Marc Shapiro

Conflict-Free Replicated Data Types (basic entry)

Keywords: Commutative Replicated Data Types (CmRDTs), Convergent Replicated Data Types (CvRDTs), Replicated

come

Historical background

There is precursor work on specific CRDTs, before the concept was formally identified as an independent abstraction. Johnson and Thomas [START_REF] Johnson | The maintenance of duplicate databases[END_REF] proposed the so-called Last-Writer-Wins (LWW) or Greatest-Timestamp-Wins approach for a replicated register, 1 i.e., an untyped memory that an update completely overwrites. Wuu and Bernstein [START_REF] Wuu | Efficient solutions to the replicated log and dictionary problems[END_REF] studied more complex data types, the log and dictionary (a.k.a. map or Key-Value Store). The whole area of Operational Transformation (OT) studied replicated strings or sequences, intended for concurrent editing applications [START_REF] Sun | Operational transformation in real-time group editors: issues, algorithms, and achievements[END_REF]. Baquero and Moura [START_REF] Baquero | Using structural characteristics for autonomous operation[END_REF] identified some convergence conditions for data types used in mobile computing. The Dynamo system is based on a multi-value register construct [START_REF] Decandia | Dynamo: Amazon's highly available key-value store[END_REF]. Related topics include replicated file systems and version control systems.

The concept of CRDTs was identified by Preguiça et al. [START_REF] Preguiça | A commutative replicated data type for cooperative editing[END_REF], formalised by Shapiro et al. [START_REF] Shapiro | Conflict-free replicated data types[END_REF] and Shapiro et al. [START_REF] Shapiro | Convergent and commutative replicated data types[END_REF], and studied systematically in Shapiro et al. [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF]. A similar concept, called Replicated Abstract Data Types (RADTs), was proposed independently by Roh et al. [START_REF] Roh | Replicated Abstract Data Types: Building blocks for collaborative applications[END_REF]. These works consider symmetric replicas, in which concurrent updates must be commutative and associative. In related work, Burckhardt et al. [START_REF] Burckhardt | Cloud types for eventual consistency[END_REF] consider so-called Cloud Types with asymmetric main and secondary branches, thus relaxing the commutativity requirement.

The distinction between operation-and state-based CRDTs was established by Shapiro et al. [START_REF] Shapiro | Conflict-free replicated data types[END_REF]. Burckhardt et al. [START_REF] Burckhardt | Replicated data types: Specification, verification, optimality[END_REF] established lower-bound and optimality results for some representative state-based CRDTs. Delta-CRDTs were proposed to decrease the footprint of state-based CRDTs while keeping most of their advantages [START_REF] Almeida | Efficient state-based CRDTs by deltamutation[END_REF]. Pure operation-based CRDTs leverage causal-order delivery to streamline the design and implementation of operation-based CRDTs [START_REF] Baquero | Making operation-based CRDTs operationbased[END_REF].

Foundations

Encapsulating replication and concurrency

In a distributed system, shared data is often replicated to improve the availability and latency of reads. However, requiring strong consistency between replicas will actually degrade the availability and latency of writes. According to the CAP Theorem, to improve write availability and latency requires to relax the consistency requirement: a replica should accept updates without synchronising with other replicas, and propagate them in the background.

If multiple replicas accept updates (a so-called "multi-master" system), inevitably, there will be concurrent updates to separate replicas. Managing and reconciling conflicting concurrent updates, in order to ensure Eventual Consistency, is a major issue of such systems.

CRDTs were invented to resolve this issue, by encapsulating a familiar object abstraction with a mathematically-sound conflict resolution protocol.

CRDT behaviour

A CRDT supports the interface of the corresponding abstraction. Thus, a register CRDT will support mutation methods such as read and write methods; a counter supports increment, decrement and value methods; a set methods to add, remove and query elements, and so on.

A number of CRDT types have been proposed in the literature. The most basic ones are the LWW Register [START_REF] Johnson | The maintenance of duplicate databases[END_REF] and the Multi-Value Register [START_REF] Decandia | Dynamo: Amazon's highly available key-value store[END_REF]. A widely-studied CRDT is the sequence or list, used in particular for cooperative editing [START_REF] Preguiça | A commutative replicated data type for cooperative editing[END_REF][START_REF] Roh | Replicated Abstract Data Types: Building blocks for collaborative applications[END_REF]. Other common CRDTs include counters [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF], sets [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF] and maps [START_REF] Roh | Replicated Abstract Data Types: Building blocks for collaborative applications[END_REF].

Consider for instance a set data type, supporting operations to add and remove elements, ignoring duplicates. An archetypical CRDT set is the so-called Observed-Remove Set (OR-Set). In any sequential execution, it behaves exactly like a sequential set. Concurrently adding and removing different elements e and f , or adding the same element e twice, or removing the same element e twice, commute per the sequential specification. However, to ensure commutativity of two updates that concurrently add and remove the same element e, the OR-Set makes the "add win," i.e., any replica that observes both operations concludes that e is a member of the set. To do this, the implementation of the remove operation effectively cancels out those add operations that it previously observed, and only those. We return to this example later in this entry.

Implementation approaches and requirements

A CRDT is typically designed to behave like its sequential counterpart in any sequential execution. Furthermore, a CRDT is replicated, supports concurrent updates for availability, and encapsulates some strategy to merge concurrent updates and ensure that its replicas eventually converge. One such strategy is the "Last-Writer-Wins" approach [START_REF] Johnson | The maintenance of duplicate databases[END_REF] that uses timestamps to totally order updates and discard all but the highest-timestamped one. Another is to record concurrent updates side-by-side, so that the application can deal with them later, as in the Multi-Value Register of Dynamo [START_REF] Decandia | Dynamo: Amazon's highly available key-value store[END_REF] and in many filesystems or version control systems.

The literature distinguishes two implementation strategies for CRDTs. In the state-based approach, a mutation method changes only the state of the origin replica. Periodically, a replica sends its full state to some other. The receiver merges the received state into its own. A state-based CRDT manages its state space as a join-semilattice, where every mutator method is an inflation, and the merge method computes the join (a.k.a. least-upper-bound) of the states to be merged [START_REF] Baquero | Using structural characteristics for autonomous operation[END_REF][START_REF] Shapiro | Conflict-free replicated data types[END_REF]. Semi-lattice join is associative, commutative and idempotent. The first two properties ensure that all replicas converge deterministically to the same outcome. The latter ensures that the system tolerates duplicated merges. As long as replicas communicate their state sufficiently often, and the communication graph is connected, replicas eventually converge and each object's history is causally consistent.

The operation-based approach consists of sending updates rather than states. A mutator method consists of two steps. The generator step reads the state of the origin replica and generates an effector, a state transformation that is sent and eventually applied to all replicas in the second step [START_REF] Gotsman | Cause I'm strong enough: Reasoning about consistency choices in distributed systems[END_REF][START_REF] Li | Making geo-replicated systems fast as possible, consistent when necessary[END_REF][START_REF] Shapiro | Conflict-free replicated data types[END_REF]]. 1 Concurrent effectors must commute with one another since they may be received in any order. Associativity is not required but, if available, enables batching multiple effectors into a single one. The operation-based approach requires that the underlying communication layer deliver updates to the object in causal order, and never deliver the same (non-idempotent) update twice.

The state-based approach is generally considered less efficient (state may be very large) but more elegant and simpler to understand. It makes very few assumptions about the underlying network; for instance, the number and identity of replicas may be unknown and variable. Conversely, the operation-based approach appears more efficient but is more complex to implement and requires a more elaborate communication layer.

While CRDTs replicas are guaranteed to eventually converge, this may be insufficient for application correctness. Many applications also require Causal Consistency to avoid ordering anomalies across objects. Furthermore, maintaining the integrity of structural invariants may require synchronisation to disallow certain concurrent updates [START_REF] Balegas | Putting consistency back into eventual consistency[END_REF][START_REF] Gotsman | Cause I'm strong enough: Reasoning about consistency choices in distributed systems[END_REF] (see also Multi Datacenter Consistency).

Example: OR-Set

The following pseudocode, in the style of Shapiro et al. [START_REF] Shapiro | Conflict-free replicated data types[END_REF], illustrates a state-based implementation of an OR-Set [START_REF] Shapiro | A comprehensive study of Convergent and Commutative Replicated Data Types[END_REF]. The local variables of a replica are a set E of added elements, and a set T of removed elements or tombstones. Adding an element e puts it into E along with a unique tag. The tag remains internal to the implementation and is not visible through the interface. Removing an element e moves all pairs of the form (e,) from S into T . An element e is contained in the set if there exists a pair of the form (e,) in E. Merging two states retains the element pairs that are contained in both states, and makes tombstones of element pairs that are tombstones in either state. Unfortunately the memory usage of this specification grows, without bound, with every add and remove operation. However, observe that adding an element pair necessarily happens-before removing the same pair. Leveraging this observation, Bieniusa et al. [6] propose an implementation whose size is bounded by the number of currently-contained elements; since the state-based approach does not assume any particular delivery order, it is somewhat complex. As the operation-based approach already assumes causal-order delivery, avoiding tombstones is straightforward, as shown next [START_REF] Shapiro | Convergent and commutative replicated data types[END_REF]. A replica maintains a set of contained element-pairs E. Adding an element e creates the corresponding pair, and removing an element e simply removes all pairs of the form (e,) observed at the origin replica. Several implementations of CRDTs have been reported, in languages such as C++, Clojure, Erlang, Go, Java, Python, Ruby, and Scala.

The Riak NoSQL database, as of Version 2.0, implements a number of replicated data types, including flags, registers, counters, sets and maps [START_REF] Basho | Data types, version 2.1.1[END_REF]. Bet365, a large online betting company, which manages 2.5 million simultaneous users with Riak OR-Sets. League of Legends, an online multiplayer game, implements online chat for 70 million users with Riak sets. TomTom extend Riak's CRDTs to share navigation data between a user's different devices. SoundCloud uses a Go implementation on top of the Redis database to store time-series information.

-

 -State-based OR-Set specification, with tombstones variables set E, set T --E: elements; T : tombstones --sets of pairs { (element e, unique-tag n), . . . } initial ∅, ∅ query contains (element e) : boolean b let b = (∃n : (e, n) ∈ E) update add (element e) let n = unique() -unique() returns a unique tag E := E ∪ {(e, n)} -e + unique tag update remove (element e) let R = {(e, n)|∃n : (e, n) ∈ E} --Collect all unique pairs containing e E := E \ R T := T ∪ R --Make pairs observed at origin into tombstone merge (B) E := (E \ B.T) ∪ (B.E \ T) T := T ∪ B.T

-

 -Operation-based Observed-Remove Set, without tombstones variables set E --set of pairs { (element e, unique-tag u), . . . } initial ∅ query contains (element e) : boolean b let b = (∃u : (e, u) ∈ E) update add (element e) generator (e) let u = unique() -unique() returns a unique value effector (e, u) E := E ∪ {(e, u)} -e + unique tag update remove (element e) generator (e) let R = {(e, u)|∃u : (e, u) ∈ E} --Generator: Collect all unique pairs containing e effector (R) E := E \ R --Effector: remove pairs observed at source 5 Usage

This vocabulary is not standardised. Other names for the generator phase are upstream, prepare, or prepare-update. Alternative names for the effector phase are downstream, effect, effect-update or shadow operation.