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In this paper, we propose a multiscale strategy for crack propagation which enables one to use a refined mesh only in the crack’s
vicinity where it is required. Two techniques are used in synergy: a multiscale strategy based on a domain decomposition method to
account for the crack’s global and local effects efficiently, and a local enrichment technique (the X-FEM) to describe the geometry of
the crack independently of the mesh. The focus of this study is the avoidance of meshing difficulties and the choice of an appropriate
scale separation to make the strategy efficient. We show that the introduction of the crack’s discontinuity both on the microscale and
on the macroscale is essential for the numerical scalability of the domain decomposition method to remain unaffected by the presence of a
crack. Thus, the convergence rate of the iterative solver is the same throughout the crack’s propagation.

Keywords: Multiscale strategy; Crack propagation; X-FEM; Homogenization; LATIN method; Macroenrichment

1. Introduction

In order to verify the tolerance of aeronautical struc-
tures to fatigue damage, one needs to investigate the behav-
ior of existing cracks in the structure. The estimation of the
velocity of these cracks enables one to evaluate the residual
strength of the structure and determine inspection intervals
and required maintenance steps. Accounting for the effect
of a crack on the response of a structure involves several
difficulties. In practice, engineers prefer not to have to
change the initial mesh of the structure (that which was
defined during the design process), whose element size is
sufficient to calculate the global response, but is usually
too coarse to represent the local phenomena induced by a
crack or even the geometry of the crack itself. Thus, it is
necessary to refine the mesh in the potentially cracked area.
If the refined mesh is compatible with the coarse mesh, it
can be defined as a superelement through static condensa-

tion. However, due to the difference in element sizes
between the fine mesh and the coarse mesh, the resulting
condensed stiffness matrix, when embedded in the global
stiffness matrix, may lead to an ill-conditioned system.
The multiscale phenomena induced by the crack are not
treated efficiently. If the refined mesh and the coarse mesh
are not compatible, one can resort to global–local analysis.
The displacements (or forces, depending on the method)
are extracted from the response of the coarse mesh and pre-
scribed at the boundary of the refined mesh. Then, a local
reanalysis is carried out on the refined mesh. The local
response is taken into account on the global level by recov-
ering forces (or displacements) at the boundary of this
reanalyzed refined zone and applying these to the rest of
the coarse mesh. Usually, this process is repeated in order
to achieve a correct global–local dialog and to obtain a suf-
ficiently accurate solution in the zone of interest. One can
mention the works of Hirai [1,2], who combines static con-
densation techniques and local reanalysis, of Mao and Sun
[3], who propose a three-step process (global analysis, local
analysis and refined global analysis) and of Whitcomb [4],
who presents an iterative strategy. While the last method is
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able when the geometry of this detail evolves, as in the case
of a crack. Indeed, the greater the effect of the crack on the
global level during its propagation, the more difficult it is to
take it into account efficiently. It is necessary to repeat the
process many times, which it may be time-consuming.

Besides, the simulation of crack propagation using the
finite element method creates meshing difficulties. Today,
structural analysis in the presence of cracks is being recon-
sidered in the light of emerging methods such as the strong
discontinuity approach (SDA) introduced by Simo, Oliver
and Armero [5–7]. Other approaches, such as the eXtended
Finite Element Method (X-FEM) [9–12,14] and the gener-
alized finite element method (G-FEM) [16,17], make use of
the partition of unity method (PUM) first introduced by
Melenk and Babus̆ka in 1996 [8]. These techniques, by
enriching the kinematics of continuous media, enable one
to introduce discontinuities into the displacement field with
only a relatively small number of degrees of freedom. One
of their main advantages is that the mesh does not need to
conform to the geometry of the crack. These techniques
greatly simplify the meshing and remeshing processes,
which despite the progress in meshing tools remain tedious
tasks for the engineers confronted with crack propagation
problems. However, these techniques do not completely
incorporate the multiscale aspect induced by the crack.
Usually, they require further remeshing around the crack,
particularly at the crack’s tip: thus, the remeshing problem
is only partially solved. Moreover, for the successful imple-
mentation of these enrichment methods, it is essential to
control the condition number of the resulting stiffness
matrix [28]. One way of doing this is to use suitable precon-
ditioners for the enrichment basis chosen [29]. An alterna-
tive, which is developed in this work, consists in treating
multiscale phenomena separately.

Here, we propose a two-scale approach in order to
address the global–local analysis issue of crack propagation
without encountering meshing difficulties. The process
involved is a combination of two techniques. The first tech-
nique consists in applying the micro–macro approach
proposed by Ladevèze [18,19], which is based on a homog-
enization technique. The microscale is associated with the
local phenomena which occur around the crack. This is a
much smaller scale than the macroscale, which corresponds
to the whole structure. Our two-scale approach ensures the
correct global–local interaction between the macroscale and
the microscale. The second technique, based on the PUM, is
used to define an appropriate representation of the local
solution at the crack’s tip on the microscale. The introduc-
tion of enrichment functions is achieved through the X-
FEM. Thus, the multiscale framework enables one to use
a suitably refined mesh in the vicinity of the crack’s tip while
avoiding any constraints of conformity with the coarse mesh
which surrounds the refined zone. Moreover, thanks to this
scale separation, the macroproblem retains the same struc-
ture throughout the calculation while the numerical effort
is concentrated on the microlevel [25,26].

In this paper, the integration of the X-FEM into the
micro–macro approach is described in detail. In Section
2, the features of the micro–macro approach are presented.
This multiscale approach is based on a mixed domain
decomposition method. The structure is partitioned into
substructures and interfaces. Each of these components
has its own variables and its own behavior. Interfaces
transfer both force distributions and displacement distribu-
tions. Among the various domain decomposition methods,
FETI-like dual methods could have been used [21–23], but
we preferred a mixed method, which provides a more flex-
ible framework for the integration of the various types of
interface behavior (perfect interface, contact interface. . .).
In order to address the global–local analysis issue, one
can choose a natural partition based on the distinction
between the refined zone and the rest of the structure.
Indeed, there is no constraint concerning this choice: noth-
ing would prevent one from choosing a partition based on
a coarse finite element mesh (the initial mesh without the
crack) in which each coarse element is treated as a sub-
structure. This choice can be made regardless of the crack’s
configuration. This paper does not detail the way to link
nonconforming descriptions (i.e. nonconforming meshes)
between the refined substructures in the crack’s vicinity
and the unrefined substructures. This topic was developed
in [25,26]. Let us just mention that an interface link
between the local zone and the global zone was proposed
in order to transmit forces and moments across the bound-
ary of the refined zone. This link leads to a solution with
minimal errors in the zone of interest. The multiscale aspect
is introduced only at the interface. The interface quantities
(displacements and forces) are split into a macro part and a
micro part (q = q

M + qm). The fact that a crack affects both
the local level and the global level raises the question of the
description of macro and micro quantities. A cubic contin-
uous enrichment of the macrobasis was proposed in [27] in
order to take into account the displacement discontinuity
when an interface is intersected by a crack. In this paper,
a discontinuous macrobasis which is more appropriate
for crack modeling is presented.

In Section 3, we describe the iterative solver based on
what is known as the LATIN method [24], a nonincremen-
tal iterative computational strategy. Each iteration involves
the resolution of a linear problem within each substructure
and the resolution of a macroproblem. This macroproblem
is based on the determination of the homogenized behavior
of each substructure. For each substructure, a homoge-
nized operator is built automatically, regardless of the
crack’s configuration. The properties of this operator are
described in the case of a substructure split into two parts
by the crack.

The integration of the X-FEM into the micro–macro
approach is presented in Section 4. Since the scale separa-
tion is introduced only at the interfaces, the determination
of an X-FEM approximation for the displacement field in
each cracked substructure (subdomain) is easy. Neverthe-
less, the corresponding discretizations of displacements
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are developed in detail. The description and propagation of
the crack are based on the use of level set functions [30,31]
and their application to X-FEM simulations [13,15].

Section 5 deals with the simulation of fatigue crack
propagation. The algorithm of the global strategy is pre-
sented for this particular situation. The effectiveness of
our approach, which we call the MultiScale eXtended
Finite Element Method (MS-X-FEM), is illustrated by
the propagation of a crack in a plate with three holes sub-
jected to three-point bending. We show that the introduc-
tion of the crack’s discontinuity on both scales (X-FEM
on the microscale and discontinuous macrobasis on the
macroscale) leads to good results.

2. Description of the micro–macro approach

Let us consider, assuming small perturbations and an
isothermal quasi-static state, the equilibrium of a cracked
structure defined in the spatial domain X. This structure
is subjected to volume forces fd and surface forces Fd on
a portion o2X of the boundary oX. On the complementary
part o1X, the displacement ud is prescribed. The crack is
considered to be traction-free.

2.1. Partitioning of the structure into substructures and

interfaces

The first step of the strategy consists in describing the
structure as an assembly of substructures and interfaces.
Each of these components has its own variables and its
own equations. A substructure XE, E 2 E is subjected to
the action of its environment (the neighboring interfaces),
defined by a distribution of forces FE and a distribution
of displacements WE. An interface CEE0 between two sub-
structures XE and XE0 generates a constitutive law between
the force distributions ðF E; F E0Þ and the displacement dis-
tributions ðW E;W E0Þ (Fig. 1). Since we are using a mixed
domain decomposition method, neither displacement con-
tinuity (cf. primal methods) nor the equilibrium of forces
(cf. dual methods) is favored at an interface. The displace-
ment, stress and strain fields within a substructure XE are
denoted uE, rE and eE respectively.

In practice, interfaces and substructures are discretized
in space using classical finite elements. For a substructure,
nothing prevents one from using an X-FEM approxima-
tion field for the displacements, as will be described in Sec-
tion 4. At an interface CEE0 , the displacementsW and forces
F belong to WEE0 ;h and FEE0 ;h respectively, where subscript

h designates an approximation space. These spaces are
compatible with the force–displacement duality (1)

ðF ;W Þ7!
Z

CEE0

F � W dC ð1Þ

as well as the following Proposition 1:

Proposition 1. Spaces WEE0;h and FEE0;h are such that the

bilinear form (1) is nondegenerate:

F 2 FEE0 ;h;

Z

CEE0

F � W dC ¼ 0; 8W 2 WEE0 ;h

( )
¼ f0g;

W 2 WEE0 ;h;

Z

CEE0

F � W dC ¼ 0; 8F 2 FEE0 ;h

( )
¼ f0g:

The approximation spaces of WEE0 ;h and FEE0;h must be
chosen carefully. Choosing a wrong discretization for
FEE0 could generate spurious oscillating modes leading to
numerical instability [32,33]. Let us just mention that ways
to avoid this problem include the refinement of the sub-
structure’s mesh (‘‘h-version’’) or the use of a higher degree
of approximation p for uh (‘‘p-version’’) near the boundary,
as illustrated in Fig. 2. Suitable boundary bubbles to stabi-
lize this problem are proposed in [34]. Here, we will be
using the ‘‘h-version’’ and WEE0 ;h ¼ FEE0 ;h. Since the sub-
structures are meshed with linear triangles or bilinear
quadrilaterals, this leads to spaces WEE0 ;h and FEE0;h which
correspond to a space of piecewise constant functions over
CEE0 . The definitions of WEE0 and FEE0 are extended to the
whole set of interfaces of a substructure XE.

FE ¼
Y

E02VE

FEE0 and WE ¼
Y

E02VE

WEE0 ; ð2Þ

where VE is the set of the neighboring substructures of Sub-
structure XE. The extension of these definitions to the

Fig. 1. Interaction among substructures and interfaces.

Interforce m=0

Interdisplacement m=0

...

... ...

INITIAL DISCRETIZATION

OVER-

DISCRETIZATION

h-version p-version

INTERFACE

Interforce m=0

Displacement p=1

SUBSTRUCTURE

Interforce m=0

Displacement p=1

SUBSTRUCTURE
Interforce m=0

Displacement p=2

SUBSTRUCTURE

Fig. 2. Modification of the classical approximations of the interforce (FE

approximation of degree m) and local displacement along the edge of a

substructure (FE approximation of degree p) for finite element calcula-

tions: h- and p-versions.
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introduce the following definition:

Definition 1 (E-admissibility). For a substructure E,
sE ¼ ðeE;W E; rE; F EÞ 2 SE is said to be E-admissible if it
verifies:

• The kinematic admissibility of (eE,WE): 9uE 2 UE such
that eE = e(uE) and

8F � 2 FE;

Z

oXE

F � � ðuE � W EÞdC ¼ 0:

• The static admissibility of (rE,FE),

8u� 2 UE;

Z

XE

rE : eðu�ÞdX

¼
Z

XE

f d � u� dXþ
Z

oXE

F E � u� dC:

The corresponding space is denoted FE,ad. FE,ad,0 is the
associated vector space (for fd = 0).

• The constitutive equation rE = K:eE where K is the
Hooke’s tensor. The corresponding space is designated
by SE,ad. SE,ad,0 is the associated vector space.

Then, the reference substructured problem can be reformu-
lated as:

Problem 1. Find s = {sE}E2E, with sE ¼ ðeE;W E; rE;
F EÞ 2 SE, which verifies:

• the E-admissibility of sE"E 2 E,
• the behavior at the interfaces, the boundary conditions
over o1X and o2X being considered special cases.

The behavior at the interface depends on the connection
which is to be modeled and can been expressed as a mixed
constitutive law between the force distributions ðF E; F E0Þ
and the displacement distributions ðW E;W E0Þ. For each
interface CEE0 , this constitutive law can be formally written
at any point x of the interface as:

RðW E; F E;W E0 ; F E0Þ ¼ 0; 8x 2 CEE0 ; ð3Þ
which in the case of unilateral contact, can be a nonlinear
relation [32,37]. For instance, in order to describe the
behavior of a perfect connection between XE and XE0 , rela-
tion (3) corresponds simply to the following equations:

W E � W E0 ¼ 0 ðdisplacement continuityÞ; ð4Þ
F E þ F E0 ¼ 0 ðequilibrium of forcesÞ: ð5Þ

2.2. Description of quantities on the macroscale and on the

microscale

The distinction between the micro and macro levels is
made only at the interfaces. Macro fields (superscript M)
and micro fields (superscript m) are defined only at the

interfaces prior to any discretization. The macroscale is
defined by the characteristic length of the interfaces, which
is a priori greater than the discretization on the microscale.
Let us consider a particular interface CEE0 (Fig. 1). We may
freely choose the spaces FM

EE0 and W
M
EE0 in which the mac-

rodisplacements and macroforces are sought provided that
these spaces are compatible with the force–displacement
duality (1) and the following proposition:

Proposition 2

F M 2 F
M
EE0 ;

Z

CEE0

F M � W M�dC ¼ 0; 8W M� 2 W
M
EE0

( )
¼ f0g;

W M 2 W
M
EE0 ;

Z

CEE0

F M� � W MdC ¼ 0; 8F M� 2 F
M
EE0

( )
¼ f0g:

Proposition 2 implies that Spaces F
M
EE0 and W

M
EE0 have

the same dimension. Usually, one chooses for WM and
FM affine functions on CEE0 , the only constraint being for
the space of the macrodisplacements to contain the rigid
body modes over oXE, so that the multiscale approach is
numerically scalable [18,19]. Finally, FM and WM are
written over CEE0 in the form F M ¼

PnM
i¼1ðF ; eMi ÞeMi ¼PnM

i¼1½FM �ieMi . One possible choice for the macrobasis is
represented in Fig. 3. This definition of macroquantities
is physically sound: these quantities are mean values with
regard to space. They are also the best possible approxima-
tions with respect to the work bilinear form (1). Because of
Proposition 2, they are uniquely defined.

Definition 2. The macro parts ðW M ; FM Þ 2 W
M
EE0 �F

M
EE0 of

ðW ; F Þ 2 WEE0 �FEE0 are defined by the following
expressions:

W M 2W
M
EE0 ;

Z

CEE0

ðW M �W Þ � F M�
dC ¼ 0; 8F M� 2 F

M
EE0 ;

F M 2 F
M
EE0 ;

Z

CEE0

ðF M � F Þ �W M�
dC ¼ 0; 8W M� 2W

M
EE0 :

Consequently, the micro parts are Fm = F � FM and
Wm = W � WM. Therefore, the scales can be uncoupled
as follows:

Fig. 3. Linear macrobasis feMi gk¼1::4, (nM = 4), for an interface CEE0 .
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CEE0

F � W dC ¼
Z

CEE0

F M � W M dCþ
Z

CEE0

F m � W m dC: ð6Þ

This partitioning, which can be extended to the whole set of
interfaces, leads to Spaces WM , Wm, FM and F

m. Let us
note that relation (6) is independent of the homogenization
technique, which will be presented later.

The choice of a macrobasis described in Fig. 3 may not
be suitable for taking the displacement discontinuity
induced by a crack into account. A macrobasis which
extracts not only the linear part, but also the quadratic
and cubic parts of an interface quantity in order to repre-
sent the crack’s opening at an interface intersected by the
crack was proposed in [27]. This cubic macroenrichment
enabled us to improve the efficiency of the strategy. Here,
we propose a discontinuous macrobasis. Let us consider
an interface intersected by a crack at a given point C
(Fig. 4). A simple way of building a discontinuous macro-
basis consists in using a linear macrobasis (Fig. 3) for each
part C1 and C2, which leads to a piecewise linear macroba-
sis. The macroforces and macrodisplacements on one part
of the interface are defined using the vectors of the linear
macrobasis and are set to zero on the other part (Fig. 4).
Thus, the macrobasis vectors eM1 ðxÞ, eM2 ðxÞ, eM3 ðxÞ and
eM4 ðxÞ are orthogonal to the four other vectors eM5 ðxÞ,
eM6 ðxÞ, eM7 ðxÞ and eM8 ðxÞ in the sense of the work bilinear
form (1). This leads to an orthogonal macrobasis. From
now on, we will refer to this piecewise linear macrobasis
as the discontinuous macrobasis.

Let us consider the academic example of a structure with
a traction-free crack intersecting an interface (Fig. 5). The
macromesh of the interfaces is shown in Fig. 5c and the
micromeshes of Substructures XE and XE0 are shown in
Fig. 5b. The deformed shape and the macrodisplacements
W M

E obtained with a linear macrobasis (Fig. 6a) show that,
unlike the complementary micro part W m

E ¼ W E � W M
E , W

M
E

is continuous across CEE0 . Similar results for a cubic mac-
robasis are shown in Fig. 6b. Let us observe that according
to the definition of the macrobasis at an interface the
resulting homogenized behavior of each substructure can
take the macroeffect of the crack into account. Thus, the
resulting homogenized operator can represent not only
homogenous macrostates, but also macro gradient states
such as those defined by homogenized operators of the
Cosserat [35] or micropolar [36] media types. The use of

the discontinuous macrobasis for the interface intersected
by the crack is shown in Fig. 7. In this case, the discontinu-
ity induced by the crack is introduced on both levels. The
macrodisplacement W M

E and its complementary micro part
W m

E are both discontinuous.

Fig. 4. Discontinuous macrobasis: piecewise linear macrobasis feMi gi¼1::8,

(nM = 8), for an interface CEE0 intersected by a crack at midpoint.

a b

c

Fig. 5. A structure with a traction-free crack intersecting an interface. (a)

Substructures (XE and XE0 ). (b) Micromeshes. (c) Macromesh.

a b

Fig. 6. Deformed shape and macrodisplacements W M
E (thick lines) at the interfaces using a linear macrobasis: the discontinuity is introduced only on the

microscale. (a) Linear macrobasis. (b) Cubic macrobasis.
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Remark 1. The choice of piecewise constant functions as
the discretization space for interface quantities (see Section
2.1) enables a discontinuity between the elements of the
interface located on the both sides of the crack to be
introduced naturally.

Remark 2. The definition of the discontinuous macrobasis
requires the position where the crack intersects the inter-
face to be predetermined. This can be cumbersome in the
crack propagation situation. The use of a level set function
whose zero isovalue defines the intersection point alleviates
this difficulty (see Section 4). In the situation where the
crack is completely or partially aligned with an interface,
a new interface behavior (Eq. (3)) is needed. For example,
one can introduce a contact interface. This type of interface
behavior is described in [32,37].

2.3. Partial verification of transmission conditions

Another important feature of the multiscale computa-
tional strategy is that the transmission conditions at the
interfaces are partially verified a priori. The macroforces
must verify the transmission conditions (i.e. the equilib-
rium at the interface in terms of the macroforces) systemat-
ically, including the boundary conditions. The corre-
sponding space is designated by F

M
ad.

F
M
ad ¼ fFM 2 F

M j8E 2 E; 8E0 2 VE; F
M
E þ F M

E0 ¼ 0g:
ð7Þ

3. A LATIN-based iterative solver

3.1. Principle

The partial verification of the transmission conditions a
priori at the interfaces leads to the following reformulation
of the reference problem: Find s = {sE}E2E, with sE 2 SE,
which verifies:

Ad

� the E-admissibility of sE; E 2 E : sE 2 SE;ad

ðsee Definition 1Þ;
� the admissibility of F M

: F M 2 F
M
ad ðsee ð7ÞÞ;

�������

C
� the constitutive relation ð3Þ

describing the behavior at the interfaces;

����

Cconstitutes a set of (possibly nonlinear) equations which
are local in space. Ad is a set of global linear equations.
With this decomposition, it is possible to apply the LATIN
method [24], a general computational strategy for time-
dependent nonlinear problems which operates globally
over the entire space–time domain. Under the assumption
of small perturbations and an isothermal quasi-static state,
the time does not intervene: in this case, the capabilities of
the LATIN method are not fully exploited. Nevertheless,
this general method is used here even though such a frame-
work is not required. Other equivalent formulations exist
and can be used. Fig. 8 illustrates the procedure for one
iteration, which is composed of two stages: the local stage
and the linear stage.

Remark 3. The admissibility of the macroforces (Eq. (7))
ensures the propagation of global information throughout
the whole set of substructures. The strategy is numerically
scalable provided that the macroforces can represent the
resultants and moments at the interfaces. This point will be
discussed later in the case where a crack is present.

3.2. The local stage at iteration n

The local stage consists in constructing ŝnþ1=2 2 C given
sn 2 Ad (Fig. 8). ðŝnþ1=2 � snÞ must follow a search direction
E+. For each interface CEE0 , ŝnþ1=2 must verify:

8F � 2 FEE0 ;Z

CEE0

fk�1ðbF E � F EÞ � ðcW E � W EÞg � F � dC ¼ 0; ð8Þ

where k is a positive scalar. This is a parameter of the meth-
od which can be viewed as a micro stiffness coefficient of
the interface [33]. The subscripts n and n + 1/2 have been
omitted to simplify the notations. The local step presents
no difficulty. This problem is local with respect to the space
variable and lends itself well to the highest degree of paral-
lelism. In the case of a perfect interface CEE0 , (4) and (5)
along with the search direction (8) enable one to express
the ‘‘hat’’ interface quantities cW E, cW E0 , bF E and bF E0 as func-
tions of the quantities WE, W E0 , FE and F E0 from the previ-
ous linear stage. Thus:

8x 2 CEE0 ; cW E ¼ cW E0 ¼ 1

2
ðW E þ W E0Þ � 1

2k
ðF E þ F E0Þ;

8x 2 CEE0 ; bF E ¼ �bF E0 ¼ 1

2
ðF E � F E0Þ � 1

2
kðW E � W E0Þ:

Fig. 7. Deformed shape and macrodisplacements W M
E (thick lines) at the

interfaces using a discontinuous macrobasis: the discontinuity is intro-

duced on both the microscale and the macroscale.

Ad

Γ

E+

E-

sn+1/2

sref

snsn+1

Fig. 8. The LATIN scheme for one iteration.

6



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t3.3. The linear stage at iteration n

The linear stage consists in constructing sn+1 2 Ad

given ŝnþ1=2 2 C. ðsnþ1 � ŝnþ1=2Þ must follow a search
direction E-. For each substructure XE, E 2 E, sn+1 must
verify:

8F � 2 F
m [F

M
ad;

X
E2E

Z

oXE

fk�1ðF E � bF EÞ þ ðW E �cW EÞg � F �
E dC ¼ 0; ð9Þ

where subscripts n + 1/2 and n + 1 have been omitted. The
admissibility of F 2 F

M
ad is ensured by the introduction of a

Lagrange multiplier fW M 2 W
M
ad;0 [20]. WM

ad;0 corresponds
to the space of the macrodisplacements which are continu-
ous across the interfaces and equal to zero along o1X. Thus,
Eq. (9) can be rewritten as follows:

8F � 2 F;
X

E2E

Z

oXE

fk�1ðF E � bF EÞ

þ ðW E �cW EÞg � F �
E dC ¼

X

E2E

Z

oXE

fW M

E � F �
E dC; ð10Þ

8fW M� 2 W
M
ad;0;

X

E2E

Z

oXE

fW M�
E � F E dC

¼
X

E2E

Z

oXE\o2X
fW M�

E � F d dC: ð11Þ

Eq. (11) expresses the admissibility of the macroforces in
a weak sense. The introduction of the two search direc-
tions (8) and (9) makes the problem well-posed. The
problem can be split into two parts: a microproblem
(see Section 3.3.1) defined over each substructure XE

and a global macroproblem defined over the whole set
of interfaces (see Section 3.3.3). The macroproblem re-
quires the definition of a homogenized behavior operator
for each substructure XE (Section 3.3.2). The definition of
such an operator for a cracked substructure is discussed
below.

3.3.1. The microproblem within a substructure XE

The microproblem associated with Substructure XE,
E 2 E, is defined as follows:

Problem 2. Find sE = (eE,WE,rE,FE) 2 SE which verifies:
• the E-admissibility of sE (see Definition 1),
• the search direction (10).

This is a linear problem. Since the search direction (10) is
local over oXE, the microproblem consists in a set of inde-
pendent problems within each substructure XE. The kine-
matic admissibility equation (see Definition 1) and the
linear constitutive law (rE = K:eE) can be expressed in a
weak sense as follows:

8ðr�; F �Þ 2 FE;ad;0;

Z

XE

rE : K�1
: r� dX ¼

Z

oXE

F � � W E dC:

ð12Þ
Introducing the search direction (10) into (12), this leads to
the following microproblem in terms of the stresses:

Problem 3. Find (rE,FE) 2 FE,ad which verifies:

8ðr�; F �Þ 2 FE;ad;0;

Z

XE

rE : K�1
: r� dX

þ
Z

oXE

k�1F E � F � dC

¼
Z

oXE

ðk�1bF E þcW E þfW M

E Þ � F � dC:

The microproblem over a substructure XE can be reformu-
lated in terms of the displacements:

Problem 4. Find (uE,WE) 2 EE,ad which verify:

8ðu�;W �Þ 2 EE;ad;

Z

XE

eðuEÞ : K : eðu�ÞdX

þ
Z

oXE

kW E � W � dC

¼
Z

XE

f djXE
� u�dXþ

Z

oXE

ðbF E þ kcW E þ kfW M

E Þ � W � dC:

The solution of the microproblem associated with Sub-
structure XE depends only on the known quantities f djXE

,
ŝE and fW M

E over oXE which is determined by the macro-
problem (see Section 3.3.3). One can prove that:

Proposition 3. If K and k are positive definite, Microproblem

(Problem 3) defined over Substructure XE and its boundary

oXE has a unique solution such that:

F M
E ¼ LF

EðfW
M

E Þ þ bF M

E;d ; ð13Þ

where fW M

E 2 W
M
E ¼

Q
E02VE

W
M
EE0 and bF M

E;d depends on f djXE

and bsE.

LF
E is a linear operator from W

M
E onto F

M
E which can be

interpreted as a homogenized behavior operator over sub-
structure XE. L

F
E is calculated by solving Microproblem for

a set of loading cases fW M

E , with f djXE
and ŝE set to zero.

Note that fW M

E depends on only a few scalar parameters:
translations, rotations and extensions for a linear macrob-
asis (Fig. 3). Thus, the determination of LF

E is obtained at
relatively low cost. If nM is the dimension of Space W

M
EE0

for an interface CEE0 and XE is surrounded by ni interfaces,
then it takes nM · ni independent microproblems to deter-
mine LF

E . The properties of LF
E are described in Section

3.3.2 below.
Let us recall that if one knows the Lagrange multiplier

fW M

E , one can solve the microproblem over XE and

7
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stage). Thus, there exists a localization operator Ls
E from

W
M
E onto SE such that:

sE ¼ Ls
EðfW

M

E Þ þ bsE;d ;

where ŝE;d depends on ŝE and f djXE
.

3.3.2. The homogenized behavior operator for a substructure

XE

Let us first consider a crack-free structure XE. During
the linear stage, the force distribution F M

E over oXE is in
equilibrium with the loading f djXE

and belongs to the space:

F
M
E;ad ¼ F M

E 2 F
M
E j8aE 2 RE;

Z

oXE

F M
E � aE dC

�

¼
Z

XE

f d � aE dX
�
; ð14Þ

where RE ¼ faE 2 UEjeðaEÞ ¼ 0g is the space of the infini-
tesimal rigid body modes of XE. The corresponding vector
space is denoted F

M
E;ad;0 (i.e. for fd = 0).

Proof 1. The solution of Microproblem (Problem 4) must
verify:

8aE 2 RE;

Z

oXE

F E � aE dC ¼
Z

XE

f d � aE dX:

According to the definition of the macrodisplacement
space, one has R

W
E � W

M
E , where R

W
E corresponds to the

space which contains the trace on oXE of each displacement
field that belongs to RE. The uncoupling relation (6) be-
tween the micro work and the macro work enables one
to write:

8aE 2 RE;

Z

oXE

F E � aE dC ¼
Z

oXE

F M
E � aE dC:

Thus, F M
E is in equilibrium with the loading f djXE

and be-
longs to F

M
E;ad . h

Proposition 4. Operator LF
E

• has its image in F
M
E;ad;0,

• is not definite and its kernel is RW
E ,

• is a bijection from the quotient space W
M
E ¼ W

M
E =R

W
E

onto F
M
E;ad;0,

• is positive for the work bilinear form (1) defined over oXE.

Proof 2. Let us consider sE ¼ Ls
EðfW

M

E Þ with ŝE;d ¼ 0. Thus,
sE belongs to SE,ad,0 and verifies the search direction
(10):

8F � 2 FE;

Z

oXE

ðk�1F E þ W E �fW M

E Þ � F � dC ¼ 0: ð15Þ

sE is the solution of the following problem: Find (rE,-
FE) 2 FE,h,ad such that:

8ðr�; F �Þ 2 FE;ad;0;

Z

XE

rE : K�1
: r� dX

þ
Z

oXE

k�1F E � F � dC ¼
Z

oXE

fW M

E � F � dC:

If one chooses sE as a virtual field in this formulation,
according to the uncoupling relation (6), one can write:
Z

oXE

fW M

E � F E dC ¼
Z

oXE

fW M

E � LF
EðfW

M

E ÞdC:

Since K and k are positive definite operators, LF
E is also po-

sitive. Moreover, if LF
EðfW

M

E Þ ¼ 0, then rE = 0 and FE = 0.
Using the constitutive law rE = K:eE, one can say that
eE = 0, which implies that W E 2 R

W
E . The search direction

(15) yields W E ¼ fW M

E and, consequently, fW M

E 2 R
W
E . Thus,

KerðLF
EÞ ¼ R

W
E . Since LF

E defines an injection from W
M
E

onto F
M
E;ad;0 (two spaces with the same finite dimension),

LF
E defines a bijection from W

M
E onto F

M
E;ad;0. h

In the case of a substructure XE which is split into two
parts XE1

and XE2
by a traction-free crack C (Fig. 9), the

properties of the homogenized operator LF
E must be rede-

fined. Let us introduce the following definition:

RE ¼ fðaE1
; aE2

Þ 2 UE1
�UE2

jeðaE1
Þ ¼ 0; eðaE2

Þ ¼ 0; aE1

¼ aE1
on Cg:

This space RE is similar to that introduced previously and
contains the infinitesimal rigid body modes of XE1

and XE2

which are continuous over C. Let us define:

eRE ¼ fðaE1
; aE2

Þ 2 UE1
�UE2

jeðaE1
Þ ¼ 0; eðaE2

Þ ¼ 0g
the space which contains the infinitesimal rigid body modes
of XE1

and XE2
. RW

E and eRW
E are respectively the spaces of

the traces of the functions of RE and eRE on oXE. The pre-
vious definitions of FM

E;ad (Eq. (14)) and F
M
E;ad;0 with this

new definition of RE remain the same. Proposition 4
becomes:

Proposition 5. For a substructure XE split into two parts by

a traction-free crack, operator LF
E

• has its image in F
M
E;ad;0,

• is not definite and its kernel is eRW
E \W

M
E ,

Fig. 9. A substructure XE split into two parts XE1
and XE2

and surrounded

by four interfaces.
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M
E ¼

W
M
E =

eRW
E \W

M
E onto F

M
E;ad;0,

• is positive for the work bilinear form (1) defined over oXE.

Proof 3. This proof is similar to Proof 2. The only differ-
ence is that the kernel of LF

E reduces to eRW
E \W

M
E . h

If one chooses linear or cubic continuous macrobases
for the four interfaces, eRW

E \W
M
E , the kernel of L

F
E , reduces

to R
W
E . Fig. 10 illustrates the three resulting rigid body

modes in the 2D case. If one chooses discontinuous macro-
bases for the two interfaces which are intersected by the
crack, the kernel eRW

E \W
M
E of operator LF

E reduces to
eRW

E . Indeed,
eRW

E � W
M
E . Fig. 11 shows the six resulting

rigid body modes in 2D. This result is essential in order
to ensure the numerical scalability of the multiscale strat-
egy applied to crack propagation.

In order to illustrate the numerical scalability of the
approach, let us consider the example described in
Fig. 12. The micromesh is shown in the upper left corner
of Fig. 13. Three partitions into substructures and inter-

faces are proposed with 2 · 5, 4 · 10 and 8 · 20 substruc-
tures respectively. The crack was modeled using the
X-FEM. The propagation aspect was not addressed. The
integration of the X-FEM will be discussed in Section 4.

The convergence curves of the LATIN error criterion g

(16) for each partition and for the various macrobases (lin-
ear, cubic and discontinuous) are shown in Fig. 14. The
convergence rate (i.e. the slope of the curves) with the dis-
continuous macrobasis is the same regardless of the parti-
tion. This is not the case of the linear and cubic
continuous macrobases. Thus, it is necessary to introduce
the discontinuity on the macroscale in order for the numer-
ical scalability of the domain decomposition method to be
unaffected by the presence of a crack.

3.3.3. The macroproblem over X

The macroproblem is defined by Eqs. (11) and (13). It
can be expressed as follows:

Problem 5. Find ðfW M ; FM Þ which verifies:

• kinematic admissibility: fW M 2 W
M
ad;0,

• static admissibility: F M 2 F
M
ad,

• the homogenized constitutive law:

8E 2 E; F M
E ¼ LF

EðfW
M

E Þ þ bF M

E;d :

The weak forms of the kinematic admissibility Eq. (11) and
the constitutive law (13) lead to the following displacement
formulation in terms of the multiplier fW M :

Problem 6. Find fW M ¼ ffW M

E gE2E 2 W
M
ad;0 which verifies:

8fW M� 2 W
M
ad;0;

X

E2E

Z

oXE

fW M�
E � ðLF

EðfW
M

E Þ þ bF M

E;dÞdC

¼
X

E2E

Z

oXE\o2X
fW M�

E � F d dC:

This problem has a unique solution if mes(o1X)5 0 [33].

Remark 4. Macroproblem (Problem 6) is solved exactly
with no approximation. Consequently, the macroforce

ðFM 2 F
M
adÞ and the multiplier ðfW M 2 W

M
ad;0Þ are admis-

sible at each iteration. In the macroproblem is large, i.e. if
it involves a large number of interfaces, it can be solved
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Fig. 10. With a linear or cubic continuous macrobasis for each interface,

the kernel of operator LF
E reduces to the rigid body modes (three modes in

2D) of the equivalent healthy substructure.
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Fig. 11. For a discontinuous macrobasis, the kernel of operator LF
E

reduces to the rigid body modes (six modes in 2D) of the two parts XE1
and
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of Substructure XE.

F

Fig. 12. Clamped structure with a traction-free crack subjected to

bending.
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using an approximation of the multiplier ðfW M 2 W
M
h;ad;0Þ.

This approximation space can be viewed as a third scale
[20,33].

Remark 5. One can also use a formulation in terms of the
macroforces [33]. Let us note that such a formulation intro-
duces new unknowns: the traces of the rigid body modes of
each substructure on the interfaces.

Remark 6. The macroquantities are defined only at the
interfaces. The coupling between the microscale and the
macroscale is achieved through the homogenized operator,
which is nonlocal. Macroproblem (Problem 6) is not classi-
cal in that it does not involve a classical continuous med-
ium. For a linear macrobasis, the kinematic unknowns
ffW M

E gE2E correspond to translations, rotations and exten-
sions at each interface. Such kinematics is comparable to
that defined for a generalized Cosserat medium [35] or a
micropolar medium [36].

3.4. Convergence of the strategy

If the material’s behavior is monotonous and if the
interfaces represent perfect links, boundary conditions or
unilateral contact without friction, the multiscale strategy
verifies the assumptions of the LATIN method [24]. If
the search direction parameter k is positive, the conver-

gence of the algorithm is guaranteed. Classically, for
monoscale [37] and multiscale strategies based on the
LATIN method, one uses an error indicator based on the
conjugation of the search directions to control this conver-
gence. For one iteration of the method, two consecutive
solutions verify the search directions as follows:

ðbsnþ1=2 � snÞ 2 Eþ;

ðsnþ1 � bsnþ1=2Þ 2 E�:

The cross-verification of these two search directions means
that the difference s� bs is zero in both cases and that con-
vergence has been reached (Fig. 8). Thus, one defines the
following error indicator:

g2 ¼
P

E2E½kW E �cW EkW ;k
oXE

þ kF E � bF EkF ;koXE
�

P
E2E½kW EkW ;k

oXE
þ kcW EkW ;k

oXE
þ kF EkF ;koXE

þ kbF EkF ;koXE
�
;

ð16Þ
where kW kW ;k

oXE
¼

R
oXE

kW � W dC and kF kF ;k
oXE

¼
R
oXE

F �
k�1F dC.

In order to ensure convergence for many types of mate-
rial behavior, the linear stage is modified in order to
include a relaxation step [24]. After renaming ~snþ1, the pre-
vious quantity sn+1 2 Ad, sn+1 is now defined by:

snþ1 ¼ l~snþ1 þ ð1� lÞsn;
where in practice, the relaxation parameter l is equal to
0.8.
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Fig. 13. The micromesh and three partitions into substructures and interfaces with 2 · 5, 4 · 10 and 8 · 20 substructures.
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3.5. The final algorithm

Microproblem (Problem 4) is solved using a finite ele-
ment displacement formulation. The discretization of this
problem leads to the following linear system:

ð½KE� þ ½kE�Þ½uE� ¼ ½bF E;d � þ ½kfW M

E �

where [Æ] represents the nodal values of the quantity being
considered. [KE] is the stiffness matrix associated with Sub-
structure E. [kE] is the interface stiffness matrix associated
with the term

R
oXE

kW E � W �dC. ½bF E;d � is the loading vector
corresponding to f djXE

and ŝE. Similarly, the discretization
of Macroproblem (Problem 6) leads to the following linear
system:

½LF �eM ½fW M �eM ¼ ½bF M

d �eM þ ½FM
d �eM

where ½��eM represents the components of the quantity being
considered in the macrobasis. Macroproblem is a square

system whose dimension is
P

i¼1...nC
n
ðiÞ
M , where n

ðiÞ
M is the

number of macro unknowns (translations, rotations, exten-
sions) for Interface i and nC is equal to the number of inter-
faces. The vector ½bF M

d �eM is associated with the term

P
E2E

R
oXE

fW M�
E � bF M

E;d dC and ½F M
d �eM corresponds to

P
E2E

R
oXE\o2X

fW M�
E � F d dC.

The initialization of the algorithm consists in finding a
solution s0 which belongs to Ad. First, one defines a solu-
tion ŝ�1

2
which verifies C by setting ŝ�1

2
� 0 and applying

the boundary conditions to the corresponding ‘‘hat’’
interface quantities. Then, using the search direction
E-, a first local stage leads to the solution s0 of Ad.
The main steps of the multiscale strategy are described
below. Parallelizable steps are tagged with an empty
square h.

(1) Definition of k and the macrobasis for each interface.
In practice, k = aE/L, where E is the Young’s modu-
lus, L a characteristic length of the interface and
a = 10. Note that an optimization loop for k could
be introduced here.

(2) Preliminary calculation: For each substructure E 2 E:
h calculation of the stiffness matrices: [KE] and [kE]
h assembly and factorization of [KE] + [kE]
h determination of the homogenized operator: ½LF

E �
and for the whole set of interfaces:

h assembly and factorization of ½LF �eM for the
macroproblem
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Fig. 14. LATIN error criterion g vs the number of iterations for different substructure partitions and macrobases.
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(4) LATIN loop: For n = 0 to nmax do
(a) Local stage: calculation of bsnþ1=2 2 C

h resolution of the local problem at each inter-
face CEE0

! calculation of ðbF E;nþ1=2;cW E;nþ1=2Þ and
ðbF E0 ;nþ1=2;cW E0 ;nþ1=2Þ

(b) Linear stage: calculation of sn+1 2 Ad

h resolution of the microproblem for the known
quantities ŝE;nþ1=2 and fd in each substructure
E 2 E: ð½KE� þ ½kE�Þ½ûE� ¼ ½bF E;d �

! calculation of ŝE;d;nþ1 ) bF M

E;d;nþ1

h resolution of the macroproblem

! calculation of fW M

nþ1

h resolution of the microproblem for the load-

ing fW M

E;nþ1 in each substructure E 2 E:

ð½KE� þ ½kE�Þ½~uE� ¼ ½kfW M

E �
! calculation of uE ¼ ûE þ ~uE ) sE;nþ1

h relaxation
! snþ1 ! ~snþ1,
! snþ1 ¼ l~snþ1 þ ð1� lÞsn where l =

0.8 in practice
(c) Convergence criterion g

End LATIN loop

Remark 7. Aside from the macroproblem, in the particular
case of perfect connections and linear elasticity, such an
algorithm is similar to that based on the extension of the
Schwartz algorithm to a non-overlapping domain decom-
position method using an augmented Lagrangian formu-
lation [38]. More precisely, the resulting algorithm
corresponds to a Uzawa algorithm for the resolution of
saddle-point problems, called ALG3 in [38].

4. Integration of the X-FEM on the microscale

4.1. Approximation space in a cracked substructure

In Section 2, we proposed a separation of the macro-
scale and microscale in order to take into account the effect
of a crack on both the global and local levels. A discontin-
uous macrobasis was introduced. Such an enriched mac-
robasis enables one to keep a macromesh unchanged
regardless of the crack’s configuration, which eliminates
the meshing difficulties on the macrolevel. In order to over-
come the same difficulties on the microlevel, the X-FEM
can be used as a tool to describe the crack in the zone of
interest.

Since the scale separation is introduced only at the inter-
faces (see Section 2.2), Microproblem (Problem 4) on a
substructure XE is a classical problem in terms of displace-
ment uE with Robin conditions (search direction (10)). In a
finite element displacement formulation of this problem,

nothing precludes the enrichment of the approximation
of the displacement field in a substructure according to
the X-FEM [27]. We propose to use a classical X-FEM
approximation for uE as described in [10,13]:

8x 2 XE; uEh
ðxÞ ¼

X

i2N
uiðxÞui þ

X

i2Nd

uiðxÞHðxÞai

þ
X

i2Np

uiðxÞ
X4

j¼1

F jðxÞbji

!
; ð17Þ

where H is the discontinuous function and {Fj} are the
branch functions (Fig. 15).

4.2. The approximation space at a cracked interface

Let us consider an interface CEE0 between two substruc-
tures XE and XE0 . The macrobasis is defined prior to any
discretization. Therefore, the definitions of the macro-
and microquantities (Definition 2) are unchanged. The dif-
ficulty consists in expressing the kinematic admissibility of
the displacement field uE (respectively uE0 ) at the edge of a
substructure XE (respectively XE0 ) and the interface dis-
placement WE (respectively W E0). Thus, for the interface
CEE0 :

8F � 2 FEE0 ;

Z

CEE0

F � � ðuE � W EÞdC ¼ 0: ð18Þ

The interface quantities for an interface intersected by a
crack can also be enriched using for a displacement quan-
tity the discontinuous H function as follows:

W ¼
X

i2NC

wiðxÞwi þ
X

i2NCd

wiðxÞHðxÞaCi
: ð19Þ

The same approximation can be used for a force quantity
F. After discretization, (18) leads to the system:

½NEE0 �½BEE0 �½dE� ¼ ½MEE0 �½W E�; ð20Þ

where ½BEE0 � is a Boolean operator which restricts the vector
of the nodal unknowns [dE] of the displacement uE to the
edge CEE0 . [dE] contains the classical degrees of freedom ui
as well as the enriched degrees of freedom ai and bi. [WE]
is the vector of the nodal unknowns of the interface dis-
placement WE along CEE0 and contains both the classical
degrees of freedom wi and the enriched degrees of freedom

Fig. 15. Enriched nodes for the representation of a crack with a uniform

mesh. The nodes surrounded by a circle are enriched with the disconti-

nuity. The nodes surrounded by a square are enriched with the set of

branch functions {Fj}.

12



A
c
c
e
p
te

d
 M

a
n
u
s
c
ri
p
t

aCi
. For the matrices ½NEE0 �ij ¼ ð~wi; ~ujjC

EE0
ÞCEE0

and ½MEE0 �ij ¼
ð~wi; ~wjjC

EE0
ÞCEE0

, ~ui (respectively ~wi) represent without dis-
tinction the classical finite element shape functions ui

(respectively wi) of a classical degree of freedom and the en-
riched shape functions Hui (respectively Hwi) and Fjui of
an enriched degree of freedom.

Another possibility consists in choosing for wi piecewise
constant functions. This choice is inspired by the discussion
of the choice of the approximation spacesFEE0 ;h andWEE0;h

in Section 2.1. This approximation space enables one to
represent a discontinuity in a natural manner without
introducing the discontinuous H function. Thus, one has
simply:

W ¼
X

i2NC

wiðxÞwi and F ¼
X

i2NC

wiðxÞf i: ð21Þ

From here on, we will use piecewise constant P0 functions
for all interface quantities at an interface intersected by a
discontinuity (Fig. 16). Overdiscretization will be applied
at the edges of the substructures in order to avoid spurious
oscillating interforces as described in Section 2.1.

Remark 8. The discretization of an interface quantity (21)
leads only to an approximate location of the discontinuity.
A discontinuity is described properly only when the crack’s
path is aligned with the edges of the interface elements.

Obviously, an enrichment using the jump function H, as in
(19), is preferable. Such discretization is currently being
studied.

4.3. Cracked plate under three-point bending

In order to illustrate the combined use of the X-FEM
and the micro–macro approach, a cracked plate under
three-point bending (Fig. 17) was studied. The propagation
aspect was not addressed. Only two substructures were
refined (Fig. 18). In [25,26], a new interface behavior was
proposed for each interface between a refined substructure
in the crack’s vicinity and a coarse substructure. For a non-
conforming interface CEE0 between two nonconforming
substructures XE and XE0 , relation (3) is:

F M
E þ F M

E0 ¼ 0

W M
E � W M

E0 ¼ 0

(
and

F m
E ¼ 0

F m
E0 ¼ 0

�
8x 2 CEE0

This link, which forces the microforces to be equal to
zero, ensures the transmission of forces and moments at
the boundary of the refined zone and leads to a solution
with minimal errors in the zone of interest. In our case,
such a link with Fm = 0 was used for the five interfaces

Fig. 16. Approximation space for an interface quantity W at an interface

CEE0 intersected by a crack: piecewise constant P0 shape functions.

Fig. 17. Short plate with a single-edge crack under three-point bending.
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Fig. 18. Micro deformed shape in the cracked zone and interface macrodisplacement WM (thick lines). A discontinuous macrobasis was defined for the

two interfaces intersected by the crack and the X-FEM was used on the microlevel.
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surrounding the refined substructures. A discontinuous
macrobasis and a perfect link were used for the two inter-
faces located within the cracked zone.

The resulting deformed shape and interface macrodis-
placement WM (thick lines) are shown in Fig. 18. One
can see that the macrodisplacement is discontinuous for
the two interfaces intersected by the crack (see the zoom
in Fig. 18). One should note that for the sake of simplicity
the displacement within the substructures is interpolated
over the geometry and not over the X-FEM shape func-
tions. This explains why the elements intersected by the
crack are stretched. The stress rxx is shown in Fig. 19.
One can see that the X-FEM enabled the description of
the singularity at the crack’s tip even though a very coarse
mesh was being used. The calculated value of the stress
intensity factor KI is K I ¼ 665:23 MPa

ffiffiffiffiffiffiffiffi
mm

p
. This agrees

well with the reference value obtained by Gettu, Baz̆ant
and Karr [39]: K Iref ¼ 664:69 MPa

ffiffiffiffiffiffiffiffi
mm

p
. The relative error

is about 0.08%.

5. The MS-X-FEM for fatigue crack propagation

5.1. Crack propagation with level set functions

A single level set function u is sufficient to model a curve
[30,31]. In order to model a crack in 2D, two level set func-
tions are required (Fig. 20): one for the crack’s faces (u)
and one to describe the crack’s front (w). Provided that
an initial description of the discontinuity C (e.g. a straight
precrack defined by a line in 2D as in Fig. 20) is available at
t0, the level set functions u(x,t0) and w(x,t0) can be
expressed as follows:

uðx; t0Þ ¼ 	 min
xC2Cðt0Þ

kx� xCk;

wðx; t0Þ ¼ ðx� xpf Þ:t0:

Subsequently, an evolution equation [30] is used to update
the level set functions. Thus, at a given time t, the crack’s

position C(t) can be expressed as a function of the updated
values of u and w:

CðtÞ :¼ fx 2 R2juðx; tÞ ¼ 0 and wðx; tÞ 6 0g:
Once the level set functions u, w are known, the enrichment
functions H(x) and {Fj(r,h)} can be easily evaluated using
the following expressions given in [13]:

Hðx; tÞ ¼ H �ðuðx; tÞÞ ¼ 1 for uðx; tÞ > 0;

�1 for uðx; tÞ < 0

�

and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2ðx; tÞ þ w2ðx; tÞ

q
;

h ¼ arctan
uðx; tÞ
wðx; tÞ :

The level set functions are also used to identify the inter-
faces which are intersected by the crack and the location
of the cut along these cut interfaces. Then, the correspond-
ing discontinuous macrobasis (Fig. 4) can be defined. The
crack’s propagation is achieved by updating the level set
functions and the values of the enrichment functions. For
a 2D problem, the algorithm used to update the level set
functions is described in [13].

5.2. MS-X-FEM algorithm for fatigue crack propagation

In this section, we present the MS-X-FEM algorithm for
fatigue crack propagation. The propagation law is deter-
mined explicitly using the Paris law and the maximum
hoop stress criterion. In this case, the problem corresponds
to the resolution of a static problem at each propagation
step. A crack length increment control is chosen. For each
crack length step, the problem is solved by the micro–
macro approach (see the algorithm in Section 3.5) using
an X-FEM model of the current position of the crack.
The resulting algorithm can be written as follows:

(1) Definition of pre-crack geometry, crack length incre-
ment Da and list of the refined substructures E

ð0Þ
f at

Step (0).
(2) Preliminary calculation at Step (0):

h For each substructure of E
ð0Þ
f :

! initialization of the level set functions,
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Fig. 19. Cracked plate under three-point bending: stress rxx (the x-axis is

horizontal).

Fig. 20. Modeling of a crack with two level set functions: u to model the

crack’s faces and w to locate the crack’s tip pf.
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t! enrichment: X-FEM + discontinuous macro-

basis,
h For each substructure of E:

! calculation and factorization of the stiffness
matrices,

! determination of the homogenized operator
½LF

E �.
h Assembly and factorization of ½LF �ð0Þ

eM
for the

macroproblem.

(3) Propagation loop: For p = 1 to nstep do
(a) Initialization: s

ðpÞ
0 2 Ad

(b) LATIN loop: convergence criterion g < 10�4 (heu-
ristic criterion)

(c) SIF calculation: calculation of the branching
angle, propagation of the crack

(d) Updating stage at Step (p):
! updating of E

ðpÞ
f ! E

ðpþ1Þ
f ,

! for each substructure of E
ðpþ1Þ
f : updating of the

level sets, enrichment functions, macrobasis
and homogenized operator ½LF

E �,
! assembly and factorization of ½LF �ðpþ1Þ

eM

End propagation loop

Remark 9. Note that the updating stage is performed only
for the refined substructures. Let us recall that the link with
Fm = 0 which is used for the interfaces between refined
substructures and coarse substructures connects only the
macroforce and macrodisplacement components, regard-
less of the discretization. Consequently, this updating
process does not affect the homogenized operators of the
coarse substructures.

Remark 10. Updating the list of the refined substruc-
tures requires the definition of an error estimator in
order to define the size of the zone where a fine descrip-
tion is needed. This question is not addressed in this
paper.

5.3. Fatigue crack propagation in a plate with three holes

Let us consider the fatigue propagation of a precrack in
a plate with three holes under three-point bending
(Fig. 21). This case was studied in [40]. Plane strain and lin-
ear elastic material are assumed. The Young’s modulus and
Poisson’s ratio are set to E = 200,000 MPa and m = 0.3.
The Paris law was used and the propagation direction
was determined using the maximum hoop stress criterion
(even though this criterion can be questioned when the
crack’s tip interacts with a hole). A crack length increment
control was chosen and the propagation increment was set
to Da = 0.1 mm. The macromesh of the interfaces and the
micromesh within the refined substructures for the MS-X-
FEM are shown in Fig. 22. For the sake of simplicity, the
micromesh was defined a priori in the zone where the crack
propagates. The link with Fm = 0 was used for the inter-

faces surrounding the refined substructures. Moreover, in
order to study the effect of the choice of the macrobasis,
linear, cubic and discontinuous macrobases (Figs. 6 and
7) were tested successively for the interfaces located within
the refined zone. We will use the direct X-FEM calculation
as the reference. The reference mesh is shown in Fig. 23.
One should note that in the refined zone the reference mesh
is similar to the MS-X-FEM mesh (Fig. 22).

The resulting crack’s paths for the MS-X-FEM with dif-
ferent macrobases and for the direct X-FEM calculation
are shown in Fig. 24. The results are very similar to the
crack’s path obtained with the direct X-FEM calculation,
especially in the case of the discontinuous macrobasis. Nev-
ertheless, for the other macrobases, some deflections of the
crack’s path can be observed during the propagation.
Indeed, while the heuristic convergence criterion, which
was set to g = 10�4 (see the algorithm in Section 5.2), seems
to be sufficient for the discontinuous macrobasis, the solu-
tion at each propagation step is not sufficiently accurate for
the linear and cubic macrobases. Therefore, the calculated
stress intensity factor is erroneous and diverges (Fig. 24).
One should note that with the discontinuous macrobasis
the convergence criterion g = 10�4 leads to less than 1%
error in KI throughout the computation.

P

Fig. 21. Plate with a crack and three holes under three-point bending.
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Fig. 22. Micromesh within the refined substructures and macromesh of

the interfaces.
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The deformed shapes with the X-FEM and the MS-X-
FEM calculations are presented in Fig. 25 and the upper
left corner of Fig. 26 respectively.

More precisely, the displacements within the refined
substructures and the macrodisplacements WM at the inter-
faces obtained with the different macrobases are shown in
Fig. 26. All the deformed shapes are very similar. One
can observe that the discontinuous macrobasis leads to
interface macrodisplacements WM very close to the total
interface displacement W. The complementary part Wm is
nearly zero. The homogenized operator is definitely capa-
ble of representing the separation of the two parts of each
substructure intersected by the crack (see Proof 3 in Section
3.3.2).

The number of LATIN iterations required at each prop-
agation step for the different macrobases with the conver-
gence criterion set to g = 10�4 is shown in Fig. 27.

The use of a discontinuous macrobasis leads to a number
of iterations equal to about 10 and quasi-constant through-
out the propagation. Conversely, for the linear and the
cubic macrobases, this number keeps increasing drastically.
Our interpretation is that the macroproblem which results
from the use of a discontinuous macrobasis is capable of
representing the macroeffect of the crack regardless of its
geometry and achieves proper scale separation. Let us
recall that only the discontinuous macrobasis can represent
the rigid body modes of a substructure split by a crack (see
Section 3.3.2). Indeed, the interface macroforces are suffi-
cient to recover the interior solution within all substruc-
tures, even though one substructure contains the crack.
The effect of the interface microforces is localized only in
the vicinity of each interface. This is not the case with the
linear and cubic macrobases, where the microquantities
are essential to represent the global effect of the crack.
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Fig. 23. X-FEM mesh used for the direct calculation (reference).
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Fig. 24. Crack’s paths for the MS-X-FEM and values of KI as a function of the crack’s length for different macrobases and for the direct X-FEM

computation (reference).
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6. Conclusion

In this paper, we presented a multiscale strategy for
crack propagation called the MS-X-FEM. This strategy
puts two techniques into synergy: a micro–macro approach
for the efficient treatment of the global and local effects due
to the crack, and a local enrichment technique, the X-
FEM, for the description of the geometry of the crack inde-
pendently of the mesh.

The first motivation of this work was to develop a strat-
egy which makes remeshing unnecessary during a crack’s
propagation. The micro–macro approach, based on a
mixed domain decomposition method, enables one to use
a refined mesh only in the vicinity of the crack and indepen-
dently of the coarse mesh, so that the element’s size is suf-
ficient to get an accurate solution when the crack modeled
by the X-FEM interacts with the coarse scale. Similar to
the X-FEM on the microscale, the remeshing process con-
sists in using an enriched macrobasis and adding new
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Fig. 26. Deformed shape in the refined substructures and macrodisplacements WM at the interfaces (thick lines) obtained with linear, cubic and

discontinuous macrobases.
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Fig. 27. Number of LATIN iterations as a function of the crack’s length

for the different macrobases with the convergence criterion set to g = 10�4.
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interfaces and the micromesh are unchanged.
Another point concerns the definition of scales. Since a

crack affects both the local and global responses of the
structure, a suitable scale separation was required in order
for the strategy to be efficient. We showed that the intro-
duction of the crack’s discontinuity both on the microscale
and on the macroscale is advisable and does not deteriorate
the convergence rate of the iterative solver when the crack
propagates. In this case, the homogenized operator of a
subdomain intersected by a crack can represent the rigid
body modes of each part resulting from the separation,
which is essential in order to guarantee the numerical sca-
lability of the multiscale strategy.

Even though the algorithm of the MS-X-FEM was pre-
sented in the context of fatigue crack propagation with
traction-free cracks, nothing prevents the application of
this strategy to other types of propagation problems. Cur-
rently, we are working on the propagation of cracks with
frictional contact. Another pending issue is the definition
of an error estimator to control the size of the refined zone
around the crack’s tip.
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