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Abstract—We investigate a pilot allocation problem in wireless
networks over Markovian fading channels. In wireless systems,
the Channel State Information (CSI) is collected at the Base
Station (BS) through either a feedback channel (FDD mode) or a
pilot-aided channel estimation method (TDD mode). This paper
focuses on the latter. Typically, there are less available pilots
than users, hence at each slot the scheduler needs to decide an
allocation of pilots to users with the goal of maximizing the long-
term average throughput. A trade-off emerges between exploiting
users with up-to-date CSI for immediate gains or, exploring users
with outdated CSI for a potential larger future gain. As we show,
the arising pilot allocation problem is a restless bandit problem
and thus its optimal solution is out of reach. In this paper, we
propose a Lagrangian relaxation approach to obtain a Whittle
index policy, which represents a low-complexity heuristic solution
with remarkably good performance.

I. INTRODUCTION

In order to support applications with large data traffic
rates in the downlink, future generations of communication
networks will support technologies such as multiple input
multiple output (MIMO) possibly with massive antenna in-
stallations, e.g., [1]. The performance of these techniques crit-
ically depends on acquiring accurate channel state information
(CSI) at the transmitter, which is then used to precode the
transmitting signals and null the interference at the receivers
[1].

In practice wireless channels are highly volatile, and CSI
needs to be acquired very frequently. Furthermore, in both
FDD (Frequency Division Duplex) and TDD (Time Division
Duplex) systems, only a minority of the users can be selected
to provide CSI to the base station at each given time, since
the resources used for CSI acquisition reduce the system effi-
ciency. In this paper, we focus on pilot-aided CSI acquisition
proposed for TDD systems. However, we mention that our
framework can be applied directly to the CSI feedback context
(i.e. FDD) as well.

For TDD systems downlink CSI is inferred by the uplink
training symbols and the use of the reciprocity property of the
channel; the process is as follows. The BS allocates the M
available pilot sequences to M users out of the total N users
in the system. The chosen users transmit the training symbols
to the BS which provides uplink CSI information. Last, the
base station estimates the downlink CSI exploiting the channel
reciprocity. For the estimation to be successful, M needs to be
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small to avoid the pilot contamination issue. Hence in systems
with a large number of users it is expected that M < N .

It has been observed that once a channel is measured and its
CSI is acquired, the channel coefficients remain the same for
some period of time termed channel coherence time. In fact,
sophisticated transmission schemes can exploit this channel
property to avoid requesting CSI constantly. Therefore, the
problem under study here is to exploit the channel memory
to optimize the allocation of pilots for CSI acquisition. To
model the channel memory we consider channels that evolve
according to a Markovian stochastic process and we study
the pilot allocation problem over these channels. Markovian
modeling of the wireless channel is commonly used in the
literature to incorporate memory, e.g., to model the shadowing
phenomenon, [2], [3].

The pilot allocation problem introduced above, with chan-
nels evolving in a Markovian fashion, can be formulated as
a restless bandit problem (RBP). RBPs are a generalization
of multi-armed bandit problems (MABPs) [4], sequential
decision-making problems that can be seen as a particular case
of Markov decision processes (MDPs). In a MABP, at each
decision epoch, a scheduler chooses which bandit1 to play, and
a reward is obtained accordingly. The objective is to design a
bandit selection policy that maximizes the average expected
reward. In MABPs the bandits that have not been played
remain at the same state and provide no reward. Gittins [4]
proved that the optimal solution of a MABPs is characterized
by a simple index, known today as Gittins index. In the more
general framework of RBPs, the statistics of all bandits evolve
even in slots that are not chosen, and the analysis becomes
more difficult. As a result, obtaining an optimal solution is
typically out of reach. In [5], Whittle, based on the Lagrangian
relaxation approach, proposed a scheduling algorithm, the so-
called Whittle’s index policy, as a heuristic for solving RBPs.
This has been the approach considered in this paper. We derive
Whittles index policy for the above mentioned problem and
we numerically observe its remarkably good performance.

Previous papers that are related to our work ([2], [3],
[6], [7]) study the Gilbert-Elliot channel model, the simplest
Markovian channel having two states, where the channel is
either in a GOOD or in a BAD state. The limitation of such
binary models is that they fail to capture the complex nature

1The notion of the bandit historically refers to a slot machine with an
unknown reward distribution.



of the wireless channel. Instead, here we consider a multi-
dimensional Markov process, which allows to model channels
with multiple states corresponding to how the different modu-
lation and coding techniques used in practice interact with the
wireless channels to yield different level of rewards (=number
of successfully transmitted bits). Thus, we have considered
here a more challenging problem where channels are modeled
by K−state Markov Chains, with K arbitrarily large. This
represents a generalization of prior binary Markovian models.

The remainder of the paper is organized as follows. In
Section II we describe the wireless downlink scheduling
problem that has been considered. In Section III we introduce
two approximations that can be solved using a Lagrangian
relaxation approach. We derive a closed-form expression for
the Whittle index and we define a heuristic for the original
problem based on this index. Finally, in Section IV we evaluate
the performance of Whittle’s index policy and we compare it to
the performance of a myopic policy and a randomized policy.

II. MODEL DESCRIPTION

We consider a wireless downlink scheduling problem with
a single base station (BS) and N users. The channel between
a user and the BS is modeled as a K-state Markov chain.
Time is slotted and users are synchronized. Let us denote by
Xn(t) the state of channel of user n at time slot t. Then
Xn(t) ∈ {h1, h2, . . . , hK}. The state of the channel remains
the same during a time slot and evolves according to the
probability transition matrix Pn = (pn,ij)i,j∈{1,...,K}, where
pn,ij = P(Xn(t+1) = hj |Xn(t) = hi). Channels are assumed
to be independent and non identical across users.

We adopt the following scheduling model. We assume M
different pilot sequences to be available. In the beginning of
each time slot, the BS chooses M out of N users (typically,
M < N ). The selected users use the allocated pilots to send
the uplink training symbols. This mechanism allows the BS
to have perfect CSI during downlink data transmission of
the selected users. Users that have not been selected cannot
provide their current CSI. Therefore, the base station updates
the belief channel state information for these users. Under
Markovian channel models, the update of the belief channel
state has an impact on the future decisions and on the expected
average rewards.

Next we explain the belief channel state update for the pilot
allocation problem introduced above. Let us define ~bφn(t) to be
the belief state of user n during the tth time slot under policy
φ. The element bφn,j(t) is the probability that user n is in state
hj in slot t given all the past channel state information. Let
us denote by aφn(~bφ1 (t), . . . ,~bφN (t)) ∈ {0, 1}, the decision of
the BS with respect to user n, where aφn(·) = 0 if no pilot has
been allocated to user n, and aφn(·) = 1 if a pilot has been
allocated to user n in slot t. For ease of notation we define
aφn(t) := aφn(~bφ1 (t), . . . ,~bφN (t)). Since at most M pilots can
be allocated we have

∑N
n=1 a

φ
n(t) ≤ M. Let us denote by

Sφ(t) = {n ∈ {1, . . . , N} : aφn(t) = 1} the set of users that
have been selected in time slot t under policy φ. We then define
~bφn(t+ 1) := ~bφn(t)Pn if n /∈ Sφ(t), and ~bφn(t+ 1) := ~π1

n,j , if

n ∈ Sφ(t) and Xn(t) = hj , to be the evolution of the belief
states. In the latter equation ~π1

n,j = (pn,j1, . . . , pn,jK) and
~bφn(t) take values in the countable state space Πn = {~πτn,j ∈
RK : ~πτn,j = ~ejP

τ
n , τ > 0}, where ~ej is the vector with all

entries 0 except the jth entry which equals 1. We will use
the notation ~πτn,j = (p

(τ)
n,j1, . . . , p

(τ)
n,jK) throughout the paper.

Belief state ~bφn(t) = ~πτn,j implies that user n has last been
selected in slot t − τ and the observed channel state has
been hj . We note that ~bφn(t) is a sufficient statistic for the
past scheduling and channel state information, see the proof
in Smallwood et al. [8]. Next we make an assumption on ~πτn,j
and we provide a sufficient condition for this assumption to
hold.

Assumption 1 (A1). Let ~πτn,j and ~πτ
′

n,j ∈ Πn. We assume that

maxi p
(τ)
n,ji ≥ maxi p

(τ ′)
n,ji, for all j, if τ ≤ τ ′.

Remark 1. If Pn is doubly stochastic then Assumption 1 holds.

If the Markov chain is irreducible, and Pn doubly stochastic,
the belief channel vector approaches the uniform distribution
as τ increases.

A. Throughput maximization problem

The objective of the present work is to efficiently allocate
the available pilots to the users in the system in order to
maximize the long-run expected average throughput. That is,
find φ such that

lim inf
T→∞

1

T
E

(
N∑
n=1

T∑
t=1

Rn(Xn(t),~bφn(t), aφn(t))

)
, (1)

is maximized, with Rn(·, ·, ·) the immediate throughput. We
have assumed that if a pilot has been allocated to a user,
then the BS obtains full CSI of that particular user, and
therefore, the immediate reward that corresponds to that user is
independent of the belief state Rn(h, ~πτn,j , 1) = Rn(h, 1) for
all ~πτj ∈ Πn and h ∈ {h1, . . . , hK}. Due to A1, we make the
following natural assumption on the reward for not selected
users.

Assumption 2 (A2). Let R1
n and Rn(~πτj , 0) be the average im-

mediate rewards of user n under active and passive actions, re-
spectively. Then, we assume R1

n ≥ Rn(~πτn,j , 0) ≥ Rn(~πτ
′

n,j , 0),
for all τ ′ ≥ τ .

The latter implies that the more outdated the CSI of a user
is, the less the average reward accrued by that user will be.

While (1) being a typical performance measure, it is not
obvious at all to deal with it. In many existing works, a
discounted reward function is usually used. In this work, we
deal with (1) as follows. We first consider the discounted
reward over the infinite horizon: find φ such that

E

(
N∑
n=1

∞∑
t=1

βt−1Rn(Xn(t),~bφn(t), aφn(t))

)
, (2)

is maximized, with 0 ≤ β < 1 the discount factor. We then
retrieve the solution of (1) as a limit of the discounted reward



model (i.e., letting the discount factor β → 1). This limit is
not straightforward since certain conditions on Equation (2),
[9, Chap. 8.10] must be verified. The proof can be found in
the extended version of this paper [10].

III. LAGRANGIAN RELAXATION

The model introduced above falls in the framework of
RBP problems. Each user n ∈ {1, . . . , N} present in the
system can be seen as bandit or arm. The state of each arm
represents the belief channel state of the user. RBPs have been
shown to be PSPACE-hard, see Papadimitriou et al. [11]. A
well established method for solving RBPs is the Lagrangian
relaxation introduced by Whittle in [5].

The Lagrangian relaxation technique consists in relaxing the
constraint on the available resources, by letting it be satisfied
on average and not in every time slot, that is,

N∑
n=1

aφn(t) ≤M ⇒ lim sup
T→∞

1

T
E

(
T∑
t=1

N∑
n=1

aφn(t)

)
≤M, (3)

in the expected average reward model. Objective function (1)
together with the relaxed constraint (3) constitute a Partially
Observable Markov Decision Process (POMDP), and we will
refer to it as the relaxed POMDP throughout the paper.
Observe that, under constraint (3), users become independent
from each other and the relaxed POMDP can be decomposed
into N uni-dimensional optimization problems. We will refer
to the latter as the single-arm POMDP. The solution of the
relaxed POMDP can then be obtained by combining the
solution of the single-arm POMDPs. This is known as the
Whittle index policy (see Section III-C). In the remainder of
this section we drop the user index from the notation since we
will focus on the single-arm POMDPs.

A general recipe to compute Whittle’s index is to: (1) prove
some structure on the solution of the single-arm POMDP
(usually optimality of threshold policies), (2) show that the
indexability property holds (which ensures Whittle’s index to
exist), (3) derive an explicit expression for Whittle’s index and
(4) define Whittle’s index policy. For this particular problem,
proving threshold type of policies to be optimal has shown
to be extremely challenging, except in the 2-state Markov
channel systems (Gilbert-Elliot model), see Albright [12] and
Lovejoy [13]. To the best of our knowledge, all the research
work done in this area has focused on either i.i.d. channel
model or the Gilbert-Elliot channel model. In the present work,
we have considered an approximation that allows to obtain
Whittle’s index for a K-state Markov Chain channel model.
Let us define pa(~πτi , ~π

τ ′

j ) the transition probability from belief
state ~πτi to belief state ~πτ

′

j under action a ∈ {0, 1}. In the
original model we have

p0(~πτi , ~π
τ ′

j ) =

{
1 if j = i and τ ′ = τ + 1,

0 otherwise,
and

p1(~πτi , ~π
τ ′

j ) =

{
p

(τ)
ij if τ ′ = 1,

0 otherwise.

Let us now denote by pa,app(~πτi , ~π
τ ′

j ), the transition probabil-
ity from belief state ~πτi to belief state ~πτ

′

j for the approxima-
tion that we introduce next.
Approximation: If the user is not selected then the original
transitions are kept, i.e., p0,app(~πτi , ~π

τ ′

j ) = p0(~πτi , ~π
τ ′

j ). If the
user is selected then p1,app(~πτi , ~π

1
j ) = psi , where psi is the

steady-state probability of channel hi. In Section IV-A we
numerically evaluate the accuracy of this approximation.

A. Threshold policies

We will prove that the single-arm POMDP can be solved
by threshold type of policies for the approximation above. We
next give a formal definition of threshold policies.

Definition 1. We say that φ is a threshold type of policy if it
prescribes action a ∈ {0, 1} in all states ~πτj such that τ ≤ Γj
and prescribes action a′ ∈ {0, 1} with a′ 6= a for all ~πτj
where τ > Γj , j ∈ {1, . . . ,K} and ~Γ = (Γ1, . . . ,ΓK). Such
a threshold policy will be referred to as policy ~Γ.

As mentioned above we will focus on the discounted reward
model. The Bellman optimality equation, [9, Ch. 6], writes

V appβ (~πτj ) = max{R(~πτj , 0) +W + βV appβ (~πτ+1
j );

R1 + β

K∑
k=1

pskV
app
β (~π1

k))}, (4)

where W is the Lagrange multiplier, which can be understood
as a subsidy for passivity. The Bellman optimality equation is
often used to obtain optimal solutions for MDPs. The function
V appβ is the value function for the single-arm POMDP, and
although not made explicit in the notation it also depends
on W .

In the next theorem we prove that threshold type of policies
are an optimal solution for (4). The proof can be found in
Appendix A in the extended version [10].

Theorem 1. Assume that Assumption 1 holds and let W be
fixed. Then there exist Γ1, . . . ,ΓK ∈ {0, 1, . . .} such that the
threshold policy ~Γ = (Γ1, . . . ,ΓK) is an optimal solution for
problem (4).

Having proven the structure of the optimal policy, the ex-
plicit expression of V appβ can be obtained. The latter enables to
prove conditions 8.10.1- 8.10.4’ in Puterman [9], see Appendix
B in [10]. It then can be shown that the single-arm long-
run expected average reward, under the approximation, equals
limβ→1(1− β)V appβ , see [9, Th. 8.10.7]. Moreover, it can be
seen that threshold type of policies are an optimal solution of
the average reward model too (the proof can be obtained again
as a limit β → 1).

In the next section we derive Whittle’s index for the average
reward model.

B. Indexability and Whittle’s index

In this section we prove the problem to be indexable. In-
dexability is the property that ensures Whittle’s index to exist.
It establishes that as the Lagrange multiplier W increases, the



set of states in which the optimal action is the passive action
increases. In the following we formally define this property.

Definition 2. Let ~Γ(W ) be an optimal threshold policy for
a fixed subsidy W . We define the set L(W ) := {~πτj ∈ Π :
τ ≤ Γj(W ) for all j ∈ {1, . . . ,K}}, i.e., the set of all belief
states in which passive action is prescribed by policy ~Γ(W ).

Definition 3. Let L(W ) ⊆ Π be as defined in Definition 2.
Then a bandit is said to be indexable if L(W ) ⊆ L(W ′) for all
W < W ′, i.e., the set of belief states in which passive action
is prescribed by an optimal policy of the relaxed problem
increases as W increases. A RBP is indexable if all bandits
are indexable.

Although indexability seems a natural property not all
problems satisfy this condition; a few examples are given in
Hodge et al. [14] and Whittle [5]. In Appendix C in [10] we
prove that for the problem under study all users are indexable.
Having proven indexability Whittle’s index can be defined as
follows.

Definition 4. Whittle’s index in state πτj is defined as the
smallest value of W such that an optimal policy of the single-
arm POMDP is indifferent of the action taken in πτj .

We can now proceed to solve Whittle’s index. Let us define
T (~Γ) = {~Γ′ = (Γ′1, . . . ,Γ

′
K) with Γ′i ∈ N ∪ {0} for all i :

~Γ′ > ~Γ}, that is, the set of all threshold policies that are
greater than ~Γ (i.e., ~Γ′ ≥ ~Γ ⇔ Γ′j ≥ Γj for all j). In
particular, we denote T (0) = {~Γ′ = (Γ′1, . . . ,Γ

′
K) with Γ′i ∈

N∪{0} for all i : ~Γ′ > (0, . . . , 0)}. Let α~Γ(~πτj ) be the steady-
state probability of being in state ~πτj under policy ~Γ, and let
b
~Γ the steady-state belief state under policy ~Γ. It then can be

shown that

lim
β→1

(1− β)V appβ (·)

= g
~Γ(W ) = E(R(b

~Γ, a
~Γ(b

~Γ))) +W

K∑
k=1

Γk∑
i=1

α(~πik),

where g~Γ(W ) is the average reward under policy ~Γ when the
subsidy for passivity equals W . Whittle’s index for the average
reward problem can then be computed as explained in the next
theorem. The proof can be found in Appendix E in [10].

Theorem 2. Assume that an optimal solution of the single-arm
POMDP is of threshold type and that

∑K
k=1

∑Γk

r=1 α
~Γ(~πrk)

is non-decreasing in ~Γ. Then the problem is indexable and
Whittle’s index for user n is computed as follows (we omit the
dependence on n from the notation):

Step i: Compute

Wi = inf
~Γ∈T (~Γi−1)

E(R(b
~Γi−1

, a
~Γi−1

(b
~Γi−1

)))− E(R(b
~Γ, a

~Γ(b
~Γ)))∑K

j=1

(∑Γj

r=1 α
~Γ(~πrj )−

∑Γi−1
j

r=1 α~Γi−1(~πrj )

) ,

for all i ≥ 0, where ~Γ−1 = ~0. Denote by ~Γi the largest
minimizer for all i > 0. We define W (~πτj ) := Wi for each

j, such that Γi−1
j < τ ≤ Γij . If ~Γij = ∞ for all j then stop,

otherwise go to Step i+1. When the algorithm stops the Whittle
index for all πτj has been obtained and is given by W (πτj ).

In the following lemma and corollary we derive an explicit
expression for Whittle’s index. The proofs can be found in
Appendix F in [10].

Lemma 1. If in Step i of Theorem 2 for an i> 0, the minimizer
~Γi is such that

∑K
j=1 Γij = (

∑K
j=1 Γi−1

j ) + 1 and Γij ≥ Γi−1
j

for all j ∈ {1, . . . ,K}, then, for u such that Γiu = Γi−1
u + 1,

Wi = R1 +

K∑
k=1

Γi−1
k∑
j=1

R(~πjk, 0)psk−R(~π
Γi
u

u , 0)

K∑
k=1

(Γi−1
k +1)psk,

Corollary 1. Let us define u0 = arg maxu∈{1,...,K}R(~π1
u, 0),

and ~Γ0 = ~eu0 , with ~eu0 the vector with all en-
tries 0 except the u0th element which equals 1. De-
fine ui = arg maxu∈{1,...,K}R(π

Γi−1
u +1

u , 0), and, ~Γi ={∑i
r=0 1{ur=1}, . . . ,

∑i
r=0 1{ur=K}

}
, for all i > 0. Then

W (~π
Γj

uj

uj ) =R1 +

K∑
k=1

Γj−1
k∑
r=1

R(~πrk, 0)psk

−R(~π
Γj

uj
uj , 0)

K∑
k=1

(Γj−1
k + 1)psk, for all j ≥ 0.

Whittle’s index, W (~πτk), is non-decreasing in τ for all k.

Whittle’s index being non-decreasing in τ implies that, the
longer a user has not been selected for channel sensing the
more attractive it becomes to select him/her. The exploration
vs. exploitation trade-off is captured by this latter property.

C. Whittle’s index policy

In this section we explain how the Whittle index can be
used in order to define a heuristic for the original unrelaxed
problem, as in Equation (1).

Definition 5. Assume the state of user n at time t to be ~πτnjn .
The Whittle index policy prescribes to allocate a pilot to the
M users with the highest Wn(~πτnjn ).

Whittle’s index policy is an optimal solution for the relaxed
POMDP. It has been proven to perform strikingly well in
various scenarios Verloop [15] and Ouyang et al. [16].

IV. NUMERICAL ANALYSIS

We provide in this section some numerical results to assess
the performance of the Whittle’s index policy (WIP) and show
some scenarios in which the approximation is accurate. One
can refer to [10] for more details.

A. Accuracy of the approximation

As mentioned in Section III, we evaluate the approximation
that has been considered throughout the paper. To do so, we
compare the optimal solution obtained using a Value Iteration
algorithm for both, the original system and the approximation.



TABLE I
RELATIVE (%) SUBOPTIMALITY GAP

App. 1 pilot App. 3 pilots

Rel. err. ex. 1 0.0798 0.0527

Rel. err. ex. 2 0.0149 0.0393

Myopic Randomized WIP
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Fig. 1. Suboptimality gap (%) of a myopic policy, a randomized policy and
WIP , for 40 randomly generated examples.

Example: Let us assume a system with a BS and four
users. We assume users to be in three possible channel
states hn1, hn2, hn3. Let the transition matrices to be doubly
stochastic and to be different for all four users. We further
consider systems for which the steady-state belief vector for all
four users is (1/3, 1/3, 1/3). Therefore, the immediate average
reward for user i if a pilot has been allocated to it is assumed
to be R1

i = 1
3

∑3
k=1 log2(1 + SNR), i ∈ {1, . . . ,K}. If

user i has not been selected, the average immediate reward
is considered to be Ri(~πτj , 0) = ρi

1
3

∑3
k=1 log2(1 + SNR),

where ρi = maxr{p(τ)
jr }, that is, the highest probability

channel state for user i, when its belief state is ~πτj , and
ĥi = hiσ where σ = arg maxr{p

(τ)
jr }. We first assume that

a single pilot is available to the system, and later on we
assume that three pilots are available. The relative errors of
the approximation w.r.t. the original problem can be found
in Table I for two different examples (ex.1 and ex.2). We
can observe in Table I that the error of the approximation
is extremely small.

B. Performance of Whittle’s index policy

To assess the performance of WIP we generate 40 ex-
amples with randomly generated doubly stochastic transition
probability matrices. We generate the channel vectors for
each user randomly from a zero-mean complex Gaussian
distribution. The latter allows heterogeneity among users. The
throughput obtained by each user under both passive (no pilot
has been allocated) and active actions (pilot has been allocated)
are considered to be as in Section IV-A. We have computed
the relative error of all 40 examples, using the WIP policy
a myopic policy, and a randomized policy, w.r.t. the optimal
solution. The results can be found in Figure 1, where the
horizontal line refers to the average relative error, the upper
and lower edges of the box are the 25th and 75th percentiles

and the crosses are outliers. We observe that the relative
error of Whittle’s index policy is extremely small, whereas
the myopic and the randomized policies can have big relative
errors. WIP being remarkably simple to apply, captures very
closely the optimal exploration vs. exploitation trade-off.

V. CONCLUSIONS

We investigate the challenging problem of pilot allocation
in wireless networks over Markovian fading channels where
typically, there are less available pilots than users. At each
time, the BS can know the current CSI of users to whom a
pilot has been assigned. A channel belief state is estimated for
other users. The problem can be cast as a restless multi-armed
bandit problem for which obtaining an optimal solution is out
of reach. We have proposed a Lagrangian relaxation approach
to obtain a Whittle index policy, that has a low complexity, and
has shown to perform remarkably well. Future work include
obtaining explicit performance bounds for the approximation
considered in this paper.
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[10] M. Larrañaga, M. Assaad, A. Destounis, and G. Paschos, “Dynamic pilot
allocation over markovian fading channels: A restless bandit approach.”
Extended version, HAL report (hal-01349104).

[11] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of optimal
queuing network control,” Mathematics of Operations Research, vol. 24,
no. 2, pp. 293–305, 1999.

[12] S. C. Albright, “Structural results for partially observable markov
decision processes,” Operations Research, vol. 27, no. 5, pp. 1041–1053,
1979.

[13] W. S. Lovejoy, “Some monotonicity results for partially observed
markov decision processes,” Operations Research, vol. 35, no. 5, pp.
736–743, 1987.

[14] D. Hodge and K. D. Glazebrook, “Dynamic resource allocation in
a multi-product make-to-stock production system,” Queueing Systems,
vol. 67, no. 4, pp. 333–364, 2011.

[15] I. Verloop, “Asymptotically optimal priority policies for indexable
and non-indexable restless bandits,” To appear in Annals of Applied
Probability, 2016.

[16] W. Ouyang, A. Eryilmaz, and N. Shroff, “Asymptotically optimal
downlink scheduling over Markovian fading channels,” Proceedings of
IEEE INFOCOM, pp. 1–9, 2012.


	Introduction
	Model Description
	Throughput maximization problem

	Lagrangian relaxation
	Threshold policies
	Indexability and Whittle's index
	Whittle's index policy

	Numerical analysis
	Accuracy of the approximation
	Performance of Whittle's index policy

	Conclusions
	References

