Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids - Archive ouverte HAL
Article Dans Une Revue Physical Review E Année : 2017

Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids

Résumé

By means of a finite elements technique we solve numerically the dynamics of an amorphous solid under deformation in the quasistatic driving limit. We study the noise statistics of the stress-strain signal in the steady state plastic flow, focusing on systems with low internal dissipation. We analyze the distributions of avalanche sizes and durations and the density of shear transformations when varying the damping strength. In contrast to avalanches in the overdamped case, dominated by the yielding point universal exponents, inertial avalanches are controlled by a non-universal damping dependent feedback mechanism; eventually turning negligible the role of correlations. Still, some general properties of avalanches persist and new scaling relations can be proposed.

Dates et versions

hal-01578983 , version 1 (30-08-2017)

Identifiants

Citer

Kamran Karimi, Ezequiel E. Ferrero, Jean-Louis Barrat. Inertia and universality of avalanche statistics: The case of slowly deformed amorphous solids. Physical Review E , 2017, 95 (1), ⟨10.1103/PhysRevE.95.013003⟩. ⟨hal-01578983⟩

Collections

UGA CNRS LIPHY ANR
80 Consultations
0 Téléchargements

Altmetric

Partager

More