
HAL Id: hal-01578910
https://hal.science/hal-01578910

Submitted on 30 Aug 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Replicated Data Types
Marc Shapiro

To cite this version:
Marc Shapiro. Replicated Data Types. Liu, Ling; Özsu, M. Tamer. Encyclopedia Of Database
Systems, Replicated Data Types, Springer-Verlag, pp.1-5, 2017, �10.1007/978-1-4899-7993-3_80813-
1�. �hal-01578910�

https://hal.science/hal-01578910
https://hal.archives-ouvertes.fr


Conflict-Free Replicated Data Types

(basic entry)

Marc Shapiro

Sorbonne-Universités-UPMC-LIP6 & Inria Paris
http://lip6.fr/Marc.Shapiro/

16 May 2016

1 Synonyms

Conflict-Free Replicated Data Types (CRDTs).
Commutative Replicated Data Types (CmRDTs).
Convergent Replicated Data Types (CvRDTs).
Replicated Abstract Data Types (RADTs).
Replicated Data Types (RDTs).

2 Definition

Conflict-Free Replicated Data Types (CRDTs) were invented to encapsulate and hide the
complexity of managing Eventual Consistency. A CRDT is an abstract data type
that implements some familiar object, such as a counter, a set or a sequence. Internally, a
CRDT is replicated, to provide reliability, availability and responsiveness. Encapsulation
hides the details of replication and conflict resolution.

In a sequential execution, the CRDT behaves like its sequential counterpart. Thus, a
CRDT is reusable by programmers without detailed knowledge of its implementation.
Furthermore, a CRDT supports concurrent updates, and encapsulates some strategy
that provably ensures that replicas of the CRDT will converge despite this concurrency.
Concurrent updates are never conflicting.

3 Historical background

There is precursor work on specific CRDTs, before the concept was formally identified
as an independent abstraction. Johnson and Thomas [11] proposed the so-called Last-
Writer-Wins (LWW) or Greatest-Timestamp-Wins approach for a replicated register,

1

http://lip6.fr/Marc.Shapiro/


i.e., an untyped memory that an update completely overwrites. Wuu and Bernstein
[19] studied more complex data types, the log and dictionary (a.k.a. map or Key-Value
Store). The whole area of Operational Transformation (OT) studied replicated strings
or sequences, intended for concurrent editing applications [18]. Baquero and Moura [3]
identified some convergence conditions for data types used in mobile computing. The
Dynamo system is based on a multi-value register construct [9]. Related topics include
replicated file systems and version control systems.

The concept of CRDTs was identified by Preguiça et al. [13], formalised by Shapiro
et al. [16] and Shapiro et al. [17], and studied systematically in Shapiro et al. [15].
A similar concept, called Replicated Abstract Data Types (RADTs), was proposed
independently by Roh et al. [14]. These works consider symmetric replicas, in which
concurrent updates must be commutative and associative. In related work, Burckhardt
et al. [7] consider so-called Cloud Types with asymmetric main and secondary branches,
thus relaxing the commutativity requirement.

The distinction between operation- and state-based CRDTs was established by Shapiro
et al. [16]. Burckhardt et al. [8] established lower-bound and optimality results for some
representative state-based CRDTs. Delta-CRDTs were proposed to decrease the footprint
of state-based CRDTs while keeping most of their advantages [1]. Pure operation-based
CRDTs leverage causal-order delivery to streamline the design and implementation of
operation-based CRDTs [4].

4 Foundations

4.1 Encapsulating replication and concurrency

In a distributed system, shared data is often replicated to improve the availability and
latency of reads. However, requiring strong consistency between replicas will actually
degrade the availability and latency of writes. According to the CAP Theorem, to
improve write availability and latency requires to relax the consistency requirement: a
replica should accept updates without synchronising with other replicas, and propagate
them in the background.

If multiple replicas accept updates (a so-called “multi-master” system), inevitably,
there will be concurrent updates to separate replicas. Managing and reconciling conflicting
concurrent updates, in order to ensure Eventual Consistency, is a major issue of
such systems.

CRDTs were invented to resolve this issue, by encapsulating a familiar object ab-
straction with a mathematically-sound conflict resolution protocol.

2



4.2 CRDT behaviour

A CRDT supports the interface of the corresponding abstraction. Thus, a register CRDT
will support mutation methods such as read and write methods; a counter supports
increment, decrement and value methods; a set methods to add, remove and query
elements, and so on.

A number of CRDT types have been proposed in the literature. The most basic ones
are the LWW Register [11] and the Multi-Value Register [9]. A widely-studied CRDT is
the sequence or list, used in particular for cooperative editing [13, 14]. Other common
CRDTs include counters [15], sets [15] and maps [14].

Consider for instance a set data type, supporting operations to add and remove
elements, ignoring duplicates. An archetypical CRDT set is the so-called Observed-
Remove Set (OR-Set). In any sequential execution, it behaves exactly like a sequential set.
Concurrently adding and removing different elements e and f , or adding the same element
e twice, or removing the same element e twice, commute per the sequential specification.
However, to ensure commutativity of two updates that concurrently add and remove the
same element e, the OR-Set makes the “add win,” i.e., any replica that observes both
operations concludes that e is a member of the set. To do this, the implementation of the
remove operation effectively cancels out those add operations that it previously observed,
and only those. We return to this example later in this entry.

4.3 Implementation approaches and requirements

A CRDT is typically designed to behave like its sequential counterpart in any sequential
execution. Furthermore, a CRDT is replicated, supports concurrent updates for avail-
ability, and encapsulates some strategy to merge concurrent updates and ensure that its
replicas eventually converge. One such strategy is the “Last-Writer-Wins” approach [11]
that uses timestamps to totally order updates and discard all but the highest-timestamped
one. Another is to record concurrent updates side-by-side, so that the application can deal
with them later, as in the Multi-Value Register of Dynamo [9] and in many filesystems
or version control systems.

The literature distinguishes two implementation strategies for CRDTs. In the
state-based approach, a mutation method changes only the state of the origin replica.
Periodically, a replica sends its full state to some other. The receiver merges the received
state into its own. A state-based CRDT manages its state space as a join-semilattice,
where every mutator method is an inflation, and the merge method computes the
join (a.k.a. least-upper-bound) of the states to be merged [3, 16]. Semi-lattice join is
associative, commutative and idempotent. The first two properties ensure that all replicas
converge deterministically to the same outcome. The latter ensures that the system
tolerates duplicated merges. As long as replicas communicate their state sufficiently
often, and the communication graph is connected, replicas eventually converge and each
object’s history is causally consistent.

3



The operation-based approach consists of sending updates rather than states. A
mutator method consists of two steps. The generator step reads the state of the origin
replica and generates an effector, a state transformation that is sent and eventually
applied to all replicas in the second step [10, 12, 16].1 Concurrent effectors must commute
with one another since they may be received in any order. Associativity is not required
but, if available, enables batching multiple effectors into a single one. The operation-based
approach requires that the underlying communication layer deliver updates to the object
in causal order, and never deliver the same (non-idempotent) update twice.

The state-based approach is generally considered less efficient (state may be very
large) but more elegant and simpler to understand. It makes very few assumptions
about the underlying network; for instance, the number and identity of replicas may be
unknown and variable. Conversely, the operation-based approach appears more efficient
but is more complex to implement and requires a more elaborate communication layer.

While CRDTs replicas are guaranteed to eventually converge, this may be insufficient
for application correctness. Many applications also require Causal Consistency to
avoid ordering anomalies across objects. Furthermore, maintaining the integrity of
structural invariants may require synchronisation to disallow certain concurrent updates
[2, 10] (see also Multi Datacenter Consistency).

4.4 Example: OR-Set

The following pseudocode, in the style of Shapiro et al. [16], illustrates a state-based
implementation of an OR-Set [15]. The local variables of a replica are a set E of added
elements, and a set T of removed elements or tombstones. Adding an element e puts it
into E along with a unique tag. The tag remains internal to the implementation and is
not visible through the interface. Removing an element e moves all pairs of the form
(e, ) from S into T . An element e is contained in the set if there exists a pair of the
form (e, ) in E. Merging two states retains the element pairs that are contained in both
states, and makes tombstones of element pairs that are tombstones in either state.

-- State-based OR-Set specification, with tombstones
variables set E, set T -- E: elements; T : tombstones

-- sets of pairs { (element e, unique-tag n), . . . }
initial ∅,∅
query contains (element e) : boolean b

let b = (∃n : (e, n) ∈ E)

update add (element e)
let n = unique() -- unique() returns a unique tag
E := E ∪ {(e, n)} -- e + unique tag

update remove (element e)
let R = {(e, n)|∃n : (e, n) ∈ E} -- Collect all unique pairs containing e

1 This vocabulary is not standardised. Other names for the generator phase are upstream, prepare, or
prepare-update. Alternative names for the effector phase are downstream, effect, effect-update or shadow
operation.

4



E := E \R
T := T ∪R -- Make pairs observed at origin into tombstone

merge (B)
E := (E \B.T ) ∪ (B.E \ T )
T := T ∪B.T

Unfortunately the memory usage of this specification grows, without bound, with
every add and remove operation. However, observe that adding an element pair
necessarily happens-before removing the same pair. Leveraging this observation,
Bieniusa et al. [6] propose an implementation whose size is bounded by the number
of currently-contained elements; since the state-based approach does not assume any
particular delivery order, it is somewhat complex. As the operation-based approach
already assumes causal-order delivery, avoiding tombstones is straightforward, as shown
next [17]. A replica maintains a set of contained element-pairs E. Adding an element e
creates the corresponding pair, and removing an element e simply removes all pairs of
the form (e, ) observed at the origin replica.

-- Operation-based Observed-Remove Set, without tombstones
variables set E -- set of pairs { (element e, unique-tag u), . . . }

initial ∅
query contains (element e) : boolean b

let b = (∃u : (e, u) ∈ E)

update add (element e)
generator (e)

let u = unique() -- unique() returns a unique value

effector (e, u)
E := E ∪ {(e, u)} -- e + unique tag

update remove (element e)
generator (e)

let R = {(e, u)|∃u : (e, u) ∈ E}
-- Generator: Collect all unique pairs containing e

effector (R)
E := E \R

-- Effector: remove pairs observed at source

5 Usage

Several implementations of CRDTs have been reported, in languages such as C++,
Clojure, Erlang, Go, Java, Python, Ruby, and Scala.

The Riak NoSQL database, as of Version 2.0, implements a number of replicated
data types, including flags, registers, counters, sets and maps [5]. Bet365, a large online
betting company, which manages 2.5 million simultaneous users with Riak OR-Sets.
League of Legends, an online multiplayer game, implements online chat for 70 million
users with Riak sets. TomTom extend Riak’s CRDTs to share navigation data between
a user’s different devices. SoundCloud uses a Go implementation on top of the Redis
database to store time-series information.

5



6 Cross References

CAP Theorem.
Causal Consistency.
Eventual Consistency.
Multi Datacenter Consistency.
Optimistic Replication and Resolution.
Weak Consistency Models for Replicated Data.

Recommended Reading

[1] P. S. Almeida, A. Shoker, and C. Baquero. Efficient state-based CRDTs by delta-
mutation. In Int. Conf. on Networked Systems (NETYS), volume 9466 of Lecture
Notes in Comp. Sc., pp. 62–76, Agadir, Morocco, May 2015.

[2] V. Balegas, N. Preguiça, R. Rodrigues, et al. Putting consistency back into eventual
consistency. In Euro. Conf. on Comp. Sys. (EuroSys), pp. 6:1–6:16, Bordeaux,
France, Apr. 2015.

[3] C. Baquero and F. Moura. Using structural characteristics for autonomous operation.
Operating Systems Review, 33(4):90–96, 1999. ISSN 0163-5980.

[4] C. Baquero, P. S. Almeida, and A. Shoker. Making operation-based CRDTs operation-
based. In Int. Conf. on Distr. Apps. and Interop. Sys. (DAIS), volume 8460 of
Lecture Notes in Comp. Sc., pp. 126–140, Berlin, Germany, June 2014.

[5] Basho, Inc. Data types, version 2.1.1. https://docs.basho.com/riak/kv/2.1.1/
developing/data-types/, Viewed May 2016. https://docs.basho.com/riak/kv/2.1.1/
developing/data-types/.

[6] A. Bieniusa, M. Zawirski, N. Preguiça, et al. An optimized conflict-free replicated set.
Rapport de Recherche RR-8083, Institut National de la Recherche en Informatique
et Automatique (Inria), Rocquencourt, France, Oct. 2012.

[7] S. Burckhardt, M. Fahndrich, D. Leijen, et al. Cloud types for eventual consistency.
In Euro. Conf. on Object-Oriented Pging. (ECOOP), pp. 283–307, Beijing, China,
June 2012.

[8] S. Burckhardt, A. Gotsman, H. Yang, et al. Replicated data types: Specification,
verification, optimality. In Symp. on Principles of Prog. Lang. (POPL), pp. 271–284,
San Diego, CA, USA, Jan. 2014.

[9] G. DeCandia, D. Hastorun, M. Jampani, et al. Dynamo: Amazon’s highly available
key-value store. In Symp. on Op. Sys. Principles (SOSP), volume 41 of Operating
Systems Review, pp. 205–220, Stevenson, Washington, USA, Oct. 2007.

6

https://docs.basho.com/riak/kv/2.1.1/developing/data-types/
https://docs.basho.com/riak/kv/2.1.1/developing/data-types/
https://docs.basho.com/riak/kv/2.1.1/developing/data-types/
https://docs.basho.com/riak/kv/2.1.1/developing/data-types/


[10] A. Gotsman, H. Yang, C. Ferreira, et al. ’Cause I’m strong enough: Reasoning about
consistency choices in distributed systems. In Symp. on Principles of Prog. Lang.
(POPL), pp. 371–384, St. Petersburg, FL, USA, 2016.

[11] P. R. Johnson and R. H. Thomas. The maintenance of duplicate databases. Internet
Request for Comments RFC 677, Information Sciences Institute, Jan. 1976.

[12] C. Li, D. Porto, A. Clement, et al. Making geo-replicated systems fast as possible,
consistent when necessary. In Symp. on Op. Sys. Design and Implementation (OSDI),
pp. 265–278, Hollywood, CA, USA, Oct. 2012.

[13] N. Preguiça, J. M. Marquès, M. Shapiro, et al. A commutative replicated data
type for cooperative editing. In Int. Conf. on Distributed Comp. Sys. (ICDCS), pp.
395–403, Montréal, Canada, June 2009.

[14] H.-G. Roh, M. Jeon, J.-S. Kim, et al. Replicated Abstract Data Types: Building
blocks for collaborative applications. Journal of Parallel and Dist. Comp., 71(3):
354–368, Mar. 2011.

[15] M. Shapiro, N. Preguiça, C. Baquero, et al. A comprehensive study of Convergent
and Commutative Replicated Data Types. Rapport de Recherche 7506, Institut
National de la Recherche en Informatique et Automatique (Inria), Rocquencourt,
France, Jan. 2011.

[16] M. Shapiro, N. Preguiça, C. Baquero, et al. Conflict-free replicated data types. In
Int. Symp. on Stabilization, Safety, and Security of Dist. Sys. (SSS), volume 6976 of
Lecture Notes in Comp. Sc., pp. 386–400, Grenoble, France, Oct. 2011.

[17] M. Shapiro, N. Preguiça, C. Baquero, et al. Convergent and commutative replicated
data types. Bulletin of the European Association for Theoretical Computer Science
(EATCS), (104):67–88, June 2011.

[18] C. Sun and C. Ellis. Operational transformation in real-time group editors: issues,
algorithms, and achievements. In Int. Conf. on Computer-Supported Coop. Work
(CSCW), p. 59, Seattle WA, USA, Nov. 1998.

[19] G. T. J. Wuu and A. J. Bernstein. Efficient solutions to the replicated log and
dictionary problems. In Symp. on Principles of Dist. Comp. (PODC), pp. 233–242,
Vancouver, BC, Canada, Aug. 1984.

7


	Synonyms
	Definition
	Historical background
	Foundations
	Encapsulating replication and concurrency
	CRDT behaviour
	Implementation approaches and requirements
	Example: OR-Set

	Usage
	Cross References

