

(C1) each slice Si is scenarizable by hi;
(C2) S is simple; and
(C3) for any �-consistent R of S, H(R) is consistent;

then algebraically consistent networks over S are consis-
tent. If, in addition, S is �-closed, then S is algebraically
tractable.

Proof. Let N be an algebraically consistent network over S,
and x,y be variables such that Nxy is not basic. We know that
H(Nxy) is consistent (C3), that is, it contains at least one
consistent basic relation (Def. 9). We refine Nxy by one such
relation B = (b1, . . . ,bm). Obviously, the modified N, which
we denote by N′, is still closed under projection.

Moreover, since each slice Ni is �-consistent, there exists
an algebraically closed scenario Si ⊆ Ni such that Sxy

i = bi
(C1). Therefore, Si ⊆ N′i holds for all i, which ensures that
the closure of N′ under composition is not trivially inconsis-
tent. The closure of N′ is thus algebraically consistent, since
S is simple (C2) and N′ is closed under projection.

All in all, the result is an algebraically consistent network
over S (as S is a subalgebra). We can thus apply the pro-
cedure from the start once again, iteratively making all re-
lations basic and consistent. The process necessarily ends

with an algebraically closed scenario, which is consistent by
hypothesis. Hence N is consistent (Def. 9). The second con-
clusion is a direct corollary (by Prop. 20).

This theorem can be used to prove that a �-closed subclass
S built from known tractable subalgebras is tractable. It also
gives a very efficient way to check the consistency of a net-
work over S, only requiring one projection closure followed
by one composition closure. Moreover, the proof describes
an efficient algorithm exhibiting a consistent scenario.

Inheriting Tractability from a Subset of Relations
Now, we focus on an alternative set of conditions ensuring
the tractability of a �-closed subclass S. This result is in-
spired by the classical technique of “reduction by a refine-
ment” (Renz 1999). The idea is to inherit, from a smaller
multi-algebra subset S ′, the fact that algebraically consis-
tent networks are consistent – and to conclude with Prop. 20.
Indeed, if we can refine networks over S to networks over
S ′ while preserving algebraic consistency, then all alge-
braically consistent networks over S are consistent. We call
this requirement algebraic stability by a refinement:
Definition 25. A multi-algebra subset S is algebraically
stable by a refinement H if, for any algebraically consistent
network N over S, the refined network H(N) (obtained from
N by simultaneously replacing each relation Nxy by H(Nxy))
is still algebraically consistent.

For example, H8 × PA is algebraically stable by H =
(hH8 ,hmax), with hH8 the H8 refinement of Renz (1999,
Lemma 20); like simplicity, stability is easy to check by enu-
meration.

Our theorem formalizes the reduction mechanism:
Theorem 26 (Refinement theorem). Let H be a refinement
from a multi-algebra subset S to another subset S ′. If it
holds that (C1) S is algebraically stable by H and (C2) al-
gebraically consistent networks over S ′ are consistent, then
algebraically consistent networks over S are consistent.

If, in addition, S is a �-closed subclass then S is alge-
braically tractable.

5 Illustrative Applications of the Theorems
We apply our framework to recover the tractability results of
QST (Ex. 1, 12). This is only meant as a simple illustration
of our results; obviously, the main interest of our work is that
it also applies to networks over large multi-algebras, such as
temporal sequences, and not only to bi-networks, but such
an application would be more complex and thus less useful
as an example. We begin with the combination of PAmax =
{<,=,>, 6=,B} (the maximal distributive subalgebra of PA
containing “ 6=”) and RCC8max, the (non-convex) maximal
distributive subalgebra of RCC8 (Long and Li 2015):
Corollary 27. RCC8max×PAmax is algebraically tractable.

Proof. To prove this result, we weaken the projection from
PA to RCC8:2 we consider that �RCC8

PA b = BRCC8 for all

2Note that the originally published proof was flawed, because
the subclass is actually not simple. This fixed version uses weak-
ened projections, thanks to which simplicity is verified.



b ∈ BPA. We prove in the following that the subclass is al-
gebraically tractable for the weakened multi-algebra, which
directly entails that it is also algebraically tractable for the
original multi-algebra.

We apply the slicing theorem to the subclass with weak-
ened projections, using identity functions as refinements
(∀r ∈ Si : hi(r) = r). Scenarizability by hi (C1) holds since
�-consistent networks are minimal for RCC8max and for
PAmax (Long and Li 2015); simplicity (C2) can be checked
by enumeration; �-consistent relations R are consistent (C3)
(because we have ∀b ∈ RPA : ∃b′ ∈ RRCC8 : b ∈ �PA

RCC8 b′

since RPA ⊆ �PA
RCC8 RRCC8, and because (b′,b) is consistent);

finally, algebraically closed scenarios are consistent. Indeed,
we can easily prove that the algebraically closed scenarios
for the weakened multi-algebra are algebraically closed for
the original multi-algebra (any basic relation of RCC8×PA
closed under these weakened projections is closed under
the original projections). This is sufficient because the alge-
braically closed scenarios for the original multi-algebra are
consistent (Gerevini and Renz 2002). We get the result by
�-closure of the subclass.

Let us now consider H8, C8 and Q8, the three maximal
tractable subalgebras of RCC8. This time, we cannot apply
the slicing theorem, because closing under projection then
under composition does not compute the algebraic closure.
However, we can apply the refinement theorem:

Corollary 28. Let S be H8, C8, or Q8. Each subclass S×PA
is algebraically tractable.

Proof. We apply Theorem 26; we use for each S the classi-
cal refinement to basic relations (Gerevini and Renz 2002),
denoted hS , and the refinement hmax for PA; H = (hS ,hmax)
sends relations to RCC8max×PAmax. Each subclass S ×PA
is algebraically stable by H (C1), as both closure under pro-
jection and �-consistency are preserved (checked by enu-
meration; see also Renz (1999)). Algebraically consistent
networks over RCC8max × PAmax are consistent (C2) by
Cor. 27. This concludes the proof (S ×PA is �-closed).

Reasoning about descriptions over these subclasses can
thus be done efficiently thanks to the algebraic closure. In
fact, similarly to the classical case, the algebraic closure can
improve reasoning even for intractable subclasses, by im-
proving pruning in backtracking search procedures.

6 Conclusion
We propose a general framework for qualitative constraint
networks over combinations of formalisms. It provides a
unified way for studying loose integrations and a family
of spatio-temporal formalisms, and is also well suited to
knowledge representation and reasoning in the context of
these combinations. The most notable results of this paper
are two complementary theorems entailing the tractability
of consistency checking, which we applied to recover the
tractability results of the qualitative size and topology com-
bination. Future work will show how our framework also
applies to multi-scale descriptions and will introduce sev-
eral results that we obtained thanks to our theorems, such

as the tractability of the preconvex subclass for multi-scale
reasoning over the interval algebra.

References
Allen, J. F. 1983. Maintaining knowledge about temporal
intervals. Commun. ACM 26(11):832–843.
Bennett, B.; Cohn, A. G.; Wolter, F.; and Zakharyaschev, M.
2002. Multi-dimensional modal logic as a framework for
spatio-temporal reasoning. Applied Intelligence 17(3):239–
251.
Chen, J.; Cohn, A. G.; Liu, D.; Wang, S.; Ouyang, J.; and
Yu, Q. 2015. A survey of qualitative spatial representations.
The Knowledge Engineering Review 30(01):106–136.
Chittaro, L., and Montanari, A. 2000. Temporal represen-
tation and reasoning in artificial intelligence: Issues and ap-
proaches. Annals of Mathematics and Artificial Intelligence
28(1-4):47–106.
Cohen-Solal, Q.; Bouzid, M.; and Niveau, A. 2015. An alge-
bra of granular temporal relations for qualitative reasoning.
In Proc. of IJCAI, 2869–2875.
Cohn, A. G.; Li, S.; Liu, W.; and Renz, J. 2014. Reasoning
about topological and cardinal direction relations between 2-
dimensional spatial objects. Journal of Artificial Intelligence
Research 51:493–532.
Freksa, C. 1991. Conceptual neighborhood and its role in
temporal and spatial reasoning. In Proc. of the IMACS Work-
shop on Decision Support Systems and Qualitative Reason-
ing, 181–187.
Gerevini, A., and Nebel, B. 2002. Qualitative spatio-
temporal reasoning with RCC-8 and Allen’s interval calcu-
lus: Computational complexity. In Proc. of ECAI, volume 2,
312–316.
Gerevini, A., and Renz, J. 2002. Combining topological and
size information for spatial reasoning. Artificial Intelligence
137(1):1–42.
Hobbs, J. R. 1985. Granularity. In Proc. of IJCAI, 432–435.
Jonsson, P., and Krokhin, A. 2004. Complexity classifica-
tion in qualitative temporal constraint reasoning. Artificial
Intelligence 160(1):35–51.
Ladkin, P. B., and Reinefeld, A. 1992. Effective solution
of qualitative interval constraint problems. Artificial Intelli-
gence 57(1):105–124.
Li, S., and Cohn, A. G. 2012. Reasoning with topological
and directional spatial information. Computational Intelli-
gence 28(4):579–616.
Li, S., and Nebel, B. 2007. Qualitative spatial representa-
tion and reasoning: A hierarchical approach. The Computer
Journal 50(4):391–402.
Ligozat, G. 1996. A new proof of tractability for ORD-Horn
relations. In Proc. of AAAI/IAAI, volume 1, 395–401.
Ligozat, G. 2013. Qualitative spatial and temporal reason-
ing. John Wiley & Sons.
Long, Z., and Li, S. 2015. On distributive subalgebras of
qualitative spatial and temporal calculi. In Spatial Informa-
tion Theory. Springer. 354–374.



Meiri, I. 1996. Combining qualitative and quantitative con-
straints in temporal reasoning. Artificial Intelligence 87(1–
2):343–385.
Nebel, B., and Bürckert, H.-J. 1995. Reasoning about tem-
poral relations: a maximal tractable subclass of Allen’s in-
terval algebra. Journal of the ACM 42(1):43–66.
Randell, D. A.; Cui, Z.; and Cohn, A. G. 1992. A spatial
logic based on regions and connection. In Proc. of KR, 165–
176.
Renz, J., and Ligozat, G. 2005. Weak composition for
qualitative spatial and temporal reasoning. In Proc. of CP.
Springer. 534–548.
Renz, J. 1999. Maximal tractable fragments of the region
connection calculus: A complete analysis. In Proc. of IJCAI,
448–455.
van Beek, P., and Cohen, R. 1989. Approximation algo-
rithms for temporal reasoning. University of Waterloo. De-
partment of Computer Science.
Vilain, M.; Kautz, H.; and van Beek, P. 1989. Constraint
propagation algorithms for temporal reasoning: A revised
report. In Weld, D. S., and de Kleer, J., eds., Readings
in Qualitative Reasoning About Physical Systems. Morgan
Kaufmann Publishers Inc. 373–381.
Westphal, M., and Woelfl, S. 2008. Bipath consistency re-
visited. In Proc. of the ECAI Workshop on Spatial and Tem-
poral Reasoning.
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