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Abstract

We consider a Planar Face Complex (PFC). It is defined by the immersion of a planar and connected graph G, which
comprises a set of vertices joined by curved edges. G decomposes the plane into faces that need not be manifold or
open-regularized and may be bounded by a single loop edge. The PFC may, for example, be used to represent the
complex street network of a city, the decomposition of a continent into countries, or the inhomogeneous structure made
of a large set of regions of different materials possibly with internal cracks. The rasterized Planar Face Complex (rPFC)
proposed here provides a compact representation of an approximation of a PFC, where the precise location of each vertex
is quantized to the pixel that contains it and where the precise geometry of each curved edge is approximated by the
ordered list (with possible repetitions) of the pixels traversed by (a chosen polygonal approximation of) the edge. We
claim three key contributions: (1) The geometric error between a PFC and its rPFC is bounded by the pixel half-diagonal.
(2) In spite of such a drastic discretization of the geometry, the rPFC captures the exact topology of the original PFC
(provided that no street lies entirely inside a single pixel) and supports standard graph traversal operators that permit
to walk the loop of sidewalks along the streets that bound a face, to cross a street to the opposite sidewalk, or to cross
streets in order while walking around their common junction. (3) The local connectivity and order information needed to
provide the above functionality is stored at each pixel using only about 4 bits per crossing. We discuss the details of this
representation, our implementation of its exact construction, four possible embodiments that offer different space/time
efficiency compromises, experimental results, relations between rPFC and prior solutions.

Keywords: Planar polygonal meshes, Combinatorial maps, Compact representation, Topology preserving rasterization.

1. Introduction

We propose a rasterized representation for planar face
graphs. It may be used to model planar multi-material
structures [1], street networks [2], geological models [3], or
to describe accurate rasterization of planar maps of over-5

lapping SVG elements [4]. Our representation, called ras-
terized Planar Face Complex (rPFC), stores only a few
symbols for each pixel intersected by the edges. It sup-
ports exact topological graph traversal, even when a pixel
overlap with several regions and contains several vertices.10

Many previously proposed representations of planar face
graphs either store the connectivity using integer refer-
ences (a solution that has a high storage cost) or re-sample
the graph at intersections with grid lines and discard the
topology information about what happens inside a pixel.15

Our solution unifies these approaches and provides a com-
pact, per pixel representation. It provides a spatial de-
composition of the connectivity of the graph into local
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(per pixel) descriptors that can be stored using a constant
number of bits per pixel and streamed as needed.20

Our solution stores the topology of the original com-
plex (assuming that no edge lies entirely inside a single
pixel) and is capable of representing sub-pixel connectiv-
ity. Hence, it should be distinguished from pure image-
based approaches that only store a face color or scalar25

per pixel and from approaches that re-sample the graph
at intersections with grid lines and that discard the origi-
nal connectivity information. In fact, rPFC may be easily
configured to extend these approaches by providing them
with a space efficient representation of the exact topology30

in each pixel.

The paper is organized as follows. In Sect. 2, we define
the Planar Face Complex and the operators that we ad-
vocate for traversing its graph in a consistent manner. In
Sect. 3, we outline our approach, explaining our exact ras-35

terization process, the computation of the local (per pixel)
connectivity, and its compact encoding. In Sect. 4, we ex-
plain how we use it to support traversal of the original
graph and ordered access to vertex and face attributes. In
Sect. 5, we discuss four embodiment options, and some im-40

Author version of paper “Rasterized Planar Face Complex; Damiand G., Rossignac J.; Computer-Aided Design (CAD), Volume 90, pages
146-156, September 2017”. Thanks to Elsevier.
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Figure 1: A Planar Face Complex (PFC) with 14 curved edges, 5
faces, a non-manifold vertex (B) on the boundary of the external
(infinite) face, a crack (from C to E), and a dead-end vertex (I).

plementation details. In Sect. 6, we present experimental
results. In Sect. 7, we compare our approach to relevant
prior art. In Sect. 8, we summarize our contributions and
outline future challenges.

2. Background and terminology45

2.1. Planar Face Complex (PFC)

Consider a connected, curved, planar one-complex de-
fined by a set of vertices in the plane and by a set of
possibly curved and relatively open edges that connect
them. We assume a proper embedding: (1) different ver-50

tices do not coincide, (2) each edge is manifold (free from
self-intersection), and (3) the relative interior of each edge
is disjoint from other edges and vertices. This set of edges
and vertices is the embedding of a planar graph , G.

Let U be the set theoretic union of the point sets of the55

vertices and edges of G. Consider the complement, !U, of
U. Each maximally connected component of !U is called a
face . Note that a face is topologically open (i.e., it does
not contain its boundary). Because we assume that G
is connected, a face cannot have holes (i.e., its boundary60

must be connected). However, the boundary, B, of a face,
F, may contain cracks (edges bounded by F on both sides)
and pinch points (non-manifold vertices). G may have
multi-edges (more than one edge joining any given pair
of vertices) and loops (edges that start and end at the65

same vertex). All faces are bounded (i.e., fit in a disk of
finite radius) except for one, which we call the external
face .

We distinguish three types of vertices: dead ends
(which bound a single edge of G), turns (which bound70

two edges) and junctions (which bound 3 or more edges).

We use the term Planar Face Complex (PFC) when
referring to the faces, edges, and vertices of a decomposi-
tion of the plane by such a connected and curved, planar
one-complex. An example is shown in Fig. 1.75

Consider a regular grid of pixels (open faces), separated
by roads (their relatively open edges), and crossroads

S
S.O

S.N

S.R

S.P

Figure 2: Primary sidewalks operators in a PFC map a sidewalk S
to the opposite one, S.O on the other side of the curved street, to
the next, S.N, along the clockwise sidewalk loop of face S.F, and to
the previous one, S.P along that loop. The derived rotate operator,
S.R, maps S to the next sidewalks that emanates from S.V and is
obtained by rotating clockwise around S.V. Note that S.R may be
derived as the composition S.P.O of the previous and opposite maps.

(their vertices). A pixel is stabbed when its intersection
with G is not empty.

Our goal is to provide a compact representation of a80

rasterized (i.e. approximate) version of a PFC, where the
vertex and edge geometry is approximated (known only up
to pixel resolution), but where the graph connectivity is
represented exactly and yet broken down into compactly
encoded local components, stored at each stabbed pixel.85

2.2. Sidewalks and operators

In this subsection, we describe a generic representation
and associated traversal operators for PFC. We assume
that the input PFC is formulated using such a represen-
tation (or an equivalent one) and we want to construct a90

new rasterized representation of the PFC that supports the
original traversal operators exactly, so that the application
that uses these operators does not need to be changed.

We use the term street for each edge of G. With each
street, we associate two sidewalks, one on each side. We95

orient each sidewalk, S, so that its street, S.E , lies on the
right of S (with respect to this orientation). We chose this
non-standard terminology to distinguish the elements of G
from those of the proposed representation. A sidewalk is
stabbing a pixel, P, when its street, E, traverses P (splits100

it into two or more faces).

We use S.V to denote the vertex at which sidewalk S
starts and S.F to denote the face abutting to S. Note that
the circularly ordered list of the sidewalks of a face forms
an oriented loop that goes clockwise around that face.105

We use three primary sidewalk operators that map
a sidewalk S to a neighboring sidewalk (see Fig. 2):

• S.N = next sidewalk along the loop of S.F

• S.P = previous sidewalk along the loop of S.F

• S.O = opposite sidewalk (on the other side of S.E)110

2



The collection of these three operators defines a Com-
binatorial Map [5, 6] (the tuple of the set of sidewalks
and of the set of these operators is an algebra). Note that
S.P is the inverse of S.N (i.e., S.N.P=S) and that S.O is
an involution (i.e., S.O.O=S).115

Various data structures have been proposed to support
these operations. We discuss some in Sect. 7. Note that
in 2D, a combinatorial map is equivalent to several other
data structures such as Half-Edge, Corner Table, or Dou-
bly Connected Edge List (DCEL) (see [6]).120

As done in several modern representations, we associate
sidewalks with consecutive integer IDs. To simplify presen-
tation, we will assume that S refers either to the abstract
concept of a sidewalk or to the associated integer ID, de-
pending on the context. Two arrays are often used to store125

the maps for two sidewalk operators: N[S] stores S.N and
P[S] stores S.P. Trading processing time for storage, one
may avoid storing P[S] explicitly and compute S.P, each
time it is needed, by traversing the loop around S.F and
returning the last sidewalk reached before returning to S.130

Assuming that the IDs of S and of S.O are consecutive
makes it unnecessary to store the “opposite” map explic-
itly in an array O[] (S.O may be computed from S as S+1
if S is even and S-1 otherwise).

Our goal is to provide a more compact, yet localized (per135

pixel), representation of the O[], P[] and N[] maps of a
rasterized version of a PFC, which we call the rasterized
Planar Face Complex (and abbreviate rPFC).

3. Rasterized Planar Face Complex (rPFC)

In this section, we describe the proposed approach for140

computing the rPFC of a PCF. Our solution is based on a
numerically robust rasterization process that performs the
following steps: (1) identify the set of pixels that contains
(the edges and vertices of) graph G, (2) split stabbing
(entering and leaving the same pixel) street by inserting145

split vertices, (3) order the entering sidewalks around each
pixel, and, (4) for each pixel, store the “next” map between
entering and exiting sidewalks in a compact form, as a
sequence of symbols (which we call a word) taken from a
small codebook of 7 or fewer symbols.150

Compact data structures for storing these words while
providing fast access to neighboring pixels are discussed in
Sect. 5.

3.1. Rasterization and refinement of G

During the rasterization step, for each vertex and for155

each edge of G, we identify the pixels that contain it. Fur-
thermore, for each edge E of G, and for each pixel P that
E exits or enters, we identify the roads through which it
does so.

To avoid dealing with singular configurations where a160

vertex of G lies exactly on a road or crossroad and con-
figurations where a street of G passes exactly through a
crossroad or overlaps with a road, we use a special version
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Figure 3: Refined graph R with original vertices of G shown as disks
and inserted split vertices shown as diamonds. Note that pixel (1,1)
is split twice by the same street, (A,B), of G, which in R is replaced
by 4 streets: (A,2), (2,1), (1,3), and (3,B).

of Simulation of Simplicity [7] and bias our geometric tests
so as to produce results consistent with a virtual perturba-165

tion of G that avoids such singularities (for example, when
a street of G passes through a crossroad, we assume that
it passes below it or on the right of it, depending on the
street orientation. Similarly, when a vertex of G lies on
a road or crossroad, we assume that it lies above, to the170

right, or both, depending on the configuration).

In our implementation, we assume that each street
is represented by an approximating manifold polygonal
curve. We chose in this paper to describe the input PFC
in terms of curved, rather than straight, streets to empha-175

size the fact that the sampling vertices along these curved
streets are not considered as vertices of the graph G and
to not decompose the curved street into small straight or
curved edge segments each having different sidewalks. The
exact geometry of a street, its sample points, and its de-180

composition into straight line segments will be lost during
rasterization. Only the connectivity between faces, streets,
and junction or turn vertices will be preserved.

Rasterization distinguishes two types of pixels: shared
pixels (which contain a junction, dead-end, or turn vertex185

of G or that are traversed by an street of G) and private
pixels (which are each fully contained in a single face of
the PFC).

To simplify explanations and terminology, in the re-
mainder of the paper, we assume that we first construct a190

refined version, R, of graph G. R is obtained by initial-
izing it to G and by identifying all street segments where
a street, E, splits (i.e., enters and leaves) a pixel, P. In
each such segment, we insert (into R) a new split vertex,
V, anywhere along that segment. A street E that splits195

several pixels will be split several times, once per splitting
segment. Note that a curved street may split the same
pixel more than once as shown in Fig. 3 at pixel (1,1) for
the left-most of the two streets between vertices A and B.
These insertions do not alter the geometry of the graph,200

but increases the street count.
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R is defined implicitly by G and by the pixel grid. Al-
though it could be constructed easily during the above
rasterization process, it can be processed from its implicit
form directly using the representation of G without the205

need for storing the split vertices explicitly. But for sim-
plicity of presentation, we assume below that R has been
constructed and that we have access to its sidewalks and
to primary operators on them.

For clarity and conciseness, to distinguish G from R, we210

use the term dart when referring to the sidewalks of R
and we will use the term edge when referring to a street
of R. We will use lowercase letters for darts (for example,
d) and for their operators (d.o, d.p, d.n, d.v, d.e, d.f).
Note that to each sidewalk of G corresponds a set of one215

or more darts of R.
Our solution is based on the fundamental validity as-

sumption: we require that no street of G (and hence no
edge of R) lies entirely in a single pixel. There are two
important benefits of enforcing this assumption and of con-220

sidering R rather than G: (1) No edge of R splits a pixel
and (2) in each shared pixel, each connected component of
R contains exactly one vertex of R.

A simple way to ensure that the pixel grid has sufficient
resolution to preserve the original topology of G is to re-225

quire that the pixel diagonal be smaller than the shortest
edge of G.

3.2. Computing and ordering the crossings of a pixel

We process each shared pixel, P, one at a time. We
identify each dart, d, of R that enters P (i.e., for which the230

starting vertex, d.v, lies outside of P and the ending vertex
d.o.v lies in P). We compute the corresponding crossing
(unique point where edge d.e crosses one of the roads in
the boundary of P). We label the crossing using one of the
4 tags {‘W’,‘N’,‘E’,‘S’} depending on whether the crossing235

lies on the left, top, right or bottom road around P. Finally,
we order the crossings of P clockwise around P, starting
at the lower left crossroad of P.

To order the crossings along a road, we derive a rational
expression for each crossing based on the standard slope-240

intercept formula. Assuming that the coordinates of the
pixels are represented (or have been quantized) to 16 bits
each, the exact ordering can be computed by performing
only additions and multiplications on long integers.

3.2.1. Local dart indices245

The integer symbol index , s, is used to identify the
crossings and crossroads of a pixel P in clockwise order
around the border of P, starting from the lower-left cross-
road. Observe that each crossing corresponds to a set of
two opposite darts, d and d.o, of R. Each dart, d, intersects250

two pixels: it exits a pixel, Q, and enters a road-adjacent
pixel, P. Dart d has a different dart index in each one of
these two pixels.

Consider a dart, d, that enters or exits pixel P. Let
i(d,P) denote the dart index of d with respect to P. Note255
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Figure 4: Local indices of darts in adjacent pixels. Notice that two in-
dices are skipped for each crossroad. Global dart identifiers (15,‘E’,P)
and (4,‘W’,Q) refer to the same dart, which exits P by the East side
and enters Q from the West side.

that d is associated with a single crossing, x. Let x denote
the symbol index of x with respect to P. Then i(d,P) is 2x,
if d enters P, and 2x + 1, otherwise.

By this convention, i(d,P) is even for exiting darts and
odd for entering darts, and the dart indices of d and d.o in260

the same pixel are contiguous integers. Figure 4 illustrates
this notation.

Note that four values of s are not associated with darts:
they correspond to the crossroads of P.

A dart, d, that enters or exits pixel P is identified locally265

in P by (i,T), where i is the dart index of d in P and T is
the tag of the crossing associated with d in P, and globally
by the triplet (i,T,P).

3.2.2. Conversion between local indices of a dart

Given the local index, i, of a dart, d, that enters (resp.270

exits) pixel P with tag T, we want to compute the pixel
Q that d exits (resp. enters) and the local index j and
tag U of d in Q. Below, we describe informally the conver-
sion procedure, (j,U,Q)=Convert(i,T,P), using an exam-
ple that illustrates one of the possible configurations.275

In Fig. 4, we know that dart (15,‘E’,P) exits pixel P,
because it’s dart index (i = 15) in P is odd. Since d exits
P by the east side (T=‘E’), Q lies on the right of P and d
enters Q by the west side (U=‘W’). We also know that j
must be even. Below, we explain how we compute j.280

Let B be the road between P and Q crossed by d. Let
T (resp. U) be the tag associated with B in P (resp. Q).
To compute j, we first compute:

• c = number of darts with tag T in P;

• x0 = the local index of the first dart with tag T in P;285

• e0 = the local index of the first dart with tag U in Q.

and then set j = e0 + (x0 + c− i− 1).
Note that c, x0, and e0 are always even. Thus, if i is

even, then j is odd, and vice versa. In the example of
Fig. 4, j = 4, because this is the 5th dart clockwise along290

the ‘E’ road of Q (i = 15, c = 8, x0 = 12 and e0 = 0).
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Figure 5: A pixel with 8 crossings. Its next map is encoded by the
word “(([=+]+Y+))+”.

3.3. Encoding of the combinatorial map in a pixel

In the previous subsection, we explained how to convert
between the two local representations of a dart in adjacent
pixels. In this section, we propose a compact encoding295

of the primary operators (previous, opposite, and next)
between darts that enter pixel P and darts that exit it.

3.3.1. Computing the local index of the opposite dart

Given dart, d, with local index i in P, we do not need
to store an explicit encoding of the local index of the op-300

posite dart, d.o, because, as explained earlier, it is defined
implicitly as i + 1 (if i is even) or as i − 1 (otherwise).
Remember that darts d and d.o pass through the same
crossing. Hence they have the same tag in P.

3.3.2. Compact encoding of the next dart map305

Our encoding of the topology of R in a given pixel P
builds a word (sequence of symbols) by considering, in
clockwise order around the pixel, each crossing and each
crossroad (pixel corner) and by assigning a symbol to each.
The ‘+’ symbols correspond to crossroads and is used to310

separate the crossings into the four sub-lists (‘W’, ‘N’, ‘E’,
and ‘S’). Furthermore, the occurrence of the 4th ‘+’ symbol
always indicates the end of the word. Figure 5 shows the
word for a particular pixel.

Our choice of the symbol assigned to each crossing and315

its computation, described below, encodes the connected
components of R in P (i.e., the subsets of crossings that
are connected by the portion of R in P) and makes it easy
to compute the “next” map for each incoming dart.

We use different symbols to distinguish crossings that320

open (i.e., start) a new connected component, that con-
tinue (i.e., add a branch to) the current component, and
that close the current component. We use different sym-
bols to distinguish between components connected to a
split vertex added in R, components connected to an orig-325

inal junction or turn in G, and edges leading to a dead
end.

For fully general PFC (with dead ends and turns), we
define the following seven symbols:

• ‘=’ : leads to a dead end330

• ‘+’ : denotes crossroad

• ‘[’ : starts a component connected to a split

• ‘]’ : ends a component connected to a split

• ‘(’ : starts a component connected to a junction

• ‘Y’ : adds a branch to a junction335

• ‘)’ : ends a component connected to a junction

An example is shown in Fig. 5.
Starting from the lower left corner, the first crossing is

labelled ‘(’, because it denotes the first encounter with a
new component connected to a turn vertex.340

The next crossing is also labelled ‘(’, because we en-
counter a new component, this time connected to a junc-
tion vertex (our encoding does not distinguish explicitly
between junction and turn vertices, but this distinction
may be easily established during traversal by using the345

“rotate” operators on the darts of the component to count
the number of incident edges on the vertex to which the
component is connected).

The next crossing is labelled ‘[’, indicating that we have
encountered a new component connected to a split vertex350

(that is not a proper vertex of G, but was inserted during
the construction of R).

The next crossing is labelled ‘=’, indicating that we have
encountered a new component, but that the dart, d, that
enters P through that crossing is connected to a dead-end355

vertex. Hence, the connected component is closed right
away. At this point, we still have 3 active components.

The next crossing is labelled ‘]’ to indicate that we close
the component that was activated last (the component of
the split vertex). At this point, we still have two active360

components left.
The next crossing is labelled ‘Y’, indicating that it corre-

sponds to an edge that is connected to the junction vertex,
V, of the current (last opened) component. ‘Y’ also im-
plies that this crossing is neither the first nor the last (in365

the order around P) that is connected to V.
The next crossing is labelled ‘)’, indicating that we have

reached the last edge of the current component, which is
the one connected to the valence 3 junction vertex.

The final crossing is labelled ‘)’, indicating that we have370

reached the last of the edges connected to the turn vertex.

3.4. Algorithm for computing a pixel’s word

To compute the word (i.e., the array W[] of symbols)
for a given pixel, P, we start with the following two steps:
(1) we identify all the edges of R that intersect P (remem-375

ber that each edge of R has a single crossing with the
boundary of P) and (2) we order their crossing around P.

Then, we visit them in order around P and, for each
incoming dart, d, we use the dart operators in R to assess
what kind of a component (dead end, split, junction or380

turn) d connects to and whether d opens, continues, or
closes a component. Depending on these findings, we set

5



the symbol of the corresponding crossing and add it to the
word of P (write it into the next available entry of the W
array). The details are shown in Algo. 1.385

Algorithm 1: Symbol of a dart

Input: d: a dart that enters into pixel P.
Output: symbol associated with the crossing of d.
d2← d;
repeat

d2← d2.n;
until d2.n.v is not in pixel P ;
if d=d2.o then return ‘=’;
else if isSplitVertex(d.n.v) then

if i(d.n,P)>i(d,P) then return ‘[’;
else return ‘]’;

else if i(d2,P)>i(d,P) then return ‘(’;
else

d2← d.o;
repeat

d2← d2.p;
until d2.p.v is not in pixel P ;
if i(d2,P)>i(d,P) then return ‘Y’;
else return ‘)’;

As we progress around the border of P, we keep track of
the which road we are on and append to W a ‘+’ each time
we reach a crossroad. For each pixel, we store a compact
encoding of its word.

To avoid the computational cost of visiting all edges of390

R for each pixel, one may envision rasterizing R once and
keeping track, at each pixel, of the edges that stab it. But
such a solution would require a considerable amount of
storage per pixel. Our implementation processes the pixels
one row at a time, in top-down order, and maintains a list395

of active edges of R (those stabbing the current row).
The connectivity of R is fully represented by the list of

shared pixels and by their words.

3.5. Geometric error bound

rPFC encodes the ordered sequence of pixels stabbed400

by each street, E, of the original graph G. Let U be the
union of these pixels and C be their center-points. U is the
Minkowski sum of C with a pixel centered at the origin.
Since, by construction, E is contained in U, the Hausdorff
distance between E and C does not exceed half of the pixel405

diagonal.

3.6. Adaptive version of rPFC

The presence of relatively short streets in G imposes an
upper-bound on pixel size. When the exact topology must
be preserved and simplification is not an option, such a410

constraint increases the pixel resolution and the number
of stabbed pixels, hence also the storage and performance
cost. To address this problem, we envision the option of
a variable resolution rPFC. It stores a coarse resolution

rPFC in which some of the stabbed pixels may be identi-415

fied. These are each split into 4 quadrants, for which the
word encoding may be accessed or transmitted through
progressive refinements. This can be repeated recursively
(as in a quad-tree).

4. Usage of rPFC420

Here, we explain how we use these words and simple
local procedures to support all primary dart and sidewalk
operators and to retrieve associations of color or other at-
tributes with the faces, edges, or vertices of the PFC.

4.1. Using pixel words for supporting dart operators in R425

We show here how to use the word (the content of array
W) of a pixel P to compute the dart indices of d.o, d.n
and d.p from the dart index of an entering dart d.

4.1.1. Intra-pixel “opposite”

Let k be the dart index of a dart d that enters pixel430

P. The dart index of d.o is k + 1 if k is even and k − 1
otherwise. Moreover, d.o and d have the same tag.

4.1.2. Intra-pixel “next”

Given the local dart index, k, of a dart, d, that enters
a pixel, P, we use the following procedure to compute the435

local index of d.n that exits P, and the tag of d.n. Note
that the starting vertex of d.n is in P, because any dart of
R that enters a pixel P reaches a vertex of R in P.

Computing d.n requires distinguishing different cases.
A relatively simple algorithm is presented in Algo. 2 and440

explained below.
Let k be the dart index of entering dart d with respect

to pixel P and let T be its tag. Let c = k/2 be the symbol
index of the corresponding crossing. Let s be the symbol
associated with that crossing.445

When s is ‘=’, d reaches a dead end and hence d.n is
d.o. Therefore, the dart index of d.n is k + 1.

When s is ‘[’, d is the first dart around P that reaches
a split vertex, v. We want to find the unique dart d.n
that leaves v and is not d.o. To find the symbol index450

c of its crossing, we imagine walking around the bound-
ary of P clockwise until we find the matching ‘]’ symbol.
Here, the term matching implies that we skip over, possi-
bly nested, matching pairs (‘[’,‘]’ or ‘(’,‘)’) and ignore all
other symbols. In practice, we do not walk around P, but455

simply read the symbols in the order in which they appear
in the word associated with P, starting from symbol index
c = d/2 + 1. The dart index of d.n is 2c+ 1. We also want
to know the tag, T, of d.n. To compute it, we initialize it
(T=U), and advance T to the next tag, each time we pass460

a ‘+’.
When s is ‘(’, we follow the same process as for ‘[’.
When s is ‘)’, ‘Y’ or ‘]’, we follow the same process, but

walking backwards (i.e., reading the symbols in reverse
order). Note that for ‘)’ and ‘Y’, we need to stop either465
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Algorithm 2: Dart index of d.n for entering dart d

Input: (k,T): the local index and the tag of a dart d;
W: the word of the pixel entered by d.

Output: (l,U): the local index and the tag of d.n.
c ← k/2 ; /* symbol index of dart d */

s ← W[c];
U ← T; /* road of d */

if s=‘=’ then
return (k+1,T) ; /* dead end */

else
if s=‘[’ or s=‘(’ then n ← 1; dir← 1;
else n ← -1; dir ← -1;
repeat

c ← c+dir; s ← W[c];
if s=‘[’ or s=‘(’ then n+ +;
else if s=‘]’ or s=‘)’ then n−−;
else if s=‘+’ then

if dir=1 then
U ← next road after U around P

else
U ← next road before U around P

until n=0 or (n=-1 and s=‘Y’);
return (2×c+1,U)

when we found the matching ‘(’ or when we found a ‘Y’
symbol that is associated with a crossing connected to the
junction vertex reached by d.

To understand Algo. 2, observe that, when we walk
clockwise around P and encounter a new component, we470

encounter first openings (‘(’ and ‘[’) before the corre-
sponding closings. So, in Algo. 2, we keep the nesting
count, n, of active components (‘(’ and ‘[’ increment n
and ‘)’ and ‘]’ decrements it) and return the index of the
outgoing dart of the crossing for which n = 0.475

When entering dart d correspond to a closing, we must
move counterclockwise, skip over pairs of matching clos-
ings and openings, until we find an opening that matches
the closing of d. For conciseness, in Algo. 2, we use the
same loop to handle both clockwise and counterclockwise480

traversal. To differentiate them we use a variable dir. Fur-
thermore, because openings increment the counter n and
closings decrement it, when walking counterclockwise, n
is negative. Also note that we use the test (n = −1 and
s=‘Y’) to identify the first ‘Y’ crossing encountered while485

walking counterclockwise from d.

4.1.3. Intra-pixel “previous”

Given the dart index of a dart, d, that exits pixel P,
computing d.p is done by using exactly the same principle
as in Algo. 2, but changing the direction of the traversals.490

4.2. Inter-pixel operators

The previous subsection focused on computing intra-
pixel operators: dart indices for darts d.p, d.o, and d.n

that lie in the same pixel as dart d. Here, we discuss inter-
pixel operators for next, previous and opposite.495

Each dart, d, has two global descriptors in an rPFC:
(x,T,P) in the pixel P that it exits and (e,U,Q) in the
pixel Q that it enters. Remember that x is odd and e
is even. By convention, we associate dart d with (x,T,P)
because pixel P contains the vertex where d starts.500

So, d.n is obtained by starting with the descriptor
(x,T,P) of d, using the Convert() procedure, given in
Sect. 3.2.2, to obtain descriptor (y,V,Q), and performing
the intra-pixel next operator on (y,V,Q) in Q.

Similarly, d.p is obtained by starting with the descriptor505

(x,T,P) of d, performing the intra-pixel previous operator
on (x,T,P) and then using Convert() on the result to ob-
tain descriptor (y,V,Q) in Q.

Finally, d.o is obtained by starting with the descrip-
tor (x,T,P) of d, using Convert() to obtain descriptor510

(y,V,Q), and performing the intra-pixel opposite operator
on (y,V,Q) in Q.

4.3. Mapping between darts of R and sidewalk of G

Sidewalks of G and operators on them can be imple-
mented using darts of R and their operators. Remember515

that each sidewalk of G is decomposed into a series of one
or more darts of R, that are connected by split vertices.
We associate a sidewalk, S, of G with the first dart, d, of
R in the corresponding list. Hence, S inherit the vertex
and face of d. Let dart(S) denote the dart in R that is as-520

sociated with sidewalk S of G. Similarly, let Sidewalk(d)
denote the sidewalk of G associated with dart d of R.

Let d.e denote the last dart of a series that starts at d
and contains all the darts of the same sidewalk of G. d.e is
computed by iterating “next” until we reach a dart with525

an end vertex that is not a split. Similarly, d.b is the first
dart of a series that ends at dart d and contains all the
darts of the same sidewalk (d.p is computed by iterating
“previous” until we reach a dart with a beginning vertex
that is not a split).530

We can implement the primary operators on sidewalks
as follows:

• S.N = Sidewalk(dart(S).e.n)

• S.O = Sidewalk(dart(S).e.o)

• S.P = Sidewalk(dart(S).p.b)535

Hence, we are able to use the S.P, S.O, and S.N operators
on G from the information contained in the words stored
at the shared pixels of the proposed rPFC.

4.4. Indexing vertices, edges and faces

In some applications, it is desired to associate an at-540

tribute (color or property) with each face, edge, vertex. In
modern data structures for face meshes, this is often done
for face attributes by associating consecutive integer IDs
with the faces and by storing the attribute values in an
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array indexed by the face IDs. For example F[f] may be545

the value of face attribute (say color) of face with ID f.
Let us assume that such an array F[] exists and is con-

trolled by the application.
The question that we address here is not the cost of

storing the attribute values, but the space and time cost550

of using the rPFC to associate each dart, d, of R with the
face ID, d.f, of the incident face.

We also must address the cost of associating each face, f,
with at least one dart, d, on its boundary, such that d.f=f.
We propose a partial solution inspired by previous work555

on mesh compression [8, 9, 10], where the faces IDs are
assigned based on a specific traversal order of the graph.
For example, we can use the depth-first traversal proposed
in [11] and assign the next available integer f to each face
when it is first encountered. A fast approach that only560

requires a relatively shallow stack requires storing a one-
bit marker with each vertex to indicate whether the vertex
has already been visited.

This approach allows to use the attribute F[f] when pro-
cessing (for example coloring) the corresponding face. The565

solution can also be used to support the picking of a face
by clicking on a private pixel (it suffices to use the above
approach to render each face with a color that encodes
its index and retrieve the color of the picked pixel). The
advantage of this solution is that it does not require any570

additional storage (except of course for the array F[] of
attributed). Similar solutions may be used to associate
attributes with the darts, vertices, and edges of R and
hence of G.

We see two important drawbacks of such a partial ap-575

proach: (1) Accessing (measuring or displaying) a partic-
ular vertex, edge, or face requires performing the traversal
of the entire graph. (2) When an algorithm uses the dart
operators to perform a different or a partial graph traversal
and arrives at a dart d, we do not have direct access to its580

ID, nor to the IDs of its vertex d.v or face d.f. Of course,
these could be retrieved at no additional storage cost by
performing the depth first traversal and stopping when it
reaches d, but this cost would raise the computational cost
of the algorithm and would lower its performance.585

5. Data structures for rPFC

In this section, we first discuss strategies for compact
representations of individual symbols and words and then
outline four different architectures for rPFC representa-
tions: (1) A matrix with constant size entries, one per pix-590

els, that has many advantages, but requires a large amount
of storage in configurations with a relatively large propor-
tion of private pixels, (2) A pixel adjacency graph with
variable size representation of words that requires storing
with most shared pixels the addresses of their neighbors,595

(3) A version of the above that does not store private pixels
and is attractive or modeling street maps or river graphs,
and (4) A compact version of the above where addresses
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Figure 6: Example of rPFC (grey) encoded with the V1 architecture.
The maximal number of crossings, m, is 4. Thus, each word, W[i,j], is
stored using 25 bits (addresses are multiples of #15 in hexadecimal).
Words starting with ‘1’ identify stabbed pixels.

of neighbors are not stored, but need to be retrieved by a
partial traversal of the corresponding row of pixels.600

5.1. Compact encoding of symbols and words

The set of symbols used in an rPFC depends on the
topology of G and on the application’s needs. But in any
case, we can replace ‘]’ by ‘)’ because, without ambiguity,
each closes the component opened last either by ‘[’ or by605

‘(’. When using the remaining 6 symbols “()Y[=+”, the
symbol entropy ranges from 1.3 to 1.9 depending on the
model and pixel size. It averages 1.5 bits per symbol for
targeted applications.

Rather than using Huffman or entropy codes, we use610

a simple and unique encoding of each symbol and form
the word by concatenating them. If the model has no
dandling edges (‘=’ is not needed) and if we do not need
to differentiate splits from turns (‘[’ is not needed), we have
4 symbols “()Y+” and use 2 bits for each. Otherwise, we615

represent ‘+’ by a single bit 0 (since 66% of symbols are
‘+’) and use a fixed or variable length encoding of the
other symbols (for example 100 for ‘(’, 101 for ‘Y’, 110 for
‘)’, and 111 for ‘[’ if ‘=’ is not needed; storage costs for
this encoding are reported in Sect. 6).620

5.2. V1: Matrix of fixed size record

In the V1 architecture, the rPFC is encoded by a ma-
trix , W [], of words, one for each pixel (shared or private)
(see Fig. 6). Each word, W[i,j], is stored using 4m + 5
bits, where m is the maximum of the numbers of cross-625

ings per pixel (we use 1 bit to differentiate private from
shared pixels, and for each shared pixel, we use 1 bit for
each one of the four ‘+’ symbols and 4 bits for each one
of the other symbols). In our experiments, about 98% of
pixels have no more than 6 crossings (average for all our630

models and all our different number of pixels, see Sect. 6)
and hence could be encoded in 32 bits, about 99% of pix-
els have no more than 14 crossings and hence could be
encoded in 64 bits, but, in some models, a minute fraction
of pixels have more crossings (up to 18 in the worst case in635

our experiments) and should be encoded using an excep-
tion mechanism. For private pixels, this constant storage
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Figure 7: rPFC of Fig. 6 encoded with the V2 architecture. Red
(resp. blue, green) arrows represent @S (resp. @N, @E) addresses.
No information is stored for private pixels, except for a 1 bit mask.

(minus the one bit) may be used to store the face ID and
possibly the distance to the boundary or some other scalar
field.640

The main properties of V1 are: (1) identification of pri-
vate pixels and face membership classification at constant
cost, and (2) constant cost access to the encoding W [i,j]
of the word of each shared pixel during graph traversal;

5.3. V2: Pixel adjacency graph with variable size records645

In the V2 architecture, the rPFC is encoded by an ar-
ray , R[], of bitsets, one for each row (see example in
Fig. 7). Each bitset, R[j], is the concatenation of the en-
coding of all words of pixels in row j. Each word is now
encoded using variable size records. To support constant650

time cost access to neighboring shared pixels during graph
traversal, we store, at each shared pixel (i,j), in addition
to its private/shared bit and to its word, up to three refer-
ences: (1) the address (beginning of the descriptor), @E,
of the previous pixel (i−1,j) in row j, (2) the address, @S,655

of the south neighbor (i,j + 1) in row j + 1, and (3) the
address, @N, of the north neighbor (i,j − 1) in row j − 1.
@E is encoded as a relative displacement (the bit-length
of the descriptor of pixel (i− 1,j)). @N and @S are abso-
lute bit-indices in the corresponding rows. Each address is660

encoded using a minimal, although known, number of bits
(typically 6 for @E and 12 for @S and @N) that depends
on the length of each row and on the maximum record
size. Each reference is only encoded when the correspond-
ing neighbor pixel is shared. Note that we do not need665

to store the address of pixel (i + 1,j) to access it from
pixel (i,j). Even though the length of the word of (i,j) is
not fixed, and hence, not know a priori, it can be easily
established be identifying the last ‘+’ in that word.

We use a fixed format for private pixels. It includes670

a 0 to distinguish them from shared ones and also a fixed
(possibly null) number of bits that may be used to identify
the face or material type and optionally to store a scalar
field, which may for example capture the distance from
the boundary of the face or some physical property, such675

as heat.

5.4. V3: Version of V2 without private pixels

The V3 architecture, is almost identical to V2, but does
not store anything for private pixels. It is particularly use-
ful for applications which do not support face membership680

or material queries and are instead focused on the traver-
sal and analysis of graph G. With additional storage per
face and with additional cost per query, V3 could be ex-
tended to support such queries. The layout for the V3
architecture is the one shown in Fig. 7, but without the685

‘0’ pixels.

5.5. V4: Version of V3 without addresses

The V4 architecture is a variant of V3 where we trade
performance for space. Instead of storing for each shared
pixel up to three neighbors’ addresses (as explained for690

V2), we recompute these addresses when needed. This
solution is based on the key observation upon that the
@E, @N, and @S addresses can be computed (each time
they are needed) by starting from the beginning of the
corresponding row (j + 1, j, or j− 1) and by walking East695

by the desired number of records.
We could store the shared/private bit for each pixel to

facilitate this process, but we do not have to. Indeed, for
row j, we simply walk until we encounter a pixel that has
(i,j) as East neighbor. To identify the south neighbor,700

we walk along row j + 1 and count the number of visited
shared pixels that have a north neighbor (that have at
least one crossing on their north road). We stop when this
count matches to the number of pixels along row j, from
pixel (0,j) to pixel (i,j), that have a south neighbor. The705

layout for the V4 architecture is the one shown in Fig. 7,
but without the ‘0’ pixels and without the @S, @N, and
@E addresses.

5.6. Indexing vertices and faces

In some applications, it is desired to provide direct ac-710

cess from a face to one of its darts and inversely, from
a dart to its face. To do so, for each face, f, we walk
along the loop of its darts and identify the root dart (the
dart d with the lexicographically smallest index composed
of the fixed-length strings representing coordinates of the715

pixel containing d.v and of the dart index in that pixel).
We use array Root to encode the root dart of face f as
Root[f]. This provides constant cost access from f to d.
Now, to compute d.f, we use the next operator to walk
from d around the loop of f. During that walk, we identify720

the root dart r of f. Then, we search f such that Root[f]=r.
To reduce the cost of the search from O(F ) to O(logF ),
where F is the face count, we sort the face indices so that
the array Root is sorted.

6. Experiments725

We have computed rPFC representations for two dif-
ferent types of 2D face meshes. 2D Voronoi diagram of
random points and GIS data of countries.
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(a) (b)

Figure 8: (a) One face mesh obtained from a Voronoi 2D diagram of 2,000 random points, where 20% of edges are randomly removed. (b) The
GIS map of USA states.

To ensure that the input data satisfies our constraint
that no edge lies entirely in a pixel, in a preprocessing step730

we simplify the input face mesh (one could use a variant
of [12] or a feature preserving simplification [13]).

In these experiments, we use the encoding given in
Sect. 5.1, with 1 bit for ‘+’, 3 bits for other symbols “(Y)[”,
and without ‘=’ for dead-ends.735

6.1. Data sets used in experiments

Firstly, we use face meshes computed as 2D Voronoi
diagrams of random points generated in a disk of radius
500. Five face meshes were generated from 1,000, 2,000,
4,000, 8,000 and 16,000 points. In a post-processing, 20%740

of edges are randomly removed from the 2D Voronoi dia-
gram, in order to decrease the face mesh regularity. The
face mesh obtained for 2,000 points is shown in Fig. 8(a).

The number of vertices of these face meshes are respec-
tively 1,550, 3,174, 6,479, 13,094 and 26,244; the number745

of edges 1,945, 3,976, 8,113, 16,439, and 33,032; and the
number of faces 399, 806, 1,644, 3,359, and 6,810.

Secondly, we used geographic information system (GIS)
data obtained from http://www.gadm.org/ web site,
which provides a spatial database of the location of the750

world’s administrative areas. We used Brasil, China,
France, England, Russia and USA countries (see Fig. 8(b)
for the USA data set). The files are provided in the Shape-
file format, a popular geospatial vector data format for GIS
softwares.755

The number of vertices of the original meshes are respec-
tively 560,823, 815,556, 246,880, 424,717, 1,662,902 and
57,406; the number of edges are 560,882, 815,622, 247,606,
424,993, 1,663,102, 57,506; and the number of faces are
849, 2,021, 763, 1,113, 5,899, 345.760

In both cases, we computed our four versions of rPFC
representations, for numbers of pixels in the horizontal di-
rection equal to 128, 256, 512, 1024, 2048, 4096, 8192,
16384 (while computing automatically the number of pix-
els in the vertical direction).765

The entropy per symbol depends on the model and the
pixel sizes. In average for the five synthetic face meshes, it
starts from e = 1.9 for 128 pixels in the horizontal direction
and decreases to e = 1.3 for 16,384 pixels. The entropy per
words, in average for the five models, starts from e = 6.6770

and decreases to e = 2.6. Entropy per words decreases
when the number of pixels increases because the number
of different words does.

In average for the six GIS maps, the entropy per symbol
starts from e = 1.9 for 128 pixels in the horizontal direction775

and decreases to e = 1.4 for 16384 pixels. The entropy per
words, in average for the six models, starts from e = 5 and
decreases to e = 3. The maximal size of pixel words is
between 6 and 16, and is equal to 6.04 in average.

6.2. Storage analysis780

In Table 1, we compared the storage used in the pro-
posed data structures. Column CM reports storage for a
combinatorial map representation of the simplified version
of G. It stores, three references (d.n, d.v, and d.f) for each
dart, d, two integer pixel coordinates for each vertex, and785

one dart reference for each face. Column CMS reports
storage for a rasterized version of CM , augmented with a
bit mask that identifies shared pixels, and, for each shared
pixel, with a list of references to the vertices it contains.
Although the largest of all four, storage for V1 is smaller790

than uncompressed (32 bits per pixel) image format, ex-
cept at low resolution. V2 uses between 35% and 80%
less storage than CMS, while providing more functional-
ity. V3 is between 80% and 95% more compact than CMS.
It is also more compact than CM for GIS models. V4 is795

the most compact. It requires between 85% and 99% less
storage than CMS. For the GIS maps, it uses less stor-
age than CM. For our synthetic meshes, it becomes more
storage expensive than CM at high pixel resolution, when
average-length edges stab several pixels.800

To further reduce storage, we identify the 2k most fre-
quent words and use k + 1 bits to encode each of them
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#pixels #simplif-v #split-v CM CMS V1 V2 V3 V4
kb bps kb bps kb bps kb bps kb bps kb bps

S
y
n
th

.
fa

ce
m

es
h

es 128×128 2,057 9,532 50 24 195 97 76 38 34 16 34 17 16 8.2
256×257 4,710 24,787 115 14 546 68 272 34 92 11 88 11 39 4.8
512×514 7,200 54,532 163 5.2 1,518 47 949 29 200 6.2 170 5.3 60 1.9

1,024×1,028 8,650 112,336 189 1.5 3,806 29 3,359 26 446 3.5 318 2.5 90 0.70
2,048×2,055 9,373 227,575 201 0.39 7,905 15 13,375 26 1,142 2.2 615 1.2 148 0.29
4,096×4,111 9,741 457,976 208 0.10 16,871 8.2 53,461 26 3,302 1.6 1,240 0.60 265 0.13
8,192×8,221 9,919 918,663 211 0.03 37,883 4.6 189,101 23 10,731 1.3 2,443 0.30 498 0.06

16,384×16,443 10,015 1,840,125 212 0.0065 92,244 2.8 756,396 23 38,107 1.1 5,004 0.15 964 0.029

G
IS

m
a
p

s

128×69 577 1,403 8 7.3 24 22 32 29 5 4.5 4 3.7 2 1.7
256×138 1,509 3,256 22 5.1 63 14 126 29 13 3.0 9 2.0 3 0.80
512×275 3,501 7,429 49 2.9 149 8.7 499 29 36 2.1 19 1.1 7 0.39

1,024×549 7,402 16,666 102 1.5 363 5.3 1,991 29 109 1.6 41 0.60 14 0.20
2,048×1,097 14,450 36,642 215 0.79 1,188 4.3 8,778 32 367 1.3 91 0.33 28 0.10
4,096×2,194 26,204 78,544 377 0.34 3,486 3.2 35,107 32 1,301 1.2 194 0.18 58 0.05
8,192×4,387 46,093 165,303 640 0.15 9,425 2.1 127,229 29 4,819 1.1 412 0.09 117 0.03

16,384×8,774 77,963 341,157 1,591 0.090 27,996 1.6 508,901 29 18,449 1.0 853 0.049 231 0.013

Table 1: Memory space for the synthetic face meshes (first 8 rows) and for the GIS maps (last 8 rows). Each value is the mean for the all
tested model (five generated face meshes or six GIS maps). #pixel is the number of pixels; #simplif-v the number of vertices of the simplified
mesh; #split-v the number of split vertices added by the rasterization. CM (resp. CMS) is the computed memory size of an equivalent
representation of a combinatorial map of the simplified version of G (resp. R). CMS includes, for each pixel, the list of vertices of R that
it contains. V1, . . . , V4 are our different representations, using frequent words. V2 versions do not store any information for private pixels,
which are thus encoded by only 1 bit. Each memory size is given in kilo-bytes (kb columns) and in bit-per-pixel (bps columns).

Synthetic face meshes GIS maps
#pixels V3 V4 #pixels V3 V4

128×128 7,215 44% 201,576 1,232% 128×69 862 9.8% 11,315 129%
256×257 17,914 27% 759,020 1,156% 256×138 1,895 5.4% 29,100 82%
512×514 37,208 14% 1,940,132 738% 512×275 4,177 2.9% 74,386 53%

1,024×1,028 74,027 7.0% 4,122,003 392% 1,024×549 9,182 1.6% 186,591 33%
2,048×2,055 147,380 3.5% 8,428,277 200% 2,048×1,097 19,876 0.89% 448,478 20%
4,096×4,111 294,040 1.7% 17,030,686 101% 4,096×2,194 42,038 0.47% 1,022,653 11%
8,192×8,221 587,287 0.87% 34,247,793 51% 8,192×4,387 87,320 0.24% 2,247,795 6.3%

16,384×16,443 1,173,840 0.44% 68,733,223 25% 16,384×8,774 178,425 0.12% 4,793,714 3.3%

Table 2: Comparison of performance between V3 and V4, showing the total number of pixels accessed during a walk around each face of G.

(using the leading bit to distinguish them form others).
We pick k to minimize total storage (typically 1 ≤ k ≤ 6).
This trivial compression reduces storage by about 5% for805

V2, 20% for V3, and 58% for V4.

6.3. Comparison of traversed elements

We did a second experiment in order to compare our
different representations in term of operations. For that,
we iterated through all the faces of each rPFC, and for810

each one, we traversed through its contour by using the
next operation. During this traversal, we computed the
number of accessed pixels. Results are given in Table 2 for
the synthetic face meshes and the GIS maps.

We can see on these results that the number of traversed815

pixels is much more important when iterating through the
V4 version than for the V3 representation. Indeed, each
time we need to move to the pixel above (resp. below) of
the current pixel, pixels in the previous (resp. next) row
are iterated starting from the beginning of the row. In820

average, V4 traverses between 10 and 58 times the number
of pixels traversed by V3. This implies of course a big

overhead for operations, but this is the price to pay in
order to have a very compact representation.

In order to limit this overhead, it is possible to store825

traversed elements during an operation and use this cache
when possible instead of recomputing the next, previous
or opposite relations.

7. Relation to prior art

We divide relevant prior art into four categories: (1) ras-830

terized image with different colors per face, (2) original
edge graph connectivity, (3) implicit connectivity inferred
from crossings roads, and (4) inferred or encoded connec-
tivity from a unique vertex per shared pixel.

7.1. Rasterized image835

The partition of a portion of the plane into regions
(faces), each assigned a different color, may be represented
as a rasterized image: coloring each pixel based on the
region that contains its center. The image may be repre-
sented compactly using a fixed number of bytes per pixel.840
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More compact encodings include RLE (Run Length En-
coding) and quadtree [14]. Such a digitization of a PFC
not only suffers from the same quantization error as the
rPFC, but also eliminates all cracks and dead ends and
hence cannot be used to represent street networks. Fur-845

thermore it may disconnect regions at constrictions thin-
ner than a pixel and offers no bound on the Hausdorff error
between the original boundary of a face and the bound-
ary of its rasterized version. The proposed rPFC does not
suffer from these shortcomings and offers from the same850

localization capabilities (constant cost computation of the
face ID for a query point in a private pixel) and streaming
capabilities.

7.2. Graph connectivity

Various data structures for polygon meshes have been855

proposed over the last few decades: [15, 16, 17, 18, 19, 20,
21, 22, 23]. Some are discussed in [24]. Many of them
store Geometry (the coordinates of each vertex) and,
Connectivity (references to d.v, d.f, d.n, d.p, and d.o for
each dart). More compact representations have been pro-860

posed for polygon graphs [25, 26] and for triangle meshes
[27, 28, 29, 30, 10, 31, 17, 32]. Their connectivity stor-
age cost per triangle is only a few times larger than that
of compressed representations [8, 33, 34]. Even though
some variants have been proposed recently that support865

streaming [30, 35] or graph editing [36], most these com-
pact representations do not support efficient connectivity
editing or streaming, because they assign vertex and tri-
angle IDs in a specific order, and because they use global
ID. Furthermore, they do not support spatial indexing.870

The rPFC solution proposed here strives to unify and
combine the best features of the above two categories of
representations, but without resorting to the systematic
resampling of the PFC edges that is preformed by ap-
proaches in the following two categories and that may re-875

sult in drastic and unbounded connectivity changes.

7.3. Crossings with grid lines

Several approaches insert crossings where edges of G
intersect inter-pixel grid lines and recompute or define
implicitly a simplified (vertex free) topology of G inside880

each pixel (or voxel) [37, 38] or obtain a simplified surface
through edge collapses that eliminate all original vertices
[39].

In particular, the Layer Depth Image (LDI) and their
“Hermite” extensions, the Layer Depth-Normal Image885

(LDNI) representations accelerate Boolean operations and
other analysis and manufacturing planning tasks [1].

rPFC can be trivially augmented by associating with
each crossing its geometric position along the correspond-
ing road (for example encoded using 6 bits). In that case,890

rPFC could be viewed as an extension of the LDI model,
where, in addition to the crossings, we encode the explicit
connectivity inside each pixel, and hence do not need to
infer it from the crossing or from the associated tangents.

7.4. A vertex per shared pixel895

Arguably the dual of the above category is the set of
approaches that generate a single vertex per shared pixel
(or voxel) either via resampling, via edge contraction sim-
plification, or by computing the dual of results obtained
by solutions in the previous category [40, 41, 42].900

rPFC could be viewed as an extension of such dual mod-
els: for a modest cost, it makes it possible to encode ex-
plicitly a variety of topologies with possibly multiple com-
ponents and vertices per pixel.

A hierarchical structure (octree, kd-tree) is sometimes905

used to reduce storage cost for the private pixels (voxels)
[43] or to support progressive refinements, of the connec-
tivity [44] or of the topology [45], or to support adaptive
resolution [46].

8. Summary and conclusion910

The proposed rPFC approximates vertex and curved
edge geometry of a PFC by the list of pixels they inter-
sect, but represents graph connectivity exactly and hence
supports exact topological graph traversal. It can accom-
modate non trivial topology in a pixel, including multiple915

vertices and multiple connected components, but assumes
that no edge fits entirely inside a single pixel. If this hap-
pens, the invalid model must be simplified by a set of edge
contractions or the pixel size must be reduced.

The rPFC decomposes the graph connectivity descrip-920

tion into a set of local maps, one per pixel, and stores
each map using a very compact representation. As such,
it offers a new paradigm that makes it possible to pro-
vide spatial indexing to both quantized geometry and ex-
act topology of a valid PFC that may be complex both925

combinatorially and topologically.
Future challenges include extensions to irregular grids,

multi-resolution grids, and, of course, 3D.
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