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Abstract—We investigate a pilot allocation problem in wireless
networks over Markovian fading channels. In wireless systems,
the Channel State Information (CSI) is collected at the Base
Station (BS), in particular, this paper considers a pilot-aided
channel estimation method (TDD mode). Typically, there are
less available pilots than users, hence at each slot the scheduler
needs to decide an allocation of pilots to users with the goal
of maximizing the long-term average throughput. There is an
inherent tradeoff in how the limited pilots are used: assign a
pilot to a user with up-to-date CSI and good channel condition
for exploitation, or assign a pilot to a user with outdated CSI
for exploration. As we show, the arising pilot allocation problem
is a restless bandit problem and thus its optimal solution is
out of reach. In this paper, we propose an approximation that,
through the Lagrangian relaxation approach, provides a low-
complexity heuristic, the Whittle index policy. We prove this
policy to be asymptotically optimal in the many users regime
(when the number of users in the system and the available pilots
for channel sensing grow large). We evaluate the performance
of Whittle’s index policy in various scenarios and illustrate its
remarkably good performance.

Index terms— Partially Observable Markov Decision Pro-
cesses, Restless bandits, Whittle’s index, asymptotic optimal-
ity, pilot allocation, CSI acquisition

I. INTRODUCTION

In order to support applications with large data traffic
rates in the downlink, future generations of communication
networks will support technologies such as multiple input
multiple output (MIMO) possibly with massive antenna instal-
lations, e.g., [2]. The performance of these techniques critically
depends on acquiring accurate channel state information (CSI)
at the transmitter, which is then used to encode the transmitting
signals and null the interference at the receivers [2].

In practice wireless channels are highly volatile, and CSI
needs to be acquired very frequently. Furthermore, in both
FDD (Frequency Division Duplex) and TDD (Time Division
Duplex) systems only a minority of the users can be selected
to provide CSI to the base station at each given time, since
the resources used for CSI acquisition reduce the system effi-
ciency. In this paper, we focus on pilot-aided CSI acquisition
proposed for TDD systems. However, we mention that our
framework can be applied directly to the CSI feedback context
(i.e. FDD) as well.

This work has been partly funded by Huawei Technologies France SASU.
A shorter version of this paper was published in the proceedings of IEEE
ITW 2016, [1].

For TDD systems downlink CSI is inferred by the uplink
training symbols and the use of the reciprocity property of the
channel; the process is as follows. The BS allocates the M
available pilot sequences to M users out of the total N users
in the system. The chosen users transmit the training symbols
to the BS which provides uplink CSI information. Last, the
base station estimates the downlink CSI exploiting the channel
reciprocity. For the estimation to be successful, M needs to be
small to avoid the pilot contamination issue. Hence in systems
with a large number of users it is expected that M < N .

It has been observed that once a channel is measured and its
CSI is acquired, the channel coefficients remain the same for
some period of time termed channel coherence time. In fact,
sophisticated transmission schemes can exploit this channel
property to avoid requesting CSI constantly.

The problem under study in this paper, is to exploit the
channel memory to optimize the allocation of pilots for CSI
acquisition. To model the channel memory we consider chan-
nels that evolve according to a Markovian stochastic process
and we study the pilot allocation problem over these channels.
Markovian modeling of the wireless channel is commonly
used in the literature to incorporate memory, e.g., to model
the shadowing phenomenon, [3], [4], [5], and [6].

The pilot allocation problem introduced above, with chan-
nels evolving in a Markovian fashion, can be formulated as
a restless bandit problem (RBP). RBPs are a generalization
of multi-armed bandit problems (MABPs) [7], sequential
decision-making problems that can be seen as a particular case
of Markov decision processes (MDPs). In a MABP, at each
decision epoch, a scheduler chooses which bandit1 to play, and
a reward is obtained accordingly. The objective is to design a
bandit selection policy that maximizes the average expected
reward. In MABPs the bandits that have not been played
remain at the same state and provide no reward. Gittins [7]
proved that the optimal solution of a MABPs is characterized
by a simple index, known today as Gittins index. In the more
general framework of RBPs, the statistics of all bandits evolve
even in slots that are not chosen, hence the term restless. As a
result, obtaining an optimal solution is typically out of reach.
In [8], Whittle, based on the Lagrangian relaxation approach,
proposed a scheduling algorithm, the so-called Whittle’s index
policy, as a heuristic for solving RBPs. This has been the

1The notion of the bandit historically refers to a slot machine with an
unknown reward distribution.



approach considered in this paper.
Previous papers that are related to our work ([3], [4], [5],

[9], and [10]) study the Gilbert-Elliot channel model, the sim-
plest Markovian channel model having two states, where the
channel is either in a GOOD or in a BAD state. The limitation
of such binary models is that they fail to capture the complex
nature of the wireless channel. Instead, here we consider
a multi-dimensional Markov process, where each dimension
corresponds to a different channel quality level representing
the modulation and coding techniques used in practice to
interact with the wireless channels. Thus, we have considered
here a more challenging problem where channels are modeled
by K−state Markov Chains, with K arbitrarily large. This
represents a generalization of prior binary Markovian models.

The pilot allocation problem over Markovian channels with
K > 2, can be cast as a Partially Observable Markov Decision
Process (POMDP), and is an extremely challenging problem.
Even the Lagrangian relaxation technique, which yields a
simple index type of policy (i.e., Whittle’s index policy), turns
out to be very difficult to solve. One of the reasons for that
is that, proving structural properties, such as threshold type
of policies (the more outdated the CSI the more attractive it
becomes to allocate a pilot), for an optimal POMDP allocation
policy is, to the best of our knowledge, an unsolved problem,
see Albright et al. [11] and Lovejoy [12]. Moreover, Cecchi
et al. [6] show for a similar downlink scheduling problem
that threshold policies are not necessarily optimal for K > 2.
To overcome this difficulty we develop an approximation.
The latter simplifies the analysis, allowing the Lagrangian
relaxation technique to be applied.

The objective of this paper is therefore to provide well
performing policies for the notoriously difficult problem of
pilot allocation over channels that follow Markovian laws. The
main contributions of the paper are the following.
• We develop an approximation of the POMDP introduced

above. We apply the Lagrangian relaxation technique and
prove the optimality of threshold type of policies for the
relaxed problem.

• We prove the indexability property (required for the
existence of Whittle’s index) and we obtain an explicit
expression for Whittle’s index.

• We derive a simple suboptimal policy for the approxima-
tion based on Whittle’s index, i.e., Whittle’s index policy
(WIP ). This is to the best of our knowledge the first
work that provides an explicit index for K−state Markov
Chain channels for arbitrary K.

• We prove WIP for the approximation to be asymptoti-
cally optimal in the many users setting (i.e., as the number
of users and the number of available pilots grow large).
The latter is an extension of the optimality results derived
in [13] for a downlink scheduling problem with Gilbert-
Elliot wireless channels.

The remainder of the paper is organized as follows. In
Section II we describe the wireless downlink scheduling
problem that has been considered. In Section III we introduce
an approximation that can be solved using a Lagrangian

relaxation approach. We derive a closed-form expression for
the Whittle index and we define a heuristic for the original
problem based on this index. In Section IV we obtain a bound
on the error introduced by the approximation. The latter serves
as performance measure. In Section V we prove WIP to be
asymptotically optimal in the many users setting. Finally, in
Section VI we evaluate the performance of Whittle’s index
policy, comparing it to the performance of a myopic policy
and a randomized policy, and we observe that WIP captures
closely the structure of the optimal policy. Most of the proofs
can be found in the Appendix.

II. MODEL DESCRIPTION

We consider a wireless downlink scheduling problem with
a single base station (BS) and N users. The channel between
a user and the BS is modeled as a K-state Markov chain.
Time is slotted and users are synchronized. We denote by
Xn(t) the channel state of user n at time slot t. Then
Xn(t) ∈ {h1, h2, . . . , hK}. The state of the channel remains
the same during a time slot and evolves according to the
probability transition matrix Pn = (pn,ij)i,j∈{1,...,K}, where
pn,ij = P(Xn(t + 1) = hj |Xn(t) = hi). Channels are
assumed to be independent and non-identical across users, i.e.,
two different users may have different probability transition
matrices. The BS can not directly observe the states of the
channels in the beginning of each time slot. However, this
information can be acquired using pilot sequences for channel
sensing. The objective is therefore to find an optimal pilot
allocation policy.

We adopt the following scheduling model. We assume M
different pilot sequences to be available to the BS for channel
sensing. In the beginning of each time slot, the BS chooses M
users out of N (typically, M < N ). The selected users use the
allocated pilots to send the uplink training symbols. After the
training phase, the BS transmits data to all users in the system
(selected for pilot allocation or not). This mechanism allows
the BS to have perfect CSI during downlink data transmission
of the selected users. Users that have not been selected cannot
provide their current CSI. Instead, the BS infers their channel
state from past observations (the deduction of the belief state
is explained below). We highlight that the results in this
paper can easily be adapted for different problems such as,
downlink scheduling with ARQ feedback or scheduling in
radio cognitive networks.

Next we explain the belief channel state update for the pilot
allocation problem introduced above. Let us define ~bφn(t) the
belief state of user n during the tth time slot under policy φ.
The element bφn,j(t) is the probability that user n is in state
hj in slot t given all the past channel state information. Let
us denote by aφn(~bφ1 (t), . . . ,~bφN (t)) ∈ {0, 1}, the decision of
the BS with respect to user n, and define for ease of notation
aφn(t) := aφn(~bφ1 (t), . . . ,~bφN (t)), where aφn(·) = 0 if no pilot
has been allocated to user n, and aφn(·) = 1 if a pilot has been
allocated to user n in slot t. Since at most M pilots can be



 

Channel estimation : 
Perfect CSI feedback 

Define precoding 
vector 

 Data transmission 

 User selection S  

  allocate pilot ? 

  
  Update    for all n  

Imperfect CSI 

Yes No 

Fig. 1: Opportunistic scheduling with pilot-aided estimation.

allocated we have
N∑
n=1

aφn(t) ≤M.

Let us denote by Sφ(t) = {n ∈ {1, . . . , N} : aφn(t) = 1} the
set of users that have been selected in time slot t under policy
φ. We then define

~bφn(t+ 1) :=

{
~bφn(t)Pn if n /∈ Sφ(t),

~π1
n,j if n ∈ Sφ(t), Xn(t) = hj ,

to be the evolution of the belief states. In the latter equation
~π1
n,j = (pn,j1, . . . , pn,jK) and ~bφn(t) take values in the count-

able state space

Πn = {~πτn,j : ~πτn,j = ~ejP
τ
n , τ ∈ N, and j ∈ {1, . . . ,K}},

where ~ej is the vector with all entries 0 except the jth

entry which equals 1. We will use the notation ~πτn,j =

(p
(τ)
n,j1, . . . , p

(τ)
n,jK) throughout the paper, where obviously

p
(1)
n,ji = pn,ji for all n, i, j. Belief state ~bφn(t) = ~πτn,j implies

that user n has last been selected in slot t − τ and the
observed channel state has been hj . We note that ~bφn(t) is
a sufficient statistic for the scheduling decisions and channel
state information in the past, see the proof in Smallwood et
al. [14]. The scheduling and the belief state updates procedure
are depicted in Figure 1.

Next we make an assumption on ~πτn,j and we provide a
sufficient condition for this assumption to hold.

Assumption 1 (A1). Let Pn = (pn,ij)i,j∈{1,...,K}, and ~πτn,j
and ~πτ

′

n,j ∈ Πn. We assume that, if τ ≤ τ ′, then maxi p
(τ)
n,ji ≥

maxi p
(τ ′)
n,ji, for all j.

Remark 1. If Pn is doubly stochastic then Assumption 1 holds.

Note that if the Markov chain is irreducible, and Pn doubly
stochastic, the belief channel vector approaches the uniform
distribution as τ increases.

A. Throughput maximization problem

The objective of the present work is to efficiently allocate
the available pilots to the users in the system in order to
maximize the long-run expected average throughput. That is,
find φ such that

lim inf
T→∞

1

T
E

(
N∑
n=1

T∑
t=1

Rn(Xn(t),~bφn(t), aφn(t))

)
, (1)

is maximized, where Rn(Xn(t),~bφn(t), aφn(t)) is the through-
put obtained by user n in channel Xn(t), belief vector ~bφn(t)
and action aφn(t). We have assumed that if a pilot has been
allocated to a user, then the BS obtains full CSI of that
particular user before transmitting the data. Therefore, the
reward that corresponds to that user, accrued at the end of
the time slot, is independent of the belief state (since the
actual channel state Xn(t) is revealed in the training phase).
For that reason, we define Rn(h, 1) := Rn(h, ~πτn,j , 1) to be
the immediate reward obtained by user n in channel state
h ∈ {h1, . . . , hK}. This is not the case for the users to whom
a pilot has not been allocated. The channel state of a non-
selected user is unknown even after the training phase and
therefore, the reward, accrued at the end of the time slot,
depends on the mismatch between the belief channel state
and the real channel state. We make the following natural
assumption on the reward for not selected users, which is
motivated by A1.

Assumption 2 (A2). Let R1
n and Rn(~πτj , 0) be the average

immediate rewards of user n under active and passive ac-
tions, respectively. Let R1

n < ∞. Then, we assume R1
n ≥

Rn(~πτn,j , 0) ≥ Rn(~πτ
′

n,j , 0), for all τ ′ ≥ τ .

The latter implies that the more outdated the CSI of a
user is, the less the average reward accrued by that user
will be. A trade-off emerges between exploiting users with
up-to-date CSI, which provide high immediate rewards, and
exploring users with outdated CSI, with potentially higher
future rewards.

Although in this paper we are interested in maximizing the
throughput, we note that the reward function Rn(·, ·, ·) could
represent any function of the actual channel state and belief
channel state of user n, and the action (allocate a pilot or not)
taken on user n. The results provided in this paper hold for
any function R that satisfies Assumption A2.

While (1) is a typical performance measure, it is not obvious
at all how to deal with it. In many existing works, e.g., [3],
a discounted reward function is used. In this work, we deal
with (1) as follows. We first consider the discounted reward
over the infinite horizon: find φ such that

lim inf
T→∞

1∑T
t=1 β

t−1
E

(
N∑
n=1

T∑
t=1

βt−1Rn(Xn(t),~bφn(t), aφn(t))

)
,

(2)

is maximized, with 0 ≤ β < 1 the discount factor. We then
retrieve the solution of (1) as a limit of the discounted reward



model (i.e., letting the discount factor β → 1). This limit is
not straightforward since certain conditions on Equation (2),
[15, Chap. 8.10] must be verified. The proof can be found in
Appendix B.

III. LAGRANGIAN RELAXATION AND WHITTLE’S INDEX

The model introduced above falls in the framework of
RBP problems. Each user n ∈ {1, . . . , N} present in the
system can be seen as bandit or arm. The state of each arm
represents the belief channel state of the user. RBPs have been
shown to be PSPACE-hard, see Papadimitriou et al. [16]. A
well established method for solving RBPs is the Lagrangian
relaxation introduced by Whittle in [8].

The Lagrangian relaxation technique consists in relaxing the
constraint on the available resources, by letting it be satisfied
on average and not in every time slot, that is,

N∑
n=1

aφn(t) ≤M ⇒ lim
T→∞

1

T
E

(
T∑
t=1

N∑
n=1

aφn(t)

)
≤M, (3)

in the expected average reward model, and
N∑
n=1

aφn(t) ≤M

⇒ lim
T→∞

1∑T
t=1 β

t−1
E

(
T∑
t=1

N∑
n=1

βt−1aφn(t)

)
≤M, (4)

in the discounted model with 0 ≤ β < 1. The Objective
function (2) together with the relaxed constraint (4) constitute
a Partially Observable Markov Decision Process (POMDP),
and we will refer to it as the β-discounted relaxed POMDP
throughout the paper. The particular case of β = 1 applies to
the expected long-run average reward model in Equation (1)
and Constraint (3). We will refer to the latter simply as the
relaxed POMDP. The solution for the β-discounted relaxed
POMDP can be derived as follows: find a policy φ such that

lim inf
T→∞

1∑T
t=1 β

t−1
E
( T∑
t=1

βt−1

( N∑
n=1

Rn(Xn(t),~bφn, a
φ
n(t))

+W (M −N +

N∑
n=1

(1− aφn(t)))

))
,

(5)

is maximized, where W is a Lagrange multiplier and can be
seen as a subsidy for passivity (or equivalently, penalty for ac-
tivity). Observe that, in problem (5), users become independent
from each other and the β-discounted relaxed POMDP can be
decomposed into N uni-dimensional optimization problems,
that is, the problem is to find a policy φ such that

lim inf
T→∞

1∑T
t=1 β

t−1
E
( T∑
t=1

βt−1

(
Rn(Xn(t),~bφn, a

φ
n(t))

−W (1− aφn(t))

))
, (6)

is maximized for all n ∈ {1, . . . , N}. The solution of the β-
discounted relaxed POMDP is an index type of policy, and

can be obtained by combining the solution of problem (6)
for all n. More specifically, the solution is characterized by
the Whittle index (see Section III-C for a formal definition
of Whittle’s index, and Whittle [8] for the first results on
Whittle’s index theory). An index can be seen as a value, that
is assigned to a user in a given state, that measures the gain
obtained by activating the user in that particular state. The
index depends only on the parameters of that user. An index
policy, is simply a policy that is characterized by those indices.
An example of a simple index policy is a myopic policy, where
the index reduces to the immediate reward gained by each
user in the current state. Index policies, in particular Whittle’s
index, have become extremely popular in recent years due to
their simplicity, see Liu et al. [3], Ouyang et al. [4], and Cecchi
et al. [6] for a few examples related to the present work.

Next we will explain how to obtain Whittle’s index for
problem (6) for all n. We drop the user index from the
notation since we will focus on one dimensional problems. A
general recipe to compute Whittle’s index is to: (i) prove some
structure on the solution of problem (6) (usually optimality
of threshold policies), (ii) show that the indexability property
holds (which ensures Whittle’s index to exist), (iii) derive an
explicit expression for Whittle’s index and (iv) define Whittle’s
index policy. For this particular problem, proving threshold
type of policies to be optimal has shown to be extremely
challenging, except in the 2-state Markov channel systems
(Gilbert-Elliot model), see Albright [11] and Lovejoy [12].
To the best of our knowledge, all the research work done in
this area has focused on either i.i.d. channel models or the
Gilbert-Elliot channel model. In the more general case of K-
state Markov channel models, with arbitrary K, no results are
known.

In the present work, we have considered an approximation
that allows to obtain Whittle’s indices for arbitrarily large
Markov channel models. To define this approximation recall
the POMDP under study. The action space is defined by
{0, 1}, the set of belief states is given by Π and the channel
state transitions are characterized by the transition matrix
P = (pij)i,j∈{1,...,K}. Let us define qa(~πτi , ~π

τ ′

j ) to be the
transition probability from belief state ~πτi to belief state ~πτ

′

j

conditioned on action a ∈ {0, 1}. The transition probabilities
that characterize the original POMDP are given as follows:

q0(~πτi , ~π
τ ′

j ) =

{
1, if j = i and τ ′ = τ + 1,

0, otherwise,
(7)

and

q1(~πτi , ~π
τ ′

j ) =

{
p

(τ)
ij if τ ′ = 1,

0, otherwise.
(8)

We next define the approximation, for which a complete
analysis of Whittle’s index policy can be performed.
Approximation: We assume a POMDP with action space
{0, 1}, belief state space Π and transition probabilities

q1(~πτi , ~π
τ ′

j ) =

{
psj if τ ′ = 1,

0, otherwise,
(9)



where psj is the steady-state probability of channel hj , and
q0(·, ·) as defined in Equation (7). That is, we assume that
under passive action the transition probabilities are identical
to that of the original POMDP, and that under active action,
the transitions are governed by the steady-state probabilities.

A priori this approximation looks suitable for problems
in which N is much larger than M , since we expect users
not to be selected for long time frames (and therefore the
belief vector is closer to (ps1, . . . , p

s
K)). We will observe in

Section III-B (Remark 2) however, that if instead of taking
q1(~πτi , ~π

τ ′

j ) = psj we had taken q1(~πτi , ~π
1
j ) = p

(r)
ij with r

independent of τ the heuristic we obtain is the same. In
Section VI-A we numerically evaluate the accuracy of this
approximation.

A. Threshold policies

As mentioned in the previous section a possible first step
into obtaining Whittle’s index is to prove threshold type of
policies to be optimal for the one dimensional optimization
problem in Equation (6). A threshold policy can be described
as follows. Let ~Γ be a vector of positive values. Then the action
regarding a user in belief state ~πτj is a = 1 (active action)
if τ > Γj and a = 0 (passive action) otherwise. However,
for the downlink problem with K > 2 threshold policies are
not necessarily optimal, Cecchi [6]. In this section, we prove
threshold type of policies to be optimal for the approximation
introduced above.

We next give a formal definition of threshold policies.

Definition 1. We say that φ is a threshold type of policy if it
prescribes action a ∈ {0, 1} in all states ~πτj such that τ ≤ Γj
and prescribes action a′ ∈ {0, 1} with a′ 6= a for all ~πτj
where τ > Γj , j ∈ {1, . . . ,K} and ~Γ = (Γ1, . . . ,ΓK). Such
a threshold policy will be referred to as policy ~Γ.

We will focus on the discounted reward model in (6). The
Bellman optimality equation writes

V appβ (~πτj ) = max{R(~πτj , 0) +W + βV appβ (~πτ+1
j );

R1 + β
K∑
k=1

pskV
app
β (~π1

k))}, (10)

where W is the subsidy for passivity. In the latter equation the
function V appβ is the value function that corresponds to the
discounted one dimensional problem given in Equation (6),
and although not made explicit in the notation it also depends
on W .

In the next theorem we prove that threshold type of policies
are an optimal solution for (6). The proof can be found in
Appendix A.

Theorem 1 (Discounted reward threshold). Assume that A1
and A2 hold and let W be fixed. Then there exist Γ1, . . . ,ΓK ∈
{0, 1, . . .} such that the threshold policy ~Γ = (Γ1, . . . ,ΓK) is
an optimal solution for problem (6) for all 0 ≤ β < 1.

Having proven the structure of the optimal policy, the
explicit expression of V appβ can be obtained. The latter enables

to prove conditions 8.10.1- 8.10.4’ in Puterman [15], see
Appendix B. It then can be shown that the one-dimensional
long-run expected average reward, equals limβ→1(1−β)V appβ ,
see [15, Th. 8.10.7]. Moreover, these conditions imply that
(i) an optimal stationary policy exists, and (ii) the optimality
equation for the average reward model, i.e.,

V app(~πτj ) + g(W ) = max{R(~πτj , 0) +W + V app(~πτ+1
j );

R1 +

K∑
k=1

pskV
app(~π1

k))}, (11)

has a solution. In the latter equation g(W ) refers to the average
reward which can be obtained by limβ→1(1− β)V appβ . In the
following theorem we show that threshold type of policies are
an optimal solution of the average reward model too.

Theorem 2 (Average reward threshold). Assume that A1 and
A2 hold and let W be fixed. Then there exist Γ1, . . . ,ΓK ∈
{0, 1, . . .} such that the threshold policy ~Γ = (Γ1, . . . ,ΓK) is
an optimal solution for problem (6) for β = 1.

Proof. For ease of notation we drop the superscript app. We
want to prove that if it is optimal to select the user in state ~πτj
then it is also optimal to select the user in state ~πτ+1

j . From
Equation (11), the latter statement translates to showing that

R1 +

K∑
k=1

pskV (~π1
k) ≥ R(~πτj , 0) +W + V (~πτ+1

j ),

implies

R1 +

K∑
k=1

pskV (~π1
k) ≥ R(~πτ+1

j , 0) +W + V (~πτ+2
j ).

To prove this implication it suffices to show that

R(~πτj , 0) +W + V (~πτ+1
j ) ≥ R(~πτ+1

j , 0) +W + V (~πτ+2
j ).

(12)

Due to A2 (i.e., R(~πτj , 0) ≥ R(~πτ+1
j , 0) for all τ > 0),

to show (12), it suffices to show V (~πτ+1
j ) ≥ V (~πτ+2

j ) for
all j and all τ > 0. That is, V (·) being non-increasing.
In order to prove the latter, we will use the value iteration
approach Puterman [15, Chap. 8]. Define V0(~πτj ) = 0 for all
j ∈ {1, . . . ,K} and τ > 0 and

Vr+1(~πτj ) = max{R(~πτj , 0) +W + Vr(~π
τ+1
j ),

R1 +

K∑
k=1

pskVr(~π
1
k)},

with g(W ) = Vr+1(~πτj ) − Vr(~πτj ). Observe that V0(~πτj ) = 0
satisfies the non-increasing property. We assume that Vr(~πτj )
satisfies it for all j ∈ {1, . . . ,K} and all τ > 0, and we prove
that Vr+1(~πτj ) is non-increasing as well. The latter can be
proven using the arguments used in the proof of Theorem 1.
We therefore skip the calculations here.

After proving Vr(·) to be non-increasing and since
limr→∞ Vr(·) = V (·) (which holds after verification of mild



assumptions), Vr being non-increasing implies V being non-
increasing. This concludes the proof.

We have proven that an stationary solution for the average
reward model exists and that the Bellman optimality equation
has a threshold type of solution. Therefore, we concentrate on
the average reward model to obtain Whittle’s index policy.

B. Indexability and Whittle’s index
In this section we prove the problem to be indexable. In-

dexability is the property that ensures Whittle’s index to exist.
It establishes that as the Lagrange multiplier W increases, the
set of states in which the optimal action is the passive action
increases. In the following we formally define this property.

Definition 2. Let ~Γ(W ) be an optimal threshold policy for a
fixed subsidy W . We define the set L(W ) := {~πτj ∈ Π, τ >
0, and j ∈ {1, . . . ,K} : τ ≤ Γj(W )}, i.e., the set of all belief
states in which passive action is prescribed by policy ~Γ(W ).

Definition 3. Let L(W ) ⊆ Π be as defined in Definition 2.
Then a bandit is said to be indexable if L(W ) ⊆ L(W ′) for all
W < W ′, i.e., the set of belief states in which passive action
is prescribed by an optimal policy of the relaxed problem
increases as W increases. A RBP is indexable if all bandits
are indexable.

Although indexability seems a natural property not all
problems satisfy this condition; a few examples are given
in Hodge et al. [17] and Whittle [8]. Next we prove the
indexability property.

Proposition 1. All users are indexable.

Proof. To prove indexability, i.e., L(W ) ⊆ L(W ′) for all
W < W ′, one needs to show that ~Γ(W ) ≤ ~Γ(W ′) for all
W < W ′ (where ≤ stands for Γi(W ) ≤ Γi(W

′) for all
i ∈ {1, . . . ,K}). The latter equivalence is implied by the fact
that an optimal solution of problem (11) is of threshold type
(Theorem 2).

Let α~Γ(W )(~πτj ) be the steady-state probability of being
in state ~πτj under threshold policy ~Γ(W ). Having proven
threshold type of policies to be an optimal solution, for a user
to be indexable it suffices to show that

K∑
j=1

Γj(W )∑
r=1

α
~Γ(W )(~πrj ) ≤

K∑
j=1

Γj(W
′)∑

r=1

α
~Γ(W ′)(~πrj ),

if ~Γ(W ) ≤ ~Γ(W ′). That is, the probability of being in
passive mode is greater as the threshold increases. Note that
under threshold policy ~Γ(W ) α

~Γ(W )(~πrj ) =
ωj∑K

k=1(Γk(W )+1)ωk
for all r ∈ {1, . . . ,Γj(W ) + 1}, where ωj is computed in
Appendix C, and therefore

K∑
j=1

Γj(W )∑
r=1

α
~Γ(W )(~πrj ) =

∑K
j=1 Γj(W )ωj∑K

k=1(Γk(W ) + 1)ωk

≤
∑K
j=1 Γj(W

′)ωj∑K
k=1(Γk(W ′) + 1)ωk

=

K∑
j=1

Γj(W
′)∑

r=1

α
~Γ(W ′)(~πrj ),

since ~Γ(W ) ≤ ~Γ(W ′). Therefore users are indexable.

Having proven indexability Whittle’s index can be defined
as follows.

Definition 4. Whittle’s index in state πτj is defined as the
smallest value of W such that an optimal policy of the single-
arm POMDP is indifferent of the action taken in πτj .

We can now proceed to solve Whittle’s index. Let us define
T (~Γ) = {~Γ′ = (Γ′1, . . . ,Γ

′
K) with Γ′i ∈ N ∪ {0} for all i :

~Γ′ > ~Γ}, that is, the set of all threshold policies that are greater
than ~Γ (i.e., ~Γ′ > ~Γ ⇔ Γ′j ≥ Γj for all j and Γ 6= Γ′). In
particular, we denote T (0) = {~Γ′ = (Γ′1, . . . ,Γ

′
K) with Γ′i ∈

N∪{0} for all i : ~Γ′ > (0, . . . , 0)}. Let α~Γ(~πτj ) be the steady-
state probability of being in state ~πτj under policy ~Γ, and let
b
~Γ the steady-state belief state under policy ~Γ. It then can be

shown that

lim
β→1

(1− β)V appβ (·)

= g
~Γ(W ) = E(R(b

~Γ, a
~Γ(b

~Γ))) +W

K∑
k=1

Γk∑
i=1

α
~Γ(~πik),

where g~Γ(W ) is the average reward under policy ~Γ when the
subsidy for passivity equals W . Whittle’s index for the average
reward problem can then be computed as explained in the next
theorem. The proof can be found in Appendix D.

Theorem 3. Assume that an optimal solution of the single-arm
POMDP is of threshold type and that

∑K
k=1

∑Γk
r=1 α

~Γ(~πrk)

is non-decreasing in ~Γ. Then the problem is indexable and
Whittle’s index for user n is computed as follows (we omit the
dependence on n from the notation):

Step i: Compute

Wi = inf
~Γ∈T (~Γi−1)

E(R(b
~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γ, a

~Γ(b
~Γ)))∑K

j=1

(∑Γj
r=1 α

~Γ(~πrj )−
∑Γi−1

j

r=1 α~Γi−1(~πrj )

) ,

for all i ≥ 0, where ~Γ−1 = ~0. Denote by ~Γi the largest minimizer for
all i > 0. We define W (~πτj ) := Wi for each j, such that Γi−1

j < τ ≤
Γij . If ~Γij =∞ for all j then stop, otherwise go to Step i+ 1. When
the algorithm stops the Whittle index for all πτj has been obtained
and is given by W (πτj ).

In the following lemma and corollary we derive an explicit
expression for Whittle’s index. The proof of the lemma can
be found in Appendix E.

Lemma 1. If in Step i of Theorem 3 for an i> 0, the minimizer
~Γi is such that

∑K
j=1 Γij = (

∑K
j=1 Γi−1

j ) + 1 and Γij ≥ Γi−1
j

for all j ∈ {1, . . . ,K}, then

Wi = R1 +

K∑
k=1

Γi−1
k∑
j=1

R(~πjk, 0)ωk−R(~π
Γiu
u , 0)

K∑
k=1

(Γi−1
k +1)ωk,

with u such that Γiu = Γi−1
u + 1.

In the next corollary, we prove that Whittle’s index can be
easily computed and is non-decreasing in τ .



Corollary 1. Let us define u0 = arg maxu∈{1,...,K}R(~π1
u, 0),

and ~Γ0 = ~eu0 , with ~eu0 the vector with all entries 0 except
the u0th element which equals 1. Define

ui = arg max
u∈{1,...,K}

R(π
Γi−1
u +1

u , 0), and,

~Γi =

{
i∑

r=0

1{ur=1}, . . . ,

i∑
r=0

1{ur=K}

}
, for all i > 0,

(13)

where 1 refers to the indicator function. Then

W (~π
Γj
uj

uj ) =R1 +

K∑
k=1

Γj−1
k∑
r=1

R(~πrk, 0)ωk

−R(~π
Γj
uj

uj , 0)

K∑
k=1

(Γj−1
k + 1)ωk, for all j ≥ 0.

Whittle’s index, W (~πτk), is non-decreasing in τ for all k.

Proof. Let ui and ~Γi be defined as in Equation (13), and let
Wi be

R1 +

K∑
k=1

Γi−1
k∑
j=1

R(~πjk, 0)ωk −R(~π
Γi−1

ui
+1

ui , 0)

K∑
k=1

(Γi−1
k + 1)ωk.

We aim at proving that

Wi ≤
E(R(b

~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γ, a

~Γ(b
~Γ)))∑K

j=1

(∑Γj
r=1 α

~Γ(~πrj )−
∑Γi−1

j

r=1 α~Γi−1(~πrj )

) , (14)

for all ~Γ for which
∑K
j=1 Γj >

∑K
j=1 Γi−1

j and Γj ≥ Γi−1
j

for all j. Using the same arguments as those used in proof of
Lemma 1 the RHS in (14) simplifies to

( K∑
k=1

Γi−1
k∑
j=1

R(~πik, 0)ωk

K∑
r=1

vrωr

−
K∑
k=1

Γi−1
k +uk∑

j=Γi−1
k +1

R(~πjk, 0)ωk

K∑
r=1

(Γi−1
r + 1)ωr

+R1
K∑
k=1

ωk

K∑
r=1

vrωr

)
·
( K∑
k=1

vkωk

)−1

, (15)

where we defined Γj := Γi−1
j + vj with vj ≥ 0 and

∑K
j=1 vj > 0. We have that

RHS of (14) ≥ (15)

≥
K∑
k=1

Γi−1
k∑
j=1

R(~πik, 0)ωk +R1

−
∑K
k=1R(~π

Γi−1
k +1

k , 0)vkωk
∑K
r=1(Γi−1

r + 1)ωr∑K
k=1 vkωk

≥
K∑
k=1

Γi−1
k∑
j=1

R(~πik, 0)ωk +R1 −R(~π
Γi−1

ui
+1

ui , 0)

K∑
r=1

(Γi−1
r + 1)ωr

= Wi,

where recall that ui = arg maxk{R(~π
Γi−1
k +1

k , 0)}. The sec-
ond inequality follows from Assumption A2 and the third
inequality is due to the definition of ui. We have therefore
proven (14), which implies that Γij = Γi−1

j for all j 6= ui

and Γiui = Γi−1
ui + 1. By Theorem 3, W (~πτj ) = Wi for all

Γi−1
j < τ ≤ Γij , and we have proven that if j = ui then

Γi−1
ui < τ ≤ Γiui = Γi1ui + 1, hence W (~π

Γi−1

ui
+1

ui ) = Wi for all
i, which concludes the proof.

Whittle’s index being non-decreasing in τ implies that, the
longer a user has not been selected for channel sensing the
more attractive it becomes to select him/her. The exploration
vs. exploitation trade-off is therefore captured by this property
of the index.

We illustrate how Whittle’s index is obtained in Figure 2 for
a particular example with K = 3. Observe that gOPT (W ) =

max~Γ{g
~Γ(W )} is the upper envelope of affine increasing

functions in W . Whittle’s index is therefore computed by
the intersecting points of the affine functions that determine
the envelope. By the indexability property we have that, for
all W < W0 always being active is prescribed, and for all
W > WI always being passive is prescribed (with I the
iteration at which the algorithm in Theorem 3 has stopped).

Remark 2. We highlight that, although in the present work
we have focused on the approximation (9) (see Section III),
the explicit expression of Whittle’s index, as computed in
Corollary 1, could have been obtained using any of these
following approximations. Assume q0(·, ·) to be as in the
original model and let

q1(~πτi , ~π
τ ′

j ) =

{
p

(m)
ij if τ ′ = 1, and,m independent of τ,

0, otherwise.
(16)

The expression of ωj for all j in Corollary 1, is the solution
of the global balance equation for the Markov Chain of the
approximation in Equation (9). We note that any approxima-
tion in Equation (16), shares the same solution as that of
approximation (9). Hence, Whittle’s index is the same.

This latter statement does not hold for the original model
though, since the transition probabilities from one channel to
another are policy dependent.
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Fig. 2: Upper envelope, i.e., max~Γ{g
~Γ(W )}, for a particular

example with K = 3, doubly stochastic transition matrix, and
R(~πτj , 0) =

ρj
3

∑3
k=1 log2(1+SNR), with ρj = maxr{p(τ)

jr }.
Note W (~π1

2) = W0,W (~π2
2) = W1,W (~π1

3) = W2,W (~π1
1) =

W3 and W (~π3
2) = W4. The rest of values can be obtained

computing further intersection points in the upper envelope.

C. Whittle’s index policy

In this section we explain how the Whittle index can be
used in order to define a heuristic for the original unrelaxed
problem, as in Equation (1).

Definition 5. Assume the state of user n at time t to be ~πτnjn .
The Whittle index policy prescribes to allocate a pilot to the
M users with the highest Wn(~πτnjn ).

Whittle’s index policy (WIP ) is an optimal solution for the
relaxed POMDP. It has been proven to be optimal in several
asymptotic regimes. For instance, it was proven to be optimal
in the many-users setting in Verloop [18], Ouyang et al. [13],
and Weber et al. [19]. Moreover, the asymptotic optimality of
Whitte’s index in this regime was conjectured by Whittle in
the paper in which Whittle’s index was first proposed [8].

IV. ERROR ESTIMATION

In this section we estimate the error introduced by the
approximation that has been considered throughout the paper.
Recall that this approximation has been adopted in order
to obtain structural results of the optimal policy. The latter
is due to the optimality equation of the original problem
being extremely difficult to solve. In order to characterize
the absolute error explicitly we first define V maxβ and V minβ .
Let V maxβ (·) be the value function that satisfies the following
Bellman equation

V maxβ (~πτj ) = max{R(~πτj , 0) +W + βV maxβ (~πτ+1
j );

R(~πτj , 1) + βmax
i
{V maxβ (~π1

i )}}, (17)

for all τ . And let V minβ (·) be the value function that satisfies
the following Bellman equation

V minβ (~πτj ) = max{R(~πτj , 0) +W + βV minβ (~πτ+1
j );

R(~πτj , 1) + βmin
i
{V minβ (~π1

i )}}, (18)

for all τ . Let Vβ be the value function of the original
discounted reward single-arm POMDP. Then the following
lemma holds. The proof can be found in Appendix F.

Lemma 2. Let V maxβ (·) be defined as in Equation (17) and
V minβ (·) as defined in Equation (18). Then

V maxβ (·) ≥ Vβ(·), and V minβ (·) ≤ Vβ(·).

We define gmax(W ) = limβ→1(1 − β)V maxβ (·) and
gmin(W ) = limβ→1(1 − β)V minβ (·). Then the following
proposition holds. The proof can be found in Appendix G.

Proposition 2. Let g(W ) be the optimal average reward for
the relaxed POMDP and gapp(W ) be the optimal average
reward for the approximation in Equation (9). Then the
relative error of the approximation is bounded as follows∣∣∣∣1− gapp(W )

g(W )

∣∣∣∣ ≤ D(W ),

where

D(W ) := max

{
1− gapp(W )

gmax(W )
,
gapp(W )

gmin(W )
− 1

}
.

The expression of D(W ) can be found in Appendix H.

Proposition 2 provides an error measure to estimate how
good the approximation that has been considered is. Through
extensive numerical experiments it has been observed that the
error incurred by the approximation is extremely small, see
Section VI-A for some case studies.

Remark 3. We note that the approximation introduced in
Section III differs from the original model only when the active
action is considered. In the case in which the transition prob-
abilities are the steady-state probabilities the error provided
by the approximation is zero. The latter suggests that the
closer the transition probabilities are from the steady-state
probabilities the smaller the error will be.

V. ASYMPTOTIC OPTIMALITY IN THE MANY USERS
SETTING

In this section we prove that the Whittle index policy is
asymptotically optimal in the many users setting. We define
the many users setting as follows. We assume a downlink
scheduling problem with a population of N users and we aim
at obtaining a policy φ ∈ U such that

RN,φ := lim inf
T→∞

1

T
E

(
T∑
t=1

N∑
n=1

Rn(Xn(t)~bφn(t), aφn(t))

)
,

(19)

is maximized subject to
N∑
n=1

aφn(t) ≤ λN, (20)

for each time slot, where U is the set of policies that satisfy
constraint (20) and 0 ≤ λ ≤ 1. That is, the greater the
population of users in the system is, the greater the available



number of pilots is (i.e., greater number of users can be
selected for channel sensing). We now introduce the relaxed
version of problem (19)-(20), namely, find φ ∈ UREL that
maximizes

lim inf
T→∞

1

T
E

(
T∑
t=1

N∑
n=1

Rn(Xn(t)~bφn(t), aφn(t))

)
, (21)

subject to

lim inf
T→∞

1

T
E

(
T∑
t=1

N∑
n=1

aφn(t)

)
≤ λN, (22)

where UREL is the set of policies that satisfy constraint (22).
In particular we have U ⊂ UREL.

Next we characterize the optimal relaxed policy.
Optimal relaxed policy (REL): There exist W ∗ and ρ ∈ (0, 1]
such that, the policy that prescribes to allocate a pilot to all
users n having Wn(~πτn,j) > W ∗, and to all users n having
Wn(~πτn,j) = W ∗ with probability ρ is optimal for problem
(21)-(22). Moreover, constraint (22) is satisfied with equality.
We refer to this policy by REL.

Recall that the policy WIP , is such that the λN users
with the largest Whittle’s index are allocated with a pilot. We
therefore have

RN,WIP ≤ RN,OPT ≤ RN,REL, (23)

with RN,OPT := maxφ∈U R
N,φ.

In this section, we aim at establishing that as N tends
to infinity the optimal solution of the relaxed problem (21)-
(22), i.e., RN,REL, is asymptotically equivalent to the optimal
solution of problem (19)-(20), i.e., RN,OPT . We further prove
that, under some assumption, RN,WIP as N →∞ converges
to the optimal solution of the relaxed problem, and is hence
an asymptotically optimal solution for problem (19)-(20).

The asymptotic optimality result obtained below, which
considers the pilot allocation problem with K-state Markov
Chain channels, is a generalization of the result obtained in
Ouyang et al. [13] for the Gilbert-Elliot model (two-state
Markov Chain model). In this paper we follow the same line of
arguments that has been used there. We prove the intermediate
results (required to show Propositions 1 and 2 in Ouyang et
al. [13]) that fail to easily extend to our scenario, and we refer
to [13] for the proofs of the lemmas that extend to our case
without much effort.

Note that, due to Inequality (23), to prove asymptotic
optimality of WIP it suffices to show that as N tends to ∞
RN,REL and RN,WIP are asymptotically equivalent. We will
therefore focus on proving the latter.

The idea for the proof is as follows. Firstly, we define
the state of the system to be the proportion of users in all
possible channel belief states. We define a fluid approximation
of this system under WIP , by characterizing the evolution
of it through a set of linear differential equations. We prove
the fluid system to have a single fixed point solution (the
equilibrium distribution under REL). Secondly, we establish a
local optimality result, which states that as N →∞, RN,WIP

and RN,REL are asymptotically equivalent if the initial state
(i.e., initial configuration of users) is in the neighborhood of
the equilibrium distribution under REL. Finally, we prove
global convergence, by showing that, under an assumption
that can be numerically verified, as N → ∞, RN,WIP and
RN,REL are asymptotically equivalent for any possible initial
state.

A. Fluid approximation under WIP

In this section we characterize the fluid system under
Whittle’s index policy. For sake of clarity, two technical
assumptions are made next.
• We assume that there are two different classes of users.

Moreover, we denote the channel transition matrix of
users that belong to class 1 by P 1 = (p1

ij)i,j∈{1,...,K}
and that of the users that belong to class 2 by P 2 =
(p2
ij)i,j∈{1,...,K}.

Due to the latter assumption, belief state vectors will be
denoted as ~πτ,cj and Wittle’s index in ~πτ,cj as W (~πτ,cj )
for class-c users, with c ∈ {1, 2}. Namely, we replace
the user dependency (e.g., Wn(·) or ~πτn,j) by class de-
pendency in the notation.

• We assume a truncated belief state space, i.e., we define
the state space as follows:

Πc ={~πτ,cj : ~πτ,cj = ~ej(P
c)τ , 0 < τ ≤ τ , j ∈ {1, . . . ,K}}

∪ {~πs,c}

for all c ∈ {1, 2}. If the truncation parameter τ is large
enough, then ~πτ,cj , the belief vector for a class-c user,
is very close to the steady-state belief vector ~πs,c =
(ps,c1 , . . . , ps,cK ). Motivated by the latter, we assume that
in the truncated system, the passive transition probability
from belief state ~πτ,cj to ~πs,c for a class-c user equals 1,
i.e., q0,τ (~πτ,cj , ~πs,c) = 1 for all j.

Now we define the state space over which the optimality
result will be established. Let us define YN the proportion of
users in each belief value, that is, YN = [Y1,N ,Y2,N ], where

Yc,N = [Y c,N1,1 , . . . , Y c,N1,τ , . . . , Y
c,N
K,1 , . . . , Y

c,N
K,τ , Y

c,N
s ],

for c ∈ {1, 2}. To this extent, Y c,Ni,j represents the proportion
of class-c users in belief state ~πj,ci , and Y c,Ns represents the
proportion of class-c users in the steady-state belief vector,
i.e., ~πs,c. Let δc denote the fraction of users that belong to
class c, then the state space of this system is defined as

Y = {YN : Y c,Ns +

K∑
i=1

τ∑
j=1

Y c,Ni,j = δc, c ∈ {1, 2}}.

To avoid analyzing well understood scenarios we will make
the following assumption.

Assumption 3. We assume that W (~πs,1),W (~πs,2) ≥W ∗ for
all class-1 users and all class-2 users.

Due to Whittle’s index being non-decreasing, we note that if
W (~πs,1) ≤ W and W (~πs,2) ≤ W , then REL reduces to not



allocating any pilot to any user, that is λN = 0. Since WIP
prescribes to allocate pilots to λN users with the greatest
Whittle’s index, and λN = 0, WIP reduces to REL and
is hence optimal. Moreover, if W (~πs,c) ≤ W ≤ W (~πs,c

′
)

for c 6= c′ ∈ {1, 2}, then the system reduces to a single
class problem, since one of the classes will never be allo-
cated with a pilot. We therefore focus on the case in which
W (~πs,1),W (~πs,2) ≥W ∗ (Assumption 3).

We are now in position to define the fluid system. We adopt
the following notation. Let bi represent the belief value that
corresponds to the ith entry in YN (t), and Wi refer to the
Whittle’s index in belief state bi, e.g., b1 corresponds to ~π1,1

1

and W1 to W (~π1,1
1 ). Let us denote by qij(y) the probability

that the belief value of the channel jumps from belief value bi
to bj given that the systems state is y ∈ Y . Then

qij(y) = gi(y)q1
ij + (1− gi(y))q0

ij , (24)

where gi(y) corresponds to the fraction of users in belief value
bi that are activated by WIP and qaij for a = 0, 1, is the
probability that the belief value transits from bi to bj under
action a, i.e., qa(bi, bj). The explicit expressions of gi(y)
and qaij for a ∈ {0, 1} are given in Table I. In the case in
which yi 6= 0, only a fraction of the users in belief value
bi will be activated, exactly the amount that is required for
constraint (20) to be binding.

We next define the expected drift of YN (t) to be

DYN (t) := E(YN (t+ 1)−YN (t)|YN (t)),

hence

DYN (t)

∣∣∣∣
YN (t)=y

=
∑
i=

∑
j=

qij(y)yi · ~eij = Q(y)y, (25)

where ~eij = (0, . . . , 0,

ith︷︸︸︷
−1 , 0, . . . , 0,

jth︷︸︸︷
1 , 0, . . . , 0), that is, it

is the 2(Kτ + 1) dimensional vector that has −1 in its ith

entry and 1 in its jth entry, also we define ~eii = (0, . . . , 0).
Moreover,

Qi,j(y) =

{
−
∑
j 6=i qij(y), if i = j,

qji(y), if i 6= j.

The latter equation allows the system to be interpreted as a
fluid system, only taking the expected direction of the system
into account, note that (25) is also defined for y /∈ Y , and
Q(y(t))y(t) does not depend on N . Therefore we represent
the expected change of a fluid system in discrete time as
follows

y(t+ 1)− y(t) = Q(y(t))y(t). (26)

Let YW∗ = {y ∈ Y :
∑
j:Wj>W∗

yj < λ,
∑
j:Wj≥W∗ yj ≥

λ}, that is, the set of states in which all users with Whittle’s
index higher than W ∗ are activated, users with Whittle’s index
smaller than W ∗ are passive, and users for which Whittle’s
index equals W ∗ are activated with randomization parameter
ρ. In the next lemma we show that the fluid system in

Equation (26) under WIP is linear in y(t) ∈ YW∗ . The proof
can be found in Appendix I.

Lemma 3. For all y(t) ∈ YW∗ , the fluid system (26) is linear.
That is, there exist Q and d such that

y(t+ 1)− y(t) = Q · y(t) + d, (27)

for all y(t) ∈ YW∗ .

In Lemma 4, we characterize the unique fix point solution
of the linear fluid system of Lemma 3, the proof can be found
in Appendix J. To do so we first introduce the following
definition.

Definition 6. Let θδ,λ := E[YN,∞], where YN,∞ is such that,
under the REL policy, the system state YN (t) converges in
distribution to YN,∞.

Lemma 4. The linear fluid system given by Equation (27)
equals 0, i.e., Q · y(t) + d = 0, if and only if y(t) = θδ,λ,
where θδ,λ is as defined in Definition 6. Furthermore, θδ,λ is
independent of N .

Having established the linearity of the fluid system and the
uniqueness of its fixed point, the local asymptotic optimality
result can be obtained. We do so in the next section.

B. Local asymptotic optimality

The intuition behind the local asymptotic optimality result
is that, if the average reward accrued by the WIP policy falls
in the neighborhood of θδ,λ, then this reward is close to that
accrued under the REL policy. We define the neighborhood
of θδ,λ as follows

Nε(θδ,λ) = {y ∈ Y : ‖y − θδ,λ‖ ≤ ε},

and we denote by RN,WIP
T (y) the throughput obtained under

WIP policy in the time interval [0, T ] given that the initial
state of the system is y, i.e.,

RN,WIP
T (y)

=
1

T
E

(
T∑
t=1

N∑
n=1

R(Xn(t),~bWIP
n (t), aWIP

n (t))

∣∣∣∣YN (0) = y

)
.

Moreover, it can be easily proven that the reward obtained
by REL, i.e., RN,REL, is independent of N . The latter
can be obtained by exploiting the idea that users under the
REL policy are activated independently from each other, see
Lemma 3 in [20]. Therefore, RREL := RN,REL, is determined
by a user configuration δ and a given λ and not the population
size N .

The local convergence of the reward under WIP to RREL

is proven in the next proposition.

Proposition 3. For any given (δ, λ), there exist ε and Nε(θδ,λ)
such that

lim
T→∞

lim
r→∞

RNr,WIP
T (y)

Nr
= RREL,



TABLE I: Transition probabilities from belief value bi to bj

gi(y) =


min

{[
λ−

∑
j:Wj>Wi

yj

yi

]+

, 1

}
, if yi 6= 0,

1, if yi = 0, and λ >
∑
j:Wj>Wi

yj ,

0, if yi = 0, and λ ≤
∑
j:Wj>Wi

yj ,

q1
ij =


ps,1r , if j = (r − 1)τ + 1, and (r − 1)τ + 1 ≤ i ≤ rτ, r = 1, . . . ,K, or i = Kτ + 1

ps,2r , if j = (K + r − 1)τ + 2, and (K + r − 1)τ + 2 ≤ i ≤ (K + r)τ + 1, r = 1, . . . ,K, or i = 2Kτ + 2,

0, otherwise,

q0
ij =


1, if j = i+ 1, and i 6= τ , 2τ , . . . , (K − 1)τ ,Kτ + 1, (K + 1)τ + 1, . . . , (2K − 1)τ + 1, 2Kτ + 2,

1, j = Kτ + 1, and i = τ , . . . , (K − 1)τ ,Kτ + 1,

1, if j = 2Kτ + 2, and i = (K + 1)τ + 1, . . . , (2K − 1)τ + 1, 2Kτ + 2,

0, otherwise.

if y ∈ Nε(θδ,λ), for all (Nr)r increasing sequence of positive
integers such that Nr, δcNr ∈ Z.

The proof of the proposition can be found in Appendix K.

C. Global asymptotic optimality

In this section we establish the global asymptotic optimality
of WIP in the many users setting. In order to do so, we are
first going to prove that the system state YN (t) has a particular
structure, see lemma below.

Lemma 5. For fixed values of δ and λ, and letting N be large
enough, we have that

1) YN (t) with t ≥ 0 is an aperiodic Markov chain with a
single recurrent class.

2) For each ε > 0 there exists a recurrent state within
Nε(θδ,λ).

Proof. The proof can be found in Appendix L, and follows
the arguments used in [20, Lemma 5].

Having proven that there exists a recurrent state in any ε
neighborhood of θδ,λ allows to establish the global optimality
result. However, one needs to ensure that the time the process
YN (t) under WIP policy needs to enter the neighborhood
Nε(θδ,α) does not grow as N increases. To avoid this from
happening one can verify certain conditions to be satisfied,
such as that given in [19, Assumption in Th. 2] or that given
in [20, Assumption Ψ]. This latter states that the expected time
of reaching any ε neighborhood of θδ,λ is bounded by an ε
dependent constant. We can now state the global optimality
result.

Proposition 4. Let Assumption Ψ in [20] be satisfied. Then
for any initial state YN (0) = y the following holds

lim
r→∞

RNr,WIP (y)

Nr
= RREL,

with RN,WIP (y) = limT→∞RN,WIP
T (y).

Proof. The proof follows from proof of Proposition 2 in [20],
and relies in the proof of our Lemma 5.

VI. NUMERICAL ANALYSIS

We provide in this section some numerical results to assess
the performance of the Whittle’s index policy. Firstly, in
Section VI-A we study various scenarios to evaluate the
accuracy of the approximation introduced in Section III. In
Section VI-B we compare the structure of WIP w.r.t. the op-
timal solution. Finally, in Section VI-C we perform extensive
numerical experiments to compute the relative suboptimality
gap of WIP w.r.t. the optimal solution. All the results have
been obtained through the value iteration algorithm [15, Chap.
8.5.1].

A. Accuracy of the approximation

In Section IV an upper bound on the error incurred by
the approximation has been characterized, i.e., D(W ), for
the per-user average reward. In this section we illustrate that
this approximation shows an extremely small relative error in
the N -dimensional problem, that is, problem (1). In order to
perform this analysis we compute the optimal solution for the
approximation and the optimal solution for the original model
and we compare the corresponding average rewards.
Example: Let us assume a system with a BS and four
users. We assume users to be in three possible channel
states hn1, hn2, hn3. Let the transition matrices to be doubly
stochastic and to be different for all four users. The steady-
state belief state for all four users is (1/3, 1/3, 1/3). Therefore,
the immediate average reward for user i if a pilot has been
allocated to it is assumed to be R1

i = 1
3

∑3
k=1 log2(1+SNR),

i ∈ {1, . . . ,K}. If user i has not been selected the av-
erage immediate reward is considered to be Ri(~π

τ
j , 0) =

ρi
1
3

∑3
k=1 log2(1 + SNR), where ρi = maxr{p(τ)

jr }, that is,
the highest probability channel state for user i, when its belief
state is ~πτj , and ĥi = hiσ where σ = arg maxr{p

(τ)
jr }. We first

assume that a single pilot is available to the system, and later
on we assume that three pilots are available. The relative error
of the approximation w.r.t. the original problem can be found
in Table II for three different examples (three different channel
vectors and probability transition matrices). We can observe in
Table II that the error in all the examples is extremely small.
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Structure under WIP
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Fig. 3: Left: Structure of optimal solution. Right: Structure of Whittle’s index policy. In the area with “+” or “*” user 1 is
allocated with a pilot, and in the blank area user 2 receives the pilot. The sign “*” illustrates the states in which the optimal
structure and the structure under WIP do not match. The state vector πji in the horizontal axis refers to the belief state for
user 1, and πji in the vertical axis refers to user 2. All states πj1 for user 2 are omitted since both policies prescribe to allocate
the pilot to user 2.

TABLE II: Relative (%) suboptimality gap

App. 1 pilot App. 3 pilots

Rel. err. ex. 1 0.0798 0.0527

Rel. err. ex. 2 0.0149 0.0393

Rel. err. ex. 3 0.0217 0.0403

B. Structure of Whittle’s index

We have shown in Corollary 1 that Whittle’s index is non-
decreasing in τ . Recall that this is due to Assumption A1.
The latter implies that if serving user 1 is prescribed by WIP
in state ~πτj then also in ~πτ+1

j (independent of the number of
users in the system). This structure is illustrated in the next
example.
Example: We consider a system with two users, one pilot and
three channel states, where the transition probability matrices
for both users are

P1 =

0.3 0.4 0.3
0.2 0.2 0.6
0.5 0.4 0.1

 , P2 =

0.35 0.35 0.3
0.3 0.15 0.55
0.35 0.5 0.15

 ,
and the channel vectors are h1 = (0.512 + 0.9671i,−1.694−
1.892i, 0.0503 + 0.0621i) for user 1, and h2 = (0.6386 −
0.1388i,−0.8789 + 0.2781i,−2.7781 + 0.6188) for user 2.
The structure for this particular examples under WIP and the
optimal structure are illustrated in Figure 3. Both have been
computed exploiting a value iteration algorithm. We see that
WIP captures the optimal strategy in a large area of the state-
space.

C. Performance of Whittle’s index policy

In this section we evaluate the performance of Whittle’s
index policy (WIP ) using a value teration algorithm. In
Example 1 we consider a system with two users an one pilot,
and in Example 2 a system with three users and one pilot.

Note that the value iteration algorithm is computationally very
expensive and evaluating systems with a large number of
users is out of reach. We are going to compare three different
policies: (1) a myopic policy, which allocates the pilot to the
user with highest average immediate reward, (2) a randomized
policy, which allocates the pilot randomly to the users, and (3)
Whittle’s index policy as defined in Corollary 1.

In order to use this algorithm, we need to truncate the belief
state space with parameter τ > 0 large. We make sure τ to
be large enough so that the structure of the optimal solution
is not altered by the truncation.

Example 1: We generate 40 examples with randomly gener-
ated doubly stochastic transition probability matrices. We gen-
erate the channel vectors for each user randomly from a zero-
mean complex Gaussian distribution. The throughput obtained
by each user under both passive (no pilot has been allocated)
and active actions (pilot has been allocated) are considered to
be as in Section VI-A. We have computed the suboptimality
gap of all 40 examples (suboptimality gap= gOPT−gφ

gOPT
· 100),

for φ = WIP, randomized, and myopic. The results can be
found in Figure 4 (Left), where the horizontal line inside the
box refers to the average suboptimality gap, the upper and
lower edges of the box are the 25th and 75th percentiles and
the crosses are the outliers. We observe that the relative error of
Whittle’s index policy is remarkably small in all 40 examples,
whereas choosing a user to allocate a pilot at random can
give a relative error of up to 20%. WIP being remarkably
simple to apply, captures very closely the optimal exploration
vs. exploitation trade-off.

Example 2: We generate 20 examples with one pilot, three
users, and randomly generated doubly stochastic transition
probability matrices for each user. We generate the channel
vectors for each user randomly from a zero-mean complex
Gaussian distribution. The reward function is again considered
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Fig. 4: Left: Suboptimality gap (%) of the myopic policy, the randomized policy and Whittle’s index policy (WIP ), for 40
randomly generated examples with two users. Right:Suboptimality gap (%) of the myopic policy, the randomized policy and
Whittle’s index policy (WIP ), for 20 randomly generated examples with three users.

to be

Ri(~π
τ
j , 0) = ρi

1

3

3∑
k=1

log2(1 + SNR),

where ρi = maxr{p(τ)
jr }. The suboptimality gap for all three

policies, myopic, randomized and WIP , is illustrated in
Figure 4 (right). We note that WIP is again a remarkably good
policy. Moreover, although the performance of the myopic
policy was good in the example with two users, in this case
(with three users) this does not hold anymore. This suggests
that the more users there are in the system, the better the
performance of WIP is w.r.t. the performance of the myopic
and the randomized policies.

Remark 4. The optimality of the myopic policy for the two
users setting has been proven in Zhao et al. [21], for a similar
model to the one considered in this paper. It is therefore not
surprising that the myopic policy behaves well.

VII. CONCLUSIONS

We investigate the challenging problem of pilot allocation
in wireless networks over Markovian fading channels where
typically, there are less available pilots than users. At each
time, the BS can know the current CSI of users to whom a
pilot has been assigned. A channel belief state is estimated
for other users. The problem can be cast as a restless multi-
armed bandit problem for which obtaining an optimal solution
is out of reach. We have proposed an approximation that
yields, applying the Lagrangian relaxation approach, a low-
complexity policy (Whittle’s index policy). The latter has
shown to perform remarkably well. Future work include deriv-
ing Whittle’s index policy for the original problem. However,
this would imply deriving conditions under which threshold
type of policies are optimal in the original POMDP with
K > 2, an extremely difficult task.
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APPENDIX

A. Proof of Theorem 1

For ease of notation we drop the superscript app. Let us
define

ν(~πτj ) = max

(
x ∈ arg max

a∈{0,1}
fβ(~πτj , a)

)
,

where

fβ(~πτj , 0) := R(~πτj , 0) +W + βVβ(~πτ+1
j ),

fβ(~πτj , 1) := R1 + β

K∑
k=1

pskVβ(~π1
k),

and j ∈ {1, . . . ,K}. We want to prove that ν(~πτj ) ≤ ν(~πτ+1
j )

for all j ∈ {1, . . . ,K} and τ > 0. Since the latter implies that
if it is optimal to select the user in state ~πτj then it is also
optimal to select the user in state ~πτ+1

j . Let j ∈ {1, . . . ,K}
and let a ≤ ν(~πτj ) (where a ∈ {0, 1}) then by definition

fβ(~πτj , ν(~πτj ))− fβ(~πτj , a) ≥ 0. (28)

Next we will prove

fβ(~πτj , ν(~πτj )) + fβ(~πτ+1
j , a)

≤ fβ(~πτj , a) + fβ(~πτ+1
j , ν(~πτj )), (29)

for all τ > 0, that is the supermodularity of Vβ(·). The latter
together with (28) imply

fβ(~πτ+1
j , a) ≤ −fβ(~πτj , ν(~πτj )) + fβ(~πτj , a) + fβ(~πτ+1

j , ν(~πτj ))

≤ fβ(~πτ+1
j , ν(~πτj )),

that is, ν(~πτ+1
j ) ≥ ν(~πτj ), which concludes the proof. We are

therefore left to prove (29) for which it suffices to show

fβ(~πτj , 1) + fβ(~πτ+1
j , 0) ≤ fβ(~πτj , 0) + fβ(~πτ+1

j , 1). (30)

We substitute the expression of fβ(·, ·) in (30) and we obtain

β(ps1Vβ(~π1
1) + . . .+ psKVβ(~π1

K)) +R(~πτ+1
j , 0) + βVβ(~πτ+2

j )

≤ β(ps1Vβ(~π1
1) + . . .+ psKVβ(~π1

K)) +R(~πτj , 0) + βVβ(~πτ+1
j ).

(31)

By assumption R(~πτj , 0) is non-increasing in τ and therefore
in order to prove (31) it suffices to prove

Vβ(~πτ+2
j ) ≤ Vβ(~πτ+1

j ), (32)

i.e., Vβ(·) being non-increasing. In order to prove (32) we
will use the value iteration approach Puterman [15, Chap. 8].
Define Vβ,0(~πτj ) = 0 for all j ∈ {1, . . . ,K} and τ > 0 and

Vβ,t+1(~πτj ) = max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j ),

R1 + β

K∑
k=1

pskVβ,t(~π
1
k)}.

Observe that Vβ,0(~πτj ) = 0 satisfies Inequality (32) (since
Vβ,0(~πτj ) = 0). We assume that Vβ,t(~πτj ) satisfies (32) for all
j ∈ {1, . . . ,K} and all τ > 0, and we prove that Vβ,t+1(~πτj )
satisfies the inequality as well. In order to prove the latter we
need to show

max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j ), R1 + β

K∑
k=1

pskVβ,t(~π
1
k)}

≥ max{R(~πτ+1
j , 0) +W + βVβ,t(~π

τ+2
j );

R1 + β

K∑
k=1

pskVβ,t(~π
1
k)}. (33)

Define a(~πτj ) ∈ {0, 1} as the action that is prescribed in state
~πτj . Since Vβ,t(·) satisfies (32) we can argue on the mono-
tonicity of the solution for Vβ,t(·), i.e., (a(~πτj ), a(~πτ+1

j )) ∈
{(0, 0), (0, 1), (1, 1)}. Therefore, it suffices to show Inequal-
ity (33) for the latter three options. Let us first assume
(a(~πτj ), a(~πτ+1

j )) = (0, 0). Then (33) reduces to

R(~πτj , 0) + βVβ,t(~π
τ+1
j ) ≥ R(~πτ+1

j , 0) + βVβ,t(~π
τ+2
j ).

The latter is satisfied due to the assumption that R(·, 0) is non-
increasing (A2) and the induction assumption that states that
Vβ,t(·) is non-increasing. We now assume (a(~πτj ), a(~πτ+1

j )) =
(1, 1) and then (33) writes

R1 + β

K∑
k=1

pskVβ,t(~π
1
k) ≥ R1 + β

K∑
k=1

pskVβ,t(~π
1
k), (34)

which is obviously true. The last case, that is,
(a(~πτj ), a(~πτ+1

j )) = (0, 1) follows from the (1, 1) case.

B. Verification of conditions 8.10.1- 8.10.4’ in Puterman [15]

We prove here that the conditions 8.10.1-8.10.4 and 8.10.4’
in Puterman [15] are satisfied. They imply that the relaxed
long-run expected average reward, has a limit and can be
obtained either letting the discount factor β → 1 in the
expected discounted reward model, or solving the average
optimality equation that corresponds to the average reward
model (Equation (8.10.9) in [15]).

• Condition 8.10.1 in [15]: For all ~πτj ∈ Π −∞ <
R(~πτj , a(~πτj )) < C, for a constant C < ∞. The latter
is obvious from the assumption that 0 ≤ R(~πτj , a(~πτj )) <
R1 <∞.



• Condition 8.10.2 in [15]: For all ~πτj ∈ Π and 0 ≤ β < 1,
Vβ(~πτj ) > −∞, where

Vβ(~πτj ) = max{R(~πτj , 1) + β
∑
π∈Π

q1(~πτj , π)Vβ(π);

R(~πτj , 0) +W + β
∑
π∈Π

q0(~πτj , π)Vβ(π)}.

The function R(~πτj , a(~πτj )) being greater than or equal
to 0 implies Vβ(~πτj ) ≥ 0, therefore condition 8.10.2 is
satisfied.

• Condition 8.10.3 in [15]: There exists 0 < C <∞ such
that for all ~πτj , ~π

τ ′

i ∈ Π, |Vβ(~πτj ) − Vβ(~πτ
′

i )| ≤ C. We
have shown that Vβ(·) ≥ 0 and that Vβ(·) is a non-
increasing function (done in Lemma 6, below). W.l.o.g.
assume Vβ(~π1

1) = maxi{Vβ(~π1
i )}. It therefore suffices

to show that maxj{Vβ(~π1
j )} <∞, since in that case the

inequality that be want to prove would be satisfied taking
C = Vβ(~π1

1). This is proven in Lemma 7, see below.
• Condition 8.10.4 in [15]: There exists a non-negative

function F (~πτj ) such that
1) F (~πτj ) <∞ for all ~πτj ∈ Π,
2) for all ~πτj ∈ Π, and all 0 ≤ β < 1, Vβ(~πτj )−Vβ(~π1

1) ≥
−F (~πτj ) and,

3) there exists a ∈ {0, 1} s.t∑
π∈Π

qa(~π1
1 , π)F (πτj ) <∞.

It suffices to take F (·) = C, and all three items above are
satisfied. In order to prove condition 8.10.4’ it suffices to
extend the result in item 3) above to all a ∈ {0, 1} and
all ~π1

j ∈ Π.

Lemma 6. Let V appβ (~πτj ) be the value function that corre-
sponds to Approximation (9), in state ~πτj . Then, V appβ (~πτj ) is
non-increasing in τ for all j ∈ {1, . . . ,K}.

Proof. We want to prove that V appβ (~πτj ) ≥ V appβ (~πτ+1
j ) for

all τ > 0 and all j ∈ {1, . . . ,K}.
We drop the superscript app from the notation of Vβ(·)

throughout the proof. We will prove the monotonicity of Vβ(·)
using the Value Iteration algorithm. Let us define Vβ,0(~πτj ) = 0
for all j ∈ {1, . . . ,K} and τ > 0, and

Vβ,t+1(~πτj ) = max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j );

R1 + β

K∑
k=1

pskVβ(~π1
k)}. (35)

We now prove that Vβ,t(~πτj ) ≥ Vβ,t(~πτ+1
j ) for all t ≥ 0 using

an induction argument. Note that the latter is obvious for t =
0 since by definition Vβ,0(~πτj ) = 0 for all j ∈ {1, . . . ,K}
and τ > 0. We assume Vβ,t(·) to be non-increasing and we
prove Vβ,t+1(·) to be non-increasing. To prove Vβ,t+1(~πτj ) ≥

Vβ,t+1(~πτ+1
j ), by definition of Vβ,t+1(·) in (35), we have to

show that

max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j );R1 + β

K∑
k=1

pskVβ(~π1
k)}

≥ max{R(~πτ+1
j , 0) +W + βVβ,t(~π

τ+2
j );

R1 + β

K∑
k=1

pskVβ(~π1
k)}. (36)

Arguing on the monotonicity of Vβ,t(·) (induction assump-
tion), we have that (a(~πτj ), a(~πτ+1

j )) ∈ {(0, 0), (0, 1), (1, 1)},
where a(~πτj ) represents the optimal action in state ~πτj . There-
fore, to show that (36) is satisfied, it suffices to show inequal-
ity (36) for (a(~πτj ), a(~πτ+1

j )) ∈ {(0, 0), (0, 1), (1, 1)}. Let us
first assume (a(~πτj ), a(~πτ+1

j )) = (1, 1), then inequality (36)
is obvious since both the RHS and the LHS are identical.
If (a(~πτj ), a(~πτ+1

j )) = (0, 1), then from the definition of
Vβ,t+1(~πτj ), a(~πτj ) = 0 implies

R(~πτj , 0) +W + βVβ,t(~π
τ+1
j ) ≥ R1 + β

K∑
k=1

pskVβ(~π1
k),

and the latter implies inequality (36) to be satisfied for
(a(~πτj ), a(~πτ+1

j )) = (0, 1). We are left with the case
(a(~πτj ), a(~πτ+1

j )) = (0, 0), in order for (36) to be satisfied,
we need to show that

R(~πτj , 0) +W + βVβ,t(~π
τ+1
j )

≥ R(~πτ+1
j , 0) +W + βVβ,t(~π

τ+2
j ),

which is true due to A1 and the induction assumption, i.e.,
Vβ,t(·) to be non-increasing. This concludes the proof.

Lemma 7. Let Vβ(·) denote the value function that corre-
sponds to Approximation in Equation (9), with 0 ≤ β < 1
the discounted factor. Let ~Γ = (Γ1(W ), . . . ,ΓK(W )) be
the optimal threshold policy for a fixed W < ∞. Then
Vβ(~πτj ) <∞ for all j ∈ {1, . . . ,K} and τ > 0.

Proof. For ease of notation, we will denote by R0(~πτj ) :=
R(~πτj , 0), i.e., the average immediate reward under action
passive, throughout the proof.

We have proven in Theorem 1 that an optimal solution is
of threshold type. Let ~Γ(W ) = (Γ1(W ), . . . ,ΓK(W )) be the
optimal threshold for a given W . Then it can be shown that

Vβ(~π1
j ) =

Γj(W )∑
i=1

βi−1(R0(~πij) +W )

+ βΓj(W )(R1 + β

K∑
k=1

pskVβ(~π1
k)), (37)

for all j ∈ {1, . . . ,K}. From the j = 1 case we obtain
K∑
k=1

pskVβ(~π1
k)

= −R
1

β
+
Vβ(~π1

1)−
∑Γ1(W )
i=1 βi−1(R0(~πi1) +W )

βΓ1(W )+1
. (38)



Substituting the latter in Equation (37) for the j > 1 case, we
obtain

Vβ(~π1
j ) =

Γj(W )∑
i=1

βi−1(R0(~πij) +W )

+
βΓj(W )+1

βΓ1(W )+1

Vβ(~π1
1)−

Γ1(W )∑
i=1

βi−1(R0(~πi1) +W )

 ,

(39)

for all j 6= 1. We now substitute the latter in Equation (38)
and solve for Vβ(~π1

1). We obtain

Vβ(~π1
1) =

[ Γ1(W )∑
i=1

βi−1(R0(~πi1) +W ) + βΓ1(W )R1

+ βΓ1(W )+1
K∑
k=2

psk

Γk(W )∑
i=1

βi−1(R0(~πik) +W )

−
K∑
k=2

pskβ
Γk(W )+1

Γ1(W )∑
i=1

βi−1(R0(~πi1) +W )

]

·

[
1−

K∑
k=1

pskβ
Γk(W )+1

]−1

. (40)

If we assume that ~π 6= ej for any j ∈ {1, . . . ,K} then
Vβ(~π1

1) < ∞. The latter together with Equation (39) imply
Vβ(~π1

j ) < ∞ for all j ∈ {1, . . . ,K}. This concludes the
proof.

C. Explicit expression of ωi
We aim at solving the balance equations for the Approxi-

mation in Equation (9). Note that α~Γ(~πτi ) = α
~Γ(~πτ

′

i ) for all
τ, τ ′ ≤ Γi + 1, that is, the probability of being in state ~πτi
equals that of state ~πτ

′

i if passive action is prescribed in them
or, if τ = Γi + 1. Hence, ωj is the solution of

ωj(1− psj) =

j−1∑
i=1

psiωi +

K∑
i=j+1

psiωi, for all j ∈ {1, . . . ,K},

and
∑K
k=1 ωk = 1. Hence, ωj = psj .

D. Proof of Theorem 3

The following definition will be exploited throughout the
proof:

g
~Γ(W ) = E(R(b

~Γ, a
~Γ(b

~Γ))) +W

K∑
k=1

Γk∑
j=1

α
~Γ(~πjk).

Note that g~Γ(W ) refers to the average reward obtained under
threshold policy ~Γ and subsidy for passivity W .

We will assume I ∈ N ∪ {0,∞} to be the number of
steps until the algorithm stops. Therefore ΓIj = ∞ for all
j ∈ {1, . . . ,K}. We set Wi := WI for all i ≥ I . We will
prove that W0 < W1 < . . . < W∞. By definition we have
that Γi is increasing in i, that is, Γij ≥ Γi−1

j for all j and

i > 0. Let us first prove that Wi < Wi+1. By the definition
of Wi we have that

E(R(b
~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γi , a

~Γi(b
~Γi)))∑K

j=1

(∑Γij
r=1 α

~Γi(~πrj )−
∑Γi−1

j

r=1 α~Γi−1(~πrj )

)
<
E(R(b

~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γi+1

, a
~Γi+1

(b
~Γi+1

)))∑K
j=1

(∑Γi+1
j

r=1 α~Γi+1(~πrj )−
∑Γi−1

j

r=1 α~Γi−1(~πrj )

) ,

since
∑K
j=1

∑Γij
r=1 α

~Γi(~πrj ) is non-decreasing in i we have

[E(R(b
~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γi , a

~Γi(b
~Γi)))]

·

 K∑
j=1

Γi+1
j∑
r=1

α
~Γi+1

(~πrj )−
Γi−1
j∑
r=1

α
~Γi−1

(~πrj )


< [E(R(b

~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γi+1

, a
~Γi+1

(b
~Γi+1

)))]

·

 K∑
j=1

 Γij∑
r=1

α
~Γi(~πrj )−

Γi−1
j∑
r=1

α
~Γi−1

(~πrj )

 .
Adding the term

E(R(b
~Γi , a

~Γi(b
~Γi)))

K∑
j=1

Γi−1
j∑
r=1

α
~Γi−1

(~πrj )−
Γij∑
r=1

α
~Γi(~πrj )

 ,

on both sides of the latter inequality, and after some algebra
we obtain Wi < Wi+1. We now prove that indeed Wi for all
i defines Whittle’s index. To show that we need to prove:

1) Threshold policy ~Γ−1 = (0, . . . , 0) is optimal for the
single-arm average reward POMDP problem for all W
such that W < W0.

2) Threshold policy ~Γi is optimal for all Wi < W < Wi+1.
3) Threshold policy ∞ is optimal for all W such that W >

WI .
Let us first prove 1) . From the definition of W0 we have that,
for all W < W0

W

K∑
k=1

Γk∑
j=1

α
~Γ(~πjk) ≤ E(R(b

~Γ−1

, a
~Γ−1

(b
~Γ−1

)))− E(R(b
~Γ, a

~Γ(b
~Γ)))

=⇒ E(R(b
~Γ, a

~Γ(b
~Γ))) +W

K∑
k=1

Γk∑
j=1

α
~Γ(~πjk)

≤ E(R(b
~Γ−1

, a
~Γ−1

(b
~Γ−1

))) = g
~Γ−1

(W ).

That is, g~Γ
−1

(W ) ≤ g~Γ(W ) for all ~Γ ≥ (0, . . . , 0). Threshold
policy ~Γ−1 is therefore optimal for all W < W0.

We will establish 2) using an inductive argument. From the
definition of ~Γ0 it can be seen that

E(R(b
~Γ0

, a
~Γ0

(b
~Γ0

))) +W0

K∑
k=1

Γ0
k∑

j=1

α
~Γ0

(~πjk)

E(R(b
~Γ, a

~Γ(b
~Γ))) +W0

K∑
k=1

Γk∑
j=1

α
~Γ(~πjk), (41)



for all ~Γ, that is, g~Γ
0

(W0) ≥ g~Γ(W0). By the assumption that∑K
k=1

∑Γk
j=1 α

~Γ(~πjk) strictly increases in ~Γ and inequality (41)
we obtain for all ~Γ ≤ ~Γ0

E(R(b
~Γ0

, a
~Γ0

(b
~Γ0

))) +W

K∑
k=1

Γ0
k∑

j=1

α
~Γ0

(~πjk)

E(R(b
~Γ, a

~Γ(b
~Γ))) +W

K∑
k=1

Γk∑
j=1

α
~Γ(~πjk),

that is g
~Γ0

(W ) ≥ g
~Γ(W ) for all ~Γ ≤ ~Γ0 and W0 <

W , in particular for all W0 < W < W1. Using similar
type of arguments and the definition of W1 it can be seen
that g

~Γ0

(W1) ≥ g
~Γ(W1) and again by monotonicity of∑K

k=1

∑Γk
j=1 α

~Γ(~πjk) we obtain g
~Γ0

(W ) ≥ g
~Γ(W ) for all

~Γ ≥ ~Γ0 and W0 < W < W1. Hence, threshold policy ~Γ0

is optimal for W0 < W < W1. We now assume that ~Γi−1

is the optimal threshold policy when Wi−1 < W < Wi,
i.e., g~Γ

i

(W ) ≥ g
~Γ(W ) and we prove that ~Γi is optimal

for Wi < W < Wi+1. From the definition of Wi and the
assumption that ~Γi−1 is optimal for all Wi−1 < W < Wi

we obtain g
~Γi(Wi) = g

~Γi−1

(Wi) ≥ g
~Γ(Wi), for all ~Γ.

Since
∑K
k=1

∑Γk
j=1 α

~Γ(~πjk) is strictly increasing in ~Γ we obtain
g
~Γi(W ) ≥ g

~Γ(W ) for all ~Γ ≤ ~Γi and Wi < W < Wi+1.
Moreover, from the definition of Wi+1 we have g

~Γi(W ) ≥
g
~Γ(W ) for all ~Γ ≥ ~Γi and Wi < W < Wi+1. Therefore, ~Γi

is the optimal threshold policy for all Wi < W < Wi+1.
Item 3) can now easily be proven using the same argument

in each iteration step. This concludes the proof.

E. Proof of Lemma 1

Let us assume that in Step i, ~Γi is such that
∑K
j=1 Γij =

(
∑K
j=1 Γi−1

j ) + 1 and Γij ≥ Γi−1
j for all j ∈ {1, . . . ,K}, then

there exists u ∈ {1, . . . ,K} such that Γiu = Γi−1
u + 1 and

Γij = Γi−1
j for all j 6= u. By Proposition 3 we have

Wi =
E(R(X

~Γi−1

, a(X
~Γi−1

)))− E(R(X
~Γi , a(X

~Γi)))∑K
j=1

(∑Γij
r=1 α

~Γi(~πrj )−
∑Γi−1

j

r=1 α~Γi−1(~πrj )

) . (42)

The numerator in Equation (42), after substitution of
E(R(X

~Γ, a(X
~Γ))) =

∑K
k=1

∑Γk
j=1R(~πjk, 0)α

~Γ(~πjk) +

R1
∑K
k=1 α

~Γ(~πΓk+1
k ), reads

K∑
k=1

Γi−1
k∑
j=1

R(~πjk, 0)
(
α
~Γi−1

(~πjk)− α~Γ
i

(~πjk)
)

−R(~π
Γiu
u , 0)α

~Γi(~π
Γiu
u )

+R1
K∑
k=1

(
α
~Γi−1

(~π
Γi−1
k +1

k )− α~Γ
i

(~π
Γik+1
k )

)
. (43)

Since α~Γ(~πij) =
ωj∑K

r=1(Γr+1)ωr
, Equation (43) simplifies to

ωu

∑K
k=1

∑Γi−1
k
j=1 R(~πjk, 0)ωk −R(~π

Γiu
u , 0)

∑K
k=1(Γi−1

k + 1)ωk

(
∑K
r=1(Γir + 1)ωr) · (

∑K
r=1(Γi−1

r + 1)ωr)

+ ωu
R1
∑K
k=1 ωk

(
∑K
r=1(Γir + 1)ωr) · (

∑K
r=1(Γi−1

r + 1)ωr)
(44)

Substituting the value of α~Γ(·) in the denominator of Equa-
tion (42), the denominator reduces to

−
K∑
k=1

Γi−1
k∑
r=1

ωk
ωu

(
∑K
r=1(Γir + 1)ωr) · (

∑K
r=1(Γi−1

r + 1)ωr)

+
ωu
∑K
r=1(Γi−1

r + 1)ωr

(
∑K
r=1(Γir + 1)ωr) · (

∑K
r=1(Γi−1

r + 1)ωr)
. (45)

To obtain the explicit expression of Equation (42) it now
suffices to divide the expression of the numerator as given
by Equation (44) with the expression of the denominator as
given by Equation (45), that is,

R1 +

∑K
k=1

∑Γi−1
k
j=1 R(~πjk, 0)ωk −R(~π

Γiu
u , 0)

∑K
k=1(Γi−1

k + 1)ωk∑K
k=1 ωk

.

Since
∑K
k=1 ωk = 1 and Γiu = Γi−1

u +1 the explicit expression
of Wi is given by

Wi =R1 +

K∑
k=1

Γi−1
k∑
j=1

R(~πjk, 0)ωk

−R(~π
Γi−1
u +1

u , 0)

K∑
k=1

(Γi−1
k + 1)ωk,

which concludes the proof.

F. Proof of Lemma 2
We will proof the inequality V maxβ (·) ≥ Vβ(·). The inequal-

ity that corresponds to V minβ can be proved similarly. Let us
use the Value Iteration. Define V maxβ,0 (·) = Vβ,0(·) ≡ 0,

Vβ,t+1(~πτj ) = max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j );

R(~πτj , 1) + β

K∑
i=1

p
(τ)
ji Vβ,t(~π

1
i )}, and

V maxβ,t+1(~πτj ) = max{R(~πτj , 0) +W + βV maxβ,t (~πτ+1
j );

R(~πτj , 1) + βmax
i
{Vβ,t(~π1

i )}}.

Note that V maxβ,0 (·) ≥ Vβ,0(·). We will now prove the result
by induction. We assume V maxβ,t (·) ≥ Vβ,t(·) and we prove
V maxβ,t+1(·) ≥ Vβ,t+1(·). To prove the latter it suffices to show

max{R(~πτj , 0) +W + βVβ,t(~π
τ+1
j );

R(~πτj , 1) + β

K∑
i=1

p
(τ)
ji Vβ,t(~π

1
i )},

≤ max{R(~πτj , 0) +W + βV maxβ,t (~πτ+1
j );

R(~πτj , 1) + βmax
i
{V maxβ,t (~π1

i )}}. (46)



We first assume that the maximizer in both sides of Inequal-
ity (46) is the passive action. Then it suffices to show

Vβ,t(~π
τ+1
j ) ≤ V maxβ,t (~πτ+1

j ),

which is satisfied due to the induction assumption. Let us now
assume that the maximizer in both sides of Inequality (46) is
the active action. Then to prove Inequality (46) we need to
show that

K∑
i=1

p
(τ)
ji Vβ,t(~π

1
i ) ≤ max

i
{V maxβ,t (~π1

i )}. (47)

We have

K∑
i=1

p
(τ)
ji Vβ,t(~π

1
i ) ≤

K∑
i=1

p
(τ)
ji V

max
β,t (~π1

i )

≤ max
i
{V maxβ,t (~π1

i )},

which proves (53). In the latter we have used the induction
assumption in the first inequality and the fact that p(τ)

ji is a
probability distribution for all τ in the second inequality. The
cases in which the maximizers are active and passive actions,
and passive and active actions follow from the previous two
cases. We have therefore proved that Vβ,t(·) ≤ V maxβ,t (·) for
all t. Since limt→∞ Vβ,t = Vβ (and similarly for V maxβ ) then
Vβ(·) ≤ V maxβ (·). This concludes the proof.

G. Proof of Proposition 2

In Lemma 2 we have proven that

V maxβ (~πτj ) ≥ Vβ(~πτj ), and V minβ (~πτj ) ≤ Vβ(~πτj ),

for all ~πτj ∈ Π. From the latter we obtain

V maxβ (~πτj )− V appβ (~πτj ) ≥ Vβ(~πτj )− V appβ (~πτj ),

V minβ (~πτj )− V appβ (~πτj ) ≤ Vβ(~πτj )− V appβ (~πτj ),

for all ~πτj ∈ Π. By [15, Theorem 8.10.7] we have that g(W ) =
limβ→1(1− β)Vβ(~πτj ) (similarly for V maxβ , V minβ and V appβ ).
Therefore,

lim
β→1

(1− β)
(
V maxβ (~πτj )− V appβ (~πτj )

)
≥ lim
β→1

(1− β)
(
Vβ(~πτj )− V appβ (~πτj )

)
,

lim
β→1

(1− β)
(
V minβ (~πτj )− V appβ (~πτj )

)
≤ lim
β→1

(1− β)
(
Vβ(~πτj )− V appβ (~πτj )

)
,

for all ~πτj ∈ Π, that is,

gmax(W )− gapp(W ) ≥ g(W )− gapp(W )

≥ gmin(W )− gapp(W ).

Define D(W ) := max{1 − gapp(W )
gmax(W ) ,

gapp(W )
gmin(W ) − 1}. The

explicit expression of D(W ) can be found in Appendix H.
Hence, ∣∣∣∣1− gapp(W )

g(W )

∣∣∣∣ ≤ D(W ).

H. Explicit expression of D(W )

To derive the explicit expression of D(W ), we need to
obtain the expressions of gmin(W ), gmax(W ) and gapp(W ).
From the proof of Lemma 7 and the results in Appendix B,
we have that

gapp(W ) = lim
β→1

(1− β)V appβ (~π1
1),

where V appβ (~π1
1) is as given in Equation (40) (after adding

the superscript app). Note that when computing the limit as
β → 1 we encounter a 0/0 indetermination. After applying
L’Hopital’s rule it can easily be seen that

gapp(W ) =
R1 +

∑K
k=1 p

s
k

∑τk(W )
i=1 (R(~πik, 0) +W )∑K

k=1(τk(W ) + 1)psk
.

To obtain the closed-form expressions of gmax(W ) and
gmin(W ) we need to follow the same steps as those used in
the derivation of gapp(W ). That is, we need to (i) show that an
optimal solution of Equations (17) and (18) is a threshold type
of policy, (ii) obtain the explicit expressions of V maxβ (·) and
V minβ (·), (iii) prove conditions 8.10.1-8.10.4’ in Puterman [15]
to be satisfied, and finally, (iv) compute gmin(W ) by taking
the limit of (1−β)V minβ (·) as β → 1 (similarly for gmax(W )).
The first three steps can easily be done using the same
arguments that have been used for Approximation 1. Step (i) is
similar to the proof of Theorem 1, step (ii) can be done using
the arguments in the proof of Lemma 7, and step (iii) can
be proven through the ideas exploited in Appendix B. After
showing the first three steps one obtains

gmax(W ) =
R1 +

∑τσmax (W )
i=1 (R(~πiσmax , 0) +W )

τσmax(W ) + 1
,

gmin(W ) =
R1 +

∑τσmin
(W )

i=1 (R(~πiσmin , 0) +W )

τσmin(W ) + 1
,

where σmax = arg maxj{(R1 +
∑τj(W )
i=1 (R(~πij , 0) +

W ))/(τ j(W ) + 1)}, similarly, σmin = arg minj{(R1 +∑τj(W )

i=1 (R(~πij , 0) + W ))/(τ j(W ) + 1)}, and τ i(W ) and
τ i(W ) refer to the optimal threshold policies of problems (17)
and (18), respectively. Note that the optimal threshold policies
τi(W ), τ i(W ) and τ i(W ), can be computed from the Bellman
equations by equating the value obtained from passive action



and the value obtained from active action. Having said that,
we obtain

D(W ) = max

{
1− τσmax(W ) + 1∑K

k=1(τk(W ) + 1)psk

·
R1 +

∑K
k=1 p

s
k

∑τk(W )
i=1 (R(~πik, 0) +W )

R1 +
∑τσmax (W )
i=1 (R(~πiσmax , 0) +W )

;

τσmin(W ) + 1∑K
k=1(τk(W ) + 1)psk

·
R1 +

∑K
k=1 p

s
k

∑τk(W )
i=1 (R(~πik, 0) +W )

R1 +
∑τσmin (W )

i=1 (R(~πiσmin , 0) +W )
− 1

}
.

(48)

I. Proof of Lemma 3

Throughout the proof we will assume for sake of clarity,
W (~π

`∗1 ,1
1 ) = W ∗, W (~π

`∗j−1,1

j ) < W ∗ < W (~π
`∗j ,1

j ) for all

j ∈ {2, . . . ,K} and W (~π
m∗j−1,2

j ) < W ∗ < W (~π
m∗j ,2

j ) for all
j ∈ {1, . . . ,K}. That is, for all j = 2, . . . ,K there exists `∗j ∈
{(j−1)τ+1, . . . , jτ} such that REL prescribes to activate all
states ~πi,1j for which i ≥ `∗j−(j−1)τ , and for all j = 1, . . . ,K
there exists m∗j ∈ {(K + j − 1)τ + 2, . . . , (K + j)τ + 1}
such that REL prescribes to activate all states ~πi,2j for which
i ≥ m∗j − (j − 1)τ . In state ~π`

∗
1 ,1

1 the policy REL prescribes
to activate the users in that state with probability ρ ∈ (0, 1).

Remark 5. Observe that we exclude the possibility ρ = 1. It
can be seen that a non-randomized policy, which corresponds
to ρ = 1, is optimal only for a finite number of λs, Weber et
al. [19].

We have that

y(t+ 1)− y(t)

∣∣∣∣
y(t)=y

=

2(Kτ+1)∑
i=1

2(Kτ+1)∑
j=1

qij(y)~eijyi

=

`∗1−1∑
i=1

2(Kτ+1)∑
j=1

qij(y)~eijyi

+

2(Kτ+1)∑
i=`∗1+1

2(Kτ+1)∑
j=1

qij(y)~eijyi + y`∗1

2(Kτ+1)∑
j=1

q`∗1j(y)~e`∗1j

=
∑
i 6=`∗1

2(Kτ+1)∑
j=1

qij(y)~eij

+ y`∗1

2(Kτ+1)∑
j=1

[g`∗1 (y)q1
`∗1j

+ (1− g`∗1 (y))q0
`∗1j

)]~e`∗1j

=
∑
i 6=`∗1

2(Kτ+1)∑
j=1

qij(y)~eijyi + y`∗1

2(Kτ+1)∑
j=1

q0
`∗1j
~e`∗1j

+ g`∗1 (y)y`∗1

2(Kτ+1)∑
j=1

[q1
`∗1j
− q0

`∗1j
]~e`∗1j . (49)

The second inequality in the latter equation follows from
the definition of qij(y) in Equation (24). Note that by the

definitions of `∗1 (defined in the beginning of this section) and
g`∗1 (y) imply

g`∗1 (y)y`∗1 = λ−
∑

i:Wi>W∗

yi.

Substituting the latter in Equation (49) we obtain

y(t+ 1)− y(t)

∣∣∣∣
y(t)=y

=
∑
i6=`∗1

2(Kτ+1)∑
j=1

qij(y)~eijyi + y`∗1

2(Kτ+1)∑
j=1

q0
`∗1j
~e`∗1j

+ (λ−
∑

i:Wi>W∗

yi)

2(Kτ+1)∑
j=1

[q1
`∗1j
− q0

`∗1j
]~e`∗1j .

In the latter equation qij(y) for all i 6= `∗1 stays constant for
all y ∈ YW∗ , since gi(y) for all i 6= `∗1 is either 0 or 1 and
therefore independent of y.

J. Proof of Lemma 4

We want to show that θδ,λ is the unique zero of Qy+d = 0.
It is clear that Qθδ,λ + d = 0, since θδ,λ is the mean of

the random vector to which the system YN (t) under REL
converges, and the fluid system is defined by the mean drift
of the system YN (t). We assume there exists y 6= θδ,λ such
that Qy + d = 0, then there exists a policy characterized by
W and ρ (i.e., allocate a pilot to all users with Wi > W ,
idle if Wi < W and randomize with probability ρ if Wi =
W ) for which the steady-state vector is given by y and the
average fraction of activated users equals λ. This is however
in contradiction with the indexability property which implies
that a unique W and ρ exist for each λ (Lemma 1 in [19]).

To conclude the proof, we mention that θδ,λ is independent
of N , the proof follows from Lemma 4 in [20].

K. Proof of Proposition 3

The local asymptotic optimality can be obtained in two
steps.
Step 1: We prove that for an initial state y(0) ∈ N (θδ,λ) the
fluid system converges to θδ,λ.
Step 2: We show that the system YN (t) can be made arbi-
trarily close to the fluid system y(t) as N →∞.

1) Step 1: To prove Step 1 we are going to (i) obtain the
explicit expression of the linear fluid system, (ii) prove the
eigenvalues of this system, i.e., ι, to satisfy |ι + 1| < 1, and
(iii) we will prove that y(t)→ θδ,λ.

We are now going to write the explicit expression of the
difference y(t + 1) − y(t). For simplicity, we reduce the
dimension of vector y(t) by one. This reduction can be done
due to the fact that

∑Kτ+1
i=1 yi = δ1, for all y ∈ Y and the

fact that if y(0) ∈ Y then y(t) ∈ Y . For all y ∈ Y we define
ŷ = (y1, . . . , y`∗1−1, y`∗1+1, . . . , y2(Kτ+1)). With a bit of abuse
of notation, we let ~eij be the vector of dimension 2Kτ + 1
with all entries 0s except the ith term which equals -1 and
the jth which equals 1, and we let qij(ŷ) be defined as in



Equation (24) for vectors of dimension 2Kτ + 1. Therefore,
we have

ŷ(t+ 1)− ŷ(t)

∣∣∣∣
ŷ(t)=ŷ

=
∑
i6=`∗1

∑
j 6=`∗1

qij(ŷ)~eijyi

+

δ1 − `∗1−1∑
i=1

yi −
2(Kτ+1)∑
i=`∗1+1

yi

∑
j 6=`∗1

q0
`∗1j
~e`∗1j

+ (λ−
∑

i:Wi>W∗

yi)
∑
j 6=`∗1

[q1
`∗1j
− q0

`∗1j
]~e`∗1j

=
∑

i:Wi<W∗

∑
j 6=`∗1

[qij(ŷ)~eij − q0
`∗1j
~e`∗1j ]yi

+
∑

i:Wi>W∗

∑
j 6=`∗1

[qij(ŷ)~eij − q1
`∗1j
~e`∗1j ]yi

+ δ1
∑
j 6=`∗1

q0
`∗1j
~e`∗1j + λ

∑
j 6=`∗1

[q1
`∗1j
− q0

`∗1j
]~e`∗1j .

Where we used Equation (49),
∑Kτ+1
i=1 yi = δ1, and

g`∗1 (y)y`∗1 = λ −
∑
j:Wj>W∗

yi. One can then derive the
expression

ŷ(t+ 1)− ŷ(t) = Q̂ŷ + d̂, (50)

where d̂ = δ1
∑
j 6=`∗1

q0
`∗1j
~e`∗1j +λ

∑
j 6=`∗1

[q1
`∗1j
− q0

`∗1j
]~e`∗1j , and

Q̂ =

[
Q1

1 . . . Q1
K Q2

1 . . . Q2
K

~0 . . . ~0 O2
1 . . . O2

K

]
The explicit expressions of Qck for all k ∈ {1, . . . ,K} and
all c ∈ {1, 2}, can be found in (51). In order to simplify the
expression in (51) we have used the following notation, 0n×m
represents the matrix of size n × m whose entries are all 0
and −In refers to the negative identity matrix of size n× n.

In the next lemma we prove that the eigenvalues of Q̂ satisfy
|ι+ 1| < 1.

Lemma 8. The eigenvalues of Q̂, i.e., ι, satisfy |ι+ 1| < 1.

Proof. We compute the eigenvalues of Q̂, that is, compute ι
the solution of

det(Q̂− ιI2Kτ+1) =det([Q1
1, . . . , Q

1
K ]− ιIKτ )

· det([O2
1, . . . , O

2
K ]− ιIKτ+1) = 0,

due to the property of block matrices. Note that matrices
[Q1

1, . . . , Q
1
K ] and [O2

1, . . . , O
2
K ] are square matrices. Analyz-

ing the structures of Q1
i and O2

i for all i we obtain that

det(Q̂− ιI2Kτ+1)

= det(A`∗1−1 − ιI`∗11)det(A`∗2 − ιI`∗2 ) · . . .
· det(A`∗K − ιI`∗K ) · det(−Iτ−`∗1 − ιIτ−`∗1 ) · . . .
· det(−Iτ−`∗K−1

− ιIτ−`∗K−1
)det(−Iτ+1−`∗K − ιIτ+1−`∗K )

· det(Am∗1−1 − ιIm∗1 )det(Am∗2 − ιIm∗2 ) · . . .
· det(Am∗K − ιIm∗K ) · det(−Iτ−m∗1 − ιIτ−m∗1 ) · . . .
· det(−Iτ−m∗K−1

− ιIτ−m∗K−1
)

· det(−Iτ+1−m∗K − ιIτ+1−m∗K ) = 0. (52)

The latter is obtained exploiting the properties of block ma-
trices. It is easy to see that Equation (52) reduces to

det(Q̂− ιI2Kτ+1) = (−1− ι)2Kτ+1 = 0,

therefore, all eigenvalues equal −1, and consequently |ι+1| <
1. This concludes the proof.

Having proven that for all eigenvalues of the system |ι+1| <
1 we prove the following.

Lemma 9. Let y(0) = y and assume there exists ε > 0 such
that, if y(0) ∈ Nε(θδ,λ) ⊂ YW∗ , that is, the initial point is
in the neighborhood of θδ,λ then (1) y(t) ∈ YW for all t, and
(2) y(t)→ θδ,λ as t→∞.

Proof. The proof of this lemma follows from the arguments
in Lemma 12 in [20] and relies in the following results.
• θδ,λ ∈ YW∗ . To prove the latter it suffices to recall that,

from the definition of gi(y(t)) in Table I, if y(t) = θδ,λ
then

∑
j:Wj≥W∗ gi(y(t))yi(t) = λ, therefore θδ,λ ∈

YW∗ .
• The assumption on ρ 6= 1 allows us to ensure YW∗ 6=
{θδ,λ}, that is, there exist state vectors in Y , other than
the steady-state, that belong to the set YW∗ . Therefore,
there exists ε0 > ε such that Nε0(θδ,λ) ⊂ YW∗ , and
Nε0(θδ,λ) 6= ∅.

• Equation (50) which ensure the fluid system to be linear
in YW∗ .

• Lemma 8 which implies convergence of ŷ(t) → θδ,λ as
t→∞.

2) Step 2: In what follows we are going to state three
lemmas and a proposition that will allow to establish the local
asymptotic optimality result for Whittle’s index policy. The
proofs of these lemmas can be obtained by slightly adapting
the results obtained in [20].

Lemma 10. There exits Nε(θδ,λ), a neighborhood of θδ,λ such
that for all ν > 0 there exists Nε(~yδ,α) such that for all y ∈
Nε(θδ,λ) there exists f(·) independent of N and y such that

P(‖YN (t+ 1)− (I +Q(y))y‖ ≥ ν|YN (t) = y)

≤ 2Ke−N ·f(ν).

Proof. The proof can be obtained following the proof of
Lemma 17 in [20].

Lemma 11. Let YN (0) = y. Assume there exists a neighbor-
hood Nψ(θδ,λ) such that for all ν > 0, if y ∈ Nψ(θδ,λ) there
exists βt1 and βt2, independent of N and y for which

Py(‖YN (t)− y(t)‖ ≥ ν) ≤ βt1e−N ·β
t
2 ,∀t = 1, 2, . . .

Proof. The proof follows from the proof of Lemma 18 in [20].

Proposition 5. Let YN (0) = y(0) = y. There exists a
neighborhood Nψ(θδ,λ) such that, for all y ∈ Nψ(θδ,λ), all



Q1
1 =

 A`∗1−1 0(`∗1−1)×(τ−`∗1)

B(τ−`∗1)×(`∗1−1) −Iτ−`∗1
0((K−1)τ+1)×`∗1−1 0((K−1)τ+1)×(τ−`∗1)

 , where Am =

m︷ ︸︸ ︷
−1 0 . . . 0 0
1 −1 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 −1

, Bn×m =

m︷ ︸︸ ︷
−1 . . . −1 0
0 . . . 0 0
...

. . .
...

...
0 . . . 0 0

,

Q1
i =



0(`∗1−1)×`∗i
0(`∗1−1)×(τ−`∗i )

B(τ−`∗1)×`∗i
0(τ−`∗1)×(τ−`∗i )

0(i−2)τ×`∗i
0(i−2)τ×(τ−`∗i )

A`∗i
0`∗i×(τ−`∗i )

0(τ−`∗i )×`∗i
−Iτ−`∗i

0(Kτ+1−iτ)×`∗i
0(Kτ+1−iτ)×(τ−`∗i )


, ∀ i ∈ {2, . . . ,K − 1}, Q1

K =


0(`∗1−1)×`∗

K
0(`∗1−1)×(τ+1−`∗

K
)

B(τ−`∗1)×`∗
K

0(τ−`∗1)×(τ+1−`∗
K

)

0(K−2)τ×`∗
K

0(K−2)τ×(τ+1−`∗
K

)

A`∗
K

0`∗
K
×(τ+1−`∗

K
)

0(τ+1−`∗
K

)×`∗
K

−Iτ+1−`∗
K

 .

Q2
i =

 0(`∗1−1)×m∗i
0(`∗1−1)×(τ−m∗i )

B(τ−`∗1)×m∗i
0(τ−`∗1)×(τ−m∗i )

0((K−1)τ+1)×m∗i
0((K−1)τ+1)×(τ−m∗i )

 , ∀ i ∈ {1, . . . ,K − 1}, Q2
K =

 0(`∗1−1)×m∗
K

0(`∗1−1)×(τ+1−m∗
K

)

B(τ−`∗1)×m∗
K

0(τ−`∗1)×(τ+1−m∗
K

)

0((K−1)τ+1)×m∗
K

0((K−1)τ+1)×(τ+1−m∗
K

)

 ,

O2
i =


0(i−1)τ×m∗i

0(i−1)τ×(τ−m∗i )

Am∗i
0m∗i×(τ−m∗i )

0(τ−m∗i )×m∗i
−Iτ−m∗i

0(Kτ+1−iτ)×m∗i
0(Kτ+1−iτ)×(τ−m∗i )

 ,∀ i ∈ {1, . . . ,K − 1}, O2
K =

 0(K−1)τ×m∗
K

0(K−1)τ×(τ+1−m∗
K

)

Am∗
K

0m∗
K
×(τ+1−m∗

K
)

0(τ+1−m∗
K

)×m∗
K

−Iτ+1−m∗
K

 , (51)

ν > 0 and all time horizon T < ∞, there exists positive
constants C1 and C2, independent of N and y, such that

Py( sup
0≤t<T

‖YN (t)− y(t)‖ ≥ ν) ≤ C1e−N ·C2 ,

where ψ < ε (where ε has been defined in Lemma 9).

Proof. Note that

Py( sup
0≤t<T

‖YN (t)− y(t)‖ ≥ ν)

≤
T−1∑
t=0

Py(‖YN (t)− y(t)‖ ≥ ν)

≤
T∑
t=0

βt1e−N ·β
t
2 ,

where the first inequality follows from Boole’s inequality and
the second inequality from Lemma 11. Let us now define C2 =
min0≤t<T {βt2} then

T∑
t=0

βt1e−N ·β
t
2 ≤ e−N ·C2

T−1∑
t=0

βt1e−N ·(β
t
2−C2) ≤ C1e−N ·C2 ,

where C1 =
∑T−1
t=0 βt1. The second inequality in the latter

equation follows from the fact that βt2−C2 ≥ 0 for all t ≥ 0.
This concludes the proof.

Lemma 12. Let YN (0) = y. For all y ∈ Nψ(θδ,λ) and all
ν > 0, there exists T0 such that for all T > T0, there exists
positive constant k1 and k2 such that

Py( sup
T0≤t<T

‖YN (t)− θδ,λ‖ ≥ ν) ≤ k1e−N ·k2 .

Proof. The proof can be found in [20, Lemma 13] and it
essentially follows from Proposition 5.

To conclude the Step 2 of the proof of Proposition 3, it now
suffices to show that there exist ψ and Nψ(θδ,λ) such that

lim
T→∞

lim
r→∞

RWIP,Nr
T (y)

Nr
= RREL.

To do so we first define R(y) to be the average reward accrued
by each user in the systems state y ∈ Y. The latter implies
NR(YN (t)) to be the immediate reward at time t. Note that
RREL = R(θyδ,λ).

Let ω > 0 and ν > 0 such that for all y ∈ Y ,

|R(y)−R(θδ,λ)| < ω,

if ‖y − θδ,λ‖ < ν.
Let Nr ∈ Z be a positive sequence of integers such that

λNr, δcNr ∈ Z for all c ∈ {1, 2}. We then have the following∣∣∣∣RNr,WIP
T (y)

Nr
−RREL

∣∣∣∣
=

∣∣∣∣ 1

NrT
E

(
T−1∑
t=0

NrR(YNr (t))

)
−RREL

∣∣∣∣
=

∣∣∣∣ 1

T

T0−1∑
t=0

E(R(YNr (t))) +
1

T

T−1∑
t=T0

E(R(YNr (t)))

− T0 + (T − T0)

T
RREL

∣∣∣∣
≤
∣∣∣∣ 1

T

T0−1∑
t=0

E(R(YNr (t))−RREL)

∣∣∣∣
+

∣∣∣∣ 1

T

T−1∑
t=T0

E(R(YNr (t))−RREL)

∣∣∣∣
≤ R1T0

T
+

∣∣∣∣ 1

T

T−1∑
t=T0

E(R(YNr (t))−RREL)

∣∣∣∣. (53)



The last inequality follows from the fact that the per user
average reward cannot exceed R1. Now note that∣∣∣∣ 1

T

T−1∑
t=T0

E(R(YNr (t))−RREL)

∣∣∣∣
≤ Py( sup

T0≤t≤T
‖YNr (t)− θδ,λ‖ ≥ ν)

· 1

T

T−1∑
t=T0

E(|R(YNr (t))−RREL|
∣∣∣∣ANr )

+ (1− Py( sup
T0≤t≤T

‖YNr (t)− θδ,λ‖ ≥ ν))

· 1

T

T−1∑
t=T0

E(|R(YNr (t))−RREL|
∣∣∣∣ANr )

≤ R1

(
Py( sup

T0≤t≤T
‖YNr (t)− θδ,λ‖ ≥ ν)(1− ω) + ω

)
,

(54)

where ANr represents the event that supT0≤t≤T ‖Y
Nr (t) −

θδ,λ ≥ ν‖) and ANr its complementary. The last inequality
follows form the fact that R(y) ≤ R1 and the fact that |R(y)−
R(θδ,λ)| < ω for all ‖y − θδ,λ‖ < ν.

From Lemma 12, for all y ∈ N (θδ,λ) we have

lim
r→∞

P( sup
T0≤t<T

‖YNr (t)− θδ,λ‖ ≥ ν) ≤ lim
r→∞

k1e−Nr·k2 = 0.

Hence, using the latter in Equations (53) and (54), we deduce

lim
r→∞

∣∣∣∣RWIP,Nr
T (y)

Nr
−RREL

∣∣∣∣ ≤ R1T0

T
+R1ω,

with ω arbitrarily small. Therefore

lim
T→∞

lim
r→∞

RNr,WIP
T (y)

Nr
= RREL.

L. Proof of Lemma 5

This proof follows the same line of ideas as those in
Appendix E in [20].

Proof of item 1) in Lemma 5: First we are going to prove
that the Markov chain is aperiodic and has a single recurrent
class. Let us define i1 = mini{`∗i } and i2 = mini{m∗i } and
we assume w.l.o.g. that W (~π1,1

i1
) ≥W (~π1,2

i2
), with `∗i and m∗i

for all i, as defined in the beginning of Appendix I. We are
going to prove that from any initial state YN (0) = y, the
following states can be reached:
• State vector YN = [Y1,N ,Y2,N ] with Y 1,N

i1,1
= λ,

Y 1,N
s = δ1 − λ and Y2,N

s = δ2, and all other entries
0, if λ ≤ δ1.

• State vector YN = [Y1,N ,Y2,N ] with Y 1,N
i1,1

= δ1,

Y2,N
i2,1

= λ − δ1, Y2,N
s = 1 − λ, and all other entries

0, if λ > δ1.
To reach the state introduced in the first item above note that
the following can occur. Given an initial state y for all the
users of class 1 that have been allocated with a pilot (out of
all the activated λ fraction of users under WIP ), we observe
channel state i1. All the class-2 users that have been activated

happen to be in channel state i2. After a long enough period
YN = [Y1,N ,Y2,N ] with Y 1,N

i1,1
= λ, Y 1,N

s = δ1 − λ and
Y2,N
s = δ2, and all other entries 0, will be reached.
If instead λ > δ1 the same event as introduced above

can occur. That is, every class-1 user that is allocated with
a pilot happens to be in channel state i1 and every class-2
user allocated with a pilot happens to be in channel state
i2. Then the state YN = [Y1,N ,Y2,N ] with Y 1,N

i1,1
= δ1,

Y2,N
i2,1

= λ − δ1, Y2,N
s = 1 − λ, and all other entries 0, is

reached under WIP policy.
We are going to denote this recurrent state by YN

rec.
Aperiodicity of the Markov chain is given, since by the path

that we have described above the transition from YN
rec to itself

is possible.
Proof of item 2) in Lemma 5: For notational ease, let us

denote the steady-state vector θδ,λ by θ throughout the proof.
Note that θ = [θ1, θ2] is such that

θ1
i,1 = . . . = θ1

i,`∗i
, for all i ∈ {1, . . . ,K},

θ1
1,`∗1+1 = (1− ρ)θ1

1,`∗1
, and

θ2
i,1 = . . . = θ2

i,m∗i
, for all i ∈ {1, . . . ,K},

and all the other entries equal 0. The objective is to show that
there exists a path that under WIP will bring the system to
state θ having started in state YN

rec. A remark on the procedure
to construct this path is in order.

Remark 6. As it has been highlighted in [20, Appendix
F] we are going to consider that channels are splittable.
We explain next what this property implies. Note that WIP
prescribes to activate the fraction of users in belief states for
which the Whittle’s index is highest. Let us assume that for
π1, π2, . . . , πL ∈ Π = Π1 ∪ Π2, W (π1) ≥ . . . ≥ W (πL),
W (π) ≤W (πL) for all π ∈ Π\{π1, . . . , πL}, and

∑L
i=1 yi >

λ and
∑L−1
i=1 yi < λ (with yi the fraction of users in belief

state π). If channels where unsplittable WIP would prescribe
to activate all users in belief states πi, i ∈ {1, . . . , L − 1}
leading to a fraction of activated users

∑L−1
i=1 yi = λ < λ. To

avoid this from happening, we assume channels to be splittable
and therefore allow WIP to activate only a fraction of users
in belief state πL, leading to the fraction of activated users
to equal λ. Through this assumption, a path from YN

rec to θ
can be constructed (done below). The authors in [20] argue
that for large enough N a path with unsplittable channels
under WIP can be arbitrarily close to the exact path (built
exploiting the splittable property of the channels) that brings
the system from YN

rec to θ.

We construct the path from YN
rec to θ next. We are going to

assume W (~πs,1) ≥ W (~πs,2). The other case can be studied
similarly. Let us define hi := max{r : W (~π

`∗i+r,1
i ) ≤

W (~πs,2)}, and let hmax = maxi{hi}.
Step 1: We want to build a path from YN

rec to θ. Let us
assume that the permutation σ is such that `∗σ(1) ≥ `∗σ(2) ≥
. . . ≥ `∗σ(K). We are going to assume that in the first `∗σ(1) −
`∗σ(2) time slots, out of the λ activated users, a fraction θ1

σ(1),1



of class-1 users happen to be in channel σ(1). The rest of
activated users remain in channel i1 for class-1 users and in
i2 for class-2 users. That is, after this first period the path we
have constructed brings the system to the state

Y1,N
σ(1),r = θ1

σ(1),1, for all r ∈ {1, . . . , `∗σ(1) − `
∗
σ(2)},

Y1,N
i1,1

+ Y1,N
s = δ1 − (`∗σ(1) − `

∗
σ(2))θ

1
σ(1),1,

Y2,N
i2,1

+ Y2,N
s = δ2.

Following the same arguments, in the next `∗σ(2)−`
∗
σ(3) time

slots, we assume that out of the λ activated fraction of users,
θ1
σ(1),1 fraction of class-1 users are in channel σ(1), θ1

σ(2),1

are in channel state σ(2) and all the other activated users are
in channel i1 if the users belong to class 1 and in channel i2
if the user belongs to class 2. Therefore, after this period we
reach the following state

Y1,N
σ(1),r = θ1

σ(1),1, for all r ∈ {1, . . . , `∗σ(1) − `
∗
σ(3)},

Y1,N
σ(2),r = θ1

σ(2),1, for all r ∈ {1, . . . , `∗σ(2) − `
∗
σ(3)},

Y1,N
i1,1

+ Y1,N
s = δ1 − (`∗σ(1) − `

∗
σ(3))θ

1
σ(1),1

− (`∗σ(2) − `
∗
σ(3)∗)θ

1
σ(2),1,

Y2,N
i2,1

+ Y2,N
s = δ2.

This process is repeated for other `∗σ(3) time slots, and at the
end of it we obtain

Y1,N
σ(i),r = θ1

σ(i),1, for all r ∈ {1, . . . , `∗σ(i)}, and σ(i) 6= 1, i1,

Y1,N
σ(j),r = θ1

σ(j),1, for all r ∈ {1, . . . , `∗σ(j)},

Y1,N
σ(j),r = (1− ρ)θ1

σ(j),1, with σ(j) = 1, r = `∗1 + 1,

Y1,N
i1,1

+ Y1,N
s = δ1 −

K∑
i=1

`∗σ(i)θ
1
σ(i),1 − (1− ρ)θ1

1,1,

Y2,N
i2,1

+ Y2,N
s = δ2.

In the time slot in which the channel σ(j) = 1 for class-1
users receives a fraction of users for the first time, we assume
the received fraction of users to equal θ1

1,1(1−ρ), and not θ1
1,1

as in every other case.
Step 2: By definition of i2, in the belief states that corre-

spond to Y1,N
i,`∗i+hi+1 for all i = 1, . . . ,K, Whittle’s index, i.e.,

W (~π1,1
`∗i+hi+1), satisfies W (~π1,1

`∗i+hi+1) ≥ W (~π1,2
i2

). We will
assume that for x time slots all fraction of users that occupy the
state Y1,N

i,`∗i+hi+1 for all i after activation they happen to be in
the same channel state i. All the class-2 users that are activated
happen to be in state i2. Therefore, at the end of Step 2, if
x = 0 mod L (where L is the least common multiple of all
`∗i + hi) we recover the same state that we had at the end
of Step 1. We are however interested in finding x such that
x+ maxi{m∗i } = 0 mod L in which

K∑
i=1

`∗i+hi∑
r=1

Y1,N
i,r + (1− ρ)θ1

1,1 = δ1,

Y2,N
i2,1

+ Y2,N
s = δ2.

In the latter we have that
∑K
i=1 hi entries in Y1,N

i,j for all i
and all j ∈ {1, . . . , `∗i + hi} equal 0. The position that these
0s occupy is determined by x.

Step 3: In this last period of length maxi{m∗i } time slots
we mimic the path followed in Step 1 but with respect to
class-2 users. That is, we assume the permutation ϑ to be
such that m∗ϑ(1) ≥ m∗ϑ(2) ≥ . . . ≥ m∗ϑ(K). We are going to
assume that in the first m∗ϑ(1)−m

∗
ϑ(2) time slots, out of the λ

activated users, a fraction θ2
ϑ(1),1 of class-2 users happen to be

in channel ϑ(1). The rest of activated users remain in channel
i2 for class-2 users. The fraction of class-1 users in states
~π
`∗i+hi+1,1
i happen to be in channel state i after activation.

Hence we obtain
K∑
i=1

`∗i+hi∑
r=1

Y1,N
i,r + (1− ρ)θ1

1,1 = δ1,

Y2,N
ϑ(1),r = θ2

ϑ(1),1, for all r ∈ {1, . . . ,m∗ϑ(1) −m
∗
ϑ(2)},

Y2,N
i2,1

+ Y2,N
s = δ2 − (m∗ϑ(1) −m

∗
ϑ(2))θ

2
ϑ(1),1.

We follow this process as done in Step-1 until we reach
the state Y2,N

i,r = θ2
i,1 for all i ∈ {1, . . . ,K} and all

r ∈ {1, . . . ,m∗i } for class-2 users. Since we have assumed
in the previous step that x + maxi{m∗i } = 0 mod L, we
know that in Step 3 of length maxi{m∗i } we reach the state

Y1,N
σ(i),r = θ1

σ(i),1, for all r ∈ {1, . . . , `∗σ(i)},

Y1,N
σ(j),r = θ1

σ(j),1, for all r ∈ {1, . . . , `∗σ(j)},

Y1,N
σ(j),r = (1− ρ)θ1

σ(j),1, with σ(j) = 1,

for class-1 users. We have therefore reached state θ. This
concludes the proof.


