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Abstract

In railway planning, the timetabling step needs, as input, the train running times, which are

calculated from a train dynamic model. Usually, this model determines the most energy-efficient

train trajectory for a predefined time. However, this time may not correspond to the timetable-

makers’ needs. They should have the choice among a set of solutions, more or less energy-

consuming. This paper proposes a method capable of producing a set of alternative running

times with the associated mechanical energy required. To this end, our contribution is to set

up an efficient evolutionary multi-objective algorithm builds a set of well-spread and diversified

solutions which approximate a Pareto front. The solutions are all compromises between running

time and energy-consumption, the two minimization objectives concurrently optimized. Given

that an evolutionary algorithm is strongly dependent on the initialization phase, the efficiency

of the algorithm is improved through a specific and original mechanism connecting multiple

initializations in cascade in order to accelerate the convergence towards the best solutions. A set

of results obtained on randomly-generated instances is analyzed and discussed.
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1 Introduction

Over the last decade, the traffic volumes in Western Europe have significantly grown and have

consequently increased the energy consumption as well as the emission of pollutants. In order to

face these environmental challenges, public policies promote the development of more eco-aware

transportation systems. In railways, these policies lead to the promotion of the improvement

of the rolling stock and the materials, but also tend to improve traffic management by using

computer simulation and optimization. This optimization is multi-objective : it has to minimize

the journey duration, the energy consumption and to maximize passengers confort under safety

constraints. This paper contributes to set up a versatile software which helps the timetable-

makers to manage efficiently and rapidly the compromise between energy and travel time.

The train running times between the stations are the input of the train timetables. Based

on the timetables and the predefined running times, the energy-optimal train trajectories are

computed offline and then transmitted to the train drivers in a roadmap. In this roadmap, the

corresponding speed profile defines the speeds to be held at certain positions and it also indicates

the switch-points from which the driver changes the driving regime. The precision of this switch

depends on the drivers, who are trained in eco-driving in train simulation under supervision.

Given that the timetables are based on the train running times, modifying them will neces-

sarily impact the timetables, but also the global energy consumption of the trains involved in the

timetables under consideration. The difference in energy-consumption stems from the running

speeds adopted and the driving regimes used, which are more or less energy-consuming. Pro-

ducing alternative running times will allow the definition of a set of alternative energy-efficient

timetables. Thus, one contribution of the paper is to find train speed profiles which are compro-

mises between running time and energy consumption.

The problem of calculating the energy-optimal trajectory has been addressed in the literature

in several ways and may involve several objectives, possibly including energy.

In the literature, a set of exact methods exists, based on the Maximum Principle and searching

for a single optimal solution minimizing energy consumption for a travel with a predefined time.

Liu and Golovitcher [17] solve the problem with an analytical method which calculates the

sequence of optimal controls and the change points. A similar method is proposed by Albrecht

[1], who solves differential equation systems. In order to find a solution, which is a compromise

between energy consumption and riding comfort, Wang et al. [26] propose an optimization model

based on a mixed integer program to optimize running times.
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The critical aspects of real-time railway management have also been addressed by a body

of work to solve the optimal speed profile according to an available running time, such as in

[18] or in [2] for multi-train scheduling. Su et al. [23] propose an algorithm based on the

Maximum Principle for calculating the optimal speed profile for a fixed trip time in automatic

train operation. Their algorithm is applied to the Beijing subway line and can be extended for

generating a timetable.

Without exploiting the optimal control theory, Miyatake et al. [15, 20] use dynamic program-

ming to calculate the energy-optimal trajectory. Lu et al. [19] optimize a single-train trajectory

and compare three optimization algorithms: ant colony optimization, dynamic programming and

genetic algorithms.

The methods mentioned before are constructed with the aim of giving a single solution,

whereas the timetable-makers may be interested in alternative solutions, which imply having

several objectives under consideration. To the best of our knowledge, there are still few multi-

objective approaches to optimizing speed profiles. Evolutionary methods are used to optimize

several objectives at once, as in [5] where the authors use Differential Evolution [22] for mass

transit systems involving three objectives: punctuality, energy consumption and passenger com-

fort (by reducing the jerks). In [6, 7], the authors use evolutionary algorithms for building speed

profiles from a set a predefined rules used as templates.

During the timetable planning, time supplements and buffer times are added to the fastest

running times for calculating the journey duration between stations. These time allowances

enable the compensation of some processes’ variations during a journey like processes of driving

or alighting and boarding passengers. Moreover, these time allowances also reduce the interaction

between lines following perturbations. The time supplement is a margin [13], which can be used

to save energy. Indeed, energy-friendly driving regimes, like coasting, which needs more time

to ride the same distance, can be inserted in the speed profile to limit the energy consumption

thanks to this time supplement.

In this paper, an upper bound of the time supplements and buffer times are considered as

inputs. This upper bound is a fixed percentage of the fastest running times (10 % for our

experiments). The final time allowances can be allocated on the results of the original method

we propose for building train speed profiles between two stations in a bi-objective way. The

objectives considered are the minimization of the running time and the minimization of the

energy consumption. Based on the shortest running time, the proposed method builds a set

of alternative solutions for this trip, which are different in time spent and energy consumed.
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To perform the optimization, we use a state-of-the-art multi-objective evolutionary algorithm:

the Indicator-based Evolutionary Algorithm (IBEA) [27]. In addition to the problem-related

components of the algorithm, we have developed an original initialization strategy based on a

cascading initialization mechanism. As far as we know, it is the first time that such a strategy

is applied to a continuous and multi-objective railway problem.

The paper is organized as follows. First, Section 2 presents the train dynamics model as well

as the driving regimes used to build the speed profiles. The problem is defined in Section 3 with

the original method of constructing a speed profile. Section 4 presents the evolutionary algorithm

proposed to perform the optimization as well as the specific initialization strategy developed for

our problem. In Section 5, results obtained on a set of instances are presented and a comparison

of three initialization strategies is also reported. Finally, Section 6 concludes the paper. An

appendix gives an overview of the mathematical model of the problem.

2 Elements of train dynamics

This section explains how the running time and the mechanical energy consumption are estimated

by using a dynamical model of the train and a rules-based model of the driver. This section is a

short introduction, a more detailed explanation is proposed in [1]. Table 1 defines the symbols

used in the remainder of the paper.

2.1 Track decomposition

In order to simplify the problem, a track is divided into a sequence of sections. This division

follows two parameters:

• Signaling: a section is first defined by a length and a fixed maximal speed.

• Topography: if the gradient in a section changes more than an input user-defined threshold,

the section is divided again into additional sections. Introducing a threshold is necessary

to limit the number of sections and to avoid changing the driving regimes too frequently:

it is uncomfortable for the passengers and also not practical for the train driver.

2.2 Railway dynamics

In the literature, a vehicle-point model is usually preferred to a realistic model involving too

many constraints. The fundamental equation of dynamics states the relation between forces (F),

4

Page 4 of 33

IET Review Copy Only

IET Intelligent Transport Systems

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Table 1: Main symbols used in train dynamics.

Symbol Definition Unit

s(t) Position of the train at instant t [m]

v(t) Speed of the train at instant t [m/s]

a(t) Acceleration of the train at instant t [m/s2]

u(t) Command of the train -

FT (t) Tractive effort at instant t [N]

FM (v) Maximal tractive effort, function of speed v [N]

FR(t) Total resistance at instant t [N]

FRw(v) Running resistance, function of speed v [N]

FRl(s) Line resistance, function of position s [N]

FB(t) Braking Force at instant t [N]

FBmax Maximum Braking Force [N]

q(s) Gradient of the slope, function of position s -

r(s) Radius of the curve, function of position s [m]

m Train mass [kg]

ρ Rotating mass correction factor -
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mass (m) and acceleration (a) applied to a point:∑
F = m a (1)

By taking into account motion resistances FR, tractive efforts FT and braking forces FB , it

yields:

F (t)− FR(t) = ρ m a(t) (2)

where ρ is the rotational inertia coefficient, representing effort consumed by the rotating parts

of the vehicle. It usually ranges between 1.04 to 1.10 [25].

Where F (t) refers to the following alternatives :

F (t) = FT (t) while the engine is providing traction

F (t) = FB(t) while braking

F (t) = 0 while coasting

(3)

The tractive efforts FT , the resistances FR and braking FB are modeled in the following subsec-

tions.

2.2.1 Tractive Effort

The vehicle engine generates a tractive effort FT to move the train. This effort is usually limited

by several conditions like the overheat limit or the adhesion of the wheel rim on the rail. Data

about the tractive effort are usually given as the adhesion diagram (an example is shown in

Figure 1). This diagram gives the adhesion limit of a train regarding the effort produced and

the current speed v. So the maximum available effort FM (v) regarding a speed v can be deduced

from that diagram as the limit of adhesion.

2.2.2 Braking system

In the timetabling step, emergency braking is not considered. Braking is carried out with service

brakes i.e. dynamic brakes based on the dissipation of excess energy in rheostat devices. In this

frame, the adhesion limit is compatible with the maximum service braking i.e. wheels are never

blocked. Then, the maximum service braking is a constant, FBmax.
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Tractive effort FT

speed v

Overheat limit

Adhesion limit
1

2

1 Tractive power
2 Loss of adhesion, energy spoiled

Figure 1: Schematic tractive effort curve: FM (v)

2.2.3 Resistances

One of the most important losses of energy is due to the running resistance and the line resistance.

So, we state the total resistance as the sum of the two previous resistance:

FR(t) = FRw(v(t)) + FRl(s(t)) (4)

The running resistance FRw is the sum of the air resistance (which is quadratic to the speed

v) relative to the wind and the rolling resistance caused by adhesion loss and similar reasons.

Those resistances can be described by the following parabola equation (known as the Davis’

formula with mass included [8]):

FRw(v(t)) = A+Bv(t) + Cv2(t) (5)

where A is the mass-related coefficient of mechanical resistance (in N), B the viscous coefficient

of mechanical resistance (N s/m), and C the coefficient of aerodynamic resistance (N s2/m2).

Those parameters depend on the train characteristics.

Moreover, the line resistance FRl is caused by the topography. It depends on the curves and

the slopes at position s(t):

FRl(s(t)) = FRlg(s(t)) + FRlc(s(t)) (6)

The resistance FRlg(s(t)) caused by the slope at position s(t) is usually computed with the
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following equation with α(s(t)) the angle of the slope at position s(t):

FRlg(s(t)) = m g sin(α(s(t))) (7)

However, given that tanα and sinα are almost equal for very small values of α, the resistance

FRlg(s(t)) is often approximated as:

FRlg(s(t)) = m g q(s(t)) (8)

with q the gradient of the slope (q = tanα). Those values are usually provided in meter per

thousand in European technical data.

Finally, as the curve resistance FRlc increases as the curve radius decreases, it is usually

expressed as a constant K divided by the radius of the curve r [21]:

FRlc(s(t)) = m g
K

r(s(t)) · 10−3 (9)

K values range between 500 to 1,200, depending on rail systems. According to this last equation,

a curve of a K-meter radius (r(s(t)) = K) is equivalent to a 1‰ slope.

2.2.4 Energy consumption

The mechanical energy E consumed by the train during the trip is the integral of the mechanical

power over the running time T :

E =
∫ T

t0

FT (t) v(t) dt (10)

2.3 Driving behaviour

Based on the theory of optimal control, there are four optimal regimes defined by the maximum

principle [1]: acceleration at full power (Acc), cruising at constant speed (Cru), coasting (inertia

motion, Coa) and the maximum service braking (Brk).

Let u(t) be the command used by the train at instant t and limited to these four regimes:

{Acc, Cru, Coa, Brk}. The scheme depicted in Figure 2 describes a motion of the train using

those four regimes over a sample section. Firstly, the train accelerates at full power until it

reaches the speed vmax. Then, it maintains its speed during the cruising phase. Afterwards, a

coasting motion is engaged until the train has to brake to stop at the end of the section. By

coasting from the position s2, the train saves more energy than coasting from s1 but this driving

increases the running time (the sooner the coasting, the greater the energy saved, but the longer

the running time).
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v

s

vmax s0s1s2

(Acc)

(Cru) (Coa)

(Brk)

Figure 2: Sample speed profile over a section. Four regimes are noted: acceleration (Acc);

cruising (Cru); coasting (Coa); braking (Brk).

2.3.1 Acceleration

In an acceleration phase, all the available tractive effort is used to reach a target speed. So,

the tractive effort FT is equal to the maximum effort available FM (v) depending on the tractive

effort curve (Fig. 1). The command u(t) of this regime is denoted Acc. The rule is hence defined:

u(t) = Acc ⇒ FT (t) = FM (v(t)) (11)

2.3.2 Cruising phase

In a cruising phase, the objective is to maintain the speed constant (i.e., a(t) = 0). The effort

produced by the train must counterbalance the resistance: FT (t) = FR(t).

As mentioned before, the resistance FR(t) is constituted by the line resistance FRl(t) which

depends on the gradient at position s(t): q(s(t)). Figure 3 represents the line resistance FRl in

function of the gradient q.

In some cases, it may happen that the objective of maintaining the speed is unreached when

the train engages in a steep climb. In such a situation, the effort produced at full power may

be insufficient to counterbalance the line resistance. Let q+ be the threshold-gradient (and R

the resulting resistance) over which the speed cannot be maintained due to an insufficient engine

power, i.e., q(s(t)) > q+ and FM (v(t)) < FR(t) (see Fig. 3, situation (3)). The train has to

put the engine at full power to keep the speed as fast as possible. The driving rule is defined as
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follows:

(u(t) = Cru) ∧
(
q+ < q(s(t))

)
⇒ (FT (t) = FM (v(t))) ∧ (a(t) < 0) (12)

Conversely, a descent may be sufficiently steep to make the train accelerate without effort

(according to the equation 2, FR(t) < 0). Let q− be the threshold-gradient under which the line

resistance is negative: q(s(t)) < q− and FRl(s(t)) < 0 (see Fig. 3, situation (1)). It has to be

noted that the line resistance is nil when q(s(t)) = q−.

If q(s(t)) < q−, the train has to partially brake to maintain the speed. As the engine is not

used, the energy consumption is nil. The driving rule is defined as follows:

(u(t) = Cru) ∧
(
q(s(t)) < q−) ⇒ (FT (t) = 0) ∧ (a(t) = 0) ∧ (FB(t) = FR(t)) (13)

In the interval between q− and q+ depicted in Figure 3 by the situation (2), the train can

counterbalance the line resistance with a sufficient tractive effort. The driving rule is defined as

follows:

(u(t) = Cru) ∧
(
q− < q(s(t)) < q+)

)
⇒ (FT (t) = FR(t)) ∧ (a(t) = 0) (14)

Line resistance FRl

Gradient q

R

1 q(t) < q− 2 q− < q(t) < q+ 3 q(t) > q+

q− 0 q+

Figure 3: Line resistance FRl in function of the gradient q, and the threshold-values q−, q+. R

reports the resistance limit that the tractive effort can counterbalance.
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2.3.3 Coasting

While coasting, the vehicle moves by using only its own inertia. Neither the engine nor the

braking are used. The coasting can be defined by the following equation:

u(t) = Coa ⇒ FT (t) = 0 ∧ FB(t) = 0 (15)

As no traction is applied, no tractive energy is consumed in this phase.

2.3.4 Braking

While braking, the maximum service braking is used. This also means that no tractive effort is

exerted:

u(t) = Brk ⇒ (FT (t) = 0) ∧ (FB(t) = FBmax) (16)

2.3.5 Running time

By using the previous rules and equation 2 of the dynamic model, the running time, T , is

computed according to the following equation.

T =
∫ T

0
1dt (17)

ṡ(t) = v(t) v̇(t) = a(t) a(t) = 1
ρ m

(F (t)− FR(t))

s(0) = so
1 s(T ) = sd

n v(0) = 0 v(T ) = 0

with so
1 is the beginning and sd

n is the end of the line.

3 Problem formulation

In this section, the model for building a speed profile sequentially within each section is presented

in details. The first subsection formulates the problem objectives. The mathematical model based

on a two-phase model is detailed in the second subsection. Finally, the generation of the speed

profile following our model is explained in the third subsection. For the sake of clarity, Table 2

summarizes the main symbols used in this section.This section and the previous section exhibit

a detailed presentation of the problem. An overview is proposed in the appendix.
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Table 2: Main symbols used in the problem formulation. Symbols in roman letter are parameters

of the problem.

Symbol Definition Unit

T Journey duration [s]

E Traction energy consumed at the end of the journey [J]

n Number of sections -

i Section subscript, i ∈ [1..n] -

so
i Beginning of the section i [m]

sd
i End of the section i, sd

i = so
i+1 [m]

vmax
i Speed limit of the section i [m·s-1]

χ1
i Energy consuming phase -

χ2
i Energy free phase -

χ1→2
i Switch-position between the phases χ1, χ2 in the section i [m]

vi Cruising speed along the section i [m·s-1]

3.1 Formulation of objectives

The problem studied is formulated as a set Φ of two objective functions. The former is the

minimization of the journey duration (T ), and the latter represents the minimization of the

traction energy consumed (E).

Φ = {minT,minE} (18)

In the case of mono-objective optimization, the minimimum is a single value. In the actual

case of two objectives, Φ is a curve in 2 dimension which is called the Pareto front.

3.2 Two-phase decomposition

The optimization problem consist in finding optimal controls F (t) which minimize the previous

objectives. This type of problem has been addressed from the optimal control theory point

of view. In the field of the railway timetable design, It has been proven (see [1] for a complete

explanation) that, by applying the Pontryagin’s maximum principle, the optimal control proceeds

in a section through the phases of Acceleration, Cruising, Coasting and Braking. With this

result, it is shown that the initial optimization problem according to a function F (t) becomes
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an optimization in a finite dimension space according to a finite number of decision variables

which parameterizes F (t). In the following, the parameterization of the optimal trajectory by

two decisions variables by section is described.

We focus on practical solutions whose representation can be trivially transformed into in-

dication for the driver. In this frame, each section i is divided into two phases: the energy-

consuming phase (denoted χ1
i ) and the energy-free phase (χ2

i ). On the one hand, during the

energy-consuming phase, the train only performs energy-consuming driving regimes, i.e., ac-

celeration and cruising. On the other hand, coasting and braking are only performed in the

energy-free phase.

With the aim of splitting each section i into these two phases, a pair of decision-variables is

introduced. Let χ1→2
i be the phase switch-point within the section i and vi the cruising speed

to be reached in the first phase of the section i.

3.2.1 Insertion of a phase switch-point in the sections

The decision-variable χ1→2
i indicates the switch-point within the section i and is bounded as

follows:

so
i ≤ χ1→2

i ≤ sd
i , ∀i = 1, . . . ,n (19)

χ1→2
i allows the introduction of two distinct phases as illustrated by Figure 4:

1. Phase χ1
i : Only acceleration or cruising can be performed:

u(t) ∈ {Acc,Cru} ⇐⇒ so
i ≤ s(t) ≤ χ1→2

i (20)

2. Phase χ2
i : Only coasting or braking can be performed (braking is engaged to respect the

exit speed of the considered section):

u(t) ∈ {Coa,Brk} ⇐⇒ χ1→2
i ≤ s(t) ≤ sd

i (21)

3.2.2 Limitation of the cruising speed

A second variable vi, the cruising speed, is introduced for each section. The cruising speed

is defined as the maximum speed reachable with an acceleration during the first phase of the

section. This defines the following constraints:

vi ≤ vmax
i , ∀i = 1, . . . ,n (22)

v(t) ≤ vi, so
i ≤ s(t) ≤ χ1→2

i (23)
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so
i sd

i

χ1
i χ2

i

u(t) ∈ {Acc,Cru} u(t) ∈ {Coa,Brk}
χ1→2

i

Figure 4: Section decomposition into two phases: χ1
i , χ

2
i . χ1→2

i is the switching position.

The cruising regime is applied in the first phase only if the speed vi is reached. This yields

the following equation:

u(t) = Cru ⇐⇒ so
i ≤ s(t) ≤ χ1→2

i ∧ v(t) = vi (24)

If the cruising speed vi cannot be reached, the solution will be badly scored during the evaluation

in the optimization process. Therefore, the solution will be discarded.

It has to be noted that the model is designed in a such way that the entrance speed in a

section is always less than, or equal to, the cruising speed vi. The traction energy consumed

corresponds to efforts produced for the acceleration and the cruising regimes during the whole

phase.

3.3 Speed profile generation

The speed profile is computed sequentially for each section. Given that the equation of motion

is a second order ordinary differential equation (ODE), s̈ = f(u, s, v, t)), and f is not an explicit

function with a single variable, we choose a numerical method to generate the speed profile. As

evaluating a speed profile needs to be computed quickly, a first order method (Euler integration),

with a fixed step size ∆t is chosen to approximate the solution. ∆t has to be sufficiently small

to ensure the stability of the method.

For the sake of clarity, the speed profile generation is illustrated by an example. Figures 5

describe a speed profile v(t) versus the longitudinal position s(t). The speed profile starts from

the entering state (t0i , s0
i , v

0
i ), which is the state of the system at the exit of the previous section

(i− 1, i > 0). The two phases are computed sequentially as the state at the end of χ1
i has to be

determined to compute the state χ2
i .

To compute the χ1
i phase, the train accelerates until it reaches the cruising speed vi. After

that, two alternative solutions are possible:
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• either the engine power can maintain the cruising speed until it reaches s(t) = χ1→2
i

(Fig. 5a);

• or it is not possible to maintain the cruising speed due to the steep climb (Fig. 5b). In this

case, a full engine power motion is performed until the gradient decreases sufficiently to

maintain the speed, or until the position χ1→2
i is reached. If the cruising speed cannot be

reached before s(t) = χ1→2
i , no speed profile can be generated and the solution is, therefore,

considered infeasible.

Then, the χ2
i phase is determined. Let vd∗ be the exit speed-limit determined as follows:

• if the train has to stop at the end of the section, the exit speed-limit is set to 0: vd∗ = 0;

• otherwise, the exit speed-limit is set to the next vi value: vd∗ = vi+1.

A coasting is inserted until the end of the section (sd
i ) and two situations may occur:

• either the train speed at the end of the section is smaller than vd∗ and the profile over the

section is computed as depicted in Figure 5c;

• or braking is necessary after coasting to slow-down to the speed vd∗ at the end of the

section (Fig. 5d).

4 Optimization method

4.1 Multiobjective Evolutionary Optimization

In order to perform the construction and the production of multiple solutions at once, the

optimization method is directly inspired from that proposed by Chevrier et al. [7]. In their work,

the authors have chosen a state of the art evolutionary algorithm (EA) for the multiobjective

optimization as the basis of their method: the Indicator-Based Evolutionary Algorithm (IBEA)

which has the best performances according to Zitzler and Künzli [27]. The variation operators

used in the cited paper are the same as those that we have chosen: the Simulated Binary

Crossover (SBX) and the polynomial mutation [10].

Unlike methods optimizing a single value corresponding to a weighted sum of the objectives,

a multiobjective algorithm offers the capability of optimizing the objectives concurrently. Con-

cretely, in a multiobjective optimization, a solution is assigned a vector of objective values. Since
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(a) Cruising speed limited by vi
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(b) High cruising speed and steep climb. From s∗ the

engine is set at full power to keep the speed as near

v as possible

v

s
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(c) Coasting until sd. No braking necessary: v(td) <

vd∗
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i sd

i

χ2
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(d) Coasting interrupted by a braking

Figure 5: Motion occurring in χ1
i stage (a, b) and in χ2

i stage (c, d), according to a flat gradient

two objectives are to optimize in the problem under study, a solution matches a pair of values

< T,E > in the two-dimension objective space (energy vs time). That allows the optimization

of the objectives without having to use weights or to normalize objectives because they are of

different nature, i.e., different units. Moreover, as optimizing a problem with more than one

objective has no single solution but a set of Pareto-solutions [9, 11, 24], it is preferable to use

a multiobjective optimization based on a Pareto approach, which produces a set of alternative

solutions, which are all compromises between the objectives.
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4.1.1 Solution representation and evaluation

As previously stated, the decision variables of the problem are the phase switch-points χ1→2
i ,

and the cruising speed vi, of each section i. With a track composed of n sections, a vector of n

pairs (< χ1→2
1 , v1 >, ..., < χ1→2

i , vi >, ..., < χ1→2
n , vn >) defines a solution.

In order to evaluate a solution, the corresponding speed profile is built according to the

procedure explained before. At the end, the values of the solution in the objective space are

assigned to the vector < T,E > with T the running time and E the traction energy consumed

during the journey. If a speed profile cannot be built regarding the constraints, the solution is

marked as infeasible, and huge values are assigned to the objective vector in order to reject the

solution (as the algorithm has to minimize the objective values).

4.1.2 Construction of the reference solution with a tight schedule

In order to ensure that the algorithm begins with at least one feasible solution, the fastest

speed profile is added in the initial population. This tight-schedule solution (STS) can easily

be computed according to the method described in [4]. Roughly speaking, it consists in driving

as fast as possible, with respect to the speed limitations. It is done in three stages: first, by

backwardly calculating the braking for each section from the last to the first. Secondly, the full

power acceleration is calculated forward from the first section to the last. Finally, the gaps are

filled with cruising motions. In the solution vector, vi is the maximum reachable speed regarding

the engine power and the speed limitation of the section i, and χ1→2
i is the position of braking

(as coasting is never performed). An example of a tight schedule solution for two sections is

provided in Figure 6.

4.1.3 Construction of the remaining population

The remaining population is simply filled with randomly generated solutions to add diversity

to the initial population. A random solution is generated by randomly choosing each variable

value inside its bounds. The upper-bound of each vi variable is defined as the equivalent value

in the STS solution (as we know we cannot go faster). A lower-bound greater than zero is

arbitrarily chosen to avoid too slow motion (a good solution is to choose the lowest speed limit

of the journey). The bounds of the χ1→2
i variables are simply set to so

i and sd
i , respectively the

beginning and end positions of each section. Last but not least, the STS solution represents the

lower-bound of the running time objective, and the upper-bound of the energy objective. The
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Figure 6: Tight schedule on a very short line. In the second section, the train cannot reach the

speed limit because it needs to stop at the end.

upper-bound of the trip duration has to be introduced by the decision-maker in order to avoid

ineffective solutions (too slow journey).

4.2 Cascading Initialization Strategy

4.2.1 Rationale and principles

In order to improve the convergence of the EA, it is preferable to start with an initial population

including feasible solutions instead of solutions fully-randomly generated and maybe infeasible.

Beginning an optimization with a good knowledge of the decision space increases the quality of

the final solution set. However, properly exploring the decision space during the optimization is

a time-consuming operation. Therefore, having an adapted initialization strategy often leads to

better results in the same period of time.

The specific initialization strategy that we have developed and we call ‘Cascading Initializa-

tion Strategy’ (CIS) allows the construction of an enhanced initial population. It is a particular

method of population initialization based on an iterative improvement of the solutions randomly

generated according to the procedure described in Section 4.1.3 and a step-size relaxation in the

ODE solved in the solution evaluation.

As we solve an ODE, the integration accuracy is dependent on the integration step ∆t. Within

the CIS process, we propose to start the optimization with a large ∆t in order to converge more

quickly to the most efficient part of the solution space. The integration is thus rough but rapid

with a large ∆t. It becomes more accurate but slower with a shorter integration step. The
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process is performed a certain number of times by shortening the integration step each time.

Given that EAs are designed to offer good exploration possibilities, we use the EA itself

for performing the CIS and initializing the population, but with a larger integration step (∆t)

in the ODE. This initialization is done by optimizing a random population with a rougher

precision. This optimization is obviously costly, but, as a major part of the exploration will

have been performed, a non-negligible amount of time will be saved for processing the main

optimization. One of the results of this paper is to demonstrate that this compromise is fruitful

for our application.

To the best of our knowledge, it is the first time that such a strategy is used on this kind of

problem.

4.2.2 Cascading connection of multiple initializations

Let PN be the population obtained after N iterations (refinements) to be used in the main

optimization process, and Pk the population at the iteration k ∈ [1..N ].

Roughly speaking, the CIS starts with a randomly generated population P0. Then, the CIS

improves it by applying k times the EA previously described. At each iteration k > 0, the

population Pk−1 is used as input of the EA and the integration step (∆t)k is decreased by a

relaxation function in such a way that the population Pk is evaluated more accurately than

at the iteration k − 1. With such a mechanism, the CIS can explore a lot of solutions at the

beginning and hence notice the bests of them. By performing several times the EA with a greater

and greater accuracy in the construction of the speed profile, the CIS refines the solutions which

require more and more computation time to be evaluated.

At the end of the initialization, the population PN is composed of feasible solutions which

can evolve in the main optimization EA with a fixed integration step ∆t.

4.2.3 Parameter settings

In order to perform multiple initialization iterations, two parameters have to be defined for each

iteration: the integration step size ∆t, and the computation time available for an optimization

process Dopt. As we deal with an initialization process, micro-tuning parameters, such as varia-

tion probability, do not seem useful. So, for each iteration, all the parameters related to the EA

are the same as in the main optimization process.

19

Page 19 of 33

IET Review Copy Only

IET Intelligent Transport Systems

This article has been accepted for publication in a future issue of this journal, but has not been fully edited.
Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



4.2.4 Main algorithm

The CIS algorithm is described by the algorithm 1. In the first step, an initial random population

is generated with the initial step size (∆t)0. Let f be a relaxation function defined as follows:

f(k)→
(
(∆t)k, Dopt

k

)
As the relaxation function is a decreasing function, the step size (∆t)0 is the biggest defined in

f . Then, the tight schedule solution (STS) is computed and added to this initial population P0.

Afterwards, an optimization process is performed on this population. This process is repeated

on the obtained population as often as necessary. At each iteration (k), the step size (∆t)k is

updated according to the relaxation function f .

Once the exploration stage is finished, the initial population has to be built using the best

individuals from the previously computed population. The best solutions have to be corrected

according to a smaller integration step. This is a critical point of the proposed method. Indeed,

the values vi may risk getting outside the bounds and leading to an infeasible solution. Further-

more, as it is an initialization procedure, the correction has to be done efficiently. Therefore, the

correction only prunes the values of the solution vector to its bounds.

Furthermore, a new STS is computed to determine the new bounds of the relaxed problem,

and added to the current population.

Lastly, the final population PN is used as the initial population of the main algorithm.

We can observe that neither the step-size relaxation nor the cascade-connection makes as-

sumptions about the nature of the problem formulation. Thereby, this initialization strategy can

be applied to any problem including ODE.

5 Experimental results

In this section, several cascading initialization strategies are compared with the basic initialization

strategy. This is done by applying our proposed dynamic model on different railway lines. In

the first part, details are given about the implementation and the set-up of parameter values

presented before. Thereafter, a description of the lines and rolling stock is provided. Then, the

different relaxation functions used in this work are presented and a comparison of the initialization

strategies is presented and discussed.
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Data: EA: an evolutionary algorithm,

f(k)→
(
(∆t)k, Dopt

k

)
: relaxation function,

N : number of refinements,

p: population size,

Dopt
All: time allowed to the whole optimization process

Result: PN : result population to be used as input of the main optimization process,

Dopt: time allowed to the main optimization process

1 Generate P0 randomly according to ∆t = (∆t)0 and |P0| = p− 1;

2 Compute and add STS((∆t)0) to P0;

3 Call f(1) to compute (∆t)1 and Dopt
1 ;

4 for k = [1..N] do

5 Apply EA to Pk−1 during Dopt
k ;

6 Let Pk be the set of p− 1 best solutions at the end of the kth optimization;

7 Evaluate and correct Pk according to (∆t)k;

8 Compute and add STS((∆t)k) to Pk;

9 Call f(k + 1) to compute (∆t)k+1 and Dopt
k+1;

end

10 Dopt ← Dopt
All −

∑
Dopt
k ;

11 return (PN , Dopt);
Algorithm 1: Cascading Initialization Strategy by relaxing the integration step size

5.1 Implementation

The algorithms previously presented are implemented by using the ParadisEO framework [16].

This framework works as a ‘white box’ with several optimization components implemented, and

only problem-related components have to be designed by the users. So, the SBX, the polynomial

mutation and IBEA are already implemented in ParadisEO. The computations are performed

on a Quad-Core Xeon with 3Ghz CPU and 6GiB memory running Linux operating system.

5.2 Parameters setting

The population is composed of 100 individuals and evolves during 30 seconds of computation. The

parameter values of the variation operators have been determined empirically with preliminary

experiments: the mutation probability pm and the crossover probability pc are respectively fixed
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to 0.5057 and 0.8853 . Let T be the shortest running time, i.e., the lower-bound of the running

time objective. The upper-bound T of the running time objective is set to 1.1 times the shortest

travel time: T = 1.1× T

5.3 Rolling stock description

Two different kinds of trains have been chosen: AGC1 for regional lines [3] and TGV for high

speed lines [14]. The relevant characteristics of these trains are given in Figure 7.

5.4 Generation of the instances

To evaluate our algorithm and compare it with a random generation of solutions, ten instances

have been randomly generated. These instances are separated into two classes:

• 5 regional line instances (with an AGC),

• 5 high speed line instances (with a TGV).

The lines are randomly generated by varying both the speed limitations along the track and

the gradient to exhibit a rugged topography and a lot of sections. At the very beginning of the

track and at the end (corresponding to the departure/arrival from/at the station), the speed

limitations are quite low to those observed along the track, e.g., less than 100 km/h vs around

250 km/h, for a high-speed line. It has to be noted that the number of speed limitation changes

implies the number of sections. The gradient varies randomly between −40‰ and 40‰.

For a regional line, the instances are nearly 100 km long divided into approximatively twenty-

five sections. The speed is limited to 160 km/h at most.

The TGV instances are three times longer (300 km) and divided into nearly sixty sections.

The speed is limited to 300 km/h at most.

1Autorail Grande Capacité
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Parameter Value Unit

m 135,000 [kg]

ρ 1.04 -

A 2540 [N]

B 3.34 [N s/m]

C 0.49 [N s2/m2]

(a) Numerical parameters of AGC
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(b) Tractive effort diagram of AGC

Parameter Value Unit

m 380,000 [kg]

ρ 1.04 -

A 2540 [N]

B 33.44 [N s/m]

C 0.572 [N s2/m2]

(c) Numerical parameters of TGV
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(d) Tractive effort diagram of TGV

Figure 7: Technical data of the rolling stock used in the experiments
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5.5 Comparison of the relaxation functions

In this subsection, three relaxation functions are compared on a simple random initial population.

These functions are defined according to three values:

• (∆t)n the integration step of the main optimization process;

• Dopt
All the total computation time given for the whole optimization process (with the initial

population generation included),

• and n ∈ N+ the number of cascading connections.

5.5.1 flog2

This function relaxes the integration step (∆t) and determines the computation time Dopt ac-

cording to based-2 logarithm functions:

(∆t)k = 2(n−k) × (∆t)n (25)
Dopt
n = Dopt

All/2

Dopt
k = Dopt

k+1/2

Dopt
1 = Dopt

All/2n+1

(26)

With this function, the time available for the main optimization is Dopt = Dopt
All/2.

5.5.2 flin

This function linearly decreases the value of (∆t) and Dopt:

(∆t)k = (n− k + 1)× (∆t)n (27)

Dopt
k = Dopt

All/(n+ 1) (28)

5.5.3 flin2

This function linearly decreases the value of (∆t) with (∆t)k ∈ [(∆t)n, 2 · (∆t)n]. The definition

of Dopt
k is the same as the previous function:

(∆t)k = (2− k/n)× (∆t)n (29)

Dopt
k = Dopt

All/(n+ 1) (30)
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5.5.4 Methodology

The three relaxation functions are compared using random initial populations. Since beginning

with a standard random population fails to give good results in 30 seconds of optimization, we

add the tight schedule solution to this initial population. This method is denoted Random in the

following. Furthermore, the three relaxation functions are compared using a different number of

cascading connections, with n varying between 1 and 3. This leads to ten different initialization

strategies to be analyzed. Moreover, for each instance and for initialization function, ten runs

are performed. At all, each instance is solved 100 times.

In order to compare these initialization strategies, the protocol proposed by Fonseca [12] has

been followed. For a given instance, let Zall define the union of every solution obtained at the

end of the experiments. Then, we compute P? the set of all the non-dominated solutions in

Zall. Two reference points are then defined: zmin and zmax which are respectively the lower and

upper-bounds of the solutions in Zall. Finally, all the objective values are normalized according

to zmin and zmax.

The quality of a given solution set S is computed regarding P?. In Figure 8, the ‘+’ (set P?)
or ‘o’ (set S) plots represent solutions in the normalized objective space whatever the indicator

under consideration. The set of the ‘o’ solutions is dominated by the set of the ‘+’ solutions.

The indicators work as follows:

• the unary additive epsilon metric (I1
ε+) computes the minimal translation to apply on S to

dominate P? (Fig. 8a illustrates this translation). ;

• the hypervolume difference indicator IHD calculates the volume of objective space (bounded

by zmax) dominated by P? but not by S (Fig. 8b).

The reader interested in more details about the indicators chosen and the performance assessment

can refer to the following references: [27, 12].

5.5.5 Results

Table 3 exhibits the difference in quality between each method regarding the two previous indi-

cators. For each instance, the quality value indicated is the average quality value of the ten runs.

Without loss of generality, since the objectives have to be minimized, the best quality values are

the smallest.

It can be seen that the Random generation gives most of the time one of the worst sets of

Pareto approximation. Moreover, the Random method can be unable to give feasible solutions,
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Figure 8: Comparison of quality of two Pareto front. Two quality indicators are depicted: I1
ε+

and IHD. The ‘◦’ set (S) is compared with a reference front ‘+’ (P∗).

except the tight schedule solution STS in the time granted, e.g., the results obtained with the

random initialization on the TGV-4 instance: 1.0 for the Iε+ indicator and 1.2 for the IHD
indicator, which are the worst values indicating that no front has been found (at least two

solutions).

In contrast, the best results are often given with the 3-step flog2 relaxation. Also, we can see

that the ranking given by the two indicators is nearly the same. But reducing the evaluation

time with the (∆t) relaxation allows a greater exploration of the decision space, and getting

more feasible solutions, even if, in some cases, the Random method can give the best results (see

instance AGC-4). Relaxing the integration step greatly increases the quality of the final solution

set.

Globally, we can see that all the problem instances have been solved in 30 seconds by using

the CIS and the sets of solutions have been produced in this period of time. As example, the

solutions of the AGC-1 instance, depicted in Figure 9, have been obtained over the 10 runs by

using the 3-step flog2 relaxation. These solutions are all non-dominated and are well-spread

and diversified. That means a lot of solutions, compromises between the two objectives under

consideration, have been found and are spread along a line which approximates the Pareto front.

That characterizes a good quality of the set of solutions. With such a tool, which computes a

lot of alternative solutions optimizing two different objectives, a decision-maker will be able to
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choose the speed-profile, and the running time associated, the most adapted to his needs when

constructing a timetable. Indeed, the decision-maker will be able to examine the objective values

and choose a solution following rules which cannot be mathematically formalized, as politics for

example.
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Figure 9: The reference Pareto front determined from merging all efficient solutions obtained

when solving the AGC-1 instance.
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Table 3: Comparison of the random initialization and three {1; 2; 3}-step relaxation functions

regarding the Iε+ and IHD indicators. In green the best values, in red the worst. The ‘{AGC;

TGV}-avg’ rows are the average of the 5 instance values.

Ind. Iε+ Random
flog2 flin2 flin

1 2 3 1 2 3 1 2 3

AGC-1 0.212 0.212 0.199 0.046 0.212 0.223 0.244 0.213 0.225 0.208

AGC-2 0.514 0.431 0.457 0.400 0.433 0.467 0.451 0.430 0.497 0.488

AGC-3 0.357 0.317 0.434 0.448 0.320 0.297 0.332 0.317 0.419 0.441

AGC-4 0.249 0.259 0.255 0.286 0.259 0.263 0.260 0.258 0.267 0.268

AGC-5 0.314 0.262 0.259 0.062 0.263 0.255 0.185 0.272 0.238 0.215

AGC-avg 0.329 0.296 0.321 0.248 0.298 0.301 0.294 0.298 0.329 0.324

TGV-1 0.579 0.579 0.580 0.528 0.580 0.574 0.546 0.579 0.581 0.583

TGV-2 0.415 0.174 0.184 0.188 0.176 0.308 0.354 0.179 0.136 0.158

TGV-3 0.535 0.426 0.338 0.189 0.427 0.409 0.371 0.428 0.317 0.326

TGV-4 1.000 0.229 0.150 0.141 0.206 0.216 0.404 0.206 0.174 0.107

TGV-5 0.417 0.357 0.172 0.188 0.356 0.268 0.272 0.356 0.154 0.173

TGV-avg 0.487 0.353 0.285 0.247 0.349 0.355 0.389 0.350 0.272 0.269

Ind. IHD Random
flog2 flin2 flin

1 2 3 1 2 3 1 2 3

AGC-1 0.131 0.133 0.125 0.031 0.133 0.143 0.159 0.133 0.143 0.135

AGC-2 0.342 0.270 0.290 0.231 0.276 0.299 0.289 0.269 0.317 0.318

AGC-3 0.272 0.242 0.326 0.336 0.242 0.226 0.251 0.239 0.315 0.330

AGC-4 0.154 0.159 0.157 0.177 0.159 0.163 0.163 0.159 0.164 0.169

AGC-5 0.247 0.201 0.199 0.043 0.202 0.193 0.137 0.208 0.173 0.159

AGC-avg 0.229 0.201 0.219 0.164 0.202 0.205 0.200 0.202 0.222 0.222

TGV-1 0.402 0.402 0.402 0.363 0.402 0.399 0.377 0.402 0.403 0.405

TGV-2 0.194 0.060 0.068 0.069 0.062 0.158 0.162 0.064 0.050 0.063

TGV-3 0.364 0.273 0.213 0.115 0.274 0.266 0.238 0.275 0.192 0.205

TGV-4 1.200 0.145 0.115 0.107 0.133 0.157 0.273 0.135 0.115 0.082

TGV-5 0.216 0.181 0.071 0.080 0.180 0.121 0.131 0.180 0.047 0.077

TGV-avg 0.294 0.212 0.174 0.147 0.210 0.220 0.236 0.211 0.161 0.166
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6 Conclusion and Perspectives

In this paper, we deal with the problem of calculating the train running times. This calculation

is the first step in railway planning, because it precedes train timetabling. In order to contribute

to the construction of energy-efficient train timetables, we have proposed to use alternative

train running times which are more or less energy-consuming. Determining these alternative

running times is possible by using the method proposed in this paper, which is based on two

main contributions. The first consists in constructing speed profiles by using an original method

based on an evolutionary computation able of optimizing the two antagonist objectives at once.

The second contribution concerns the algorithm performance increased by the specific cascading

initialization strategy that we have conceived.

The quality of the results obtained allows us to consider the integration of this approach

into the planning process. It is indeed interesting to envisage developing timetabling methods

taking the energy criterion into account, i.e., the alternative running times which are more or

less energy-consuming. With such methods, the decision-makers will be helped by new decision

tools showing the advantages and drawbacks of the possible solutions for the railway service with

the associated costs, energy consumed, and quality of service.

Another possible extension consists in adding the power recovery in braking. This extension

assumes to have data on the catenary and the train’s rheostat devices in particular, but also on

the primary power-supplier if it is fed by the energy recovered. Applied to the traffic management,

the braking-power recovery is relevant in the case of a multi-train scheduling, where we search

for feeding one train with the power produced by another train which is braking in a close range.

Such a functionality will lead to a new field of traffic simulation and management methods.
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Appendix: synthesis

This section displays a global mathematical view of the problem. For the sake of the clarity, the

vector
(
χ1→2

1 , v1, ..χ
1→2
i , vi, .., χ

1→2
n , vn

)
is summarized by the notation

(
χ1→2
i , vi

)
i=1..n

The energy objective E and the running time objective T are:

E
((
χ1→2
i , vi

)
i=1..n

)
=
∫ T

0
FT (t)v(t)dt T

((
χ1→2
i , vi

)
i=1..n

)
=
∫ T

0
1dt

The optimization program is to find the set of solutions, called the Pareto front:

Φ =
{

minE
((
χ1→2
i , vi

)
i=1..n

)
,minT

((
χ1→2
i , vi

)
i=1..n

)}

The decision variables are: χ1→2
i , vi with i = 1..n. They obey to the following constraints.

χ1→2
i ∈

[
so
i , sd

i

]
vi ∈ [0, vmax

i ] ∀i = 1, . . . ,n[
so
i , sd

i

]
is the ith section.

The computation of E and T is given by the following dynamic equations:

ṡ(t) = v(t) v̇(t) = a(t) a(t) = 1
ρ m

(F (t)− FR(t))

with the initial and final conditions:

s(0) = so
1 s(T ) = sd

n v(0) = 0 v(T ) = 0

F (t) and, by the way FT (t), are computed section by section according to the decision vari-

ables. In the ith section (when s(t) ∈
[
so
i , sd

i

]
), the optimal trajectory proceeds sequentially

through the phases of Acceleration, Cruising, Coasting and Braking. Each phase specifies the

values of FT (t) and F (t). The switches between the phases are controlled by a comparison

between the state of the system and the decision variables according to the following rules.
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s(t) ≤ χ1→2
i

v(t) < vi

{
Acceleration

}
F (t) = FM (v(t)) FT (t) = FM (v(t))

v(t) = vi

{
Cruising

}
F (t) = FR(t) FT (t) = max(0, FR(t))

s(t) ≥ χ1→2
i

v(s(t)) < vlsi (s(t))
{
Coasting

}
F (t) = 0 FT (t) = 0

v(s(t)) = vlsi (s(t))
{
Braking

}
F (t) = FBmax FT (t) = 0

vlsi (s) is a limit velocity which is computed from the limit trajectory when the service brake is

maximum. This limit trajectory starts from the end of the section i and is computed backwardly

by using the maximum braking service according to the following equations:

ṡli(t) = vli(t) v̇li(t) = ali(t) ali(t) = 1
ρ m

(FR(t)− FBmax)

sli(0) = sd
i vli(0) = vi+1
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