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Abstract

This paper characterizes the performance in terms of queueing stability of a network composed

of multiple MIMO transmitter-receiver pairs taking into account the dynamic traffic pattern and the

probing/feedback cost. We adopt a centralized scheduling scheme that selects a number of active pairs

in each time-slot. We consider that the transmitters apply interference alignment (IA) technique if two

or more pairs are active, whereas in the special case where one pair is active point-to-point MIMO

singular value decomposition (SVD) is used. We consider a time-division duplex (TDD) system where

transmitters acquire their channel state information (CSI) by decoding the pilot sequences sent by

the receivers. Since global CSI knowledge is required for IA, the transmitters have also to exchange

their estimated CSIs over a backhaul of limited capacity (i.e. imperfect case). Under this setting, we

characterize in this paper the stability region of the system under both the imperfect and perfect (i.e.

unlimited backhaul) cases, then we examine the gap between these two resulting regions. Further, under

each case we provide a centralized probing policy that achieves the max stability region. These stability

regions and scheduling policies are given for the symmetric system, where all the path loss coefficients

are equal to each other, as well as for the general system. For the symmetric system, we provide the

conditions under which IA yields a queueing stability gain compared to SVD. Under the general system,

the adopted scheduling policy is of a high computational complexity for moderate numbers of pairs,

consequently we propose an approximate policy that has a reduced complexity but that achieves only a

fraction of the system stability region. A characterization of this fraction is provided.
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I. INTRODUCTION

One of the key issues in wireless communication systems is the interference that is caused by

a large number of users communicating on the same channel, resulting into severe performance

degradations unless treated properly. In this regard, interference alignment (IA) was introduced

[3] as an efficient interference management technique and is shown to result in higher through-

puts compared to conventional interference-agnostic methods. Indeed, IA is a linear precoding

technique that attempts to align interfering signals in time, frequency, or space. In multiple-input

multiple-output (MIMO) networks, IA utilizes the spatial dimension offered by multiple antennas

for alignment. By aligning interference at all receivers (i.e. users), IA reduces the dimension of

interference, allowing users to suppress interference via linear techniques and decode their desired

signals interference free. A major challenge of the above IA scheme lies in the fact that the global

channel state information (CSI) must be available at each transmitter. In scenarios where the

receivers quantize and send the CSI back to the transmitters, the IA scheme is explored over

frequency selective channels for single-antenna users in [4] and for multiple-antenna users in [5].

Both references provide degree-of-freedom (DoF)-achieving quantization schemes and establish

the required scaling of the number of feedback bits. For alignment using spatial dimensions,

[6] provides the scaling of feedback bits to achieve IA in MIMO interference channel (IC). To

overcome the problem of scaling codebook size, and relax the reliance on frequency selectivity

for quantization, [7] proposed an analog feedback strategy for constant MIMO interference

channels. In [8], the Grassmannian Manifold quantization technique was adopted to reduce the

information exchange over the backhaul.

We draw the attention to the fact that IA technique can be used with a number of transmitter-

receiver pairs greater than or equal to two. On the other side, for the special case where we have

point-to-point MIMO system, i.e. only one pair, singular value decomposition (SVD) technique

can be applied and was shown to provide very good performances [9], [10]; note that in this

case other techniques can be used such as zero forcing (ZF) and matched filtering (MF).

All the above cited works, however, do not account for the dynamic traffic processes of the

users, i.e. they assume users with infinite back-logged data. In practice, the users of a wireless

network request data, so it is of great interest to investigate the impact of MIMO in the higher

layers [11], more specifically in the media access control (MAC) layer. The cross-layer design

DRAFT



3

goal here is the achievement of the entire stability region of the system. In broad terms, the

stability region of a network is the set of arrival rate vectors such that the entire network load

can be served by some service policy without an infinite blow up of any queue. The special

scheduling policy achieving the entire stability region, called the optimal policy, is hereby of

particular interest. The concept of stability-optimal operation comes originally from the control

and automation theory [12]. It was applied to the wireless communication systems first in [13],

and the view was extended by some bounds in [14]. Since then, this concept has been extensively

investigated in the wireless framework under various traffic and network scenarios. For instance,

the authors in [15] have considered the broadcast channel (BC) and proposed a technique based

on ZF precoding, with a heuristic user scheduling scheme that selects users whose channel

states are nearly orthogonal vectors and illustrate the stability region this policy achieves via

simulations. In [16], it has been noticed that the policy resulting from the minimization of the

drift of a quadratic Lyapunov function is to solve a weighted sum rate maximization problem

(with weights being the queue lengths) each time-slot and they propose an iterative water-filling

algorithm for this purpose. In addition, taking into account the probing cost, the authors in [17]

have examined three different scheduling policies (centralized, decentralized and mixed policies)

for MISO wireless downlink systems under ZF precoding technique. Further, in [18] the authors

studied the impact of channel state quantization on the stability of a system using ZF precoding

under a centralized scheme. Compared with the above works, in this paper we consider a system

with a different physical layer based on IA, which we will present later.

As alluded earlier, taking into consideration the traffic arrivals of the users, the key performance

metric we examine in this work is the queueing stability. Specifically, for a control policy, the

main performance measure we adopt and characterize is the stability region this policy can

achieve. Under the condition that the mean arrival-rate vectors are inside the stability region,

stability implies that the mean queue length of every queue in the system is finite and, by Little’s

theorem, it also implies finite average packet-delays [19]. It is worth mentioning that for delay-

sensitive systems we usually have to deal with control problems under harder delay constraints,

such as minimizing the average delay or guaranteeing that the average delay is lower than a

certain bound. Several approaches can be used to deal with such delay-aware problems, such as

the Lyapunov stability drift approach and the Markov decision process approach; see [20]–[23]

and references therein. Note that in our work here the delay is not a figure of interest in the

analysis, and the main focus is on the stability of the system.

DRAFT



4

In this paper, we consider a MIMO network where multiple transmitter-receiver pairs operate

in time-division duplex (TDD) mode under backhaul links of limited capacity. Each transmitter

acquires its local CSI from its corresponding user by exploiting the channel reciprocity. We use

(pre-assigned) orthogonal pilot sequences among the users, so the length of each one of these

sequences should be proportional to the number of active users in the system. It means that after

acquiring the CSI of, for example, L users, the throughput is multiplied by 1− Lθ, where θ is

the fraction of time that takes the CSI acquisition of one user [24]. Depending on the number

of scheduled pairs at a time-slot, we distinguish two cases: (i) if the number of scheduled pairs

is greater than or equal to two, IA technique is applied, and each transmitter needs to send

a quantized version of its local CSI to other transmitters using a fixed number of bits B per

channel matrix, and (ii) if only one pair is scheduled, we apply SVD technique. It is important

to focus on the trade-off between having a large number of active transmitter-receiver pairs (so

having a high probing cost but many pairs can communicate simultaneously) and having much

time of the slot dedicated to data transmission (which means getting a low probing cost but few

pairs can communicate simultaneously) [17]. In order to choose the subset of active pairs at each

slot, we adopt a centralized scheme where the decision of which pairs to schedule is made at

a central scheduler (CS) based only on the statistics of the channels of the users and the state

of their queue lengths at each slot [18]. Note that the centralized approach is used in current

standards (e.g. LTE [25]), where the base station explicitly requests some users for their CSI.

In addition to increasing the CSI probing cost, scheduling more pairs requires more backhaul

usage since under IA technique the active transmitters need to exchange their CSI knowledge.

In some scenarios, it may be beneficial not to occupy the backhaul with this huge amount of

signaling but instead exploited it more efficiently. For instance, if the backhaul is wireless, the

CSI exchange process consumes a part of the total reserved bandwidth, which can be instead

used in the transmission process. Hence, it is of high interest to study the system under an

interference management technique for which no CSI exchange over the backhaul is required.

For this purpose, we investigate the system performance under time division multiple access

(TDMA) as a channel access method, meaning that there is only one active pair at a given time-

slot and thus no backhaul usage occurs, and using SVD as a precoding technique. One may

wonder which one between TDMA-SVD and IA outperforms the other in terms of stability. We

will provide an answer to this challenging question by comparing the stability performances of

these two techniques. To the best of our knowledge, among all the works (which we have cited
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some of them earlier, e.g. [15]–[18]) considering the impact of MIMO in the higher layers, this

is the first work that considers the contrast of SVD with IA in terms of queueing stability taking

into account the probing cost and the fact that the backhaul is of limited capacity.

The main contributions and the organization of the paper are summarized as follows.

• Section II presents the adopted system model and the interaction between the physical layer

and the queueing performance.

• The average rate expressions for both the perfect (i.e. unlimited backhaul capacity) and

imperfect (i.e. limited backhaul capacity) cases are derived in Section III.

• In Section IV, we present a deep stability analysis for the symmetric system where all the path

loss coefficients are equal to each other. Specifically, for this system:

? We provide a precise characterization of the system stability region and we propose an

optimal scheduling decision to achieve this region in both the perfect and imperfect cases.

? Under both cases, we investigate the conditions under which the use of IA (i.e. applied if

the number of active pairs ≥ 2) can yield a queueing stability gain compared to SVD (i.e.

applied if there is only 1 active pair).

? We examine the maximum gap between the stability region under the imperfect case and

the stability region under the perfect case. We also investigate the impact of changing the

number of bits on the system stability region.

• In Section V, we present a stability analysis for the general system where the path loss

coefficients are not necessarily equal to each other. In detail, for this system:

? We investigate the stability performances by characterizing the system stability region and

providing an optimal scheduling policy under both the imperfect and perfect cases.

? Since the scheduling policy is of a high computational complexity, under the imperfect case

we propose an approximate policy that has a reduced complexity but that achieves only a

fraction of the stability region of the imperfect case; we point out that this policy relies on an

average rate approximation (for the imperfect case) that we first calculate. A characterization

of the fraction this policy achieves is also provided.

? Using the average rate approximation mentioned above, we examine the gap between the

stability region under the imperfect case and the stability region under the perfect case.

• Section VI is dedicated to numerical results and relevant discussions.

• Finally, Section VII concludes the paper.
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Notation: Boldface uppercase symbols represent matrices and lowercases are used for vectors,

unless stated otherwise. The symbol IN denotes the identity matrix of size N . The operator ⊗

is the Kronecker product. The notation | · | is used to indicate the absolute value for scalars and

the cardinality for sets (or subsets). 1(·) is the indicator function. In addition, ‖·‖1 and ‖·‖ are

used for the norms of first and second degree, respectively. Finally, superscripts T and H over

a matrix or vector denote its transpose and conjugate transpose, respectively.

II. SYSTEM MODEL

Transmitter k-1

Transmitter k

Transmitter k+1 Receiver k+1

Receiver k

Receiver k-1

Central
Scheduler

limited backhaul    
links

base station (transmitter) 

(receiver)
user terminal

buffer
(queue)

Figure 1: A sketch of an N -user MIMO interference channel with limited backhaul.

We consider the MIMO interference channel with N transmitter-receiver pairs shown in Figure

1. For simplicity of exposition, we consider a homogeneous network where all transmitters are

equipped with Nt antennas and all receivers (users) with Nr antennas. We assume that time is

slotted. As will be explained later, only a subset L(t), of cardinality L(t), of pairs is active at time-

slot t, with L(t) ≤ N . Transmitter k has dk ≤ min (Nt, Nr) independent data streams to transmit

to its intended user k. For the cases where L(t) ≥ 2, while each transmitter communicates with

its intended receiver, it also creates interference to other L(t)− 1 unintended receivers.

Given this channel model, the received signal at active user k (∈ L(t)) can be expressed as

yk =
∑
i∈L(t)

√
ζkiP

di
Hki

di∑
j=1

v
(j)
i x

(j)
i + zk, (1)
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where yk is the Nr×1 received signal vector, zk is the additive white complex Gaussian noise with

zero mean and covariance matrix σ2INr , Hki is the Nr ×Nt channel matrix between transmitter

i and receiver k with independent and identically distributed (i.i.d.) zero mean and unit variance

complex Gaussian entries, ζki represents the path loss of channel Hki, x
(j)
i represents the j-th

data stream from transmitter i, P is the total power at each transmitting node, which is equally

allocated among its data streams, and v
(j)
i is the corresponding Nt × 1 precoding vector of unit

norm. For the rest of the paper we denote by αki the fraction ζkiP
di

, i.e. αki = ζkiP
di

.

The scheduling rule to select the subset of active pairs at each time-slot will be discussed

later in the paper. Depending on the number of scheduled pairs L(t), two cases are to consider:

• If L(t) = 1, i.e. only one pair is active at time-slot t: in this case we use SVD (singular

value decomposition) technique, which was shown to provide very good performances for

point-to-point MIMO systems [9]. Note that other techniques can be considered, such as

ZF (zero forcing) and MF (matched filtering).

• If L(t) ≥ 2: in this case we perform IA (interference alignment) technique, which was

shown to provide good performances for multipoint-to-multipoint MIMO systems [3].

For clarity of exposition, in this section we present the IA scheme and in the next Section (Section

III, in which we also derive the average rates expressions) we provide the SVD scheme.

A. Interference Alignment Technique

IA is an efficient linear precoding technique that often achieves the full DoF supported by

MIMO interference channels. In cases where the full DoF cannot be guaranteed, IA has been

shown to provide significant gains in high signal-to-noise ratio (SNR) sum-rate. To investigate

IA in our model, we start by examining the effective channels created after precoding and

combining. For tractability, we restrict ourselves to a per-stream zero-forcing receiver. Recall

that in the high (but finite) SNR regime, in which IA is most useful, gains from more involved

receiver designs are limited [26]. Under the adopted system, receiver k uses the Nr×1 combining
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vector umk of unit norm to detect its m-th stream, such as

x̂
(m)
k =

(
u

(m)
k

)H
yk

=

desired signal︷ ︸︸ ︷
√
αkk

(
u

(m)
k

)H
Hkkv

(m)
k x

(m)
k +

inter-stream interference (ISI)︷ ︸︸ ︷
√
αkk

dk∑
j=1,j 6=m

(
u

(m)
k

)H
Hkkv

(j)
k x

(j)
k

+

inter-user interference (IUI)︷ ︸︸ ︷∑
i∈L(t),i 6=k

√
αki

di∑
j=1

(
u

(m)
k

)H
Hkiv

(j)
i x

(j)
i +

noise︷ ︸︸ ︷(
u

(m)
k

)H
zk, (2)

where the first term at the right-hand-side of this expression is the desired signal, the second

one is the inter-stream interference (ISI) caused by the same transmitter, and the third one

is the inter-user interference (IUI) resulting from the other transmitters. In order to mitigate

these interferences and improve the system performances, IA is performed accordingly, that is

designing the set of combining and precoding vectors such that(
u

(m)
k

)H
Hkiv

(j)
i = 0, ∀(i, j) 6= (k,m),with i, k ∈ L(t). (3)

In the following we state some additional assumptions on the design of these vectors [7]: (a)

vector v
(j)
i is a function of all the cross channels Hkl ∀k, l, k 6= l only, (b) vector u

(m)
k is a function

of vectors Hkiv
(j)
i ∀i 6= k, ∀j and Hkkv

(j)
k , ∀j 6= m, and (c) matrix Vk =

[
v

(1)
k , . . . ,v

(dk)
k

]
is

unitary. From these properties/assumptions we can deduce that u
(m)
k is independent of Hkkv

(m)
k .

Note that the conditions in (3) are those of a perfect interference alignment. In other words,

suppose that all the transmitting nodes have perfect global CSI and each receiver obtains a

perfect version of its corresponding combining vectors, ISI and IUI can be suppressed completely.

However, obtaining the perfect global CSI at the transmitters is not always practical due to the

fact that backhaul links, which connect transmitters to each other, are of limited capacity. The

CSI sharing mechanism is detailed in the next subsection.

Finally, some remarks are in order. We note that the approach to design the IA vectors is

not a figure of interest in our contribution, however our analysis holds for every approach that

produces IA vectors with simultaneously all the properties given before [7]; such an approach

was the subject of investigation in several works, as for instance [3], [27]. In addition, we assume

that each active receiver obtains a perfect version of its corresponding combining vectors. The

cost of this latter process is not considered in our analysis. Moreover, we do not perform power

control for our system. This is done to further simplify the transmission scheme.
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Figure 2: Global CSI knowledge at transmitter k under the imperfect case.

B. CSIT Sharing Over Limited Capacity Backhaul Links

The process of CSI sharing is restricted to the scheduled pairs (represented by subset L(t)).

Thus, here, even if we did not mention it, when we write “transmitter” (resp., “user”) we mean

“active transmitter” (resp., “active user”).

We adopt a scenario where each transmitter receives all the required CSI and independently

computes the IA vectors. As alluded earlier, global CSI is required at each transmitting node in

order to design the IA vectors that satisfy (3). As shown in Figure 1, we suppose that all the

transmitters are connected to a CS via their limited backhaul links, meaning that this CS serves

as a way for connecting the transmitters to each other; as we will see later on, this scheduler

decides which pairs to schedule at each time-slot. We assume a TDD transmission strategy,

which enables the transmitters to estimate their channels toward different users by exploiting the

reciprocity of the wireless channel. We consider throughout this paper that there are no errors

in the channel estimation. Under the adopted strategy, the users send their training sequences in

the uplink phase, allowing each transmitter to estimate (perfectly) its local CSI, meaning that

the k-th transmitter estimates perfectly the channels Hik, ∀i ∈ L(t). However, the local CSI of

other transmitters, excluding the direct channels (i.e. for the k-th transmitter the direct channel

is given by matrix Hkk), are obtained via backhaul links of limited capacity. In such limited

backhaul conditions, a codebook-based quantization technique needs to be adopted to reduce

the huge amount of information exchange used for CSI sharing, which we detail as follows.

Let hik denote the vectorization of the channel matrix Hik. Then, for each i 6= k, transmitter

k selects the index no that corresponds to the optimal codeword in a predetermined codebook
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CB =
[
ĥ

(1)
ik , ..., ĥ

(2B)
ik

]
according to

no = arg max
1≤n≤ 2B

∣∣∣∣(h̃ik

)H
ĥ

(n)
ik

∣∣∣∣2 , (4)

in which B is the number of bits used to quantize Hik and h̃ik = hik ‖hik‖−1 is the channel

direction vector. After quantizing all the matrices of its local CSI, we assume that transmitter k

sends the corresponding optimal indexes to all other active transmitters, which share the same

codebook, allowing these transmitters to reconstruct the quantized local knowledge of transmitter

k. We point out that each transmitter quantizes its local CSI excluding the direct channel since,

as noted earlier, it is not required when computing the IA vectors of other transmitters. The

global CSI knowledge at transmitter k is summarized in Figure 2.

Let us now define the quantization error as eik = 1−
(
| ĥHik hik|2(‖hki‖2)−1

)
, where ĥik is the

quantization of hik, and adopt a similar model to the one used in [18], [28, Lemma 6], which

relies on the theory of quantization cell approximation. Let Q = NtNr − 1. The cumulative

distribution function (CDF) of eik is then given by the following

P {eik ≤ ε} =

 2BεQ, for 0 ≤ ε ≤ 2−
B
Q

1, for ε > 2−
B
Q

(5)

As a final remark, we note that the number of bits B is assumed to be fixed and does

not change with the number of scheduled pairs L(t). This assumption is made to simplify the

analysis, because otherwise we should consider the relation between these two numbers, which

would add a considerable amount of complexity to the analysis.

C. Rate Model and Impact of Training

Before proceeding with the description, we define the perfect case as the case where the

backhaul has an infinite capacity, which leads to perfect global CSI knowledge at the transmitters;

so no quantization is needed. Further, we call imperfect case the model described previously,

where a quantization is performed over the backhaul of limited capacity and a fixed number of

bits B is used to quantize each channel matrix.

As explained in the previous subsection, for the perfect case the IA constraints null the ISI and

the IUI, and no residual interference exists. On the other hand, for the imperfect case we recall

that each (active) transmitter quantizes its local CSI, excluding the direct channel, and sends it

to all other (active) transmitters. At the same time, this transmitter receives the quantized local

CSI (except the direct channel) of each other transmitter. Let us denote Ĥki as the quantization
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version of Hki, which can be formed by reshaping vector ĥki. Then, e.g., transmitter k designs its

IA vectors based on: (a) Hkk, i.e. perfect direct channel, (b) Ĥik ∀i 6= k, i.e. quantized version

of the channels of its local CSI (without the direct channel), and (c) Ĥli ∀i, l, i 6= l, i 6= k,

i.e. the imperfect knowledge it receives from other transmitters. It can be noticed that although

transmitter k has a perfect version of the Hik ∀i 6= k, this transmitter uses the quantized version

of these channels in the design of its IA vectors. This is considered so that each transmitter can

compute the (same) precoding vectors of other transmitters, where we recall that these vectors

are used in the computation of the combining vector of this transmitter. Based on the above,

under the imperfect case the IA technique is able to completely cancel the ISI but not the IUI.

In other words, under this case we have(
û

(m)
k

)H
Ĥkiv̂

(j)
i = 0,

(
û

(m)
k

)H
Hkiv̂

(j)
i 6= 0, ∀i 6= k, ∀m,∀j, and k, i ∈ L(t),(

û
(m)
k

)H
Hkkv̂

(j)
k = 0, ∀j 6= m,∀k, and k ∈ L(t),

(6)

where v̂
(m)
k and û

(m)
k , ∀k,m, are the precoding and combining vectors, respectively, designed

under the imperfect case. Similarly to the perfect case, for the imperfect case the following

properties hold [7]: (a) vector v̂
(j)
i is a function of all the cross channels Ĥkl ∀k, l, k 6= l only,

(b) vector û
(m)
k is a function of vectors Ĥkiv̂

(j)
i ∀i 6= k, ∀j and Hkkv̂

(j)
k , ∀j 6= m, and (c) matrix

V̂k =
[
v̂

(1)
k , . . . , v̂

(dk)
k

]
is unitary. Thus, we can deduce that û

(m)
k is independent of Hkkv̂

(m)
k .

Using the above, the SINR/SNR for stream m at active receiver k can be written as

γ
(m)
k =



αkk

∣∣∣∣(û
(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L(t),i 6=k

αki
di∑
j=1

∣∣∣∣(û
(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2 , imperfect case

αkk

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(7)

where we recall that v
(m)
k and u

(m)
k , ∀k,m, are designed under the perfect case (i.e. using perfect

global CSI). As alluded earlier, only a subset L(t) of pairs is scheduled at a time, where we

recall that L(t) = |L(t)|. For notational convenience, we will use signal-to-interference-plus-

noise ratio (SINR) as a general notation to denote SNR for the perfect case and SINR for the

imperfect case, unless stated otherwise.

We now explain some useful points that are adopted in the rate model. At a given time-slot,

the instantaneous rate R of stream m of pair k is transmitted successfully if the SINR γ
(m)
k of
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receiver (i.e. user) k is higher than or equal to a given threshold τ ; otherwise, the transmission is

not successful and the instantaneous bit rate is 0. Obviously, the choice of τ depends on R and

vice-versa. The relation (mainly point to point relation) between the SINR threshold and the bit

rate has been studied widely in the literature and therefore lies out of the scope of this paper.

In fact, our analysis is valid for any point to point relation between τ and R. Our assumption is

simply that a given rate R is transmitted if the SINR is above a given threshold τ . Let us denote

by R̃k(t) the assigned rate (in units of bits/slot) for user k at time-slot t, thus R̃k(t) is the sum

of the assigned rates for all the streams of user k at time-slot t. In other words, we have

R̃k(t) =

dk∑
m=1

R1(
γ
(m)
k (t)≥ τ

), (8)

where 1(·) is the indicator function. For this model, channel acquisition cost is not negligible

and should be considered. As mentioned earlier, we consider a system under TDD mode where

users send training sequences in the uplink so that the transmitters can estimate their channels.

This scheme uses orthogonal sequences among the users, so their lengths are proportional to

the number of active users in the system. We assume that acquiring the CSI of one user takes

fraction θ of the slot. Thus, since we have L(t) active users, the actual rate for transmission to

active user k at time-slot t is (1− L(t)θ)R̃k(t). We denote this rate by Dk(t), i.e.

Dk(t) = (1− L(t)θ)R̃k(t) = (1− L(t)θ)

dk∑
m=1

R1(
γ
(m)
k (t)≥ τ

). (9)

Note that Dk(t) is set to 0 if pair k is not active at time-slot t.

Under the above setting, the average rate for active user k can be written in function of the

transmission success probability (i.e. the probability that the corresponding SINR is greater than

or equal to a certain threshold) conditioned on the subset of active pairs as

E {Dk(t) | L(t)} = (1− L(t)θ)

dk∑
m=1

RP
{
γ

(m)
k (t) ≥ τ | L(t)

}
. (10)

It can be noticed that the feedback overhead (1−L(t)θ) scales with the number of active pairs,

meaning that when L(t) is large there will be little time left to transmit in the time-slot before

the channels change again. We point out that if L(t) = 1, then γ
(m)
k (t) is the SINR obtained

using the SVD scheme, which will be presented in Section III.

D. Queue Dynamics, Stability and Scheduling Policy

For each user, we assume that the incoming data is stored in a respective queue (i.e. buffer)

until transmission, and we denote by q(t) = (q1(t), ..., qN(t)) the queue length vector. We
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designate by A(t) = (A1(t), ..., AN(t)) the vector of number of bits arriving in the buffers in

time-slot t, which is an i.i.d. in time process, independent across users and with Ak(t) < Amax.

The mean arrival rate (in units of bits/slot) for user k is denoted by ak = E {Ak(t)}. We recall

that, e.g., user k will get Dk(t) served bits per slot if it gets scheduled and zero otherwise. Note

that Dk(t) is finite because R is finite, so we can define a finite positive constant Dmax such that

Dk(t) < Dmax, for k = 1, . . . , N .

At each time-slot, the CS selects the pairs to schedule based on the queue lengths and the

average rates in the system. To this end, we suppose that: (i) this scheduler has full knowledge of

average rate values under different combinations of choosing active pairs, which can be provided

offline since an average rate is time-independent, (ii) at each time-slot, each transmitter sends

its queue length to the CS so that it can obtain all the queue dynamics of the system, and

(iii) the cost of providing such knowledge to the scheduler will not be taken into account in

our analysis. After selecting the set of pairs to be scheduled (represented by L(t)), the CS

broadcasts this information so that the selected transmitter-user pairs activate themselves, and

then the active users send their pilots in the uplink so that the (active) transmitters can estimate

the CSI. It is worth noting that, as alluded previously, if we select a large number of pairs (L(t))

for transmission, many pairs can communicate but a high CSI acquisition cost is needed (i.e. this

will leave a small fraction of time for transmission). On the other hand, a small L(t) requires a

low acquisition cost, but, at the same time, it allows a few number of simultaneous transmissions.

The decision of selecting active pairs is referred simply as the scheduling policy. At the t-th

slot, this policy can be represented by an indicator vector s(t) ∈ S := {0, 1}N , where the k-th

component of s(t), denoted sk(t), is equal to 1 if the k-th queue (pair) is scheduled or otherwise

equal to 0. It can be seen that the cardinality of set S is equal to |S| = 2N . Remark that, in

terms of notation, s(t) and L(t) are used to represent the same thing, that is, the scheduled pairs

at time-slot t, but they illustrate it differently. Specifically, using s(t) the active pairs correspond

to the non-zero coordinates (equal to 1), whereas L(t) contains the indexes (i.e. positions) of

these pairs. Let L be the set of all possible L(t).

Now, using the definition of Dk(t), which was provided earlier, the queueing dynamics (i.e.

how the queue lengths evolve over time) can be described by the following

qk(t+ 1) = max {qk(t)−Dk(t), 0}+ Ak(t), ∀k ∈ {1, . . . , N},∀t ∈ {0, 1, . . .}, (11)

where we note that Dk(t) depends on the scheduling policy.
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In this work, the focus will be mainly on the stability of the system. Thus, in the following

we provide the definitions of “Strong Stability” and “Stability region” of a system.

Definition 1 (Strong Stability). The condition for strong stability of the system can be expressed

as lim sup
T→∞

1
T

T−1∑
t=0

E {qk(t)} <∞, ∀k ∈ {1, ..., N}.

From this definition, stability implies that the mean queue length of every queue in the system

is finite, further implying finite delays in single hop systems.

Definition 2 (Stability Region). The stability region of the aforementioned model is defined as

the set of vectors of mean arrival rates for which the system is strongly stable. Furthermore, a

scheduling policy that achieves this region is called throughput optimal.

When describing and characterizing stability regions, we implicitly mean that the system is

strongly stable in the interior of the characterized region. Normally, for the boundary points

the system has at least a weaker form of stability called “mean rate stability”. Note that in the

remainder of the manuscript “stable” will imply “strongly stable”, unless stated otherwise.

Max-Weight Scheduling Policy: If the arrival rates are known, the queue stability can be

achieved by pre-defined time-sharing between scheduling different subsets of queues [18]. How-

ever, in practice, the arrival rates are usually unknown. For this case, the queues can be stabilized

using a policy that considers the knowledge of average rates and queue lengths. Such a policy

is called Max-Weight [18], [29], i.e. it maximizes a weighted sum, and is described below.

∆* : s(t) = arg max
s∈S

{r(s) · q(t)} , (12)

where “·” is the scalar (dot) product, and r(s) is constructed by replacing the non-zero coordinates

of s, which represent the selected pairs, with their corresponding average rate values. Recall that

L represents the positions (indexes) of the non-zero coordinates of s; e.g. if s = {0, 0, 1, 1, 1, 0},

then L = {3, 4, 5}, meaning that pairs 3, 4 and 5 are active. Hence, vector r(s) contains E{Dk |

L} at position k if the k-th coordinate of s is ’1’ and 0 if this coordinate is ’0’. The following

lemma states the optimality of the above policy, where Λ denotes the stability region.

Lemma 1. Under the adopted system, the scheduling policy ∆* is throughput optimal, meaning

that it can stabilize the system for every mean arrival rate vector in Λ.
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Proof. We show that policy ∆* stabilizes the system for all a ∈ Λ by proving that the Markov

chain of the corresponding system is positive recurrent. For this purpose, we use Foster’s theorem.

Such a proof is standard in the literature and is thus omitted for sake of brevity.

It is worth noting that, in the above lemma, the stability region Λ is the result of the adopted

system model. More in detail, this region depends mainly, but not only, on the following points:

(i) the use of IA, for L ≥ 2, and SVD, for L = 1, as interference management techniques, (ii)

accounting for the probing cost, (iii) the scheduling is done in a centralized manner, i.e. in each

slot the CS schedules the set of active pairs (before receiving any feedback) that must send their

pilots, and (iv) the quantization process over the backhaul (for the imperfect case).

Computational Complexity of ∆*: For such an optimal policy, an important factor to investigate

is the computational complexity (CC), which we derive next. Because what we are looking for

is the maximum over 2N possible values, due to 2N combinations, thus it takes O(2N) after

computing all values r(s) ·q(t) to find the maximum value (resp., the corresponding argument).

Note that for two fixed vectors we can compute this product in time O(N). Thus we would

have O(N2N) ignoring computing r(s), which can be done offline. We can notice that this

computational complexity increases considerably with the maximum number of pairs N .

III. DERIVATION OF SUCCESS PROBABILITIES AND AVERAGE RATES

In this section, we give the expression for the success probability and, subsequently, the

expression for the average transmission rate for each of the imperfect and perfect cases. Then,

we present the SVD scheme (used when L(t) = 1) and derive its average rate expression.

A. Average Rate Expression for IA

For the calculation of the average rate, we next provide a proposition in which we calculate

the success probabilities under the considered setting.

Proposition 1. The probability that the received SINR corresponding to stream m of active user

k exceeds a threshold τ given that L(t) is the set of scheduled pairs (including pair k) can be

given by

P
{
γ

(m)
k (t) ≥ τ | L(t)

}
=


e
− σ

2τ
αkk MGF

RI
(m)
k

(
− τ

αkk

)
, imperfect case

e
− σ

2τ
αkk , perfect case

(13)
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where RI
(m)
k =

∑
i∈L(t),i 6=k αki

∑di
j=1

∣∣∣∣(û
(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2 is the residual interference, which

appears in the denominator of γ(m)
k in the imperfect case, and MGF

RI
(m)
k

(·) stands for the

moment-generating function (MGF) of RI (m)
k .

Proof. Please refer to [1] for the proof.

In the above result, the success probability expression in the imperfect case is given in function

of the MGF of the leakage interference RI
(m)
k . It is noteworthy to mention that the explicit

expression of this MGF will be given afterwards during the average rate calculations. But first,

let us focus on the expression RI
(m)
k . Indeed, we have

RI
(m)
k =

∑
i∈L(t),i 6=k

αki

di∑
j=1

∣∣∣∣(û
(m)
k

)H
Hkiv̂

(j)
i

∣∣∣∣2 =
∑

i∈L(t),i 6=k

αki

di∑
j=1

∣∣∣hHki T(m,j)
k,i

∣∣∣2
=

∑
i∈L(t),i 6=k

αki ‖hki‖2
di∑
j=1

∣∣∣h̃Hki T(m,j)
k,i

∣∣∣2 , (14)

in which T
(m,j)
k,i = v̂

(j)
i ⊗((û

(m)
k )H)T (where⊗ is the Kronecker product) and h̃ki is the normalized

vector of channel hki, i.e. h̃ki = hki
‖hki‖

. Note that ((û
(m)
k )H)T is nothing but the conjugate of

û
(m)
k . Following the model used in [30], the channel direction h̃ki can be written as follows

h̃ki =
√

1− eki ĥki +
√
eki wki, (15)

where ĥki is the channel quantization vector of hki and wki is a unit norm vector isotropically

distributed in the null space of ĥki, with wki independent of eki. Since IA is performed based

on the quantized CSI ĥki, we get∣∣∣h̃Hki T(m,j)
k,i

∣∣∣2 =
∣∣∣√1− eki ĥHki T

(m,j)
k,i +

√
eki w

H
ki T

(m,j)
k,i

∣∣∣2 = eki

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 . (16)

Therefore, RI (m)
k can be rewritten as

RI
(m)
k =

∑
i∈L(t),i 6=k

αki ‖hki‖2 eki

di∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 . (17)

Based on the above results, we now have all the required materials to derive the average

rate expressions for both the perfect and imperfect cases. We recall that if L(t) is the subset of

scheduled pairs, the general formula of the average rate of active user k can be given as

E {Dk(t) | L(t)} = (1− L(t)θ)

dk∑
m=1

RP
{
γ

(m)
k (t) ≥ τ | L(t)

}
. (18)
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The explicit rate expressions are provided in the following theorem.

Theorem 1. Given a subset of scheduled pairs, L(t), the average rate of user k (∈ L(t)) is:

• For the imperfect case:

(1− L(t)θ)dkRe
− σ

2τ
αkkMGF

RI
(m)
k

(
− τ

αkk

)
, (19)

in which the MGF can be written as

MGF
RI

(m)
k

(
− τ

αkk

)
=

∏
i∈L(t),i 6=k

(
αkiτdi

αkk2
B
Q

+ 1

)−Q
2F1(c2i, Q; c1i + c2i;

1

αkk2
B
Q

αkiτdi
+ 1

). (20)

In the above equation, 2F1 represents the Hypergeometric function, c1i = (Q+ 1)Q−1di −Q−1

and c2i = (Q− 1)c1i, with Q = NtNr − 1.

• For the perfect case:

(1− L(t)θ)dkRe
− σ

2τ
αkk . (21)

Proof. The proof can be found in [1].

B. SVD Scheme and its Average Rate Expression

1) SVD Scheme: In the case where L(t) = 1, there is only one active pair, which we denote

by index k, and the system is reduced to a point-to-point MIMO system. We recall that receiver

k sends its pilot sequence, then transmitter k estimates perfectly the channel matrix; clearly,

here the probing cost is (1− θ). With one active pair, the only source of interference is the ISI

caused by the transmitter itself. To manage this problem, we use SVD technique. Specifically,

by the singular value decomposition theorem we have

Hkk = UkΣkV
H
k , (22)

where Uk and Vk are Nr × Nr and Nt × Nt unitary matrices, respectively. Σk is an Nr × Nt

diagonal matrix with the singular values of Hkk in diagonal. These singular values are denoted

by
√
λ

(m)
k . Note that here we consider the same assumptions and parameters that we have used

for IA. We assume that active transmitter has dk (≤ min(Nt, Nr)) data streams to transmit to its

receiver. We also assume that Hkk is full rank, meaning that its rank is given by min(Nt, Nr);

dk should be less than or equal to the rank of matrix Hkk, which is satisfied under our setting.

Further, we assume that the power P is equally allocated among the dk data streams.
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We define xk to be the following Nt×1 vector: xk = (x
(1)
k , . . . , x

(dk)
k , 0 . . . , 0)T , where we recall

that x(m)
k represents stream m of pair k. Under SVD, the transmitter sends vector Vkxk instead

of xk, thus the received signal, which we denote by yk, can be written as

yk =

√
ζkkP

dk
HkkVkxk + zk, (23)

where we recall that Hkk denotes the Nr × Nt channel matrix with i.i.d. zero mean and unit

variance complex Gaussian entries, zk is the additive white complex Gaussian noise vector with

zero mean and covariance matrix σ2INr , and ζkk stands for the path loss. Then, at the receiver

we multiply the corresponding received signal by UH
k to detect the desired signal. Hence, after

multiplying by UH
k , we obtain

UH
k yk =

√
ζkkP

dk
UH
k UkΣkV

H
k Vkxk + UH

k zk =

√
ζkkP

dk
Σkxk + UH

k zk. (24)

Recall that Uk and Vk are unitary matrices, so UH
k zk and Vkxk have the same distribution as zk

and xk, respectively. Based on the above, it can be noticed that the ISI is completely canceled.

2) Average Rate for SVD: The equivalent MIMO system can be seen as dk uncoupled parallel

sub-channels. The SNR for stream m at time-slot t can be written as the following

γ
(m)
k (t) =

ζkkP

dk σ2
λ

(m)
k (t), 1 ≤ m ≤ dk. (25)

Let m1 = max(Nt, Nr) and m2 = min(Nt, Nr). It was shown in [9] that the distribution of any

one of the unordered eigenvalues, which we denote by λ, is given by

p(λ) =
1

m2

m2−1∑
n=0

n!

(n+m1 −m2)!
[Lm1−m2

n (λ)]2λm1−m2e−λ, λ ≥ 0, (26)

where Lm1−m2
n (x) is the associated Laguerre polynomial of degree (order) n and is given by

Lm1−m2
n (λ) =

n∑
l=0

(−1)l
(n+m1 −m2)!

(n− l)! (m1 −m2 + l)!

λl

l!
. (27)

Adopting the same rate model as for IA, the average rate of the active user can be written as

(1− θ)dkRP
{
γ

(m)
k (t) ≥ τ

}
. (28)

Based on the above, the average rate expression for SVD if pair k is the active pair, which we

denote by rsvd,k, is provided in the following statement.

Proposition 2. Under SVD technique, the average rate for the active pair is given by

rsvd,k = (1− θ)dkR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dkσ

2τ

ζkkP
), (29)
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where Γ(·, ·) is the upper incomplete Gamma function, Ωn = n! (m2(n+m1 −m2)! )−1, κj =∑j
i=0 ωi ωj−i , ωl = (−1)l (n+m1 −m2)! ((n− l)! (m1 −m2 + l)! l ! )−1, with ωl = 0 if l > n.

Proof. Please refer to Appendix A for the proof.

IV. STABILITY ANALYSIS FOR THE SYMMETRIC CASE

In this section, we consider a symmetric system in which the path loss coefficients have the

same value, namely ζ = ζki, ∀k, i, and all the pairs have equal number of data streams, namely

d = dk, ∀k; note that we still assume different average arrival rates. Under this system, the

feasibility condition of IA, given in [31], becomes Nt + Nr ≥ (L + 1)d, which we assume is

satisfied here. We recall that at each time-slot, for the selected pairs, rate R can be supported if

the corresponding SINR is greater than or equal to a given threshold τ ; otherwise, the packets are

not received correctly and the instantaneous bit-rate is considered to be equal to 0. Let α = Pζ
d

.

For notational convenience, in the remainder of the paper we sometimes drop the notation for

dependence of L, L and γ(m)
k on t.

A. Average Rate Expressions

In the following, we provide the average rate expressions under the above assumptions for

the different cases in the system.

1) If the number of scheduled pairs L ≥ 2: The IA technique is applied, and thus the SINR

of stream m at user k can be given by

γ
(m)
k =



α

∣∣∣∣(û
(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L,i 6=k

α ‖hki‖2 eki
d∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 , imperfect case

α

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(30)

where the sum in the denominator of the first expression results from equation (17). As explained

in the previous sections, if L is the subset of scheduled pairs, the average transmission rate per

active user is given by (1 − Lθ)dRP
{
γ

(m)
k ≥ τ | L

}
. Relying on the average rate expressions

in Theorem 1, we get the following results.

a) Imperfect Case: The average transmission rate for an active user k ∈ L can be given by

(1− Lθ)dR e−
σ2τ
α

((
dτ 2−

B
Q + 1

)−Q
2F1

(
c2, Q; c1 + c2; (2

B
Q (dτ)−1 + 1)−1

))L−1

, (31)
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where 2F1 is the Hypergeometric function, c1 = (Q+ 1)Q−1d−Q−1 and c2 = (Q− 1)c1. It can

be noticed that this average rate is independent of the identity of active user k and the L − 1

other active pairs, yet depends on the cardinality L of subset L. By denoting this rate as r(L),

the expression in (31) can be re-written as

r(L) = (1− Lθ)dR e−
σ2τ
α FL−1, (32)

in which F =
(
dτ 2−

B
Q + 1

)−Q
2F1

(
c2, Q; c1 + c2; (2

B
Q (dτ)−1 + 1)−1

)
. Consequently, the total

average transmission rate of the system is given by

rT(L) = L(1− Lθ)dR e−
σ2τ
α FL−1. (33)

Studying the variation of these rate functions w.r.t. the number of active pairs L is essential for

the stability analysis and is thus described by the following lemma.

Lemma 2. Given a number of users to be scheduled, L, the average transmission rate is a

decreasing function with L, whereas the total average transmission rate is increasing from 0 to

L0 and decreasing from L0 to 1
θ
, meaning that rT reaches its maximum at L0, where L0 <

1
2θ

and is given by

L0 =

1
θ
− 2

logF
−
√(

2
logF
− 1

θ

)2

+ 4
θ logF

2
. (34)

Proof. The proof is provided in Appendix B.

From (34) we can notice that L0 is in general a real value. But, since it represents a number

of users, we need to find the best and nearest integer to L0, i.e. best in terms of maximizing

the total average rate function. We denote this integer by LI and we assume without lost of

generality that 2 ≤ LI ≤ N .

b) Perfect Case: In this case no residual interference exists and the corresponding SINR ex-

pression is given in (30). Using Theorem 1, the average and total average transmission rate

expressions can be given, respectively, by

µ(L) = (1− Lθ)dR e−
σ2τ
α , (35)

µT(L) = L(1− Lθ)dR e−
σ2τ
α . (36)
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A similar observation to that given in the first case can be made here, that is, the rate functions

depend only on the cardinality L of L and not on the subset itself. Notice that µ(L) is a decreasing

function with L, while µT(L) is concave at 1
2θ

. Since 1
2θ

represents a number of pairs, we can use

a similar procedure to that proposed for the imperfect case to find the best and nearest integer

to 1
2θ

. For the remainder of this paper, we denote this integer by LP .

2) If the number of scheduled pairs L = 1: The SVD technique is applied, and thus the SINR

of stream m at user k becomes

γ
(m)
k =

ζP

d σ2
λ

(m)
k . (37)

Based on Proposition 2, the average rate (which is also the total average rate) can be written as

rsvd,k = (1− θ)dR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dσ2τ

ζP
). (38)

Note that this expression is independent of the identity of the active pair. For the rest of the

paper, we use rsvd to denote this expression. Obviously, here the average rate is independent of

the case (i.e. perfect or imperfect) we adopt since anyway the backhaul is not used.

B. Stability Regions and Scheduling Policies for the Imperfect and Perfect Cases

After presenting results on the average rate functions, we now provide a precise characteriza-

tion of the stability region of the adopted system under both the imperfect and perfect cases.

1) Imperfect Case: We first define subset SL = {s ∈ S : ‖s‖1 = L}, where we recall that

s ∈ ZN is the scheduling vector whose coordinates take values 0 or 1 (see Section II); note that

SL is the subset of scheduling decision vectors for which the number of active pairs is equal to L.

Given a number L ≥ 2, the subset of average rate vectors is defined as IL = {r(L)s : s ∈ SL}.

For L = 1, the subset of average rate vectors is defined as I1 = {rsvds : s ∈ S1}. We define set

I = {0, I1, I2, ..., ILI}, i.e. it contains the origin point 0 and the set of average rate vectors when

the number of active pairs L is between 1 and LI. We also define set Ī = {ILI+1, ..., IN}, i.e.

it contains the set of average rate vectors for which L is between LI + 1 and N . Note that in

terms of cardinality we have |I|+ |Ī| = |S|. Using these definitions, we can state the following

lemma which will be useful to characterize the stability region of the system.

Lemma 3. Each point in the set Ī is inside the convex hull of I. Consequently, this hull will

also contain any point in the convex hull of Ī.
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Proof. We provide the following lemma that will help us in the proof of Lemma 3.

Lemma 4. For any point si,L+1 ∈ SL+1, there exists a point on the convex hull of SL that is in

the same direction toward the origin as si,L+1. Furthermore, si,L+1 can be written as L+1
L
× its

corresponding point on the convex hull of SL.

Please refer to Appendix C for the complete proof of Lemma 3, which includes the proof of

Lemma 4.

Lemma 3 means that by increasing the number of active pairs L beyond LI, the set of

achievable average rates will not increase. Based on the above, we are now able to characterize

the stability region of the considered system. We recall that this region is defined as the set of

all mean arrival rate vectors for which the system is stable. Here, this region is given by the

following theorem.

Theorem 2. The stability region of the system in the symmetric case with limited backhaul can

be characterized as

ΛI = CH{I} = CH{0, I1, I2, ..., ILI} , (39)

where CH represents the convex hull.

Proof. Please refer to Appendix D for the proof.

Unlike classical results in which the stability region is given by the convex hull over all possible

decisions, here the characterization is more precise and is defined by the decision subsets SL

for all L ≤ LI. In addition, this theorem provides an exact specification of the corner points

(i.e. vertices) of the stability region, meaning that this region is characterized by the set I and

not by the whole set I ∪ Ī. An additional point to note is that ΛI is a convex polytope in the

N -dimensional space RN
+ .

In order to choose the active pairs at each time-slot, we use the Max-Weight scheduling policy

defined earlier (see (12)). Under the symmetric and imperfect case, this policy, which we denote

as ∆*
I , selects decision vector s(t) that yields the following max

∆*
I : max

{
max

s∈SL, 2≤L≤N
{r(‖s‖1) s · q(t)} ,max

s∈S1

{rsvd s · q(t)}
}
, (40)

where ‖s‖1 gives the number of ’1’ coordinates in s (or equivalently, the number of active pairs

L). Recall that these non-zero coordinates indicate which pairs to schedule. The above policy

chooses the subset of pairs that should be active at time-slot t, which is represented by vector
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s(t). As mentioned earlier, if only one pair is selected to be active, then we use SVD technique,

otherwise we use IA technique. For the proposed policy, the following proposition holds.

Proposition 3. The scheduling policy ∆*
I is throughput optimal. In other words, ∆*

I stabilizes

the system (under the imperfect case) for every arrival rate vector a ∈ ΛI.

Proof. The proof can be done in the same way as the proof of Lemma 1 and is thus omitted to

avoid repetition.

Based on the analysis done at the end of Section II, it was shown that applying policy ∆*

will result in a computational complexity (CC) of O(N2N). The same holds here for policy ∆*
I .

Consequently, a moderately large N will lead to considerably high CC. Recall that this analysis

is for the classical implementation of the Max-Weight algorithm, that is finding the maximum

over 2N products of two vectors. However, in our case the implementation of this algorithm does

not require all this complexity. This is due to the fact that all the active users have the same

average transmission rate. This structural property allows us to propose an equivalent reduced

CC implementation of ∆*
I , which we provide in Algorithm 1.

Algorithm 1 : A Reduced Computational Complexity Implementation of ∆*
I

1: Sort the queues in a descending order; break ties arbitrarily.

2: Initialize Ls = 1 and prod = 0.

3: Set r(1) = rsvd. For L ≥ 2, let l = L and r(l) = r(L).

4: for l = 1 : 1 : N do

5: Consider suml = sum of the lengths of the first l queues (i.e. sum of the l biggest queue lengths).

6: if r(l) sum l > prod then

7: Put Ls = l and prod = r(Ls)sumLs

8: end if

9: end for

10: Schedule pairs corresponding to the first Ls queues.

The proposed implementation depends essentially on two steps: the “sorting algorithm” and

the “for loop”. We assume that we use a sorting algorithm of complexity O(N2), such as the

“bubble sort” algorithm. For the “for loop”, the (worst case) complexity is also O(N2) since

this loop is executed N times (i.e. iterations) and every iteration has another dependency to N .

Therefore, the computational complexity of the proposed implementation is O(N2 + N2), or

equivalently O(N2), which is very small compared to O(N2N), especially for large N .
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2) Perfect Case: A similar study to that done for the imperfect case can be adopted here. To

begin with, for L ≥ 2 we define PL = {µ(L)s : s ∈ SL}; i.e. PL is the subset of average rate

vectors where the number of active pairs is L. Recall that SL = {s ∈ S : ‖s‖1 = L}. For L = 1

we define P1 = {rsvds : s ∈ S1}. As seen earlier, the total average rate for IA given in (36)

reaches its maximum at 1
2θ

for which the best and nearest integer is denoted by LP, where we

assume without lost of generality that 2 ≤ LP ≤ N . In addition, the average rate µ(L) decreases

with L. Under these observations, the stability region can be characterized as follows.

Theorem 3. For the symmetric system with unlimited backhaul, the stability region can be defined

as the following

ΛP = CH{0, P1, P2, ..., PLP} . (41)

Proof. The proof is very similar to that of Theorem 2, just consider the average rate functions

µ(L) and µT(L) instead of r(L) and rT(L); so we omit this proof to avoid redundancy.

To achieve the stability region that is characterized in the above, we use the Max-Weight

policy, which we denote here as ∆*
P. Specifically, this optimal policy (i.e. it can achieve ΛP)

selects decision vector s(t) that yields the following max

∆*
P : max

{
max

s∈SL, 2≤L≤N
{µ(‖s‖1) s · q(t)} ,max

s∈S1

{rsvd s · q(t)}
}
. (42)

As observed in the imperfect case, applying this policy using its classical implementation will

result in a CC of O(N2N). Hence, to avoid a high complexity for large N , and since the

structural properties of this policy and those of policy ∆*
I are similar, the equivalent implemen-

tation proposed for the imperfect case can be applied here but after replacing r(L) with µ(L).

Consequently, we get a reduced complexity of O(N2).

C. Conditions under which IA Provides a Gain in terms of Queueing Stability

In this subsection, we investigate the conditions under which the use of IA can provide a

queueing stability gain. We provide this investigation under the imperfect case, while noting that

a similar analysis can be done under the perfect case.

Based on Theorem 2, we can notice that in the characterization of the stability region the

vertices that correspond to IA are given by the subsets I2, I3, ..., ILI . On the other hand, the

vertices that correspond to SVD can be found in I1. In order for IA to provide a queueing

stability gain, at least one of its vertices should be outside the part of the stability region that is
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yielded by SVD, where this part is nothing but the convex hull CH{0, I1}. In the following we

provide a simple example for which we illustrate the different shapes of the stability region.

Example: Let N = 2. Here there is only one vertex of IA, given by point (r(2), r(2)). The

vertices of SVD are (rsvd, 0) and (0, rsvd). Hence, the part of the stability region resulting from

SVD is CH{0, I1} = CH{0, (rsvd, 0), (0, rsvd)}. Depending on whether vertex (r(2), r(2)) is

inside this convex hull, two stability region shapes are possible. These shapes are illustrated in

Figure 3. We point out that the illustrations in Figure 3 are not the results of a specific setting

and are only provided as general illustrations in order to help understanding the analysis.
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Figure 3: Stability region (in gray) for the symmetric system under the imperfect case, where N = 2. (a) IA

provides a queueing stability gain and (b) IA does not provide a queueing stability gain.

Based on these observations, we now provide the conditions under which IA yields a queueing

stability gain. These conditions are given (for the perfect and imperfect cases) as follows.

Proposition 4. For the symmetric system under the imperfect case, IA provides a queueing

stability gain iff there exists a number L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI. For the same

system but under the perfect case, we get a similar result, that is, IA yields a queueing stability

gain iff there exists a number L such that Lµ(L) > rsvd , with 2 ≤ L ≤ LP .

Proof. The proof is provided in Appendix E.

Based on the above, it can be noticed that if there exists an L that satisfies Lr(L) > rsvd and

2 ≤ L ≤ LI, the characterization of the stability region ΛI can be more precise since the points

in I2, . . . , IL−1 are inside the stability region part resulting from SVD, and the only vertices of

IA that are outside this part are given by the subsets IL, . . . , ILI . In addition, if we cannot find
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an L that satisfies the above conditions, then all the vertices of IA will be inside the region part

corresponding to SVD. These observations lead us to the following remark; recall that P1 = I1.

Remark 1. For the imperfect case, if there exists an L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI,

a more precise characterization of ΛI can be given as

ΛI = CH{0, I1, IL, ..., ILI} . (43)

If such an L does not exist, then the characterization reduces to: ΛI = CH{0, I1}.

For the perfect case, if we can find an L such that Lµ(L) > rsvd, with 2 ≤ L ≤ LP, we get

ΛP = CH{0, P1, PL, ..., PLP} . (44)

Otherwise, the characterization of ΛP reduces to ΛP = CH{0, P1}.

D. Compare the Imperfect and Perfect Cases in terms of Stability

After having characterized the stability region for both the perfect and imperfect cases, we

now investigate the maximum gap between these two regions. Clearly, here the investigation is

reserved for the scenario where IA provides queueing stability gains in the perfect case; because

otherwise IA will also not provide queueing stability gains in the imperfect case, and thus the

stability region for the imperfect case will be the same as that for the perfect case, and can

be given by CH{0, I1} = CH{0, P1}, which is the stability region of SVD. The gap can be

interpreted as the impact of having limited backhaul, and thus quantization, on the stability

region. It is straightforward to notice that the quantization process will result in shrinking the

stability region compared with that of the perfect case. To capture this shrinkage, we find that

the imperfect case achieves a (guaranteed) fraction of the stability region achieved in the perfect

case, which we refer to as minimum fraction in the sequel; i.e. the term “minimum fraction” is

justified by the fact that the stability region in the imperfect case achieves at least this fraction

of the stability region in the perfect case. To be more precise, if we denote this fraction by β

(≤ 1), then under the imperfect case the queues are stable for any mean arrival rate lying inside

βΛP and it may be possible to achieve stability for some mean arrival rates outside βΛP. We

highlight that this fraction represents the maximum gap between the two regions.

To begin with, we first draw the attention to the fact that in addition to having µ(L) > r(L),

we have LP ≥ LI. In order to provide some insights into how we will derive the minimum

achievable fraction, in the following we give a simple example for which the stability region
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shapes are illustrated.

Example: Let N = 2. Depending on whether IA provides queueing stability gains under the

imperfect case, two scenarios are to consider. In Figure 4 we depict the general shapes of the

two (i.e. perfect and imperfect cases) stability regions under these two scenarios; note that these

depicted regions are not the result of a specific setting and are only given to help understanding

the analysis. From this figure, we can observe that we have different gaps over different directions.
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Figure 4: Stability regions of the perfect (dotted region) and imperfect (gray region) cases for the symmetric system,

where N = 2. (a) IA provides a queueing stability gain and (b) IA does not provide a queueing stability gain.

To find the minimum fraction (i.e. maximum gap), we adopt the following approach. We take

any point from subset PLP , and then we try to see how far is this point from the convex hull ΛI

in the direction toward the origin. We adopt such an approach mainly for three reasons: (i) ILI

is a subset of the vertices that characterize the convex hull of the imperfect case (ΛI), (ii) PLP

is the subset that contains points (vertices) on the convex hull of the perfect case, and (iii) the

points in PLP are the farthest from ΛI. Using this approach, we can state the following theorem

that characterizes the minimum achievable fraction.

Theorem 4. For the symmetric system, in general the stability region in the imperfect case

achieves at least a fraction rT(LI)
µT(LP)

= LIr(LI)
LPµ(LP)

(< 1) of the stability region achieved in the perfect

case. In other words, the region ΛI can be bounded as
rT(LI)

µT(LP)
ΛP ⊆ ΛI ⊆ ΛP. (45)

In the special case where IA delivers no gain under the imperfect case, the above fraction

becomes rsvd
µT(LP)

= rsvd
LPµ(LP)

.

Proof. We provide the following result that will help us in the proof of this theorem.
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Lemma 5. Each point in SL+1 can be written as L+1
L+1−n× some point on the convex hull of

SL+1−n, for 1 ≤ n ≤ L.

Please refer to Appendix F for the complete proof of Theorem 4, which includes the proof

of Lemma 5.

It should be noted that the fraction given in the above theorem represents the maximum impact

of limited backhaul on the stability region.

E. Impact of the Number of Bits B on the System Stability Region

Here the analysis is restricted for the imperfect case of IA, where the backhaul is of finite

capacity. We recall that under the adopted system the number of bits is B. Since the stability

analysis depends essentially on this parameter, it is important to study the impact of changing

this parameter on the stability performance of the system. To this end, we next investigate the

impact of reducing B to B′. In this investigation, we consider the scenario where IA always

yields a queueing stability gain, as this is the most likely scenario.

To begin with, let ∆*
B and ∆*

B′ denote the same algorithm, that is, the Max-Weight policy, but

the first one considers the case where the number of bits is equal to B and for the second one

this number is B′ (with B′ < B). Further, let LB and LB′ denote the subsets of pairs selected

by ∆*
B and ∆*

B′ , respectively. Also, we denote by ΛB and ΛB′ the stability regions achieved

by ∆*
B and ∆*

B′ , respectively. In addition, we define r(L,B) as the average rate r(L) with a

number of bits B. Equivalently, r(L,B′) is the average rate function r(L) in which we replace

B by B′. For this model, we can state the following theorem.

Theorem 5. For the same (symmetric) system, where the maximum number of pairs is N , if we

decrease the number of bits from B to B′, the stability region ΛB′ can be bounded as

r(N,B′)

r(N,B)
ΛB ⊆ ΛB′ ⊆ ΛB. (46)

Proof. Please refer to Appendix G for the proof.

V. ALGORITHMIC DESIGN AND PERFORMANCE ANALYSIS FOR THE GENERAL CASE

We now consider a more general model where, unlike the symmetric case, the path loss

coefficients are not necessarily equal to each other. However, for the sake of simplicity, and

without loss of generality, we keep the same assumption on the number of streams, that is, all
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the pairs have equal number of data streams, namely d. Also, as in the symmetric case, we

suppose at each time-slot that rate R can be supported if the corresponding SINR is greater than

or equal to τ ; otherwise, the packets are not received correctly and the instantaneous bit-rate is

considered to be equal to 0. We recall that L stands for the subset of active pairs, with |L| = L.

We also recall that αki = Pζki
d

and αkk = Pζkk
d

.

A. Average Rate Expressions

1) If the number of scheduled pairs L ≥ 2: The IA technique is performed, and thus the

SINR of stream m at active user k can be given by (see (7))

γ
(m)
k =



αkk

∣∣∣∣(û
(m)
k

)H
Hkkv̂

(m)
k

∣∣∣∣2
σ2 +

∑
i∈L,i 6=k

αki ‖hki‖2 eki
d∑
j=1

∣∣∣wH
ki T

(m,j)
k,i

∣∣∣2 , imperfect case

αkk

∣∣∣∣(u
(m)
k

)H
Hkkv

(m)
k

∣∣∣∣2
σ2

, perfect case

(47)

a) Imperfect Case: Using Theorem 1 and the fact that αki
αkk

= ζki
ζkk

, the average rate of user k

(∈ L) can be written as rk =

(1− Lθ)dR e−
σ2τ
αkk

∏
i∈L,i 6=k

(
ζkiτd (ζkk2

B
Q )−1 + 1

)−Q
2F1(c2, Q; c1 + c2; (ζkk2

B
Q (ζkiτd )−1 + 1)−1),

(48)

where we recall that c1 = (Q+ 1)Q−1d−Q−1 and c2 = (Q− 1)c1.

b) Perfect Case: Based on Theorem 1, the average rate of active user k can be expressed as

µk = (1− Lθ)dR e−
σ2τ
αkk . (49)

2) If the number of scheduled pairs L = 1: The SVD technique is applied, and the SINR of

stream m of the active user, which is denoted by index k, can be given by (see (25))

γ
(m)
k =

ζkkP

dσ2
λ

(m)
k . (50)

Using (29), the average rate for the active user (i.e. user k) is

rsvd,k = (1− θ)dR
m2−1∑
n=0

Ωn

2n∑
j=0

κj Γ(j +m1 −m2 + 1,
dσ2τ

ζkkP
). (51)
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B. Stability Regions and Scheduling Policies for the Imperfect and Perfect cases

1) Imperfect case: Let r be a vector that contains at position k the average rate of user k if

pair k is active and 0 otherwise; for ex, let N = 2: if only pair 1 is active then r = (rsvd,1, 0),

whereas if both of pairs 1 and 2 are active, then r = (r1, r2). As mentioned earlier (see Section

II, for instance), s and L are two different representations for the (same) set of active pairs,

so we will use r(s) to represent the fact that r results from decision vector s. Notice that, in

contrast to the symmetric case, here the average rate expression depends on the identity of the

active pairs; consider the same example as before: if s = (1, 1), i.e. pairs 1 and 2 are scheduled,

then r(s) = (r1, r2) where r1 is different from r2 (in general). This lack of symmetry will make

us incapable of finding the exact set of vertices of the corresponding stability region. However,

we can still provide a characterization of this stability region, denoted ΛGI, by considering all

the possible decisions of scheduling the pairs, as follows

ΛGI = CH{0,GI 1,GI 2, ...,GIN} , (52)

where GI L = {r(s) : s ∈ SL}, i.e. GI L is the set of average rate vectors when the number of

active pairs is L. To achieve this stability region we can apply the Max-Weight rule, which is

an optimal scheduling policy, denoted by ∆*
GI, such as

∆*
GI : s(t) = arg max

s∈S
{r(s) · q(t)} . (53)

where we recall that S is the set of all possible decision vectors s.

2) Perfect Case: For this case, we denote by µ the average rate vector that contains at position

k the average rate of pair k if pair k is scheduled and 0 otherwise. Also, let µ(s) be the rate vector

under decision vector s; as a simple example, let N = 2: if s = (0, 1), then µ(s) = (0, rsvd,2),

whereas if s = (1, 1), then µ(s) = (µ1, µ2). Let ΛGP be the system stability region under this

case. This region can be represented as

ΛGP = CH{0,GP1,GP2, ...,GPN} , (54)

where GPL = {µ(s) : s ∈ SL}. The (optimal) policy that schedules the pairs and achieves this

above region is denoted by ∆*
GP and can be given by

∆*
GP : s(t) = arg max

s∈S
{µ(s) · q(t)} . (55)
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C. βA-Approximate Policy and its Corresponding Achievable Stability Region

As detailed earlier, the classical implementation of the Max-Weight policy, in both the perfect

and imperfect cases, has a computational complexity of O(N2N). Whereas for the symmetric

case some structural properties allowed us to find a low computational complexity implementation

of this policy, here no such properties exist. To deal with this problem, we propose an alternative

policy that has a reduced computational complexity, so that we can apply it instead of the optimal

policy, and that achieves an important fraction of the system stability region. Specifically, here we

are interested in finding this alternative policy under the imperfect case, which can be considered

as the hardest case to analyze since the average rate expressions are very complicated compared

with those under the perfect case. The alternative policy in this case is denoted by ∆A and

termed as βA-approximate policy, where this latter expression is justified by the fact that this

policy approximates ∆*
GI to a fraction of βA (≤ 1). More specifically, for every queue length

vector q, the following holds ([19])

(r · q)(∆A) ≥ βA(r · q)(∆*
GI), (56)

where we recall that q is the queue lengths vector, and where (r · q)(∆A) (resp., (r · q)(∆*
GI))

implies that r results from the scheduling decisions of policy ∆A (resp., ∆*
GI).

For the rest of the paper, for notational conciseness, we will use the term “approximate policy”

instead of “βA-approximate policy” unless stated otherwise. A key step in the investigation is

to determine a specific approximation of the average rate expression rk, more specifically an

approximation that possesses a set of structural features that let us define the approximate policy.

Indeed, we will derive such an approximation and prove that it is very accurate if the fractions
ζkk2

B
Q

ζkiτd
(or equivalently, αkk2

B
Q

αkiτd
) are sufficiently high (i.e. ≥ 10), for i 6= k. For fixed τ and d, these

conditions correspond to a scenario where the number of quantization bits is high and/or the

cross channels have small path loss coefficients in comparison with the direct channels (i.e. low

interference scenario). It should be noted that here the approximation is only provided for the

average rates rk, meaning that rate rsvd,k is not approximated; recall that if L ≥ 2, rk stands for

the average rate for active user k, whereas if L = 1, i.e. one active pair, rsvd,k is the corresponding

average rate. Under the aforementioned assumptions/conditions, the approximation of rk is given

by the following proposition.
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Rate Approximation 1. Under the general system and the imperfect case, and given a subset

of active pairs, L, with cardinality L ≥ 2, if we have a relatively low interference scenario, the

average rate of active user k (∈ L) can be accurately approximated as

rk ≈ (1− Lθ) dR e−
σ2τ
αkk

∏
i∈L, i 6=k

(1− gki), (57)

where gki =
(
αkk2

B
Q (αkiτd )−1 + 1

)−1

=
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

.

Proof. The derivation is provided in Appendix H.

It can be noted that the low-interference condition, i.e. ζkk2
B
Q (ζkiτd)−1 is sufficiently high,

implies that all the gki, ∀i 6= k, are sufficiently small. To proceed further with the analysis, let

ḡk be the average value of all the gki, ∀i 6= k, for the same number of active pairs L. More

specifically, for a fixed cardinality L we take all the possible subsets (i.e. scheduling decisions)

in which user k is active. For each of these subsets, there are L− 1 values of gki. Hence, ḡk is

the average of these gki values over all the considered decisions. Using the average value ḡk and

the approximate expression of rk (given in (57)), we define function φk(L), as the following

φk(L) =


(1− Lθ)dR e−

σ2τ
αkk (1− ḡk)L−1, ifL ≥ 2

rsvd,k, ifL = 1
(58)

where the expression of rsvd,k is given in (51). Le φ be the vector containing φk(L) at position

k if pair k is scheduled (with L− 1 other pairs); otherwise, we put 0 at this position. Under this

setting, we define the approximate policy ∆A as

∆A : s(t) = arg max
s∈S

{φ(s) · q(t)} ,

where φ(s) results from decision vector s; as a simple example, set N = 2: if s = (1, 0), then

φ(s) = (rsvd,1, 0), whereas if s = (1, 1), then φ(s) = (φ1(2), φ2(2)). It is noteworthy to mention

that, for L ≥ 2, although we use φk(L) to make the scheduling decision under ∆A, the actual

average rate of user k is still rk. Also, remark that ∆A follows the Max-Weight rule, thus, as

was shown earlier, implementing ∆A as a classical maximization problem over all the possible

decisions s needs a CC of O(N2N). However, in contrast to ∆*
GI, policy ∆A has a structural

property that will allow us to propose an equivalent reduced CC implementation instead of the

classical one. This property results from to the fact that φk(L) is independent of the L− 1 other

active users, and only depends on pair k and the cardinality L. The proposed implementation of

policy ∆A is given by Algorithm 2.
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Algorithm 2 : A Reduced Computational Complexity Implementation of ∆A

1: Initialize Lg = 0 and wsLg = 0.

2: for l = 1 : 1 : N do

3: Sort the pairs in a descending order with respect to the product prok = φk(l) qk; break ties arbitrarily.

4: Let ws l = sum of the first l biggest prok values.

5: Save sq l as the subset of l pairs that yields ws l.

6: if ws l > wsLg then

7: Put wsLg = ws l and Lg = l.

8: end if

9: end for

10: Schedule the pairs given by sqLg
.

Computational Complexity of the proposed implementation of ∆A: To compare with the

classical implementation, we now focus on the computational complexity of the proposed im-

plementation, which depends essentially on a “for loop” of N iterations, each of which contains:

(i) a “bubble sorting algorithm”, which needs O(N2), (ii) a sum of l terms in iteration l, and

(iii) other steps of small CC compared with those mentioned before. Thus, by neglecting the

CC of the steps in (iii) and noticing that the summing steps (in (ii)) over all the iterations need

O(N(N+1)
2

) = O(N2), the CC of the proposed implementation is roughly O(N2N + N2) =

O(N3), which is very small compared with O(N2N) for large N .

In general, an approximate policy comes with the disadvantage of reducing the achiev-

able stability region compared with the optimal policy. Indeed, we will show that policy ∆A

guarantees to achieve only a fraction of the stability region achieved by policy ∆*
GI. Let us

now provide some remarks an definitions that will be useful for the analysis. We recall that

gki =
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

. In addition, we define LA as the subset of pairs chosen by ∆A,

and we let the cardinality of this subset be LA. As for ∆*
GI we keep the original notation, that is,

L is the scheduled subset, with L = |L|. Recall that L stands for the set of all possible decision

subsets, so LA and L are elements of L. In the following we provide a result that is essential

for the characterization of the fraction that ∆A can achieve.

Rate Approximation 2. If the values of gki, ∀i 6= k, are relatively close to ḡk, the approximation
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of rk in (57) can in its turn be accurately approximated as

rk ≈ (1− Lθ) dR e−
σ2τ
αkk

∏
i∈L, i 6=k

(1− gki)

≈ (1− Lθ) dR e−
σ2τ
αkk

[
(1− ḡk)L−1 − (1− ḡk)L−2

∑
i∈L, i 6=k

(gki − ḡk)

]
. (59)

Proof. The derivation is provided in Appendix I.

Let us define ΛGI as the stability region of the general system under the imperfect case, which

can be achieved by ∆*
GI. We also define ΛA to be the stability region that the approximate policy

∆A can achieve. Concerning the fraction that policy ∆A can achieve w.r.t. the stability region

ΛGI, and under all the above-mentioned conditions, we have the following result.

Theorem 6. The approximate policy ∆A achieves at least a fraction βA (≤ 1) of the stability

region achieved by the optimal policy ∆*
GI , meaning that ΛA can be bounded as

βAΛGI ⊆ ΛA ⊆ ΛGI, (60)

where βA is given by

βA =

1 + min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i 6=k

(gki − ḡk)

}}

1 + max
L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i 6=k

(gki − ḡk)

}} . (61)

Proof. Please refer to Appendix J for the proof.

We point out that in the above theorem we suppose, without lost of generality, that the min term

in the numerator takes values in the interval ]−1, 0[, whereas the max term in the denominator

is greater than 0. More details about these assumptions can be found in the proof.

D. Compare the Imperfect Case with the Perfect Case in Terms of Stability

At the very beginning of this section, we showed that policy ∆*
GP achieves the (general) system

stability region under the perfect case. Let us denote by LP the subset of scheduled pairs using

∆*
GP and by LP the cardinality of this subset. Also, we define ΛGP to be the stability region of the

perfect case. On the other hand, for the imperfect case we adopt the same notation as before, i.e.

the subset of scheduled users and its cardinality are represented by L and L, respectively, and
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the stability region is denoted by ΛGI. Under our system, an essential parameter to investigate is

the fraction the stability region the imperfect case achieves compared with the stability region

of the perfect case. This fraction is captured in the following theorem.

Theorem 7. The stability region of the imperfect case reaches at least a fraction βP of the

stability region achieved in the perfect case, meaning that ΛGI can be bounded as

βPΛGP ⊆ ΛGI ⊆ ΛGP, (62)

in which βP is given as

βP = min
LP∈L

{
min
k∈LP

{ ∏
i∈LP,i 6=k

(1− gki)

}}
, (63)

where gki =
(
ζkk2

B
Q (ζkiτd )−1 + 1

)−1

.

Proof. Please refer to Appendix K for the proof.

We draw the attention to the fact that the proof of the above result relies on the (first)

approximation of rk given in Rate Approximation 1, meaning that the above theorem holds

under the low-interference condition (i.e. all the gki, with i 6= k, are sufficiently small).

Relation between βP and B: An important factor on which fraction βP depends is the number

of quantization bits B, so it is essential to compute the number of bits that can guarantee this

fraction. Finding the explicit relation that gives the number of bits in function of βP is a difficult

task, however we can obtain the required result numerically. In detail, using the expression of

βP given in the above theorem, we start from a small value of B for which we calculate the

corresponding fraction, then we keep increasing B until the desired value of βP is obtained.

Although computing a closed form relation of B in function of βP is hard to achieve, we can still

find a relation that gives a rough idea of the required number of bits. Specifically, we know that

1 − gki = (1 + 2−
B
Q cki)

−1, where cki = ζkiτd
ζkk

, then, after selecting the subset LP (of cardinality

LP) and k (∈ LP) that yield βP, we find a parameter c such that c = min
i∈LP,i 6=k

cki. Thus, we get

βP ≤
(

1 + 2−
B
Q c
)−(LP−1)

(64)

or equivalently we obtain

B ≥ Q log2

(
c
(
β
−(LP−1)−1

P − 1
)−1
)

(65)

DRAFT



36

Therefore, it suffices to use a number of quantization bits equals to the lower bound in the

above inequality to guarantee the fraction βP. Note that the exact number of bits, given by the

numerical method, is less than the calculated lower bound.

VI. NUMERICAL RESULTS

In this section we present our numerical results. We consider a system where the number of

antennas Nt = Nr = 7, P = 10, σ = 1, d = 2, θ = 0.01. We take N = 6, which satisfies the

condition Nt +Nr ≥ (N + 1)d. In addition, we assume that all the users have Poisson incoming

traffic with the same average arrival rates as ak = a. Also, we assume a scheme with a rate

of log2(1 + τ) bits per channel use if the SINR of a scheduled user exceeds τ . We set the slot

duration to be Ts = 1000 channel uses. Even though in practice all the path loss coefficients

are different, we consider in this section a very special case that simplifies the simulations and

can still provide insights on the comparison between IA and TDMA-SVD. In detail, we assume

that all the direct links have a path loss coefficient of 1 and all the cross links have a path loss

coefficient of ζc (with ζc ≤ 1). This setting allows us to examine, with respect to parameter ζc, the

impact of the cross channels (or equivalently, the impact of interference) on the system stability

performances and it let us detect when IA technique can provide a queueing stability gain. To

show the stability performance of the system, we plot the total average queue length given by
1
Ms

∑Ms−1
t=0

∑N
k=1 qk(t) for different values of a, where each simulation lasts Ms time-slots. We

set Ms = 104. Note that the point where the total average queue length function increases very

steeply is the point at which the system becomes unstable.
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Figure 5: Total average queue length vs. mean arrival

rate a. Here ζc = 0.2 and τ = 1.
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Figure 6: Total average queue length vs. mean arrival

rate a. Here ζc = 0.4 and τ = 1.

Figures 5 and 6 depicts the variations of the total average queue length w.r.t. the mean arrival

rate a for two systems: (i) our adopted system, i.e. IA and SVD are used, where we consider
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Figure 7: Achievable fraction r(N,B′)
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of bits B′. Here ζc = 1 and B = 40 bits.
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B.

several values of the number of quantization bits B, and (ii) a TDMA-SVD system, i.e. there

is always only one active pair and where SVD is applied. In Figure 5, where a relatively low-

interference scenario (ζc = 0.2) is considered, we can see that IA can provide a queueing stability

gain and this gain increases with the number of quantization bits. This is due to the fact that the

more the quantization is precise, the more we achieve higher rates which implies better stability

performances. On the other side, from Figure 6, where a relatively high-interference scenario

(ζc = 0.4) is considered, we can notice that for small B (e.g. B = 15 bits) IA does not provide

any additional stability gain to that of SVD. However, when we increase the number of bits (e.g.

B = 30 and 40 bits), IA becomes capable of yielding a stability gain. This results from the fact

that in high interference scenarios, IA needs better CSI knowledge in order to maintain a good

alignment of interference, and this can be provided by using a sufficiently large number of bits

in the quantization process. It is worth noting that, although we considered the impact of B and

ζc, there exist other parameters that may affect the system performance, such as the number of

antennas, the threshold τ , the number of data streams, etc. Further, we point out that for low

values of a the average queue lengths appear to be 0 in Figure 5 and 6, however these length

values are not 0 but just very small compared to the maximum length value (of order 105).

Figure 7 depicts the variation of the fraction r(N,B′)
r(N,B)

with the number of bits B′, for different

values of τ and for a fixed reference number of bits B = 40 bits; here, we set ζc = 1 since r(N,B′)
r(N,B)

is defined for the symmetric system. It is clear from this figure that increasing the number of

quantization bits and/or decreasing the threshold τ result in higher achievable fractions. Also, one

can notice that changing the number of quantization bits has a higher impact on the achievable
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fraction for greater values of τ , meaning that the more the threshold is high, the more the fraction
r(N,B′)
r(N,B)

is sensitive to the variation of the number of bits.

In Figure 8 we illustrate the variation of fraction βP with the number of bits B, for different

values of τ and ζc. The plots in this figure confirm the expectation that the stability region in

the imperfect case gets bigger, i.e. the fraction this stability region achieves with respect to the

stability region in the perfect case is bigger, for greater B and/or lower ζc.

VII. CONCLUSION

In this paper, we considered a MIMO interference network under TDD mode with limited

backhaul capacity and taking into account the probing cost, and where we adopt a centralized

scheduling scheme to select the active pairs in each time-slot. For the case where only one

pair is active we apply the SVD technique, whereas if this number is greater than or equal to

two we apply the IA technique. Under this setting, we have characterized the stability region

and proposed a scheduling policy to achieve this region for the perfect case as well as for

the imperfect case. Then, we have captured the maximum gap between these two resulting

stability regions. These stability regions, scheduling rules and maximum gaps are provided for

the symmetric system (i.e. equal path loss coefficients) as well as for the general system. In

addition, for the symmetric system we have provided the conditions under which IA can deliver

a queueing stability gain compared to SVD. Moreover, under the general system, since the

scheduling policy is of a high computational complexity, we propose an approximate policy that

has a reduced complexity but that achieves only a fraction of the system stability region. Also,

a characterization of this achievable fraction is provided.

Important extensions can be addressing the stability analysis when we adopt decentralized or

even mixed (centralized + decentralized) methods for feedback and scheduling.

APPENDIX A

PROOF OF PROPOSITION 2

To begin with, let ωl = (−1)l (n + m1 − m2)! ((n− l)! (m1 −m2 + l)! l! )−1 and Ωn =

n! (m2(n+m1 −m2)!)−1. Then, we have

Lm1−m2
n (λ) =

∑n
l=0 ωlλ

l
m and p(λm) =

∑m2−1
n=0 Ωn[Lm1−m2

n (λm)]2λm1−m2
m e−λm . For the Laguerre

polynomial, we can write

[Lm1−m2
n (λm)]2 =

2n∑
j=0

κjλ
j
m, (66)
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where κj =
∑j

i=0 ωiωj−i, with ωs = 0 if s > n. On the other side, since γ(m)
k = ζP

d σ2λm, the

corresponding success probability can be written as

P
{
γ

(m)
k ≥ τ

}
= P

{
λm ≥

d σ2τ

ζP

}
=

m2−1∑
n=0

Ωn

2n∑
j=0

κj

∫ ∞
d σ2τ
ζP

λj+m1−m2
m e−λmdλm

=

m2−1∑
n=0

Ωn

2n∑
j=0

κjΓ(j +m1 −m2 + 1,
d σ2τ

ζP
), (67)

where Γ(·, ·) stands for the upper incomplete Gamma function. Hence, the desired result follows.

APPENDIX B

PROOF OF LEMMA 2

We start the proof by first showing that r(L) decreases with L. The first derivative of this rate

function is given by

dr

dL
= dRe−

σ2τ
α (−θ + (1− Lθ) logF )FL−1. (68)

Since we have L < 1
θ

and logF < 0, the first derivative is negative and so r decreases with L.

To study the variation of rT(L) (w.r.t. L) we need to first compute its first derivatives, which

will help us determine the optimal number of pairs. The first derivative can be written as

drT

dL
= dRe−

σ2τ
α

(
−L2θ logF + L(−2θ + logF ) + 1

)
FL−1. (69)

To study the sign of this derivative w.r.t. L, we first calculate its zeros and investigate if they

are feasible (i.e. they satisfy Lθ < 1). Setting drT
dL

= 0 yields

−L2θ logF + L(−2θ + logF ) + 1 = 0, (70)

or equivalently

L2 + L

(
2

logF
− 1

θ

)
− 1

θ logF
= 0, (71)

We can easily show that the only zeros of drT
dL

are at

L0 =

1
θ
− 2

logF
−
√(

2
logF
− 1

θ

)2

+ 4
θ logF

2
, (72)

L1 =

1
θ
− 2

logF
+

√(
2

logF
− 1

θ

)2

+ 4
θ logF

2
. (73)
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Note that logF < 0 and
(

2
logF
− 1

θ

)2

+ 4
θ logF

= 1
θ2

+ 4
(logF )2

. Let us now examine the feasibility

of L0 and L1. Indeed, under our setting a number L is feasible if it satisfies 0 < L < 1
θ
, since

Lθ should be < 1. For L0 we have

L0 =

1
θ
− 2

logF
−
√

1
θ2

+ 4
(logF )2

2
<

1
θ
− 2

logF
− 2
|logF |

2
=

1

2θ
, (74)

where the inequality results from the fact that 2
|logF | <

√
1
θ2

+ 4
(logF )2

. We can also observe that

L0 =

1
θ
− 2

logF
−
√

1
θ2

+ 4
(logF )2

2
>

1
θ
− 2

logF
− 1

θ
− 2
|logF |

2
= 0. (75)

Thus, L0 is a feasible solution since 0 < L0 <
1
θ
. On the other hand, for L1 we can notice that

L1 =

1
θ
− 2

logF
+
√

1
θ2

+ 4
(logF )2

2
>

1
θ

+
√

1
θ2

2
=

1

θ
. (76)

Hence, L1 is not a feasible solution because L1 >
1
θ
. To complete the proof it suffices to show

that rT(L) reaches its maximum at L0. To this end, we note that rT(0) = 0, rT(1
θ
) = 0 and

drT
dL
|L= 1

2θ
< 0, and we recall that 0 < L0 <

1
2θ
< 1

θ
. In addition, one can easily notice that rT and

its first derivative (drT
dL

) are continuous over
[
0, 1

θ

]
. Based on these observations, the variation of

rT over
[
0, 1

θ

]
can be described as follows: rT is increasing from 0 to L0 and decreasing from

L0 to 1
θ
. This concludes the proof.

APPENDIX C

PROOF OF LEMMA 3

We first provide the proof of Lemma 4 that will help us in the proof of Lemma 3.

Step 1 (Proof of Lemma 4): We start the proof by first defining Ei,L as the set containing the

points (vectors) that only have L ’1’ (the other coordinate values are ’0’) and where the positions

(indexes) of these ’1’ are the same as those of L ’1’ coordinates of si,L+1. Note that the points

in Ei,L are all different from each other. The cardinality of Ei,L, which is denoted by |Ei,L|, is

nothing but the result of the combination of L+1 elements taken L at a time without repetition,

and it can be computed as the following

|Ei,L| =
(
L+ 1

L

)
=

(L+ 1)!

L!(L+ 1− L)!
= L+ 1. (77)

Thus, we have L+ 1 elements from SL that if we take them in a specific convex combination,

we get a point on the same line (from the origin) as that of si,L+1. This can be represented by∑
j∈Ei,L

δjsj,L ≡ si,L+1, (78)
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Figure 9: Example that illustrates the result of Lemma 4.

where ≡ is a notation used to represent the fact that these two points are on the same line

from the origin, and where
∑

j∈Ei,L δj = 1 and δj ≥ 0. Let us suppose that all the coefficients

δj = 1
L+1

. This assumption satisfies the above constraints, namely
∑

j∈Ei,L δj = 1 and δj ≥ 0.

By replacing these coefficients in the term at the left-hand-side of (78), we get∑
j∈Ei,L

δjsj,L =
1

L+ 1

∑
j∈Ei,L

sj,L =
L

L+ 1
si,L+1, (79)

where the second equality holds since we have L + 1 elements to sum (due to the fact that

|Ei,L| = L + 1), each of which contains L ’1’ at the same positions as L ’1’ coordinates of

si,L+1, and (these elements) differ from each other in the position of one ’1’ (and consequently

of one ’0’); for instance, suppose that N = 5, L = 2 and si,L+1 = (1, 1, 1, 0, 0), then the

points sj,L are given by the subset Ei,L = {(1, 1, 0, 0, 0); (1, 0, 1, 0, 0); (0, 1, 1, 0, 0)}. The sum

corresponding to each coordinate is then equal to L. To complete the proof, it remains to show

that 1
L+1

∑
j∈Ei,L sj,L is on the convex hull of SL. To this end, note that all the points in SL are on

the same hyperplane (in RN
+ ), which is described by the equation

∑N
k=1 νk−L = 0; νk represents

the k-th coordinate. Hence, a point on the convex hull of SL is also on this hyperplane. If we

compute
∑N

i=k νk for point 1
L+1

∑
j∈Ei,L sj,L, it yields (L+1)L

L+1
= L due to the definition of Ei,L,

thus this point is on the defined hyperplane and consequently on the convex hull of SL.

Example: In order to better understand the result of this lemma, we provide a simple example

for which the geometric illustration is in Figure 9. In this example, we take N = 2, S1 =

{(1, 0); (0, 1)} and S2 = {(1, 1)}. In addition, we define points P2 = (1, 1) and P1 = (1
2
, 1

2
). Note

that P2 ∈ S2 and P1 is on the convex hull of S1. We can express P2 as P2 = 2
1
[1
2
(1, 0)+ 1

2
(0, 1)] =

2(1
2
, 1

2
) = 2

1
P1. Thus, P2 equals 2

1
× its corresponding point (P1) on the convex hull of S1. This

completes the proof of Lemma 4.
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Step 2: Now, using the above lemma, a point si,L+1 in SL+1 can be expressed in function of

L+ 1 specific points in SL as si,L+1 = L+1
L

∑
j∈Ei,L δjsj,L, which implies that

r(L+ 1)si,L+1 = r(L+ 1)
L+ 1

L

∑
j∈Ei,L

δjsj,L, (80)

where the definition of Ei,L can be found in the proof of Lemma 4. By Lemma 2, we have

(L+ 1)r(L+ 1) < Lr(L) for L ≥ LI. We thus get

r(L+ 1)
L+ 1

L

∑
j∈Ei,L

δjsj,L ≺ r(L)
L

L

∑
j∈Ei,L

δjsj,L = r(L)
∑
j∈Ei,L

δjsj,L. (81)

Note that the inequality operator ≺ in (81) is component-wise. Therefore, each point in IL+1 is

in the convex hull of IL, for L ≥ LI, since r(L + 1)si,L+1 ∈ IL+1 and r(L)
∑

j∈Ei,L δjsj,L is in

the convex hull of IL. Consequently, all the points in IL+1 for L ≥ LI (i.e. these points form Ī)

are in the convex hull of ILI , which is a subset of I. Therefore, the desired result holds.

APPENDIX D

PROOF OF THEOREM 2

The proof consists of two steps. First we will prove that the region in the statement of the

Theorem is indeed achievable. We then have to prove the converse, that is, if there exists a

centralized policy that stabilizes the system for a mean arrival rate vector a, then a ∈ ΛI.

Step 1: Using the fact that a queue is stable if the arrival rate is strictly lower than the departure

rate, it is sufficient to show that for each point in the stability region there exists a scheduling

policy that achieves this point. Indeed, a point rI in ΛI can be written as the convex combination

of the points in I as rI =
∑|I|

i=1 piri, where ri represents a point in I, pi ≥ 0 and
∑|I|

i=1 pi = 1.

Note that each point ri represents a different scheduled subset of pairs and that the probability

of choosing point 0 is equal to 0. To achieve rI it suffices to use a randomized policy that at

the beginning of each time-slot selects (decision) ri with probability pi. Since rI is an arbitrary

point in ΛI, we can claim that this region is achievable.

Step 2: Assume the system is stable for a mean arrival rate vector a. As explained earlier, the

scheduling decision (i.e. subset L) under the centralized policy depends on the queues only, so

we show this dependency by L(q). Let us denote by rs the mean service rate vector. In addition,

we denote by r(L(q)) the average rate vector if the queues state is q and the selected subset of

pairs is L(q). It is obvious that the set of all possible values of r(L(q)) is nothing but I ∪ Ī.

Under the adopted model, the system can be described as a discrete time Markov chain on a
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countable state space with a single communicating class (i.e. irreducible) [14]. Since we assume

strong stability, then we have that this chain is positive recurrent and the mean service rates

greater than the mean arrival rates [14]. In addition, we can deduce that the Markov chain has

a unique stationary distribution (because the chain is irreducible and positive recurrent), which

we denote by π(q). Thus, the following holds for the mean service rate vector

rs =
∑
q∈ZN+

π(q)r(L(q)) =
∑
L∈L

r(L)
∑

q∈ZN+ :L(q)=L

π(q) � a, (82)

where the operator � is component-wise. By setting p(L) =
∑

q∈ZN+ :L(q)=L
π(q) and noticing that

the set of all possible values of r(L) is the same as r(L(q)), that is, I ∪ Ī, the mean service

rate can be re-written as

rs =

|I∪Ī|∑
j=1

pjrj, (83)

in which j is used to denote decision L, meaning that pj = p(L), and rj represents a point in

set I ∪ Ī, and where
∣∣I ∪ Ī∣∣ represents the cardinality of this set. Hence, we can state that rs

is in the convex hull of I ∪ Ī. But, since we have demonstrated that Ī is in the convex hull of

I (see Lemma 3), we have rs ∈ ΛI and consequently a ∈ ΛI. This completes the proof.

APPENDIX E

PROOF OF PROPOSITION 4

The proof consists of two steps. In the first step we prove that if there exists an L such that

Lr(L) > rsvd, then IA provides a queueing stability gain compared to SVD. In the second step,

we show that if for all the L we have Lr(L) ≤ rsvd, then IA does not provide any gain.

Step 1: Here we assume that there exists an L such that Lr(L) > rsvd, with 2 ≤ L ≤ LI, where

we recall that r(L) is the average rate (per user) when L pairs are active. To prove that here

IA can provide a queueing stability gain, we show that IA combined with SVD is capable of

achieving points that are outside the stability region of SVD. This is proven as follows.

It is well known that any point in a stability region characterized by its vertices can be written

as a convex combination of these vertices. Let pd represent any point in the stability region

resulting from SVD, thus this point can be expressed as a convex combination of the vertices

of this region, and we can write

pd =δ1(rsvd, 0, . . . , 0) +δ2(0, rsvd, 0, . . . , 0) + . . .+δN(0, . . . , 0, rsvd)=(δ1rsvd, . . . , δNrsvd), (84)
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where δi ≥ 0 and
∑

i δi = 1. Let us define a specific scheduling policy that at each time-slot

schedules a subset of l pairs and where pair i is selected with a probability π(l)
i . Here we assume

that l can be 1 or L. Clearly, for l = 1 we use SVD, whereas for l = L we use IA. For l = 1 we

choose π(1)
i such that π(1)

i ≤ δi, ∀i, while for l = L we set π(L)
i = (δi−π(1)

i )L; it can be noticed

that
∑

i π
(1)
i + L−1

∑
i π

(L)
i =

∑
i δi = 1. Then, the points in the stability region achieved by

combining IA and SVD can be written as

pad = (π
(1)
1 rsvd + π

(L)
1 r(L), . . . , π

(1)
N rsvd + π

(L)
N r(L))

= (π
(1)
1 rsvd + (δ1 − π(1)

1 )Lr(L), . . . , π
(1)
N rsvd + (δN − π(1)

N )Lr(L)). (85)

Since here we have Lr(L) > rsvd, then it can be deduced that

pad = (π
(1)
1 rsvd + (δ1 − π(1)

1 )Lr(L), . . . , π
(1)
N rsvd + (δN − π(1)

N )Lr(L))

�(π
(1)
1 rsvd + (δ1 − π(1)

1 )rsvd, . . . , π
(1)
N rsvd + (δN − π(1)

N )rsvd = (δ1rsvd, . . . , δNrsvd)=pd, (86)

where the operator � is component-wise. Hence, we can claim that the proposed policy achieves

points that are outside the stability region of SVD.

Step 2: In this step, we assume that the condition Lr(L) ≤ rsvd holds true for any L such

that 2 ≤ L ≤ LI. To prove that here IA cannot yield a queueing stability gain, we show that

SVD is capable of achieving any point in the stability region of IA combined with SVD. This

is detailed as follows. Any point in the stability region resulting from combining IA and SVD

can be achieved by a scheduling policy that at each time-slot schedules a subset of pairs where

pair i is selected with a probability π(L)
i , such that

∑
i

∑
L L
−1π

(L)
i = 1. So this point, denoted

by pad, can be written as the following

pad = (π
(1)
1 rsvd +

∑
L:L≥2

π
(L)
1 r(L), . . . , π

(1)
N rsvd +

∑
L:L≥2

π
(L)
N r(L)). (87)

Let us define a scheduling policy under SVD (i.e. one pair is active) that at each time-slot selects

pair i with a probability δi =
∑

L L
−1π

(L)
i , where it is clear that

∑
i δi =

∑
i

∑
L L
−1π

(L)
i = 1.

Hence, this policy can achieve a point, denoted by pd, such as

pd = (δ1rsvd, . . . , δNrsvd) = (
∑
L

L−1π
(L)
1 rsvd, . . . ,

∑
L

L−1π
(L)
N rsvd). (88)

DRAFT



45

The condition Lr(L) ≤ rsvd yields

pd = (
∑
L

L−1π
(L)
1 rsvd, . . . ,

∑
L

L−1π
(L)
N rsvd)

= (π
(1)
1 rsvd +

∑
L:L≥2

L−1π
(L)
1 rsvd, . . . , π

(1)
N rsvd +

∑
L:L≥2

L−1π
(L)
N rsvd)

� (π
(1)
1 rsvd +

∑
L:L≥2

L−1π
(L)
1 Lr(L), . . . , π

(1)
N rsvd +

∑
L:L≥2

L−1π
(L)
N Lr(L)) = pad, (89)

where the equality is achieved for some judicious choice of the π(L)
i . This shows that the policy

using SVD can achieve any point in the stability region of IA combined with SVD.

A similar proof can be done for the perfect case by replacing r(L) by µ(L), we thus omit

this proof to avoid repetition. Therefore, the desired result holds.

APPENDIX F

PROOF OF THEOREM 4

We first provide the proof of Lemma 5 that will help us in the proof of the theorem.

Step 1 (Proof of Lemma 5): From Lemma 4, a point in SL+1 can be expressed in function of some

subset of points, represented by Ei,L, in SL as si,L+1 = L+1
L

∑
i1∈Ei,L δi1,Lsi1,L. More specifically,

we found that the coefficients δi1,L are all equal to 1
L+1

, and thus si,L+1 = L+1
L

∑
i1∈Ei,L

1
L+1

si1,L =

1
L

∑
i1∈Ei,L si1,L. Similarly, each point si1,L (∈ SL) can be written in function of some specific

subset of points, denoted Ei1,L−1, in SL−1 as si1,L = 1
L−1

∑
i2∈Ei1,L−1

si2,L−1. Following this

reasoning until index L− (n− 1), we can express si,L+1 as

si,L+1 =
1

L(L− 1) . . . (L− (n− 1))

∑
i1∈Ei,L

∑
i2∈Ei1,L−1

. . .
∑

in∈Ein−1,L−(n−1)

sin,L−(n−1). (90)

We denote by En−1,L−(n−1) the subset containing the points (vectors) that only have L − n ’1’

(the other coordinate values are ’0’) and where the positions (indexes) of these ’1’ coordinates

are the same as the positions of L−n ’1’ coordinates of si,L+1. It is important to point out that

the elements in En−1,L−(n−1) are all different from each other. It can be easily noticed that each

Ein−1,L−(n−1) (in (90)) is a subset of En−1,L−(n−1). The cardinality of this latter set is the result

of the combination of L + 1 elements taken L − (n − 1) at a time without repetition, thus we

get the following ∣∣En−1,L−(n−1)

∣∣ =

(
L+ 1

L− (n− 1)

)
=

(L+ 1)!

(L− (n− 1))!n!
. (91)
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Let us now examine the nested summation in the expression in (90). We can remark that the

summands are the elements of En−1,L−(n−1). Hence, the result of this nested summation is nothing

but a simple sum of the vectors in En−1,L−(n−1), each of which multiplied by the number of

times it appears in the summation. For each vector, this number is the result of the number

of possible orders in which we can remove (L + 1 − (L − (n − 1))) particular ’1’ coordinates

from si,L+1. It follows that the required numbers are all equal to each other and given by

(L+ 1− (L− (n−1)))! = n!. From the above and the fact that (L(L−1) . . . (L− (n−1)))−1 =

(L− n)!(L!)−1, the expression in (90) can be rewritten as

si,L+1 =
(L− n)!

L!

∑
j∈En−1,L−(n−1)

n! sj,L−(n−1)

=
(L− n)!n!

L!

(L+ 1)!

(L− (n− 1))!n!

∑
j∈En−1,L−(n−1)

(L− (n− 1))!n!

(L+ 1)!
sj,L−(n−1), (92)

where the second equality is due to multiplying and dividing by
∣∣En−1,L−(n−1)

∣∣. By noticing that

the factor that multiplies the summation is equal to L+1
L−(n−1)

, (92) can be re-expressed as

si,L+1 =
L+ 1

L− (n− 1)

∑
j∈En−1,L−(n−1)

(L− (n− 1))!n!

(L+ 1)!
sj,L−(n−1). (93)

From the proof of Lemma 4, we can claim that the point formed by the convex combination∑
j∈En−1,L−(n−1)

∣∣En−1,L−(n−1)

∣∣−1
sj,L−(n−1) is on the convex hull of SL−(n−1) and in the same

direction from the origin as si,L+1; this combination is convex since we have
∣∣En−1,L−(n−1)

∣∣−1
> 0

and
∑

j∈En−1,L−(n−1)

∣∣En−1,L−(n−1)

∣∣−1
= 1, meaning that the coefficients of this combination are

non-negative and sum to 1.

Example: In order to clarify the result of this lemma, we provide a simple example in which we

set N = 4 and L+ 1 = 4. Under this example, we know that S4 will contain one point, namely

si,4 = (1, 1, 1, 1). For this point, we want to find its corresponding point on the convex hull of

S2; this implies that n = 2. From the tree in Figure 10, it can be seen that

si,4 =
1

3
((1, 1, 1, 0) + (1, 1, 0, 1) + (1, 0, 1, 1) + (0, 1, 1, 1))

=
1

3
((1, 1, 0, 0) + (1, 0, 1, 0) + (0, 1, 1, 0) + (1, 0, 0, 1) + (0, 1, 0, 1) + (0, 0, 1, 1)). (94)

Remark that the 6 different vectors in the second equality form the set En−1,L−(n−1) = E1,2, thus

|E1,2| = 6. Using E1,2, the point that corresponds to si,4 and that lies on the convex hull of S2 is

given by
1

6
(1, 1, 0, 0) +

1

6
(1, 0, 1, 0) +

1

6
(0, 1, 1, 0) +

1

6
(1, 0, 0, 1) +

1

6
(0, 1, 0, 1) +

1

6
(0, 0, 1, 1). (95)
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(1,1,1,1)

(0,1,1,1)

(0,0,1,1)(0,1,0,1)(0,1,1,0)

(1,0,1,1)

(0,0,1,1)(1,0,0,1)(1,0,1,0)

(1,1,0,1)

(0,1,0,1)(1,0,0,1)(1,1,0,0)

(1,1,1,0)

(0,1,1,0)(1,0,1,0)(1,1,0,0)

Figure 10: A tree that shows the vectors in S2 that yield si,4 = (1, 1, 1, 1). Here, N = 4 and n = 2.

We can obtain si,4 by just multiplying this convex combination by a factor of 2, which verifies

the general formula provided in (93). This completes the proof of Lemma 5.

Step 2: To find the minimum achievable fraction between the stability region of the imperfect

case (ΛI) and the stability region of the perfect case (ΛP), we examine the gap between each

vertex that contributes in the characterization of ΛP, where the set of these vertices is given by

{P1, . . . , PLP}, and the convex hull of ΛI. To begin with, using the above lemma, we recall that

a point in SLP can be written in function of some point that lies on the convex hull of SLI , where

these two points are in the same direction toward the origin. Furthermore, the gap between these

two points can be captured using the fraction LI
LP

. Since any point in PLP can be written as µ(LP)

times its corresponding point in SLP and a point on the convex hull of ILI is r(LI) times its

corresponding point on the convex hull of SLI , we can claim that the fraction between any point

in PLP and its corresponding point on the convex hull of ILI , and thus on the convex hull of ΛI,

can be given by the following

LIr(LI)

LPµ(LP)
=

rT(LI)

µT(LP)
. (96)

More generally, using the above approach, we can show that the fraction between any point

(vertex) in PL, for LI ≤ L ≤ LP, and the convex hull of ΛI is equal to LIr(LI)
Lµ(L)

= rT(LI)
µT(L)

. For these

fractions, since µT(L) increases for L ≤ LP, the following holds

rT(LI)

µT(LP)
<

rT(LI)

µT(LP − 1)
< . . . <

rT(LI)

µT(LI)
. (97)

On the other side, the fraction between any vertex in PL, for 2 ≤ L ≤ LI, and its corresponding

point on the convex hull of ΛI is given by Lr(L)
Lµ(L)

= rT(L)
µT(L)

. This is due to the fact that the point
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on the convex hull of ΛI and that corresponds to a specific vertex in PL, for 2 ≤ L ≤ LI, is

nothing but a vertex in IL. For the fractions in this case, it is obvious that

rT(LI)

µT(LI)
<
rT(LI − 1)

µT(LI − 1)
< . . . <

rT(2)

µT(2)
. (98)

Hence, using the inequalities in (97) and (98), the minimum achievable fraction is given by
rT(LI)
µT(LP)

. Therefore, the desired result holds.
APPENDIX G

PROOF OF THEOREM 5

The proof consists of three steps. We first show that (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B)

(r · q)(∆*
B). We

then find the minimum fraction r(LB ,B
′)

r(LB ,B)
under the condition that the number of active pairs, LB,

can be less than or equal to N ; we get r(N,B′)
r(N,B)

as a minimum fraction. Finally, we show that

the stability region ΛB′ achieves at least a fraction r(N,B′)
r(N,B)

of the stability region ΛB and we

conclude that ΛB′ can be bounded as given in (46).

Step 1: Recall that under the symmetric case all the active pairs have the same average rate,

which we denote here by r(LB, B). Thus, we can write (r ·q)(∆*
B) = r(LB, B)

∑
k∈LB qk, where

LB = |LB| . Similarly, we get (r · q)(∆*
B′ ) = r(LB′ , B

′)
∑

k∈LB′
qk, with LB′ = |LB′|. Note that

r(LB, B
′) ≤ r(LB, B), or equivalently r(LB ,B

′)
r(LB ,B)

≤ 1, if B′ ≤ B.

Depending on the subset of scheduled pairs under each of ∆*
B′ and ∆*

B, four cases are to consider:

1) If the Number of Scheduled Pairs is 1 under both of ∆*
B′ and ∆*

B: Let us denote the active

pair by i. It is clear that in this case the average rate expression is independent of the number

of bits and thus we have r(1, B) = r(1, B′) = rsvd. Based on this, it can be seen that

(r · q)(∆*
B) = (r · q)(∆*

B′ ) = rsvd qi. (99)

Hence, for any positive fraction β ≤ 1, we have (r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B). We can therefore

write (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B)

(r · q)(∆*
B).

2) If the Number of Scheduled Pairs is 1 under ∆*
B and strictly greater than 1 under ∆*

B′:

It can be observed that this case cannot take place. We prove this claim using the concept of

proof by contradiction. Let i denote the index of the scheduled pair under ∆*
B. Here we have

(r · q)(∆*
B) = rsvd qi and (r · q)(∆*

B′ ) = r(LB′ , B
′)
∑

k∈LB′
qk. Since ∆*

B′ maximizes the product

(r · q) for the case where B′ is the number of bits, we get

r(LB′ , B
′)
∑
k∈LB′

qk ≥ rsvd qi. (100)
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On the other side, based on the definition of ∆*
B and the fact that r(LB, B′) < r(LB, B), we get

rsvd qi ≥ r(LB, B)
∑
k∈LB

qk > r(LB, B
′)
∑
k∈LB

qk. (101)

The above inequality holds for any LB and in particular for LB = LB′ , we thus have

rsvd qi ≥ r(LB, B)
∑
k∈LB

qk > r(LB′ , B
′)
∑
k∈LB′

qk. (102)

Based on equations (101) and (102), we obtain rsvd qi > rsvd qi, which is incorrect.

3) If the Number of Scheduled Pairs is 1 under ∆*
B′ and strictly greater than 1 under ∆*

B:

If we denote by i the index of the scheduled pair under ∆*
B′ , we can write (r · q)(∆*

B′ ) = rsvd qi.

In addition, we have (r ·q)(∆*
B) = r(LB, B)

∑
k∈LB qk. Since ∆*

B′ maximizes the product (r ·q)

for the case where the number of bits is B′, the following holds

r(LB, B
′)
∑
k∈LB

qk ≤ rsvd qi. (103)

In addition, using the definition of ∆*
B and the fact that r(LB, B′) ≤ r(LB, B), we can write

r(LB, B
′)
∑
k∈LB

qk ≤ r(LB, B)
∑
k∈LB

qk. (104)

In order to obtain r(LB, B
′)
∑

k∈LB qk ≥ β r(LB, B)
∑

k∈LB qk, for some β ≤ 1, it suffices to

take β ≤ r(LB ,B
′)

r(LB ,B)
. Setting β = r(LB ,B

′)
r(LB ,B)

, we get r(LB, B′)
∑

k∈LB qk = β r(LB, B)
∑

k∈LB qk.

Combining this equality with the inequality in (103) yields

rsvd qi ≥
r(LB, B

′)

r(LB, B)
r(LB, B)

∑
k∈LB

qk. (105)

Hence, we can deduce that (r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B), i.e. (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B)

(r · q)(∆*
B).

4) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆*
B′ and ∆*

B:

Here, the analysis is similar to the third case. In detail, since ∆*
B′ maximizes the product (r ·q)

for the case where the number of bits is B′, it follows that

r(LB, B
′)
∑
k∈LB

qk ≤ r(LB′ , B
′)
∑
k∈LB′

qk. (106)

Also, using the definition of ∆*
B and the fact that r(LB, B′) ≤ r(LB, B), we can write

r(LB, B
′)
∑
k∈LB

qk ≤ r(LB, B)
∑
k∈LB

qk. (107)
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In order to get r(LB, B′)
∑

k∈LB qk ≥ β r(LB, B)
∑

k∈LB qk, for some β ≤ 1, it suffices to

take β ≤ r(LB ,B
′)

r(LB ,B)
. Setting β = r(LB ,B

′)
r(LB ,B)

, we get r(LB, B′)
∑

k∈LB qk = β r(LB, B)
∑

k∈LB qk.

Combining this equality with the inequality in (106) yields

r(LB′ , B
′)
∑
k∈LB′

qk ≥
r(LB, B

′)

r(LB, B)
r(LB, B)

∑
k∈LB

qk. (108)

Therefore, we can deduce that (r · q)(∆*
B′ ) ≥ r(LB ,B

′)
r(LB ,B)

(r · q)(∆*
B).

Step 2: In Step 1 we have proven that, in the four considered cases, the following holds:

(r · q)(∆*
B′ ) ≥ β(r · q)(∆*

B), with β = r(LB ,B
′)

r(LB ,B)
.

We now want to find the minimum fraction r(LB ,B
′)

r(LB ,B)
w.r.t. LB, such as

minimize
LB

r(LB, B
′)

r(LB, B)
(109)

subject to LB ≤ N (110)

To solve this problem, we show that the objective function to minimize in (109) is a decreasing

function w.r.t. LB. Indeed, using (32), we have

r(LB, B
′)

r(LB, B)
=

(1− LBθ)dRe−
σ2τ
α (F (B′))LB−1

(1− LBθ)dRe−
σ2τ
α (F (B))LB−1

=

(
F (B′)

F (B)

)LB−1

, (111)

in which function F was already defined for equation (32). It is clear that F (B′) < F (B)

because B′ < B, which implies that
(
F (B′)
F (B)

)LB−1

decreases with LB. Since LB ≤ N , the

optimization problem reaches its minimum at LB = N . Based on the above, the minimum

fraction can be given by r(N,B′)
r(N,B)

. For the rest of the proof, we define βm = r(N,B′)
r(N,B)

.

Step 3: Using the minimum fraction derived before, we now want to examine the stability region

achieved by ∆*
B′ . To this end, we define the quadratic Lyapunov function as

Ly(q(t)) ,
1

2
(q(t) · q(t)) =

1

2

N∑
k=1

qk(t)
2. (112)

From the evolution equation for the queue lengths (see (11)) we have

Ly(q(t+ 1))− Ly(q(t)) =
1

2

N∑
k=1

[
qk(t+ 1)2 − qk(t)2

]
=

1

2

N∑
k=1

[
max {qk(t)−Dk(t), 0}2 + Ak(t)

2 − qk(t)2
]

≤
N∑
k=1

[Ak(t)
2 +Dk(t)

2]

2
+

N∑
k=1

qk(t) [Ak(t)−Dk(t)] , (113)
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where in the final inequality we have used the fact that for any q ≥ 0, A ≥ 0, D ≥ 0, we have

(max {q −B, 0}+ A)2 ≤ q2 + A2 +D2 + 2q(A−B).

Now define Dr(q(t)) as the conditional Lyapunov drift for time-slot t

Dr(q(t)) , E {Ly(q(t+ 1))− Ly(q(t)) | q(t)} . (114)

From (113), we have that Dr(q(t)) for a general scheduling policy satisfies

Dr(q(t))≤E

{
N∑
k=1

Ak(t)
2 +Dk(t)

2

2
| q(t)

}
+

N∑
k=1

qk(t)ak −E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
, (115)

where we have used the fact that arrivals are i.i.d. over slots and hence independent of current

queue backlogs, so that E {Ak(t) | q(t)} = E {Ak(t)} = ak. Now define E as a finite positive

constant that bounds the first term on the right-hand-side of the above drift inequality, so that

for all t, all possible qk(t), and all possible control decisions that can be taken, we have

E

{
N∑
k=1

Ak(t)
2 +Dk(t)

2

2
| q(t)

}
≤ E. (116)

Note that E exists since Ak(t) < Amax and Dk(t) < Dmax. Using the expression in (115) yields

Dr(q(t)) ≤ E +
N∑
k=1

qk(t)ak − E

{
N∑
k=1

qk(t)Dk(t) | q(t)

}
. (117)

The conditional expectation at the right-hand-side of the above inequality is with respect to the

randomly observed channel states. Thus, the drift under ∆*
B′ can be expressed as

Dr(∆*
B′ )(q(t)) ≤ E −

N∑
k=1

qk(t)
[
E
{
D

(∆*
B′ )

k (t) | q(t)
}
− ak

]
, (118)

Note that here we have E
{
D

(∆*
B′ )

k (t) | q(t)
}

= r(LB′ , B
′), where the expectation at the left-

hand-side of this latter equality is over the randomly observed channel state. Similarly, we have

E
{
D

(∆*
B)

k (t) | q(t)
}

= r(LB, B). Hence, using (108) and the fact that the minimum fraction is

βm = r(N,B′)
r(N,B)

, we can write

N∑
k=1

qk(t)E
{
D

(∆*
B′ )

k (t) | q(t)
}
≥

N∑
k=1

qk(t)βm E
{
D

(∆*
B)

k (t) | q(t)
}
. (119)

Plugging this directly into (118) yields

Dr(∆*
B′ )(q(t)) ≤ E −

N∑
k=1

qk(t)
[
βm E

{
D

(∆*
B)

k (t) | q(t)
}
− ak

]
. (120)
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The above expression can be re-expressed as

Dr(∆*
B′ )(q(t)) ≤ E − βm

N∑
k=1

qk(t)
[
E
{
D

(∆*
B)

k (t) | q(t)
}
− β−1

m ak

]
. (121)

Because ∆*
B maximizes the weighted sum

∑N
k=1 qk(t)E {Dk(t) | q(t)} over all alternative deci-

sions, the following holds
N∑
k=1

qk(t)E
{
D

(∆*
B)

k (t) | q(t)
}
≥

N∑
k=1

qk(t)E
{
D

(∆)
k (t) | q(t)

}
. (122)

where ∆ represents any alternative (possibly randomized) scheduling decision that can stabilize

the system. Plugging the above directly into (121) yields

Dr(∆*
B′ )(q(t)) ≤ E − βm

N∑
k=1

qk(t)
[
E
{
D

(∆)
k (t) | q(t)

}
− β−1

m ak

]
. (123)

Let us suppose that the mean arrival rate vector a is interior to fraction βm of the stability region

ΛB. Thus, there exists an εmax such that

(a1 + εmax, . . . , aNεmax) ∈ βmΛB, (124)

or equivalently we have

(β−1
m a1 + β−1

m εmax, . . . , β
−1
m aN + β−1

m εmax) ∈ ΛB. (125)

Based on the above and considering a particular policy ∆ that depends only on the states of the

channels, we can write

E
{
D

(∆)
k (t) | q(t)

}
= E

{
D

(∆)
k (t)

}
≥ β−1

m ak + β−1
m εmax, ∀k ∈ {1, . . . , N} . (126)

Plugging the above in (123) yields

Dr(∆*
B′ )(q(t)) ≤ E − εmax

N∑
k=1

qk(t). (127)

Taking an expectation of Dr(∆*
B′ ) over the randomness of the queue lengths and summing over

t ∈ {0, 1, . . . , T − 1} for some integer T > 0 we get

E {Ly(q(T ))} − E {Ly(q(0))} ≤ ET − εmax

T−1∑
t=0

N∑
k=1

E {qk(t)} . (128)

Rearranging terms, dividing by εmaxT , and taking a lim sup we eventually obtain

lim sup
T→∞

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤
E

εmax
. (129)
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Based on the above inequality and the definition of strong stability (see Definition 1), it follows

that ∆*
B′ stabilizes the system for any arrivals such that the mean arrival rate vector is interior

to fraction βm of the stability region of ∆*
B, meaning that ∆*

B′ achieves up to ΛB′ = r(N,B′)
r(N,B)

ΛB.

Note that this achievable region corresponds to the worst case, that is, when the fraction is
r(N,B′)
r(N,B)

. Hence, since the fraction is greater than or equal to r(N,B′)
r(N,B)

, we get

r(N,B′)

r(N,B)
ΛB ⊆ ΛB′ ⊆ ΛB, (130)

meaning that ΛB′ achieves at least a fraction r(N,B′)
r(N,B)

of ΛB. This completes the proof.

APPENDIX H

DERIVATION OF RATE APPROXIMATION 1

To begin with, we note that the expression of rk given in (48) can be re-expressed as

rk = (1− Lθ)dRe−
σ2τ
αkk

∏
i∈L,i 6=k

(1− gki)Q 2F1(c2, Q; c1 + c2; gki), (131)

which follows since 1 − gki =
(
ζkiτd (ζkk2

B
Q )−1 + 1

)−1

. We recall that we work under the

assumption/condition that the gki are sufficiently small.

We focus on the term (1−gki)Q 2F1(c2, Q; c1 +c2; gki). Using linear transformations (of variable)

properties for the Hypergeometric function, we have the relation [32, Page 559]

(1− gki)Q 2F1(c2, Q; c1 + c2; gki) = 2F1(c1, Q; c1 + c2;
gki

gki − 1
). (132)

For sufficiently small gki values, we have the approximation: gki
gki−1

≈ −gki. We can (numerically)

verify that for gki < 0.1 the following accurate approximation holds

2F1(c1, Q; c1 + c2;
gki

gki − 1
) ≈ 2F1(c1, Q; c1 + c2;−gki). (133)

We recall that c1 = (Q + 1)Q−1d − Q−1, c2 = (Q − 1)c1 and Q = NtNr − 1. For sufficiently

large Q, and since d ≤ min(Nt, Nr) (this implies that Q is sufficiently larger than d), we can

easily see that c1 ≈ d, c2 ≈ Qd− d and c1 + c2 ≈ Qd. Now, using the Maclaurin expansion to

the second order we can write

2F1(c1,Q; c1+c2;−gki)≈1− c1Q

c1 + c2

gki+
1

2

c1Q

c1 + c2

(c1 + 1)(Q+ 1)

c1 + c2 + 1
g2
ki+O(g2

ki)≈1−gki. (134)

In this approximation we have used the facts that 1
2
g2
ki � gki, c1Q

c1+c2
= dQ

Qd
= 1, d is sufficiently

high, and (c1+1)(Q+1)
c1+c2+1

= (d+1)(Q+1)
Qd+1

≈ 1. In addition, O(g2
ki) can be removed since it is negligible

compared with 1− gki. This latter property follows from the fact that the Maclaurin expansion
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to higher orders (greater than two) will add terms in g3
ki, g

4
ki, . . . , which are, as g2

ki, very small

with respect to 1 and to the term in gki; this is due to the condition that gki is sufficiently small

(i.e. gki < 0.1). Hence, by replacing the above approximation in the expression of rk given in

(131), we obtain the following

rk ≈ (1− Lθ)dRe−
σ2τ
αkk

∏
i∈L,i 6=k

(1− gki). (135)

APPENDIX I

DERIVATION OF RATE APPROXIMATION 2

Let us first recall that here we suppose that all the gki (with i 6= k) are relatively close to

ḡk. We focus on the product
∏

i∈L,i 6=k
(1− gki). Our goal here is to show that this product can be

accurately approximated by the following expression

(1− ḡk)L−1 − (1− ḡk)L−2
∑

i∈L,i 6=k

(gki − ḡk) . (136)

To prove this latter result, we start by a simple example and then we provide the general result.

We consider a simple example where the product function is f(gk1, gk2) = (1−gk1)(1−gk2), i.e.

it can be seen as an example where L = 3 and k = 3. For this function, the Taylor expansion

of order 2 around the point (ḡk, ḡk) can be given as the following

f(gk1, gk2) = f(ḡk, ḡk) + (gk1 − ḡk)
∂f

∂gk1

|(ḡk,ḡk) + (gk2 − ḡk)
∂f

∂gk2

|(ḡk,ḡk)

+
1

2
(gk1 − ḡk)2 ∂

2f

∂g2
k1

|(ḡk,ḡk) +
1

2
(gk2 − ḡk)2 ∂

2f

∂g2
k2

|(ḡk,ḡk)

+ (gk1 − ḡk)(gk2 − ḡk)
∂f

∂gk1

|(ḡk,ḡk)
∂f

∂gk2

|(ḡk,ḡk)

= (1− ḡk)(1− ḡk)− (gk1 − ḡk)(1− ḡk)− (gk2 − ḡk)(1− ḡk) + (gk1 − ḡk)(gk2 − ḡk)

= (1− ḡk)3−1 − (1− ḡk)3−2(gk1 − ḡk + gk2 − ḡk) + (gk1 − ḡk)(gk2 − ḡk). (137)

Note that in the first line of the above equation we use operator = (and not ≈) since, as it can

be easily noticed, we have all the expansions of f for order ≥ 3 are equal to the one for order

2. This latter statement results from the fact that ∂αf
∂gαki

= 0, ∀α ≥ 2. Since we work under the

condition that all the gki are close to ḡk, we can claim that the term (gk1 − ḡk)(gk2 − ḡk) (in

(137)) is sufficiently small compared with the other terms. Hence, we get

f(gk1, gk2) ≈ (1− ḡk)3−1 − (1− ḡk)3−2(gk1 − ḡk + gk2 − ḡk). (138)
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The obtained result can be easily generalized, and thus we can write∏
i∈L,i 6=k

(1− gki) ≈ (1− ḡk)L−1 − (1− ḡk)L−2
∑

i∈L,i 6=k

(gki − ḡk). (139)

By recalling that the approximated average rate expression is (1− Lθ)dRe−
σ2τ
αkk

∏
i∈L,i 6=k

(1− gki)

and replacing
∏

i∈L,i 6=k
(1− gki) with its approximation given in (139), we eventually obtain

rk ≈ (1− Lθ) dRe−
σ2τ
αkk

[
(1− ḡk)L−1 − (1− ḡk)L−2

∑
i∈L,i 6=k

(gki − ḡk)

]
. (140)

APPENDIX J

PROOF OF THEOREM 6

The proof consists of two parts. The first part provides the explicit expression of fraction βA.

Then, in the second part, we show that the approximate policy ∆A achieves at least a fraction

βA of the stability region achieved by ∆*
GI.

Step 1: As in the first part of the proof of Theorem 5, depending on the number of scheduled

pairs under each policy, we consider (the same) four cases.

1) If the Number of Scheduled Pairs is 1 under both of ∆A and ∆*
GI: We recall that in this case

the scheduled pair is denoted by j and its average rate is given by rsvd,j , independently of whether

we consider the perfect or imperfect case. Thus, the dot product r · q can be written as rsvd,j qj

under ∆A as well as under ∆*
GI. Hence, we have (r · q)(∆A) = (r · q)(∆*

GI), and for any positive

constant βA ≤ 1 we can deduce that the following inequality holds: (r · q)(∆A) ≥ βA(r · q)(∆*
GI).

2) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆A and ∆*
GI:

Using Rate Approximation 2, under policy ∆A the dot product r · q can be expressed as

(1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk −

∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−2qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
,

(141)

whereas under ∆*
GI this dot product is given by

(1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−2qk

∑
i∈L,i 6=k

(gki − ḡk)

]
. (142)

Since the approximate policy ∆A schedules the subset LA that maximizes the dot product φ ·q,

and recalling that φk(l) = (1− lθ)dRe−
σ2τ
αkk (1− ḡk)l−1, it yields

(1− LAθ)dR
∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk ≥ (1− Lθ)dR

∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk. (143)
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Similarly, using the definition of the optimal policy ∆*
GI under which the dot product r · q is

maximized, the following inequality holds

(1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−2qk

∑
i∈L,i 6=k

(gki − ḡk)

]
≥

(1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk −

∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−2qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
.

(144)

These last two inequalities, in (143) and (144), lead us to the simple observation

− (1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−2qk

∑
i∈L,i 6=k

(gki − ḡk)

]
≥

− (1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−2qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
. (145)

For the rest of this proof, we define

o1 = (1− LAθ)dR
∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk,

p1 = −(1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−2qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
,

o2 = (1− Lθ)dR
∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk,

p2 = −(1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−2qk

∑
i∈L,i 6=k

(gki − ḡk)

]
.

We can easily notice that p1 and p2 can be rewritten, respectively, as

p1 = −(1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)−1(1− ḡk)LA−1qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
, (146)

p2 = −(1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)−1(1− ḡk)L−1qk

∑
i∈L,i 6=k

(gki − ḡk)

]
. (147)

We next point out two simple but important remarks that will help us complete the proof.

• For any policy ∆2 that approximates any policy ∆1 to a fraction β (≤ 1), we have

(r · q)(∆2) ≥ β(r · q)(∆1).
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If w.r.t. the approximate policy (∆2) there exists a scheduling policy ∆22 such that (r ·

q)(∆22) ≤ (r ·q)(∆2), then we can derive a fraction based on (r ·q)(∆22) instead of (r ·q)(∆2).

We can easily notice that this fraction is lower than or equal to β, therefore, w.r.t. the stability

region achieved by ∆1, ∆2 reaches a fraction larger than that achieved by ∆22.

• If w.r.t. the approximated policy (∆1) there exists a scheduling policy ∆11 such that

(r · q)(∆1) ≤ (r · q)(∆11),

then we can derive an achievable fraction based on (r · q)(∆11), and this fraction will be

lower than or equal to β. The key idea here is that sometimes it is easier to find the fraction

using ∆22 (resp., ∆11) instead of ∆2 (resp., ∆1), but this will be to the detriment of finding

an achievable fraction that is, in general, lower than the exact solution.

To proceed further, we consider the extreme case that corresponds to define

p1e = min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i 6=k

(gki − ḡk)

}}
(1− LAθ)dR

∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk,

p2e = max
L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i 6=k

(gki − ḡk)

}}
(1− Lθ)dR

∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk.

It is obvious that p1 ≥ p1e and p2 ≤ p2e. Let us define m1 and m2 as

m1 = min
LA∈L

{
min
k∈LA

{
−(1− ḡk)−1

∑
i∈LA,i 6=k

(gki − ḡk)

}}
,

m2 = max
L∈L

{
max
k∈L

{
−(1− ḡk)−1

∑
i∈L,i 6=k

(gki − ḡk)

}}
.

Then, it is easy to see that p1e = m1o1 and p2e = m2o2. This yields the following

(r · q )(∆A) = o1 + p1 ≥ o1 + p1e = o1 +m1o1, (148)

(r · q )(∆*
GI) = o2 + p2 ≤ o2 + p2e = o2 +m2o2. (149)

As mentioned earlier, ∆A approximates ∆*
GI to a fraction β if the following inequality holds

(r · q )(∆A) ≥ β(r · q )(∆*
GI). (150)

In our case, it is difficult to derive β, however we can compute a fraction βA ≤ β. In detail,

based on the two properties about the achievable fraction given in the above paragraph, and

combining (148) with (149), the problem turns out to find βA such that
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o1(1 +m1) ≥ βAo2(1 +m2). (151)

Using the fact that o2 ≤ o1, which was shown at the beginning of this proof, it suffices to have

βA ≤ 1+m1

1+m2
, to satisfy the inequality in (151). Let us consider the upper bound βA = 1+m1

1+m2
.

Therefore, we can deduce that (r · q )(∆A) ≥ βA(r · q )(∆*
GI).

3) If the Number of Scheduled Pairs is 1 under ∆A and strictly greater than 1 under ∆*
GI:

Denoting by j the index of the scheduled pair under ∆A, we can write (r ·q)(∆A) = rsvd,j qj . On

the other side, as in the second case, (r · q)(∆*
GI) can be expressed as

(1− Lθ)dR

[∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−1qk −

∑
k∈L

e
− σ

2τ
αkk (1− ḡk)L−2qk

∑
i∈L,i 6=k

(gki − ḡk)

]
. (152)

Using the expression of m2 that was given in the second case, it can be shown that

(r · q)(∆A) ≥ 1

1 +m2

(r · q)(∆*
GI). (153)

The proof is similar to the proof of the second case and thus is omitted for the sake of brevity.
4) If the Number of Scheduled Pairs is 1 under ∆*

GI and strictly greater than 1 under ∆A:

Denoting by j the index of the scheduled pair under ∆*
GI, we have (r ·q)(∆*

GI) = rsvd,j qj . On the

other hand, as in the second case, (r · q)(∆A) can be expressed as

(1− LAθ)dR

[∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−1qk−

∑
k∈LA

e
− σ

2τ
αkk (1− ḡk)LA−2qk

∑
i∈LA,i 6=k

(gki − ḡk)

]
. (154)

Using the expression of m1 that was provided in the second case, it can be shown that

(r · q)(∆A) ≥ (1 +m1)(r · q)(∆*
GI). (155)

The proof here is also similar to the proof of the second case and thus is omitted.

Step 2: We first recall the assumptions −1 < m1 < 0 and m2 > 0. Thus, it can be easily seen

that 1+m1

1+m2
< 1 + m1 and 1+m1

1+m2
< 1

1+m2
. Hence, based on these inequalities and on Step 1, and

recalling that βA = 1+m1

1+m2
, under the four cases we can write

(r · q )(∆A) ≥ βA(r · q )(∆*
GI). (156)

Now, to complete the proof, we use a similar approach to that used in Step 3 of the proof for

Theorem 5. Specifically, the drift under ∆A can be expressed as

Dr(∆A)(q(t)) ≤ E −
N∑
k=1

qk(t)
[
E
{
D

(∆A)
k (t) | q(t)

}
− ak

]
, (157)
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for some finite constant E. Using equation (156), we can write
N∑
k=1

qk(t)E
{
D

(∆A)
k (t) | q(t)

}
≥

N∑
k=1

qk(t)βA E
{
D

(∆*
GI)

k (t) | q(t)
}
. (158)

Plugging this directly into (157) yields

Dr(∆A)(q(t)) ≤ E − βA

N∑
k=1

qk(t)
[
E
{
D

(∆*
GI)

k (t) | q(t)
}
− β−1

A ak

]
, (159)

Following similar steps to those used at the end of the proof of Theorem 5, we eventually obtain

lim sup
T→∞

1

T

T−1∑
t=0

N∑
k=1

E {qk(t)} ≤
E

εmax
, (160)

for some εmax and T . Based on the above, it follows that ∆A stabilizes any arrivals such that the

mean arrival rate vector is interior to fraction βA of the stability region of ∆*
GI. Note that the

term at least in the theorem is justified by the fact that βA is lower than or equal to the exact

solution (β). Therefore, the desired statement follows.

APPENDIX K

PROOF OF THEOREM 7

As in the first part of the proof of Theorem 5, depending on the number of scheduled pairs

under each policy, we distinguish (the same) four cases.

1) If the Number of Scheduled Pairs is equal to 1 under both of ∆*
GI and ∆*

GP: We recall that

in this case the scheduled pair is denoted by j and its average rate is given by rsvd,j , independently

of whether we consider the perfect or imperfect case. Hence, the dot product r ·q can be written

as rsvd,j qj under ∆*
GP as well as under ∆*

GI. Hence, we have (µ · q)(∆*
GP) = (r · q)(∆*

GI), and for

any (positive constant) βP ≤ 1 the following inequality holds (r · q)(∆*
GI) ≥ βP(µ · q)(∆*

GP).

2) If the Number of Scheduled Pairs is strictly greater than 1 under both of ∆*
GI and ∆*

GP:

Under policy ∆*
GI and using the approximate expression of rk given in (57), the product (r ·q)∆*

GI

can be written as

(1− Lθ)

[∑
k∈L

dRe
− σ

2τ
αkk qk

∏
i∈L,i 6=k

(1− gki)

]
. (161)

On the other hand, using the definition of ∆*
GP, the product (µ · q)(∆*

GP) can be expressed as

(1− LPθ)
∑
k∈LP

dRe
− σ

2τ
αkk qk. (162)
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One can easily remark that this latter expression has the following equivalent representation,

which results from multiplying and dividing by the same term
∏

i∈LP,i 6=k
(1− gki),

(1− LPθ)
∑
k∈LP

dRe
− σ

2τ
αkk qk

[ ∏
i∈LP,i 6=k

(1− gki)

][ ∏
i∈LP,i 6=k

(1− gki)

]−1

. (163)

The extreme case of (µ · q)(∆*
GP) corresponds to

m3(1− LPθ)

[∑
k∈LP

dRe
− σ

2τ
αkk qk

∏
i∈LP,i 6=k

(1− gki)

]
, (164)

where m−1
3 = min

LP∈L

{
min
k∈LP

{ ∏
i∈LP,i 6=k

(1− gki)

}}
. Since, by definition, policy ∆*

GI produces the

subset L and maximizes the product (r · q), it yields

(1− Lθ)

[∑
k∈L

dRe
− σ

2τ
αkk qk

∏
i∈L,i 6=k

(1− gki)

]
≥(1− LPθ)

[∑
k∈LP

dRe
− σ

2τ
αkk qk

∏
i∈LP,i 6=k

(1− gki)

]
. (165)

As explained earlier, the stability region achieved by ∆*
GI approximates the one achieved by ∆*

GP

to a fraction β if (r ·q)(∆*
GI) ≥ β (µ ·q)(∆*

GP). It is hard to find β based on the product (µ ·q)(∆*
GP),

however, using a similar observation to that provided at the end of the proof of Theorem 6, we

can compute a fraction βP ≤ β based on an upper bound on this product. In detail, using (164),

which represents this upper bound, our problem turns out to find βP such that

m3(1− LPθ)

[∑
k∈LP

dRe
− σ

2τ
αkk qk

∏
i∈LP,i 6=k

(1− gki)

]
≤

β−1
P (1− Lθ)

[∑
k∈L

dRe
− σ

2τ
αkk qk

∏
i∈L,i 6=k

(1− gki)

]
. (166)

It suffices to take β−1
P ≥ m3, or equivalently βP ≤ m−1

3 , to satisfy the above inequality. By

considering βP = m−1
3 , the inequality in (166) becomes an equality. Combining the above with

equation (165), we therefore get (r · q)(∆*
GI) ≥ βP(µ · q)(∆*

GP).

3) If the Number of Scheduled Pairs is 1 under ∆*
GI and strictly greater than 1 under ∆*

GP:

Denoting by j the index of the scheduled pair under ∆*
GI, we can write (r · q)(∆*

GI) = rsvd,j qj .

On the other hand, as in the second case, (µ · q)(∆*
GP) can be expressed as

(1− LPθ)
∑
k∈LP

dRe
− σ

2τ
αkk qk. (167)

Using the expression of m3 that was given in the second case, it can be shown that

(r · q)(∆*
GI) ≥ m−1

3 (µ · q)(∆*
GP). (168)

The proof is similar to the proof of the second case and thus is omitted for the sake of brevity.

DRAFT



61

4) If the Number of Scheduled Pairs is 1 under ∆*
GP and strictly greater than 1 under ∆*

GI:

It can be seen that such a case cannot arise. This can be shown using the concept of proof by

contradiction. The proof is simple and will not be provided for the sake of brevity.

Based on the different cases given above, we can deduce that (r · q)(∆*
GI) ≥ βP (µ · q)(∆*

GP),

where βP = m−1
3 . Finally, we note that the rest of the proof can be done in a similar way as in

the proofs of Theorem 5 and Theorem 6, so we omit this part to avoid repetition.
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